
Query Processing Techniques for Multiversion Access Methods
Jochen van den Bercken Bernhard Seeger

Fachgebiet Informatik, University of Marburg
Hans-Meerwein-Str., D-35032 Marburg, Germany

e-mail: { bercken, seeger } @informatik.uni-marburg.de

Abstract

Multiversion access methods have been emerged
in the literature primarily to support queries on a
transaction-time database where records are
never physically deleted. For a popular class of
efficient methods (including the multiversion B-
tree), data records and index entries are occasion-
ally duplicated to separate data according to time.
In this paper, we present techniques for improv-
ing query processing in multiversion access
methods. In particular, we address the problem of
avoiding duplicates in the response sets. We first
discuss traditional approaches that eliminate du-
plicates using hashing and sorting. Next, we pro-
pose two new algorithms for avoiding duplicates
without using additional data structures. The one
performs queries in a depth-first order starting
from a root, whereas the other exploits links be-
tween data pages. These methods are discussed in
full details and their main properties are identi-
tied. Preliminary performance results confirm the
advantages of these methods in comparison to
traditional ones according to CPU-time, disk ac-
cesses and storage.

Keywords:
temporal databases, query processing, multiver-
sion access methods, optimization and tuning
techniques, physical database design

1 Introduction
Data base management systems (DBMS) have primarily
been developed to protect the current state of a database
against errors and loss, whereas only a few systems (e.g.
POSTGRES [Sto 871) are also able to preserve past states.
The past states of a database are however very important

Permission to copy without fee all or part of this material is
granted provided that the copies are not maa% or distributed for
direct commercial advantage, the VLDB copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish requires a fee
and/or special permission from the Endowment.
Proceedings of the 22nd VLDB Conference
Mumbai(Bombay), India, 1996

for various applications like land register systems
[BFA 911, decision support systems and on-line analytical
processing (OLAP) [CCS 931. A primary task of a land
register system, for example, is to keep track of the owner-
ship of real-estate over time. For these applications, queries
should be supported on any state, past or current, and on
multiple states (e.g. to show the temporal development of
data). This type of database is called a transaction-time
database [SA 851.
Traditional query processing techniques and access meth-
ods are not suitable to manage transaction-time databases
for the following reasons. First, since records are never
physically deleted transaction-time databases are
extremely large in size. In general, a transaction database
cannot completely be kept on magnetic disk [LS 891, but
some parts have to be stored on tertiary storage (e.g. optical
disks or tapes). Second, queries are more complex because
they can refer to the key and time dimension. An important
type of query is the range-period query: Given a key range
R and a time period P, find the records whose keys are in R
during P. Special cases of this query are the key-period
query and the range-time query where the key range and
the time period is reduced to a single key and time instant,
respectively. In a land register system, the query ,,Find all
owners of parcels which are in a given rectangle over the
last 10 years“ is an example of a range-period query.
Another requirement might be that the output of a range-
period query has to be sorted according to time. Although
various special access methods have been developed for
transaction-time databases, see [ST 941 for an excellent
survey, the authors are not aware of a discussion on pro-
cessing range-period queries. Previous studies are prima-
rily related to supporting either key-period queries or
range-time queries.
In this paper, we present a detailed discussion of various
algorithms for processing range-period queries in transac-
tion databases using special access methods. In the follow-
ing, we refer to these methods as multiversion access meth-
ods (MVAMs). Our discussion is primarily based on the
multiversion B-tree (MVBT) [BGO+ 933 and other meth-
ods ([Eas 861, [LS 891, [LS 901, [MKW 961) closely
related to the MVBT. The MVBT optimally solves the
range-time query problem [BGO+ 931 and therefore, is
also an ideal candidate for processing the more general
range-period query. The MVBT achieves its performance
by duplicating data records and index entries. Range-
period queries which require access to multiple versions
however suffer from the duplicates in various ways. First of
all, when traditional algorithms for processing range que-

168

ries are used to evaluate range-period queries, it will be not
distinguished between ordinary records and their dupli-
cates. Consequently, these algorithms would allow dupli-
cates in the response set. If duplicates are not desired, addi-
tional effort is required to remove them from the response
set. Crucial to efficiency is also the fact that duplicates of
directory entries exist and that the traditional query pro-
cessing algorithm would also not identify these duplicates.
Consequently, the same page can be visited more than
once. In the following, we present various algorithms for
evaluating range-period queries without reporting dupli-
cates. Although the algorithms are presented in the context
of the MVBT, they are directly applicable to other multi-
version access methods (like the write-once B-tree
[Eas 861 and the time-split B-tree [LS 891).
To the best of the authors knowledge, the problem of dupli-
cate avoidance has not been addressed in the context of
multiversion access methods so far. The problem is not
only restricted to transaction-time databases, but also
occurs in spatial data bases. For example, spatial access
methods like the R+-tree [SRF 871 also produce duplicates
(only records) which have to be eliminated from the
response set of a query in a second step. Our techniques for
avoiding duplicates (developed for the MVBT) can also be
exploited for avoiding the duplicates while processing spa-
tial queries on R+-trees and related spatial access methods.
Section 2 of the paper introduce to the problem of organiz-
ing a transaction-time database. Special attention is given
to the foundations of multiversion access methods. Section
3 describes four algorithms designed for performing range-
period queries with duplicate avoidance. We first discuss
traditional techniques (hashing and sorting). Next, we
present a new depth-first .traversal algorithm that avoids
duplicates by testing so-called reference points. Our fourth
algorithm generalizes the link traversal known from the
B+-tree. Section 4 shows the results of a set of experiments.
The conclusions are in section 5.

multiple versions. Each change creates a new version; the
i-th change is applied to version i-l at time $ and creates
version i. A record of a transaction-time database can be
represented as a tuple consisting of a key, a time interval
and some associated information. The left and right point
of the time interval represent the time when the record was
inserted into and (logically) deleted from the transaction-
time database, respectively. In the following, the interval is
called Z&e-span of a record. The right bound of the life-
span can adopt the special value now that identifies a
record to be live.

An example of a transaction-time database is depicted in
Figure 1. Records are illustrated as intervals in a two-
dimensional data space. The information part of an record
is the number reported above the inierval. Records with
keys Al and A2 are inserted at time tl and t2, respectively.
At time t3, the record with key A, is (logically) deleted. A
record with key A3 is inserted at t4. An update on the
record with key A2 creates version 5. Another update on
key A3 creates version 6 which is the current version of the
transaction-time database.

2.2 Multiversion Access Methods with Data Duplica-

2 Preliminaries
In this section, we introduce to transaction-time databases
and present a brief review of multiversion access methods
(WAMs) designed for organizing records of a transaction-
time database. Special attention is paid to the multiversion
B-tree (MVi37’) which serves as the underlying MVAM
throughout the paper.

In this subsection, we present the fundamentals of MVAMs
that use the technique of record duplication. For sake of
concreteness, we base our discussion on MVAMs derived
from B+-trees.

2.1 Transaction-Time Databases

169

A transaction-time database consists of records which
belong to different versions (states) of a file. For sake of
simplicity we assume that the versions of a file are num-
bered contiguously starting from 0. The version with the
highest number is called the current version. A record
which belongs to the current version of a file is said to be
live, and dead otherwise. A change (insertion, deletion,
update) can only be applied to the current version, whereas
queries are supported on any version, current or past.
Moreover, we also consider queries which require access to

MVAMs organizes a dynamic set of intervals in a two-
dimensional dataspace, see Figure 1. Their approach to
mapping intervals to pages is closely related to spatial
access methods that use the clipping technique [SK 881.
The basic idea is to partition the dataspace into rectilinear
two-dimensional rectangles called page regions. Each page
region is associated with exactly one page such that, when
an interval intersects with the page region, it will be stored
in the corresponding page. Note that this results in storing
the same interval in different pages. The remaining prob-
lem is then how to organize the page regions. This is solved
by recursive partitioning the data space into page regions
(until the number of page regions fits in a page). The pro-
cess of recursive partitioning is recorded in a balanced tree
where the nodes are associated with pages. We use the

1 500 1 750

i I
1000

A2

,2ooo
I

--II 0
Al 1

I time

I I I I I
4 t2 t3 t t5 k (= now)

Figure 1: An example of a transaction-time database

ti0l.l

terms data pages and directory pages for leaves and non-
leaves, respectively. This data organization is closely
related to R+-trees [SRF 871. In contrast to R+-trees, how-
ever, MVAMs also allow the occurrence of the same index
entry in different directory pages.
An insertion of a new interval or an update of an existing
interval can result in an overflow of a page. Then, a struc-
tural change has to be performed on the MVAM. There are
key-splits, version-splits and combinations of both.
A key-split is similar to a split in an ordinary B+-tree. A
separator key is used for splitting the page region of the
overflowing page into two. Records below of the separator
key remain in the original page, whereas the other records
are moved into a new page.
For a version-split, a time instant is selected for separating
time-varying records. In contrast to a key-split, some of the
records may intersect with both page regions of the newly
created pages and therefore, they also have to be stored in
both pages. A special property of transaction-time data-
bases is that a split is only performed on current pages, i.e.
pages whose page regions contain the current version.
Thus, a version-split creates a historical page and a current
page, see Figure 2 a). When the current time (now) is used
for the version-split, the number of records stored in the
(new) current page will be minimal among all possible ver-
sion-splits. Consequently, the page will not be involved in a
split for a rather long time period. Note that a historical
page will not be modified any more.
When a version-split creates an almost full (current) page,
only a few updates and insertions would be sufficient to
trigger the next split on the same page. In order to prevent
such frequently occurring split operations, a key-split can
be performed on such page immediately after the version-
split, see Figure 2 b).

m m

a) version-split b) version-split & key-split

Figure 2: Structural changes by split operations

For each data page resulting from a split, a directory entry
is inserted into the parent page like it is known from B+-
trees. In addition to the pointer to the page, the entry con-
sists of the page region. An overflow of a directory page
can again be eliminated by using a key-split, a version-split
or a combination of both. Note that a version-split of a
directory page copies current entries to a new page, i.e. dif-
ferent copies of the same directory entry exists in a
MVAM. Therefore, a MVAM derived from a B+-tree is
actually not a tree, but a directed acyclic graph.
The write-once B-tree (WOBT) [Eas 861 and the time-split
B-tree (TSBT) [LS 891, [LS 901 are prime examples of
MVAMs which organize a transaction-time database only
using key-splits, version-splits and combinations of both.

Both methods do not efficiently support (logical) deletions
of records. To the contrary, it is assumed that the number of
records grows constantly with an increasing number of ver-
sions. The TSBT uses a more sophisticated splitting policy
resulting in a lower degree of redundancy for data records
compared to the WOBT. However, the TSBT cannot effi-
ciently support range-time queries on past versions since
records close in key space at some version are not stored in
the same data page. The goal for the design of the MVBT
was to overcome these drawbacks of previous methods.

2.3 Review of the Multiversion B-Tree

The multiversion B-tree (MVBT) is a MVAM that effi-
ciently supports (logical) deletion of records. The MVBT
offers asymptotically optimal worst-case performance for
insertions, deletions and updates as well as for range-time
queries. An important feature of the MVBT is to guarantee
a minimum key density for every page and for every ver-
sion represented in the page, i.e. a page whose page region
covers a version v contains at least d records/entries which
belong to version v. It is important to (worst-case) effi-
ciency that d is a linear function in b (the capacity of a
page).
A MVAM that allows deletion like the MVBT requires a
merging policy to guarantee a minimum key density for all
versions in a page. If a weak version unde@ow occurs after
a deletion, i.e. the key density of a current page drops
below a threshold, a sibling page is determined (according
to key). Then, a version-split is performed on both pages
using the current time and the resulting pages are merged
into one, see Figure 3 a). This merging policy for eliminat-
ing a weak version underflow can be used for data pages as
well as directory pages.
The MVBT also prevents that long sequences of successive
split and merge operations are performed on a single page.
This is achieved by fulfilling the following requirement for
the current pages: Immediately after a current page was
created the number of records/entries must be between a
lower bound low and an upper bound up. It is required that
low is greater than d (the key density). Let b be the capacity
of a page. For sake of simplicity, we consider the following
setting of the parameters throughout the paper: d = b/5, low
= 2b/5, up = 4b/5. Moreover, we assume that b is a multi-
ple of 5. If the occupancy of a newly created current page is
greater than up (=4b/5) it will be split into two using a key-
split. If the occupancy is less than low (=2b/5) a merge is
performed using an appropriate sibling page. This can
result in a page whose occupancy can again be greater than
up and therefore, another key-split is required to meet the
requirements of the MVBT, see Figure 3 b).
Overall, there are four different types of structural changes:
version-split, version-split & key-split, merge and merge &
key-split. An example depicted in Figure 4 illustrates the
four different cases. The partitioning of the MVBT con-
tains 11 page regions which belong to the data pages. A
version-split was performed on page C at time t2. At time
tj, a combination of version split and key split created

170

I
-

I. I

a) merge b) merge & key-split

Figure 3: Structural changes by merge operations

pages E and F. Pages F and G were merged together at time
5. A combination of merge and key-split was performed on
pages I and H at time k.

I
t1 12 b b t5 ta n;w

Figure 4: Example of a partitioning of the MVBT

Another unique feature of the MVBT (different to the
TSBT and WOBT) is that it contains various root pages
valid for different time periods. Note that there is only one
current root. Consider for example that a version-split is
performed on the (current) root P. Then, the live entries of
P are copied into a new root page and P is marked to be
dead. The references to the different roots are stored in
another data structure called root*. One of the advantages
of allowing different roots is that the time complexity of
update operations only depends on the number of records
stored in the current version and not on the total number of
versions (as it can be observed for the WOBT and TSBT).
In general, the size of root* is rather small such that it can
almost always be kept resident in main memory.
The advantages of the MVBT are not given for free.
Although the degree of redundancy is bound by a constant
in the worst-case, the MVBT uses more space than the
WOBT and the TSBT. For MVAMs with data duplication,
there is a trade-off between query time and disk space.

3 Algorithms for Processing Range-Period
Queries

In this section, we examine several algorithms how multi-
version access methods can be used for the evaluation of
range-period queries. We primarily restrict our discussion
to tree-structured access methods with data duplication.
The range-period query is defined in the following way:

Given a key range R and a time period P. find the records whose
keys are in R during P.

The naive solution to evaluating range-period queries is to
traverse the tree in depth-first order from the root down to
the leaves. This strategy is well-known from processing

range queries in hierarchical multidimensional access
methods (e.g. R-trees, K-D-B-trees). The depth-first tra-
versal strategy has the advantage that only a path of the tree
has to be kept in main memory while processing a query.
For MVAMs, the naive algorithm however leads us to the
following two serious problems. First of all, the response
set can contain duplicates. Such duplicates should be
avoided in many cases, e.g. when the ,,distinct“ qualifier
occurs in a SQL statement or when a range-period query
delivers the answers to the next operator of an operator tree
(e.g. an aggregation like sum or avg). Second, the same
directory entry can be accessed more than once while a
query is evaluated. Consequently, pages are accessed more
than once. Consider that a page P is visited x times, n > 0.
Then, all qualifying entries/records in the subtree of P are
also visited at least x times. This process can be repeated on
each level of the tree. As a consequence, the degree of
redundancy has an exponential influence (in the height of
the tree) on the number of redundant records qualifying the
query predicate. This effect is illustrated in Figure 5 where
the gray-colored rectangles illustrate the pages of the
MVBT visited while processing a range-period query. The
naive algorithm would visit pages A, B and E once, pages
C, D, G twice, page H thrice and page F four times.

Figure 5: Visited pages of a MVBT

In the following, we present four algorithms for evaluating
range-period queries without producing duplicates. The
first two approaches use classical techniques such as hash-
ing and sorting. In the second subsection, we present a new
approach to detecting duplicates using the so-called refer-
ence point. This approach is based on a depth-first traversal
of the tree. For each qualifying entry, the reference point is
computed and tested against a certain condition. If so, the
algorithm follows the corresponding reference down to the
next node. In the third subsection, we present an algorithm
similar to the one for performing range queries on B+-trees.
Data pages are connected through links which are addition-
ally stored in the pages. In contrast to B+-trees, however,
data pages may have more than one predecessor page. This
algorithm can be used when the output has to be sorted
with respect to time. Moreover, the pages can be read in the
order of their creation which is important to efficiency in
particular when the data is stored on tertiary storage.

171

For sake of concreteness, we base our presentation of
query processing techniques on the MVBT. Our algorithms
are described in a such a way that they can directly be
applied to the TSBT and similar MVAMs.

3.1 Traditional Approaches

In this subsection, we present two well-known techniques
for avoiding duplicates in the response set.

3.1.1 Hashmg
Hashing is a widely used technique to eliminate duplicates
and to perform other relational operations [Bra 841. For
processing a range-period query on the MVBT, a hash
table HTdata is provided for collecting the answers. The
algorithm starts in the root of the tree and traverses down to
the leaves in depth-first order. For a qualifying directory
entry, the search is always directed to the corresponding
page of the entry, whereas for a qualifying record, hash
table HThta is first investigated whether it does contain the
record or not. If the record is not in HThra, it is accepted as
an answer. In order to avoid duplicates, the record is then
inserted into HTdata. In the other case (the record is in
HThtJ, the answer was already reported earlier. In the fol-
lowing, we use the shortcut DFHas,, to refer to the algo-
rithm.
First of all, DFHash obviously guarantees that answers
occur only once in the response set. However, it also offers
several drawbacks. First, the storage overhead for the hash
table is linear in the number ofanswers. Since transaction-
time databases are very large, the response set of a query
can be larger than the available main memory. Then, the
hash table has to be paged out on disk. Second, this method
does not detect redundant directory entries. Therefore, the
same page can be visited more than once. This will
increase the CPU-cost because the buffer has to be exam-
ined multiple times for reading records/entries from the
same page. Moreover, the average number of accesses to a
record will also increase (see the example of Figure 5) and
therefore, the hash table has to be probed rather frequently.
In order to detect redundant directory entries, we can
slightly modify DFHmt, using a second hash table HI’&, for
collecting qualifying directory entries. When a directory
page is examined, we tirst test each entry whether it is in
HTdi, If so, the corresponding page was already visited
previously. Otherwise, the entry is’inserted into HTdi, and
the search proceeds down to the corresponding page. This
algorithm guarantees that redundant. entries are recognized
and that a page is visited only once. Thus, it reduces the
number of accesses to the hash table, but it does not reduce
the storage overhead of DFH~~

3.1.2 Sorting
The other classical technique for duplicate elimination is
sort.@, A range-period query is performed in three phases.
In the%rst phase, the tree is traversed in depth-first order
and the qualifying records are copied into a buffer. In the
second phase, the buffer is sorted (for example according
to theinsertion time of the entries). Thereafter, in the third

phase, a linear scan through the buffer is performed to
remove the duplicates. This algorithm is called DFs,~
A drawback of DFsort is that the required buffer space
growth linear in the number of both answers and dupli-
cates. Therefore, the storage overhead is higher than the
one of DFHash. Another disadvantage of sorting is that it is
not very-suitable for pipelining queries.
Overall, both algorithms DFHash and DFsorr have a high
storage consumption for performing a query. In the next
subsection, we present methods with considerably lower
storage consumption.

3.2 A Depth-First Algorithm with Duplicate Avoid-
ance

In this section we propose a new algorithm called DFReffor
processing range-period queries that does not require addi-
tional data structures for detecting both redundant qualify-
ing entries and redundant answers. The implementation of
the method is simple and the computational overhead is
very low. In order to illustrate the basic idea of our
approach, let us first discuss an example illustrated in
Figure 6.

time
I I I

t1 t2 t3 t4
I)

now

Figure 6: Computation of the reference point

In our example, we consider a MVBT with 8 directory
pages labeled A,. . . , H. The bright gray rectangle illustrates
an entry (with label j) stored on the next lower level. A
copy of entry f is stored in each of the pages A, B-and D
since it was live at time tl and t2. Now consider a key range
R and a time period P and let us process the corresponding
range-period query as depicted in Figure 6. The range-
period query has to visit pages B, D and E since the query
rectangle intersects with their page regions. For each qual-
ifying entry, we compute the intersection between the
query rectangle and the rectangle off The lower left comer
of the intersection is called the reference point of entry f.
Since there are only copies of entry f in the different pages,
we compute the same reference point for each occurrence
off. Thereafter, we check whether the reference point is in
the page region. In our example, the page region of B con-
tains the reference point off, whereas the other page
regions do not. Therefore, the copy of entry f in page B is
selected for proceeding the search down to the page stored

172

on the next lower level in the tree. ‘A more formal descrip-
tion of the algorithm follows.

Theorem 1: The algorithm DFRefhas the following prop-
erties:

1 Algorithm DFReA Entry E, key-range [RL ,RO);

time-period Ipn,PE))

2 N = GetPage(
3 if (N is a directory page)

*,a qualifying page is visited only once
. an answer is reported only once.

Due to space limitations we omitted the proof of
Theorem 1. The interested reader is referred to [BS96].
An advantage of DFRcf is that no additional memory and
data structure is required to detect duplicates. Note that in
contrast to OF&he algorithms based on hashing and sort-
ing additionally require memory to keep the hash table and
buffer resident, respectively. The traversal strategy is only
based on local information stored in the page and in the
parent page. Therefore, we can also use this algorithm
when the MVBT would be distributed among different
computing nodes [MKW 961 without causing communica-
tion for eliminating duplicates.
Let us emphasize that the reference-point method is not
restricted to the MVBT, but is also applicable to the
WOBT, TSBT and similar methods. Moreover, the same
multiversion technique that modifies a B-tree to a multiver-
sion B-tree can also be applied to R-trees [Gut 841 and
other multidimensional access methods. The depth-first
algorithm combined with the reference point method
would be still usable without modifications for such a mul-
tiversion R-tree.

4

5
6

7

8

9

10

11

compute the page region [KL,Kv) x [TL,dummy);

/* this information is stored in f */
for (each entry g in N) do

compute the key range [low, up) of g;
/* low <up */
compute the life-span [tg,tE) of g;

if ([low, up) n [R,, R,) # 0 and

Lb, Lv) n [P,, PE) f 0 1

(refK,refT) = (max(low, Rd, max(tn, Pn));

/* (refK,refT) is the reference point */

if ((KL I refK < KU) and (TL I refT))

DFR,& [RL J-W, [PB,PE));
12 else I* N is a data page *I
13 . . . /* this code is very similar to the case of N

being a directory page */
14 end, /* DFR~~ */

In addition to key-range R and time period P, the entry
referring to the root of the tree is used as an input parameter
when algorithm DFRqis initially called. In case of the
MVBT, such an entry is found in root*. The algorithm first
retrieves the corresponding page and then distinguishes
between data pages and directory pages. For the latter case,
our description goes into details. Next, we partly compute
the page region of page N. The relevant parts of the page
region can easily be derived from the entryfwhich is refer-
ring to N. Note that we do not require the time when N was
(logically) deleted. For each of the entries of page N, we
compute its key range and its life-span. Thereafter, the
entry is tested whether its key range and life-span intersects
with R and P, respectively. If so, the reference point is com-
puted and is checked whether it does belong to the page
region or does not. If so, a recursive call to the algorithm
will follow.

The reference-point method avoids access to pages which
are referenced by duplicated directory entries. Thus, quali-
fying pages are investigated only once. Therefore, the
number of disk accesses will be considerably less in com-
parison to a pure depth-first algorithm without using the
reference-point method. In contrast to DFH~$~ and
DFSo,,this is achieved without using any additional data
structures.
A drawback of the depth-first algorithm is still that all qual-
ifying directory entries including the duplicated ones have
to be visited. Thus, the overhead of traversing the directory
pages can be rather high, in particular for small queries.
The question therefore arises how the cost for processing
directory pages can be reduced.

The naive depth-first traversal algorithm is almost equal to
DFR~~ except for three additional lines (line 4,9 and 10).
The computational overhead of our algorithm consists of
computing the reference point (line 9) and testing whether
it is in the page region of N or not (line 10). The following
theorem shows that algorithm DFR~~ gives the desired
behavior.

173

3.3 A Lii Algorithm with Duplicate Avoidance

In this section, we present a new algorithm called Link~,f
for processing range-period queries. Algorithm LinkRd
exploits links between the data pages of the MVAM. This
approach is restricted to a certain class of MVAMs includ-
ing the ones derived from B+-trees. Although there are
some similarities to the traditional algorithm for processing
range queries on B+-trees, the link approach for the MVBT
shows some unique features. For example, the data pages
of the MVBT cannot be linked together in a linear list (as it
is known from the B+-tree) such that the order of the data is
still preserved.

33.1 Basic Ideas
Before going into details let us frrst discuss the basic ideas
of our approach. Let us consider an MVBT whose page

regions (of the data pages) are depicted in Figure 7. Recall
that the page regions are disjoint and that the page regions
cover the two-dimensional data space. The partitioning of
our example only consists of page regions with at most two
temporal predecessor page regions. For example, the tem-
poral predecessor of B is A and the temporal predecessors
ofHareEandF.
In our approach, the MVBT will be equipped with links to
their temporal predecessor, see the example depicted in
Figure 7. The reason for using backward-links (and not
forward-links) is that backward-links are fully compatible
to storing historical nodes on a WQRM medium [LS 891.
Backward links point to historical pages which do not
change any more. Therefore, there is no additional cost for
updating.
Note however that for a write-many medium (e.g. magnetic
tape) the MVBT can also use forward-links. Algorithm
Linknet consists of two steps. First, the right border of the
query rectangle is used for performing a range-time query.
In our example, the answers are in pages D and H. Second,
for every qualifying data page obtained in the first step, the
temporal predecessor pages are checked whether they can
contain an answer. If so, the corresponding pages are read
into the buffer, answers are reported and the process is
repeated (i.e. the links stored in the predecessor pages are
investigated). The example illustrated in Figure 7 is then
processed in the following way: First, page D is retrieved
and all answers of page D are reported. Thereafter, its pre-
decessor page (B) is examined. The order of the remaining
qualifying pages is H, E, F, C. An important feature of
LinkRe, is that duplicated links will be ignored. In our
example, page B is therefore not examined twice. This is
achieved by using a method similar to the point-reference
method presented in the previous subsection.

time
I I I
I

G t2 t3 t4
I)

now

Figure 7: Example of a MVBT and its links

3.3.2 The Algorithm
In the following, we present a more formal description of
algorithm Link,,+ Let A and B be data pages of the
MVBT. Page A is a temporal predecessor page of B, if the
following properties are fulfilled: the insertion time of page
B is equal to the (logical) deletion time of A and the key-
range of page B intersects with the key-range of page A. It
can easily be shown that a data page of the MVBT has at
most two temporal predecessor pages.

Algorithm LinkRef exploits the links in a straightforward
way. There are only two situations which require some fur-
ther discussion.

l In order to identify the end of a chain of links without ac-
cessing unnecessarily the next predecessor page a link is
equipped with some additional information about the re-
gion of the predecessor page. If the region of a predeces-
sor page does not intersect with the query rectangle the
end of the chain is obviously reached.

l A more difficult problem is how to detect that a link has
already been examined. Following a link a second time
does not only result in reading the corresponding page
once more, but also in traversing the complete chain of
links (routed at the duplicate). Therefore, the cost of
query processing can considerably be reduced when du-
plicated links are identified.

Our approach to identifying duplicates is very similar to
the one presented in the previous subsection. First of all,
recall that a link is only duplicated when a reorganization
step consists of a combination of merge 62 key-split. A ref-
erence point of the link can be computed by using the
information about the page region of the predecessor page.
Let R be the intersection between that page region and the
query rectangle. The reference point is defined as the lower
left corner of R. Thereafter, we test the key of the reference
point whether it is in the key-range of the page that con-
tains the link. If so, we follow the link to the temporal pre-
decessor page. Otherwise, the link is identified as a dupli-
cate. An example of the method is given in Figure 8. There
are two copies of the link pointing to page A. For the given
query rectangle, the reference point is in the key-range of C
and therefore, the link stored in C is followed to A.

query rectangle I
reference
point \

D 4-
C

Figure 8: Reference point of a link

The formal description of the algorithm follows:

1 Algorithm LinkR,-(Entry f; key-range & ,R,);
time-period [PB,PE))

2 N = GetPage(
3 compute the page region [KL,K”) x [T~,dummy);

/* this information is stored in f *I
4 if (N is a directory page)
5 for (all entries g in N) do
6 compute the key range [low, up) of g;
7 compute the life-span [tg,tE) of g;

174

8 if ([low, up) n [R,, R,) f 0 and

PEE ttjp tE))
9 (refK,refT) = (max(low, R3, max(tn, Pd);
10 if ((KL < refK < KU) and (TL 5 refr))
11 Linlq&s FL Ru), F’BJ’E));
12 else /* N is a data page *I
13 for (each entry g in N) do
14 compute the key value k of g;
15 compute the life-span [tg,tE) of g;

16 if(&E [R,,R,) and

17
18
19

[tg, fE) n [P,, PE) f 0 1
output g;

if (PB < TL)

20
21

22
23

for (each temporal predecessor pd of N) do
I* at most two *I

compute the key range [low, up) of pd;
refK = max(low, RL);
/* refK is the key component of the

reference point *I
if (KL < refK)

24 end, I* LinkRet */
The algorithm Link,,f is initially started with the same
parameter setting as used for the initial call of DF,p The
algorithm first reads page N and then computes the page
region of N (using f). If N is a directory page, a range-time
query is performed using the right border of the two-
dimensional query region. This is very similar to the steps
of algorithm DFR,p Note that LinkRef recursively calls
itself (see line 11).
We first report the answers found in page N. Thereafter, we
investigate each of the temporal predecessor pages of page
N and compute its key range. Next, the key component of
the reference point is computed. If this component is
greater or equal than KL, algorithm LinkRef continues in a
recursive fashion.

3.3.3 Worst-Case Performance Analysis
Let us briefly discuss the worst-case performance of algo-
rithm LinkRep The range-period query consists of a range-
time query and a traversal of the data pages. Let us first
consider the range-time query. Assume the MVBT con-
tains n versions and that the range-time query is performed
on version v, 1 I v I n. Let ?n,, denotes the number of
records in version v and let al be the number of answers to
the range-time query. It was shown in @3GO+ 931 that the
number of accesses is
(i) O(logb II + logb m, + a/b)
in the worst-case. Recall that b denotes the capacity of a
page. The first term refers to the cost of retrieving the root
of version v. Let us emphasize that the cost expressed in the

other terms is equal to the cost of processing a correspond-
ing range query in an ordinary B+-tree that only stores the
records of version v.
Now let us consider the traversal of the data pages. The
worst-case will appear when no more answers are found,
but further pages have to be investigated. This situation can
occur when updates (insertions and deletions) were only
performed on the pages whose key-range contains the left
or right bound of the key range of the query. For a give ver-
sion (in particular for version v), there are at most two of
these pages. Since O(b) updates are required to perform a
structural change of these pages, the number of disk
accesses is then at most
(ii) O(v@)
where vp denotes the size of the time period of the query
(expressed in the number of versions). The worst-case per-
formance of a range-period query is then simply the sum of
the formulas (i) and (ii) presented above. Note that when
the number of versions can be expressed as a linear func-
tion of al (the number of answers of the range-time query),
the total cost is already given by formula (i).

3.3.4 Advanced Techniques for Query Processing
There are two other properties which make algorithm
Link,,. very attractive for processing range-period que-
ries:

l LinkR,r can easily be extended to report the answers
sorted according to time. For that, the algorithm sweeps
the key-range from the right border of the query region to
the left border. Whenever the sweep-line touch the left
point of an interval, the interval will be reported as an an-
swer. In order to be efficient, this require that all pages
whose page regions intersect with the sweep-line are
kept in main memory. If so, the number of disk accesses
would not be affected.

l A modified version of LinkRet is an interesting candidate
for processing queries when historical data is stored on
magnetic tapes. Let us assume that the technique of the
TSBT [LS 891 is used to move historical data from mag-
netic disk to a tape. Furthermore, let us assume that
LinkRet actually uses forward-links (instead of back-
ward-links). A range-period query could now be initiated
as a range-time query using the left border of the two-di-
mensional query region (instead of using the right bor-
der). Thereafter, search proceeds forward to the right
border such that the page is read next whose deletion
point is closest to the left border of the query region. This
processing strategy would guarantee that the tape is al-
ways moved forward, but never backward.

3.3.5 Adaption to other Access Methods
As mentioned previously, links can efficiently be used by
MVAMs derived from B+-trees, but not from R-trees. The
reason is that the partitioning of an ordinary R-tree allows
(arbitrarily high) overlap of its page regions and that empty
parts of the data space are not required to be covered by a
page region. Therefore, the number of links in such a mul-
tiversion R-tree would not be bound as it is the case for the

175

MVBT. However, let us mention that the link method is
applicable to multidimensional access methods that fulfills
the following properties: First, there is no overlap between
page regions. Second, a point of the dataspace belongs to a
page region. The BANG-file [Fre 871, for example, fulfills
these properties and therefore, the link method could be
used for a multiversion BANG-file.

4 Performance Comparison
In this section, we report the results of a preliminary per-
formance comparison of different methods for processing
queries on MVAMs. We consider four different depth-first
traversal algorithms (DFPure, DF,,a, DFs,,, DFu,.) and
the link algorithm (Link&. Algorithm DFp, denotes the
naive depth-first algorithm which does not eliminate dupli-
cates. All algorithms are implemented on top of the
MVBT.
The objective of our set of experiments was twofold. First,
we compare the different depth-first traversal algorithms
with respect to CPU-time and disk accesses. Second, we
show the cost of traversing the directory in a depth-first
fashion compared to the cost using the links in data pages.
Thus, in these experiments we restrict our discussion only
to methods using the reference method (DFu,f and
Link&.
The set of experiments were performed in the following
way. In each experiment, a MVBT was created performing
100,OOfl operations. This results in a MVBT with 100,000
versions. The first 10,000 operations were only insertions,
whereas the other ones were a mix of insertions and
updates. Experiments with deletions gave similar results
than those without deletions. Therefore, these results are
omitted from the paper. The parameters p and q (= l-p)
denote the fraction of updates and insertions, respectively.
For example, p = 0.9 means that 90% of the operations
were updates (not taking into account the first 10,000 inser-
tions). When an insertion is performed, the corresponding
record is computed by using a random number generator.
An update randomly selects a record from the current ver-
sion of the MVBT. In this paper, we only report results
obtained from experiments (except the last one) with the
following parameter settings: bytes per page = 4K, bytes
per record = 160, bytes per directory entry = 20. The capac-
ity of a data page and directory page was then 25 records
and 200 entries, respectively. For a data page, the lower
bound of the weak version condition is therefore 5 (key
density), i.e. a page that belongs to a version contains at
least 5 records that belong to the same version.
Overall, we created nine MVBTs for p = 0, 0.01, 0.1,0.25,
0.5, 0.75,0.9,0.99, 1.0. There are various parameters of a
MVAM which have an impact on the cost of query process-
ing, see [LS 901. In this study, we only report the results of
the fraction of redundant records (F,&. The parameter Fred
is defined as the total number of redundant records stored
in the MVBT divided by the number of versions. Figure 9
shows Fred as a function of p. For p = 0 (insertions only),
Fred is close to 1.4, i.e. for each record there are 1.4 redun-

.$ 1.2 n
0
GE l+ -

0.010.1 0.25 0.5 0.75 0.90. 9

p (fraction of updates)

Figure 9: Fraction of redundant records (Fred)

dant records on the average. Overall, the values of Fred are
between 1.3 and 1.7 in our experiments. Since all pages but
the current ones are completely filled up the MVBTs occu-
pied about 45 MB of disk storage. Note that the values of
Fred obtained for the TSBT and WOBT in similar experi-
ments [LS 901 are lower than the ones of the MVBT.
After the MVBTs had been built we run various sets of
queries. The first set (Qkey) contains 100 key-period que-
ries where the search keys were randomly selected from
the corresponding data file and the period includes all ver-
sions ([0 ,. . .,lOOOOO]). The remaining sets of queries only
consist of range-period queries where the relative size of
the query varied between 0.01% and 1% of the two-dimen-
sional data space. Another important parameter of a query
is its shape factor (sfi which is defined as the relative size
of the time period divided by the relative size of the key
range. A large shape factor for example means that the key
range is rather small compared to the time period. We con-
sidered queries with five different shape factors (sf = 0.01,
0.1, 1, 10, 100). Each query file &J size contains 1000
range-period queries which are described by a constant
shape factor sf and a constant size size.
In our implementations, a query sends its I/O request to a
buffer and therefore, the I/O request does not always result
in reading the page from disk. The buffer is basically orga-
nized according to the LRU replacement policy. In order to
keep the current path of the tree in the buffer, the corre-
sponding pages are fixed and unfixed. Before a query is
started the buffer pages are invalidated. Thus, the order in
which queries are performed does not influence the number
of disk accesses required to perform an entire query set.

4.1 The Impact of Redundancy

In this subsection, we compare the four different depth-first
algorithms: DFPure, DF,,,l,, DFs,,, DFu,f. Algorithm
DFPure corresponds to the naive depth-first traversal algo-
rithm and produces duplicates (entries and records). Algo-
rithm DFRef refer to our new method that avoids duplicates
by testing the reference point. Algorithm DF,,,, uses dou-

176

ble hashing [Knu 731 to eliminate redundant answers,
whereas DFsort eliminates duplicates by sorting (quick-
sort). Both algorithms do not avoid duplicated directory
entries. DFHasl., and DFson allocate their memory required
for the hash-table and buffer in an optimal fashion, i.e. the
algorithm knows about the number of answers and dupli-
cates before the query is actually executed. This admittedly
gives advantage to algorithms DFH~~ and DFson.
First of,all, we consider algorithm DF,,, and show the
impact of redundancy on both the number of duplicates in
the response set and the number of disk accesses. This is
illustrated using the following two parameters:

l Ared := number of redundant answers
number of answers

l UO,d :=

number of disk accesses
number of required pages

-1

The optimum would be when bd and I/O& are equal to
0. For a buffer of 25 pages (100 KB), Are,-~ and I/Od are
reported for MVBTs with p = 0.5 and query files Ql, sire
where size varied between 0.01% and 1%. The graphs
show that both parameters increase with an increasing
query size. Note that for large query sizes Ared can be even
higher than Fred. This is because algorithm DFp, does not
eliminate redundant directory entries. Obviously, this dem-
onstrate the need for eliminating redundant answers.

1.2 - - - -

1

size

Figure 10: AEd and YOd as a function of the query size
(sf=l, p=OS, buffer capacity=25 pages)

Algorithms DFHash and DFsOn guarantee that answers are
reported only once, but I/O& would be still the same as for
DF, (because duplicated directory entries are not elimi-
nated). A straightforward solution for reducing IfO,d is
simply to increase the buffer space. The required space
however depends on the size of the database and the query
size. For two different query sizes (size=0.32%, 1%).
I/O,, is depicted as a function of the buffer capacity in
Figure 11. The curves show that UO,d declines with an
increasing buffer capacity, but only rather slowly in an
almost linear fashion.

177

In contrast to these algorithms, algorithm DFRef achieves
the optimum values for Ad and I./O, for arbitrarily large
query sizes by keeping only a path of the MVBT in main
memory.

buffer capacity (in pages)

Figure 11: I/Ored as a function of the buffer size
(sf = 1, p = 0.5)

Let us now consider algorithms DFI.jash, DFsort and DF,er
and their cost for eliminating redundant answers. First of
all, the first two algorithms require a rather large buffer to
eliminate duplicates without causing additional accesses to
disks. In our experiments we required a buffer of up to 4
MBytes to eliminate the redundant answers of a query.
Note that this is achieved only under the assumption that
DFHash and DFScat know the exact number of answers and
duplicates before the query is executed.
In order to compare the CPU-time of the algorithms, we
performed the same experiment as before (MVBT with p =
0.5 and query files Ql, sire, 0.01 %<ssize51 %). Werun
these experiments on a IBM P43-133 with 64 MBytes main
memory and measured the CPU-time consumption of the
different algorithms for performing the queries of Ql, size,
0.01 % I size S 1 % . Note that the available main memory
was large enough to keep the entire MVBT and therefore,
paging did not influence our numbers at all. The results of
our experiments are plotted as a function of the query size
in Figure 12. For comparison reasons, we also provide the

D%xi

DFHash

D%lre

DFRef

wry
0 0.1.0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 size

Figure 12: CPU-time as a function of the query size
(sf=l, p=O.5)

CPU-times for algorithm DF,,,. The graph shows that
DFsort requires most CPU-time among the different algo-

rithms. The cost of DFt.lasn is between the cost of DFr,,,,,
and DFson. At a first glance, it is surprising that DF,,f.is
superior to DF, (although DF,f needs additional com-
putations to test the reference point). The reason is that
DFRet visits a page only once, whereas DF,, can visit a
page more than once.
Overall, the experiments show that DFner is superior to the
other algorithms according to CPU-time and disk accesses.
Moreover, DF,f requires only a few buffer pages (to keep
the current path of the MVBT), whereas the required mem-
ory of DFHash and DFsou growth linear in the number of
answers. Since very large queries frequently occur in a
transaction-time database, these algorithms face the risk
that main memory is too small.

4.2 A Comparison between the Link Algorithm and
the Depth-First Algorithm

The next sets of experiments were intended to compare the
query performance of the link algorithm (Link& and the
one of the depth-first algorithm (DFn&. From the perfor-
mance point of view, algorithm LinkRef requires less disk
accesses to directory pages than algorithm DFRef. There is
no performance gain according to the number of data
pages. On the contrary, the capacity of a data page can be
slightly less for the link method since (at most) two links
have to be stored in the pages additionally. This difference
is however not very significant and we assume that the
capacity of data pages is the same for both algorithms..

Table 1: Number of disk accesses for query file Qkey

P W/O Dir,,0
@FRef) (Link&

Data, #Answers

1 27.38 2 25.96 10.27

0.99 18.98
0.9 24.21
0.75 18.65
0.5 15.91
0.25 14.04
0.1 14.67
0.01 14.8
0 14.75

25.53 9.49
20.62 6.92
17.7 4.46
15.09 2.71
12.17 1.38
13.26 1.36
13.28 1.03
13.3 1

The greatest difference in performance between algorithm
LinkRer and algorithm DFne. occurs when key-period que-
ries are performed. For query file Qke the average number
of disk accesses are reported in TabL 1. The second and
third column show the number of accesses to directory
pages using algorithm DFnef and Link,,, respectively.
The fourth column gives the number of accesses to data
pages, whereas the number of answers are reported in the
last column. Algorithm LinkR,rrequires only two directory
accesses which is equal to the height of the tree, whereas
algorithm DF,,. requires significantly more directory

.78

accesses. Moreover, algorithm DFRef retrieves more direc-
tory pages than data pages, whereas the performance of the
link algorithm is only determined by the number of
accesses to data pages.
For range-period queries, we run several other experi-
ments. The results showed that algorithm Link,,, is notice-
ably superior to DFRer only for range-period queries where
the specified period is small compared to the specified
range (large shape factor) and where the capa$y of a
directory page does not largely differ from the capacity of a
data page. In order to demonstrate the performance advan-
tage of algorithm Link,,f for such a setting, we performed
several experiments where the capacity of a directory page
was set to 25 (= the capacity of a data page). This results in
MVBTs where the directory is considerably larger than for
those MVBTs generated in our previous experiments. For
p = 0.1, 0.5, 0.9, the results of processing query files Q,$
0,019b are depicted in Figure 13 as a logarithmic function of
the shape factor s$ For a small shape factor, the perfor-
mance gain of Linknef is marginal. With an increasing
shape factor, however, LinkRer performs considerably bet-
ter than DFRef. For sf = 100, Linkn,r requires only about
60% of the accesses of DFn,=p This results indicate that for
a high shape factor DFRef requires most of the disk
accesses for retrieving directory pages.

shape factor (logarithmic scaling)

Figure 13: Number of disk accesses of Link,,,
compared DFRet (size = 0.0 1%)

“2

5 Conclusions
In this paper we studied query processing techniques for
transaction-time databases where data is never physically
deleted. Due to the size of a transaction-time database,
access methods are inevitably required to efficiently sup-
port queries. An important type of query is the range-time
query where records are retrieved from the database whose
keys are in a given range during a given time period. We
investigated how to evaluate range-period queries effi-
ciently using multi-version access methods (MVAMs).
One of the most efficient MVAMs is the multiversion B-
tree (MVBT) [BGO+ 931. The MVBT optimally solves the
range-time query problem. Therefore, we primarily

restricted our discussion to the MVBT and related MVAMs
([Eas 861, &S 891). These MVAMs occasionally duplicate
records and index entries to separate data according to
time. Traditional algorithms for processing range-period
queries are not aware of these duplicates and therefore,
duplicates also occur in the response set of a query. More-
over, the performance of these algorithms can considerably
decline because of the duplicates in the directory.

We presented two new algorithms for processing range-
period queries without reporting duplicated answers. The
one algorithm traverses the MVBT in a depth-first order
from a root to the leaves. For each qualifying entry and
record, a reference point is computed which identifies
duplicated entries and records. The other algorithm can be
viewed as a generalization of the classical algorithm for
performing range queries in B+-trees. The data pages of the
MVBT are linked together and these links are exploited to
retrieve the data pages which are required for evaluating
the query. In contrast to B+-trees, links can also be dupli-
cated. Therefore, we also equipped the link algorithm with
an efficient technique for avoiding duplicates. Both algo-
rithms achieved that duplicates are not reported almost
without inducing any additional cost.

We compared the performance of our algorithms with
depth-first algorithms that eliminated duplicates using tra-
ditional methods (hashing, sorting). Results of an experi-
mental comparison showed that these algorithms were con-
stantly inferior to our algorithms according to disk
accesses and CPU-time although our algorithms used con-
siderably less buffer space.

In our future work, we will investigate how to organize his-
torical data on tertiary storage such as tapes and magneto-
optical disks. Moreover, we are&o interested in extending
our work to bitemporal access methods [KTF 951.

Acknowledgement

We are very thankful to Beatrice Bott for providing a first
implementation of the MVBT.

References

[BFA 863 R. Barrera, A. Frank, K. Al-Taha. Temporal
Relations in Geographic Information Systems: A
Workshop at the University of Maine. SIGMOD
Record, 1991,20:85-91.

[BGO+ 931 B. Becker, S. Gschwind, T. Ohler, B. Seeger,
P. Widmayer. On Optimal Multiversion Access Struc-
tures. Proc. Symp. on Large Spatial Databases, in
Lecture Notes in Computer Science, Vol. 692, pp 123-
141, Singapore 1993.
An extended version will appear in the VLDB Journal.

[Bra 841 K. Bratbergsengen. Hashing methods and
relational algebra operations. Proc. VLDB, 1984, pp.
323-333.

[BS 961 J. van den Bercken, B. Seeger. Query Process-
ing Techniques for Multiversion Access Methods,
Technical Report, Nr. 11, Department of Mathematics,
Philipps-University, Marburg, 1996

[CCS 931 E. F. Codd, S. B. Codd, C. T. Salley. Provid-
ing OLAP to User-Analysts: An IT Mandate. Arbor
Sofhvare White Papers, available via
http://www.arborsoft.com/papers.

[Eas 861 M. Easton. Key-sequence data sets on inedible
storage. IBM J. of Research and Development, 1986,
30:230-241.

[Fre 871 M. Freeston. The BANG-file: A New Kind of
Grid File. ACM SIGMOD, 1987, pp. 260-269.

[Gut 841 A. Guttman. R-trees: a dynamic index struture
for spatial searching. Proc. ACM SIGMOD, 1984,47-
57.

[Knu 731 D. Knuth. The Art of Computer Programming,
Vol. 3: Sorting and Searching. Addison-Wesley, 1973.

[KS 911 C. Kolovson, M. Stonebraker. Segment
Indexes: dynamic indexing techniques for multi-
dimensional interval data. Proc. ACM SIqMOD,
1991, 138-147.

[KTF95] A. Kumar, V. Tsotras, C. Faloutsos. Access
Methods for Bi-Temporal Databases. Proc. Workshop
on Temporal Databases, Zurich, 1995, pp. 235-254.

[LS 891 D. Lomet, B. Sal&erg. Access Methods for
Multiversion Dam. Proc. ACM SIGMOD, 1989, pp.
3 15-324.

[LS 901 D. Lomet, B. Salzberg. The Performance of a
Multiversion Access Method. Proc. ACM SIGMOD,
1990, pp. 353-363.

[MKW 96] P. Muth, A. Kreil3, G. Weikum. LoT:
Dynamic Declustering of TSB-Tree Nodes for Parallel
Access to Temporal Data. Proc. 5th Int. Conj on
Extending Database Technology, 1996.

[SA 851 R. Snodgrasg c Ahn. A Taxonomy of Time in
Databases. Proc. ACM SIGMOD, 1985, pp. 236-246.

[SK 881 B. Seeger, H.-P. Kriegel. Techniques for
Design and Implementation of Spatial Access Meth-
ods. Proc. VLDB, 1988, pp. 360-371.

[SRF 871 T. Sellis, N. Roussopoulos, C. Faloutsos. The
R+-tree: a dynamic index for multi-dimensional
objects. Proc. VLDB, 1987, pp. 507-518.

[ST 941 B. Salzberg, V. Tsotras. A Comparison of
Access Methods for Time Evolving Data. Technical
Report CAlT-TR-94-81, 1994, Polytechnic Univer-
sity, Brooklyn, NY.

[Sto 871 M. Stonebraker. The Design of the POST-
GRES Storage System. Proc. VLDB, 1987, pp. 289-
300.

179

