
Constructing Efficient Decision Trees by Using
Optimized Numeric Association Rules

Takeshi Fukuda
fukudat@trl.ibm.co.jp

Yasuhiko Morimoto
morimoto@trl.ibm.co.jp

Takeshi Tokuyama
ttokuQtrl.ibm.co.jp

Shinichi Morishita
morisita@trl.ibm.co.jp

IBM Tokyo Research Laboratory
1623-14, Shimo-tsuruma, Yamato City, Kanagawa Pref, 242, JAPAN

Abstract 1 Introduction

We propose an extension of an entropy-based heuristic
of Quinlan [Q93] for constructing a decision tree from
a large database with many numeric attributes. Quin-
lan pointed out that his original method (as well as
other existing methods) may be inefficient if any nu-
meric attributes are strongly correlated. Our approach
offers one solution to this problem. For each pair of
numeric attributes with strong correlation, we com-
pute a twodimensional association rule with respect
to these attributes and the objective attribute of the
decision tree. In particular, we consider a family R
of grid-regions in the plane associated with the pair of
attributes. For R E R, the data can be split into two
classes: data inside R and data outside R. We com-
pute the region Rapt E 72 that minimizes the entropy
of the splitting, and add the splitting associated with
Rapt (for each pair of strongly correlated attributes) to
the set of candidate tests in Quinlan’s entropy-based
heuristic. ’

Decision Trees

Constructing an efhcient decision tree is a very impor-
tant problem in database mining [AGL+92, ALS93,
BFOS84, MAR96, Q93]. For example, a.n efficient
computer-based diagnostic medical system ca.n be con-
structed if a small decision tree ca.n be automatically
generated for each medical problem from a. database
of health-check records for a large number of patients.

Let us consider the attributes of tuples in a
database. An attribute is called Boolean if its range is
(0, l}, categorical if its range is a discrete set (1, .., Ic}
for some natural number Ic, and numeric if its range is
the set of real numbers.

Each data tuple t has m + 1 attributes Ai, for i =
071, “, m. We treat one Boolean attribute (say, An)
as special, denote it by W, and call it the objective
attribute. The other attributes are called conditional
attributes.

We give efficient algorithms for cases in which
72 is (1) x-monotone connected regions, (2) based-
monotone regions, (3) rectangles, and (4) rectilinear
convex regions. The algorithm for the first case has
been implemented as a subsystem of SONAR(System
for Optimized Numeric Association Rules) developed
by the authors. Tests show that our approach can
create small-sized decision trees.

Permission to copy without fee all or part of this maten’al is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is

given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 22nd VLDB Conference
Mumbai(Bombay), India, 1996

The decision tree problem is as follows: A set U
of tuples is called “positive” (resp. negative) if for a
tuple t, the probability that t[W] is 1 (resp. 0) is at
least & (resp. 0,) in U, for given thresholds 01 and
&. We would like to classify the set of tuples into pos-
itive subsets and negative subsets by using tests with
conditional attributes. For a. Boo1ea.n (conditional) at-
tribute, a test is in the form of “t[Ai] = l?“. For a cate-
gorical attribute, a traditional test is “t[Ai] = I?“. For
a numeric attribute, a. traditional test is “t[Ai] < 27”
for a given value Z.

Let us consider a rooted binary tree, each of whose
internal nodes is associated with a test that has at-
tributes. We associate with each leaf node the subset
(called leaf-cluster) of tuples satisfying all tests on the
path from the root to the leaf. If every leaf-cluster is
either positive or negative, the tree is called a decision

146

tree.

For example, assume that we have a database of
health-check records for a large number of patients
with geriatric diseases. Consider a set of health-check
items; say, systolic blood pressure, urine sugar (S), and
cholesterol level (C). We would like to decide whether
a patient needs a detailed health check for a geriatric
disease (say, apoplexy). Suppose that blood-pressure
is a numeric attribute, and that urine sugar and choles-
terol level are Boolean (+ or -) attributes in the health
check database. Figure 1 shows an examples of deci-
sion trees corresponding to the table below:

1 Bloodrnressure 1 Cholesterol + 1 Cholesterol- 1

0 (i.e. geriatric-disease positive) 11

Figure 1: Decision tree

Unfortunately, the problem of constructing a min-
imum decision tree is known to be NP-hard [HR76,
GJ79], if one want to minimize the total sum of the
lengths of exterior paths. It is also believed that it is
NP-hard if the minimized objective is the “size” (num-
ber of nodes) of the tree.

Despite the NP-hardness of the problem, many
practical solutions [BFOS84, QSS, QR89, Q93] have
been proposed in the literature. Among them, Quin-
lan’s C4.5 program [Q93] applies an entropy heuris-
tic, which greedily constructs a decision tree in a top-
down, breadth-first manner according to the “entropy
of splitting.” At each internal node, the heuristic ex-
amines all the candidate tests, and. chooses the one
for which the associated splitting of the set of tuples
attains the minimum entropy value.

147

If each test attribute is Boolean or categorical,
Quinlan’s method works well, and SLIQ of Mehta et
al. [MAR961 gives an efhcient scalable implementation,
which can handle a database with 10 million tuples and
400 attributes. SLIQ uses the GIN1 function instead
of entropy.

Handling Numeric Attributes

To handle a numeric attribute, one approach is to
make it categorical, by subdividing the ra.nge of the
attribute into smaller intervaIs. Another approach is
to consider a test of the form t[A;) > 2 or t[Ai] < 2,
which is called a “guillotine cut”, since it creates a.
“guillotine-cut subdivision” of the Cartesian space of
ranges of attributes. Quinlan’s C4.5 and SLIQ adopt
the latter approach.

However, Quinlan [&93] himself pointed out that
this approach has a serious problem if a pair of at-
tributes are correlated. For example, let us consider
two numeric attributes, “height (m)” and “weight

(k)“, in the health check database. Obviously, these
attributes have a strong correlation. Indeed, the region
0.85*22*height2 < weight < 1.15*22*height2 and its
complement provide a popular criterion for separating
healthy patients from patients who need dietary cures.
In the left chart of Figure 2, the gray region shows the
“healthy” region. However, if we construct a decision
tree for classifying patients .by using guillotine cutting,
its subdivision is complicated, and hence, the size of
the tree becomes very large (see the. right chart of Fig-
ure 2).

Therefore, it is very important to propose a better
scheme for handling numeric attributes with strong
correlations in order to make an efficient diagnostic
system based on decision tree.

80 :.
__:.., .‘.‘.‘.‘_‘._‘_‘.’

70 .
60

Figure 2: Healthy region, and guillotine-cut subdivi-
sion to separate it from data

One popular approach is as follows: Consider each
pair of numeric attributes as one two-dimensional at-
tribute. Then, for each such two-dimensional at-
tribute, compute a line partition of the corresponding
two-dimensional space so that the corresponding en-
tropy is minimized. One (minor) defect of this method
is that it isnot cheap to compute the optimal line. Al-
though some work has been done on this problem in *
computational geometry [AT94, DE93], the worst time
complexity remains O(n’) if there are n tuples. An-
other (and major) defect is that the decision tree may
still be too large even if we use line partition.

Main Results - Splittings with respect to re-
gions

In this paper, we propose the following scheme, apply-
ing the two-dimensional association rules (region rules)
of Fukuda et al. [FMMT96a, FMMT96b] and an im-
age segmentation algorithm of Asano et al. [ACKTOB].
The scheme has been implemented as a subsystem of
SONAR (System for Optimized Numeric Association
Rules) developed by the authors [FMMT96c].

Let n be the number of tuples in the database.
First, for each numeric attribute, we create an equi-
depth bucketing so that tuples are uniformly dis-
tributed into N 5 fi ordered buckets according to
the values of the attribute.

Next, we find all pairs of strongly correlated.nu-
merit attributes. For each such a pair A and A’,
we create an N x N pixel grid G according to the
Cartesian product of the bucketing of each numeric
attribute. We consider a family ‘R. of grid regions;
in particular, we consider the set R(Admi) of all ad-
missible (i.e. connected and x-monotone) regions and
‘R(Base) of all based-monotone (i.e. bounded by an
s-monotone grid curve) regions. Here, a grid region
is a union of pixels of G, and it is x-monotone if its
intersection with each column of G is either empty
or a vertical strip. A grid curve consists of edges of
the pixel grid G, and is z-monotone if its intersection
with each vertical line is either a point or an interval.
Figure 3 shows instances of a based monotone region
and an admissible region. A based-monotone region
may be disconnected as shown in Figure 3, since the
bounding grid curve may contain segments of the up-
per or lower boundary of G. Note that a connected
based-monotone region is an admissible region. We
also deal with the family of rectangles and the family
of rectilinear convex polygonal regions.

Figure 3: Based Monotone Region (left) a.nd Admissi-
ble Region (right)

Regarding the pair of attributes as a. two-
dimensional attribute, we compute the region Rapt in
R that minimizes the entropy function, and consider
the decision rule (t[A], t[A’]) E Rapt. We present algo-
rithms to compute Rapt in worst-case times of G(nN)
and O(nN’) for R(Base) and R(Admi), respectively.
Moreover, in practical instances, our algorithms run
in O(N2) time and O(N2 log n) time. Since N 5 fi,

the time complexities are G(n) and O(n logn), respec-
tively. For rectangles and rectilinear convex po1ygona.l
regions, the time complexity increases to O(nN”) in
the worst case and O(N3 logn) in practice.

Now, we add these rules (for all pairs (A, A’) of cor-
related attributes) to Quinlan’s original scheme, and
construct a decision tree by applying entropy-based
heuristic. As a special case of region rules, we also
consider rules of the form (t[A] E I) for an interval I
in order to develop our system.

Since the regions separated by guillotine cutting
and those separated by line cutting are very spe-
cial cases of connected based-monotone regions, our
method can find decisions that create splittings with
smaller entropy values at each step of Quinlan’s heuris-
tic. Hence, we can almost always create a smaller tree.
In the above example of “height” and “weight”, the
rule 0.85 * 22 * height2 < weight < 1.15 * 22 * height”
itself defines an admissible region, and hence we can
create a nice decision tree of height two (i.e. with the
root and two leaves). One defect of our approach is
that the decision rule (t[A], t[A’]) E R is sometimes
hard to describe. However, we can describe the rule
by combining a visualization system and an approxi-
mation scheme, using interpolation functions.

We also discuss the generaliza.tion of our method to
cases in which the objective attribute is categorical.

2 Entropy-Based Data Segmentation
for Decision Trees

2.1 Entropy of a splitting

Assume that a data set S contains n tuples. To formal-
ize our definition of entropy of splitting, we consider a
more general case in which the objective attribute W
is a categorical attribute taking values in {1,2,‘.., k}.

The entropy value &t(S) (with respect to the ob-
jective attribute W) is defined as

Ent(S) = - C pjlogpJ
j=l....,k

where pj is the relative frequency with which IV takes
the value j in the set S.

We now consider the entropy function associated
with a splitting of the data. For example, suppose
that the objective attribute has three categories, say
Cr, C2, and C’s, and that each category has 40, 30,
and 30 data, respectively.

-1
The value of the entropy of the whole data set is

-;1ogs - $$og; - %logS = 1.09.

148

Let us consider a splitting of the data set into two
subsets, Si a.nd Sz, with n.1 and n2 data, respectively,
where ni + 7x2 = n.. The entropy of the splitting is
defined by

Ent(S1; S2) = 2Ent(S1) + dent.

If we assume tha.t the splitting is a.6 follows:

the entropy index value of the dataset after the seg-
menta6ion is

+$&tog; - $ log $) = 0.80.

Therefore, the splitting decrea,ses the value of the en-
tropy by 0.29.

Let us consider a.nother splitting:

In this case, the value of the associated entropy is
1.075, a. decrease of only 0.015.

Let f(X) = f(51, ..,5k) = Ct=, 2; log(z;/s(X)),
where S(X) = CF’, xi. We have

En.t(S) = -f(p1,Pk) = +1, ..,a),

where n = IS] and xi = pin,. Thus,

Ent(Sl; S2) = -i{f(w,yk)+f(xl-YI.xk-w)}.

where 2, (resp. yi) is the number of tuples t in S (resp.
Si) sa.tisfying t[IV] = i. We use the following property
of f (proof is omitted in this version):

Lemma 2.1 The function f(X) is conve2 in the re-
gion X >_ 0 (i.e. xi 3 0 for i = 1,2, .., k); that is,

f(X) + f(X + 24 , f(x + a)
2 -

for uny vector a satisfying X > 0 and X + 2a > 0.

2.2 Splittings with respect to regions

Given a numeric attribute A, Quinlan [Q93] and Mehta
et al. [MAR961 considered the following optimized
splitting:

Let S(A > 2) = {t E S : t(Al > 21 and
S(A 5 2) = {t E ‘S : t[A] <’ B} for a real
number 2. Compute the valueTZOpt of 2 that
minimizes Ent(S(A > Z);S(A 5 Z)), and con-
sider the splitting of S into S(A > ZO,,) and
S(A 5 Zopt).

By applying the algorithms of Fukuda et
al. [FMMT96a], we can extend the above split-
ting (1) to the following, which is also considered
in our decision tree subsystem of SONAR:

For an interval I, let S(A E I) = {t E S : t[A] E
I} and S(A E 1) = {t E S : t[A] +! I}. Com-
pute the interval IoPt that minimizes Ent(S(A E
I); S(A E I)), and consider the associated split-
ting.

We call the above two kinds of splitting “one-
dimensional rules” for short. In this paper, we con-
sider splittings ulith respect to grid regions, which are
sometimes called region rules.

We specify a number N _< 6, and construct an (al-
most) equi-depth ordered bucketing of tuples for ea.ch
numeric attribute A. That is, we construct buckets
BA r , .., Bi each of which conta.ins approximately nJhr
tuples, satisfying t[A] 5 t’[A] for every t E Bt, t’ E Bf
and i < j. An efficient randomized algorithm for con-
structing such a bucketing can be found in Fukuda et
al. [FMMT96a].

For a pair of numeric attributes A and A’, we have
a. pixel grid G of size N x N generated as a. Cartesia.n
product of bucketings, such that for an (i, j)-th pixel
q(i,j), t E q(i,j) if and only if t[A] E Bt a.nd t[A’] E

B,“‘. We denote the pixel containing t a.s y(t).
We consider a. family R of grid regions of G. For

each R E ‘R, we consider a. splitting S into S(R) =
{t E s : q(t) E R} a.nd S(R) = {t E S : q(t) E
a}, where R = G - R is the complement of R. Let
R opt be the region of ‘R tha,t minimizes the entropy
of the splitting. The region Rapt and the a.ssociated
splitting are called the optimal region and the optimal
splitting (or region rule) with respect to R and the pair
of attributes (A, A’).

A grid region is called base&monotone, if it lies be-
low an x-monotone curve. A grid region is called ud-
missible if it is a. connected region bounded by a pair of
x-monotone grid curves. R(Base) and R(Admi) are
the sets of all ba.sed-monotone and admissible regions
of G, respectively.

In Section 3, we present efficient algorithms for com-
puting the optimal splitting with respect to certa.in
families of regions, including R(Admi) and R(Base),
when the objective attribute W is Boolean.

The construction of a decision tree is top-down,
starting from its root in breadth-first fashion. When a

149

new internal node is created, the algorithm first com-
putes all one-dimensional rules for singular attributes,
and region’ rules for correlated pairs of attributes, to-
gether with rules associated with Boolean or categor-
ical conditional attributes. Then it chooses the rule
that minimizes the entropy. The decision made a.t the
node is associated with the splitting.

.

2.3 Selecting correlated attributes

Even if A a.nd A’ are not strongly correlated, the re-
gion rule associated with the pair (A,A’) is better
with respect to the entropy value than one-dimensional
rules on A and A’. However, it does not necessarily
give ‘a better system for users, since a region rule is
more complicated than a one-dimensional rule. In-
deed, some technique (for example, a visualization
technique [FMMT96b]) is necessa.ry to explain a re-
gion rule.

Hence, it is desirable that a region rule should only
be considered for a pair of strongly correlated condi-
tional attributes. We use the entropy value again to
decide whether A and A’ are strongly correlated.

For simplicity, we assume that R(A&ni) is used as
the family of regions. We compute Rapt for the pair
(A, A’) .and its entropy value ,%z~(S(R,,~); S(G)) .
We also compute the optimum intervals I and I’ to
minimize the entropy of the splitting that corresponds
to the rules A(X) E I and A’(X) E I’, respectively.

We give a threshold o) 1 to decide A and A’ are
strongly correlated if and only if

Ent(S) - Ent(S(&,t); S(R,,t)) Ent(S) - min{Ent(S(I); S(l)), Ent(S(I’); S(P))} ’ a
The choice of the threshold (Y depends on the ap-

plication.

3 Optimization of Splittings

3.1 Naive Hand-Probing Algorithm

From now on, we concentrate on the case in which the
objective attribute W is Boolean, although our scheme
can be extended to the case in which W is categorical.
Therefore, the entropy function is written a.s

Ent(S) = -plogp-- (1 -p)log(l -p),

where p is the frequency with which the objective at-
tribute has the value 1 (i.e. “yes”) on the set of tuples.

We consider the problem of computing Rapt in sev-
eral families of grid regions of G. Note that it is very
.expensive to compute R+ by examining all elements
of R, since the set R(Base), for example, has NN
different regions.

Let ni and ns be the,numbers of tuples t of S sat-
isfying t[W] = 0 and t[W] = 1, respectively. For a

region R, let z(R) and y(R) be the number of tuples
t located in the pixels in R that satisfy t[W] = 0 and
t[W] = 1, respectively.

Consider the planar point set P = {L(R) =
(~R),Y(R)) : R E RI, and its convex hull conv(P).
Since z(R) and y(R) a.re nonnegative integers which
are at most n, P contains 0(n”) points, and con.w(P)
has a.t most 2n points on it. We define

qz, y) = _ f(z, Y) + f(n1 - 2, n2 - Y)
,

n

using the function f defined in the previous sec-
tion for X = (5,~). Then, the entropy func-
tion Ent(S(R); S(a)) of the splitting is E(L(R)) =
E(dR),y(R)).

Lemma 3.1 L(R,~~) must be on conw(P).

Proof: From Lemma. 2.1, f (z, y) is convex, and hence
E(z, y) is a concave function. It is well known that the
minimum of a concave function over P is taken at an
extremal point (that is, a vertex of con,(P)). 1

Hence, naively, it suffices to compute all the vertices
of cmv(P) and their associated partition curves. Our
problem now resemble to global optimization prob-
lems [PR90]. In global optimization, extremal points
can be computed by using linear programming. How-
ever, we know neither the point set P nor the con-
straint inequalities defining the convex hull; hence
we cannot use the linear programming approach in a
straightforward manner.

Let Conv+(P) (resp. conv-(P)) be the upper (resp.
lower) chain of cow(P); H ere, we consider the leftmost
(resp. rightmost) vertex of cmw(P) belongs to the
upper (resp. lower) chain.

Our algorithm is based on the use of what is known
in computational geometry as “hand probing” to com-
pute the vertices of a convex polygon [DEY86]. Hand
probing is based on the touching oracle:

“ Given a slope 0, compute the tangent line
with slope 0 to the upper (resp. lower) chain
of the convex polygon together with the tan-
gent point w+(0) (resp. w-(e)). If the slope
coincides with the slope of an edge of the
polygon, the left vertex of the edge is re-
ported as the tangent point.”

Lemma 3.2 If a touching oracle is given in O(T)
time, all vertices of mm(P) can be computed in O(nT)
time.

Proof: We consider an interval I = [I(left),I(right)]
of the upper chain of conv(P) between two vertices
I(left) and I(right) (see Figure 4). We start with

150

0 = 00, find the leftmost vertex ps and the right-
most vertex pi of conv(P), and set I(left) = po and
I(right) = pi. Let e(1) be the slope of the line through
points I(left) and I(right). We perform the touching
oracle and find I(mid) = v+(81). If I(mid) = l(left),
we report that I corresponds to an edge of conw(P),
and hence no other vertex exists there. Otherwise, we
divide I into [I(left), I(mid)] and [I(mid), I(right)],
and process each sub-interval recursively. We find ei-
ther a new vertex or a new edge by executing the
touching oracle in the algorithm. Hence, the time com-
plexity is O((PIT), where (P(5 n is the number of
vertices of P. I

Lemma 3.3 For a given .!?, the touching oracle to
wnv(P) can be computed in O(N’) time, if R =
R(Admi). If preprocessing takes O(N’) time, it can
be computed in O(N) time for R(Base).

Proof: It suffices to show how to compute v+(e),
since V-(O) ci~n be analogously computed. Let w+(e) =
((z(.&),y(&)), and let the tangent line be y-&r = a.
Then, y(&) -&r(&) = a and y(R) -&r(R) 5 a for
any R E ‘R. Hence, Rs is the region that maximizes
y(R) - &z(R). Let gi,j be the number of tuples in
the (i,j)-th pixel of G, and let hi,j be the number
of tuples satisfying w(t) = 1 in the (i,j)-pixel. We
write @i,j(fl) = h,,j -0gi,j. From our definition, y(R)-

ex(R) = C(i,j)ER ‘i,j(‘)’
If ‘R = R(Admi), Rs is the focused region defined

by Fukuda et al. [FMMT96a], and can be computed in
O(N’) time by using dynamic programming and fast
matrix searching (see [FMMT96a, ACKT96]).

Let us consider the case in which R = R(Ba.se).
Since a based-monotone region R is the region below
an s-monotone curve, the intersection of R and the
j-th column of the grid G forms a half-column be-
low some row index topR(j), that is, the set of pixels

(l,.iL c4.h ‘a.7 (tTR(d>d.

We consider the function *j,:(e) = Cz”=, ip;,j(e),
a.nd the index mj(0), which is the value of m that
maximizes s,,,(e). Then, we can see that top&(j) =
mj(0); otherwise, we can replace the j-th column of Re

by (LA, -., (mj(eLj) t o improve the value of y(R) -
8x(R).

For each 8, it is easy to compute $(a) in O(N)
time, and hence we can compute Re in O(N’) time.

Moreover, we can compute the piecewise linear
function maxm 5l!j,,(e) in O(N) time, considering 8 as
a parameter. Using this function, we can query mj(0)
in O(log N) time for a given 0. Hence, the time com-
plexity of computing Ro is 0(N log N) if preprocess-
ing takes O(N’) time. We can reduce the O(N log N)
computing time to O(N) by applying the fractional

x

Figure 4: Hand Probe

cascading data structure [CG86] (omitted in this ver-
sion of the paper). 1

We have the following similar results for the family
of rectangles and the family of rectilinear convex re-
gions, although the time complexity is increased (we
omit the proof in this version of the paper).

Lemma 3.4 The touching oracle to wnv(P) can be
computed in O(N3) time, if ‘R is either the family of all
rectangle gn’d-regions, or the family of all rectilinear
convex grid-regions of G.

Combining Lemmas 3.1, 3.2, 3.3, and 3.4, we have
the following theorem:

Theorem 3.1 Rapt can be computed in O(nN’) time
for R(Admi), O(n.N) time for R(Base), and 0(71.N3)
time for ahe family of rectangles and that of rectilinear
convex polygons.

The above time complexity is the worst-case time
complexity. In the next section, we further improve the
practical time complexity by a factor of O(n/ log n).

3.2 Guided Branch-and-Bound Search

The hand-probing algorithm computes all vertices on
the convex hull. However, we only need to compute
the vertex corresponding to Rapt. Hence, we can im-
prove the performance by pruning unnecessary vertices
efficiently. While running the hand-probing algorithm,
we maintain the current minimum Emin of the entropy
values corresponding to the vertices examined so far.

Suppose we have done hand probing with respect
to & and 8,, and next consider the interval I =
[&-(O,),v+(&.)] = [I(left),I(right)] of CU~W+(P). Let
Q(I) = (“Q(I), yQ(r)) (see Figure 4) be the point of in-
tersection of the tangent lines whose slopes are 01 and
0r. We compute the value E(Q(I)) = E(zQ(~J, ye).
If the two tangent lines are parallel, we set E(Q(1)) =
-CO.

151

Lemma 3.5 For any point Q’ = (z’, y’) inside the
triungle I(left)I(right)Q(I),

E(z’,Y’) 2 min{E(Q(I)), En,in}.

Proof: Immediate from the concavity of E(z, y). m

This lemma gives a. lower bound for the values of
E at the vertices between I(left) and I(right) in
conv+(P). Hence, we have the following:

Corollary 3.1 If E(Q(I)) 2 E,nin, no vertex in the
internIn I of cm.v+(P) corresponds to a region whose
associated entropy is less than E,nin.

On the basis of Corolla.ry 3.1, we can find the op-
timal region Rapt effectively by running the ha.nd-
probing algorithm together with the branch-and-
bound strategy guided by the values E(Q(I)). Indeed,
the algorithm examines the subinterval with the min-
imum value of E(Q(I)) first. Moreover, during the
process, subintervals satisfying E(Q(I)) 2 En&in are
pruned away.

We maintain the list {E(Q(I)) : I E Z}, using a
priority queue. Note that EnTin is monotonically de-
creased, while Qmin is monotonically increased in the
algorithm. Most of subintervals itre expected to be
pruned away during the execution, and the number
of touching oracles in the algorithm is expected to be
O(logn) in practical instances. We have implemented
the algorithm as a subsystem of SONAR, and con-
firmed the expected performance by experiment (as
described in Section 4).

Since the touching ora.cle needs O(iV2) time for
‘R(Admi), the algorithm MAIN runs experimentally
in O(N2 logn) time, which is O(n logn) because N 5

fi
Although we have not yet done enough experiments

on other families of regions, we expect that the algo-
rithm beha.ves simila.rly, and runs in O(N2) time for
R(Bose), and in O(N310gn) time for the families of
rectangles and rectilinear convex polygonal regions.

4 Experimental Results

This section presents detailed performance and effi-
ciency evaluations of SONAR’s decision tree function.
All performance experiments were performed on IBM
RS/SOOO 530 workstation with 128MB of main mem-
ory, running under the AIX 3.2.5 operating system.

4.1 Coruputing the Optimal Admissible Re-
gion

Table 1 shows performance of computing the region
Rapt minimizing the entropy in R(Admi). In this ex-
periments, we use an artificial data distributed in an

Size Time(sec) # Oracles
202 2.86 19
40” 11.8 19
602 29.5 22
80” 62.5 26
1002 86.4 23
120” 142 26
200” 422 27
4002 1633 25
6002 4368 29
8002 8299 31

ii

Iconv(P) I
304
918

1714
2675

1
3878
5151
NA
NA
NA
NA

Ta.ble 1: Performance for Computing Optimal Admis-
sible Regions

N x N grid for 20 <_ N 5 800, which is the same as
tha.t of Fukuda. et a.l [FMMTSGb]. The size n of da.ta.
is larger tha.n N2 (indeed, we set n z hr" in order to
create a large number of vertices on conv(P).) The
linear performance of a. touching ora.cle with respect
to O(N2) can be found in [FMMT96b], thus omitted
in this pa.per.

The second column of Table 1 shows the CPU time,
a.nd the third column shows the number of the touch-
ing ora.cles in the guided branch-and-bound algorithm
to find the optimal region. The fourth column shows
the number of vertices on cmv(P), which is equal to
the number of touching oracles done by the na.ive hand
probing algorithm.

It is seen that the number of touching ora.cles in-
creases very slowly, and the guided bra.nch-a.nd-bound
algorithm is much advantageous. Figure 5 confirms
that the CPU time follows our O(N” log 7t,) estima.tion.

Figure 5: CPU time for Computing the Optimized
Region

4.2 Tree Evahlatioms

Quality evaluation of the decision tree using region
rules is presented in this subsection. We use a da.taset

152

Conventional Binary Splitting Cl
Table 2: Comparison of Splitting

in the STATLOG benchmark [MST84]. Since conven-
tional methods cannot handle huge dataset effectively,
we choose a relatively small dataset called “diabetes,”
containing records of female patients (original owners:
National Institute of Diabetes and Digestive and Kid-
ney Diseases).

It contains 768 tuples, 8 numerical attributes, and 2
classes representing “positive” and “negative” results
for diabetes, respectively.

We constructed trees for the dataset by using three
different decomposition methods: conventional binary
splitting, as proposed in C4.5 [Q93]; SONAR’s interval
splitting t(A) E I; and SONAR’s admissible region
splitting with respect to R(Admi), where N is set to
be 16. We decompose trees repeatedly until all the
data in leaf nodes are in the same class. Table 2 shows
the number of nodes, and depths of the trees.

Figure 6, 7, and 8 show intermediate (as of depth
3) trees in each method. Each node of the trees is
labeled with T (P N), where T is the number of tu-
ples satisfying all the conditions on the path from the
root to the node, and P and N respectively show the
number of positive and negative tuples. For example,
the root nodes contains 768 tuples in which 500 are
positive and 268 are negative. At this level, the split-
tings decrease the entropy value by 0.198, 0.210, and
0.433 for binary splitting, interval splitting, and region
splitting, respectively.

For binary splitting a.nd interval splitting, the deci-
sion test associated with each node is explicitly written
below the node in Figure 6 and 7. One disadvantage
for the region split decision tree is that the description
of each decision is not simple. In Figure 8, the pair of
numeric attributes’for the region splitting of each node
is presented, but the region itself is not presented. We
use a visualization function to describe such a region.
Figure 9 is a graphical view of the region used in the
root node of the Figure 8. It use two colors (red and
blue), and the red (resp. blue) level indicate the num-
ber of positive (resp. negative) patient in each pixel.
The data in the root node are partitioned based on
whether the data is in the admissible region Rapt or
not. In this example, Rapt (the near-triangle region)
corresponds to the cluster of patients less likely to be
positive for diabetes.

One more important observation is that, attributes
such as PedigreeFunc and BP(blood pressure) only ap-

pears in Figure 9. For example, BP has strong correla-
tion with Age, and is only found to be crucial by using
region rules.

Figure 6: Tree obtained by Binary Splitting

l--

Figure 7: Tree obtained by Interval Splitting

Figure 8: Tree obtained by Admissible Region Split-
ting

5 Generalizations

5.1 Categorical objective attribute

We can extend our scheme to a categorical objective
attribute W with k categories {1,2, .., k}, where k is a
small integer. For a pair of numeric attributes A and
A’, and a ‘family R of regions, we consider a split-
ting of S into S(R) and S(E), as before. The re-
gion R+ is the region that minimizes the entropy
Ent(S(R);S(R)). The only difference is that it is
harder to compute Rapt than in the Boolean objective
case.

153

Figure 9: Admissible Region Splitting

For a region R, we define L(R) = (xl(R),xk(R)).
where xi(R) is the number of tuples t in S(R) that sat-
isfy IV(t) = i. Let P.= {L(R) : R E R}, and consider
its convex hull conv(P) in k-dimensional space.

Then, from Lemma 2.1, we can see that L(R,~~) is on
conv(P). Hence, it is enough to examine the vertices of
conw(P). We concentrate on the upper part conv+(P)
of conv(P), consisting of facets whose outer normal
vector has a positive k-th coordinate, since the lower
part conv-(P) can be treated analogously.

Consider a vector 0 = (&,&, ..,f?k--l, l), and the
hyperplane H(O) tangent to COW+(P) defined by

xk - elxl - e2x2 - . . . - ek-lxk-l = C.

The k-dim touching oracle is to find the point of H(0)
tangent to conv+(P). The touching point L(R(O)) cor-
responds to the region R(O) that maximizes

Z+,(R) = xk(R) -6$x1(R) - . . . - fJk--lxk-l(R).

Lemma 5.1 Given 0, R(O) can be computed in
O(N’) time for R(Admi), and in O(N) time with
0(N2) time preprocessing for R(Base). It can be com-
puted in 0(N3) time for families of rectangles and rec-
tilinear convex regions.

Proof: Once 0 is given, the value of Fo(i,j) at the
(i,j)-th pixel of G can be precomputed. Thus, the
region R(O) can be computed analogously to Lemmas
3.3 and 3.4. fl

Hence, we can generalize the hand-probing algo-
rithm. For simplicity, we give a brief explanation for
the case k = 3. Suppose that we have used a 3-
dimensional touching oracle for 0, O’, a.nd 0”. Next,
we consider the plane through the associated three tan-
gent points, and execute the touching oracle with re-
spect to the slope of this plane. Then, we can find ei-
ther a new vertex or a new face of conv+(P) by execut-
ing the touching oracle. We also compute the intersec-
tion point & of three hyperplanes H(O), H(O’), and
H(O”), and use the value df the entropy function at Q
as a. lower bound of the entropy values within the sim-
plex defined by Q and the three tangent points. Thus,
we can design a hand-probing algorithm, and imple-
ment it by using a guided branch-and-bound strategy.

Naive hand probing requires O((PJ) touching or-
acles, where (PJ is the complexity (total number of
faces of all dimensions) of the polygon [DEY86], which
is too expensive, since the number of vertices can be
O(n”-l), and IPI is only bounded as O(n(d-1)L”/21).
However, we expect that the number of touching ora-
cles can be reduced to O(log IPI) in practice if we use
branch-and-bound. We have not yet done a detailed
analysis carried any experiments to confirm this.

5.2 Rule associated with more than two at-
tributes

We have considered regions in 2-dimensional plane as
a way of splitting data so far. In this subsection, we
discuss how to use regions in k-dimensional space when
k 2 3. Owing to the space limitation, we omit proofi
of theorems in this subsection.

We consider a N’ = N x N x . . . x N pixel grid G,
associated with k numeric attributes Al ,...,Ak. For a
(k-dimensional) pixel region R, we can consider a split-
ting of tuples inside and outside R. Consider a fa.mily
R of (k-dimensional) pixel regions of G, and find Rapt
whose associated splitting minimizes the entropy.
1 We denote the coordinate system of G by
(a, “‘, zk). A region is called a k-dimensioncrl /msed-
monotone region if it lies below a k-dimensional mono-
tone surface. A k-dimensional monotone surface is a
lift up of a (k - 1)-dimensional based-monotone re-
gion in the grid associated with 21, Z&l; that is,
its projection to the hyperplane zk = 0 is a (k - l)-
dimensional based-monotone region, and the projec-
tion is one-to-one. Indeed, if k = 2, we can obtain a
2-dimensional monotone surface (curve) as a union of
horizontal edges of an x-monotone curve.

154

Theorem 5.1 If R is the family of all k-dimensional
based-monotone regions, then R+ can be computed in
a worst-case time of O(min{n2, 7&-l}).

For k = 3, we consider another family. A three-
dimensional region is an admissible terrain if it lies
below a three-dimensional grid surface that is a lift-up
of a two-dimensional admissible region.

Theorem 5.2 If 72 is the family of all admissible ter-
rains, then Rapt can be computed in a worst case time
of O(min{n2, nN3}).

In practice, both time complexities can be improved
by a factor of n/ logn;

6 Concluding Remarks

We have proposed an entropy based greedy construc-
tion of decision trees by using region rules. We have
confirmed via experiment that the approach generates
a small decision tree indeed. Although extensive ex-
periments are necessary to evaluate its effectiveness in
practice, we believe that there are many applications
in which our decision tree is useful.

Compared to traditional methods, there is a trade-
off between size of the tree and description of rules.
This trade-off can be controlled by changing the bucket
size N and the parameter value (Y introduced in Sec-
tion 2.3. It is important to devise criteria for selecting
suitable values of them in order to construct a practi-
cal automatic decision sysj;em.

We can also approximate an z-monotone curve
bounding an optimal region by using a low-degree in-
terpolation function. If the degree of the function is
given, we can compute such a function by using (for
example) method of least-squares. If the entropy value
of the splitting associated with the approximate region
is not much different from that of the optimal region,
we can use the approximate region to make the deci-
sion .

References

[ACKT96] T. Asano, D. Chen, N. Katoh, and T.
Tokuyama, Polynomial-Time Solutions to Image Seg-
mentations. Proc. 7th ACM-SIAM Symposium on
Discrete AZgorithms, 104-113, 1996:

[AGL+92] R. Agrawal, S. Ghosh, T. Imielinski, B. Iyer,
and A. Swami. An Interval Classifier for Database
Mining Applications. Proc. 18th VLDB Conference,
560-573, 1992.

[ALS93] R. Agrawal, T. Imielinski and A. Swami,
Database Mining: A Performance Perspective. IEEE
Transactions on Knowledge and Data Engineering, 5-
6: 914-925, 1993.

[AT941 T. Asano and T. Tokuyama, Partial Construction
of an Arrangement of Lines and Its Application to
Optimal Partitioning of Bichromatic Point Set. ZEZCE
Transactions E-77-,A: 595-600, 1994.

[BFOS84] L. Breima.n, J. H. Friedman, R. A. Olshen,
and C. J. Stone, Classification and Reyression Tree.
Wadsworth, 1984.

[CG86] B. Chazelle and L. Guibas, Fra.ctional Cascading:
A Data Structuring Technique. Algorithmica 1: 133-
162, 1986.

[DE931 D. Dobkin and D. Eppstein, Computing the Dis-
crepancy Proc. 9th ACM Symposium on Computa-
tional Geometry, 47-52, 1993.

[DEY86] D. Dobkin, H. Edelsbrunner, and C. Yap, Prob-
ing Convex Polytopes. Proc. 18th ACM Symposium
on Theory of Computing, 387492, 1986.

[FMMT96a] T. Fukuda, Y. Morimoto, S. Morishita, aad
T. Tokuyama, Mining Optimized Associa.tion Rules
for Numeric Attributes. Proceedings of the Fif-
teenth ACM SZGACT-SZGMOD-SZGART Symposium
on Principles of Database System, X2-191, 1996.

[FMMT96b] T. Fukuda., Y. Morimoto, S. Morishita., and
T. Tokuyama, Data Mining using Two-dimensional
Optimized Association Rules: Scheme, Algorithms,
and Visualiza.tion. Proceedings of the ACM SZGMOD.
Conference on Management of Data, 13-23, 1996.

[FMMT96c] T. Fukuda, Y. Morimoto, S. Morishita, and
T. Tokuyama, SONAR: System for Optimized Nu-
meric Association Rules. Proceedings of the ACM
SZGMOD Conference on Management of Data, p.553,
1996.

[GJ79] M. R. Sarey and D. S. Johnson, Computer and
Zntra,ctability. A Guide to NP-Completeness. W. H.
Freeman, 1979.

[HR76] L. Hyafil and R. L. Rivest, Constructing Optima.1
Binary Decision Trees is NP-Complete. Information
Processing Letter, 5: 15-17, 1976.

[MAR961 M. Mehta, R. Agrawal, and J. Rissanen, SLIQ:
A Fast Scalable Classifier for Data. Mining. Proceed-
ings of the Fifth International Conference on Eztend-
ing Database Technology, 1996.

[MST841 b. Michie, D. J. Spiegelhalter, and C. C. Taylor,
Machine Learning, Neural, and Statistical Classificu-
tion. Ellis Horwood, 1984. .

[PR90] P. M. Pardalos and J. B. Rosen (ed.), Annals of
Operations Research 25, Computational Methods in
Global O&mization J. C. Baltzer AG, 1990.

[Q86] J. R. Quinlan, Induction of Decision Trees, Machine
Learning, 1: 81-106, 1986.

[Q93] J. R. Quinlan, C4.5: Programs for Machine Learn-
ing Morgan Kaufmann, 1993.

[QR89] J. R. Quinlan and R. L. Rivest, Inferring Decision
Trees Using Minimum Description Length Principle.
Information and Computation, 80: 227-248, 1989.

155

