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Abstract 

EROC (Extensible, Reusable Optimization 
Components) is a toolkit for building query 
optimizers. EROC’s components are C++ 
classes based on abstractions we have iden- 
tified as central to query optimization, not 
only in relational DBMSs, but in extended re- 
lational and object-oriented DBMSs as well. I 
EROC’s use of C++ classes clarifies the map- 
ping from application domain (optimization) 
abstractions to solution domain (EROC) ab- 
stractions, and these classes provide: (1) 
complex predicate definition and manipula- 
tion; (2) representations for common oper- 
ators, such as join and groupby, and asso- 
ciated property derivation functions, includ- 
ing key derivation; (3) management of cat- 
alog and type information; (4) implementa- 
tions of common algebraic equivalence rules, 
and (5) System R- and Volcano-style search 
strategies. The classes are designed to pro- 
vide optimizer implementors reusability and 
extensibility through layering and inheritance. 
EROC provides much more functionality than 
previous optimization tools because at1 of 
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EROC’s optimization classes are extensible 
and reusable, not just the search components. 

In addition to describing EROC’s architec- 
ture and software engineering, we also show 
how EROC’s classes were extended to build 
NEAT0 (New EROC-based Advanced Ter- 
adata Optimizer), a join optimizer for a 
massively parallel environment. Based on 
the extensions required we give an indica- 
tion of the savings EROC, provided us. To 
show NEATO’s efficiency and effectiveness, we 
present results of optimizing complex TPC/D 
benchmark queries and show that NEAT0 
easily searches the entire space of query exe- 
cution plans. We outline plans for extensions 
to NEAT0 and overview how the flexibility of 
EROC will enable these extensions. 

1 Introduction 

Optimizer development is generally agreed to be a 
time-consuming and complex process, and once de- 
veloped, optimizers tend to be difficult to understand 
and extend with new features. While reflecting on the 
Open OODB optimizer development [BMG93], we ob- 
served that although use of the Volcano Optimizer 
Generator [McK93, GM931 spared the implementor 
the relatively complex task of writing a search en- 
gine, a great deal of code that was not specific to 
the OpenOODB system had to be developed. In par- 
ticular, the code to represent and manipulate opera- 
tor arguments (e.g., predicates), and to perform var- 
ious support (e.g., catalog) functions, comprised ap- 
proximately 60% of the code written by the optimizer 
implementor [MGB93]. We felt strongly that care- 
fully defined and implemented abstractions (besides 
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the search engine) should be reusable, and eliminate 
reimplementation of common code. 

Given these observations about optimizer develop- 
ment, along with the facts that we wanted to de- 
velop an optimizer for Ode[AG89] and also needed 
an implementation platform for many of the optimiza- 
tion techniques developed at Bell Labs (e.g., predicate 
movearound [LMS94], theta semijoins [SHL+96]), we 
decided to develop a core collection of reusable soft- 
ware components, EROC, to meet these needs. The 
following list gives examples of some important func- 
tionality EROC provides to assist the optimizer imple- 
mentor: 

l a general, yet efficient, representation of expres- 
sions, which is used as the underlying representa- 
tion of logical and physical algebra trees (queries 
and query execution plans), arithmetic and aggre- 
gate expressions (e.g., ‘Avg(Dept.budget * 2)‘)) 
and predicates (e.g., ‘Sum(Price*( l-Discount)) > 
10,000’), 

an efficient representation of a set of expressions 
(predicates, queries, etc.), called an expression 
space, 

representations for several relational and SQL op- 
erators (e.g., groupby) and their associated prop- 
erty derivation functions (including key deriva- 
tions) , 

a general purpose rule-based expression enumer- 
ator that can be used to generate an optimizer 
search space, as well as perform predicate trans- 
formations (because of the common underlying 
representation of predicates and queries), 

an implementation of the ,Volcano costing algo- 
rithm, an efficient yet general optimization algo- 
rithm, and 

an implementation of a Starburst-based enumer- 
ation algorithm [OL88], an efficient algorithm for 
fast enumeration of join orders. 

EROC supports extensibility and reuse of ah opti- 
mizer components, not just the search engine, so unlike 
the implementation described in [LVZZ94], we intend 
for others to be able to extend EROC’s classes to cus- 
tomize them for a particular data model and execution 
environment. Another way of viewing EROC is as a far 
more complete population of the optimization frame- 
work described in [McK93, GM931 and (GD87, Gra87]. 

To demonstrate the extensibility of EROC, we show 
how various EROC components were extended and 
combined to produce NEATO, a join optimizer cus- 
tomized for the Teradata [ATT951 parallel environ- 
ment. By comparing (1) the number of lines of code 
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required to extend EROC classes to develop NEAT0 
and (2) the number in EROC, we give an indication of 
the effort required to produce a custom optimizer using 
EROC and our savings in development time. We also 
describe how EROC’s search components were com- 
posed to form its highly efficient hybrid search engine. 
To our knowledge, this is the &st search engine to 
combine a Starburst-style (‘bottomup’) join enumera- 
tor and Volcano’s goal-driven (‘topdown’) costing algo- 
rithm, two techniques which have been viewed as mu- 
tually exclusive. We show that for complex TPC/D 
[Raa95] join queries NEAT0 gives excellent perfor- 
mance, allowing us to exhaustively search the entire 
space of query execution plans in seconds. 

The remainder of this document is organized as fol- 
lows. Section 2 gives an overview of EROC and its 
central components. Section 3 describes how (and 
why) we extended EROC’s base classes and combined 
various classes to get NEATO, and presents experi- 
mental results obtained by optimizing a portion of the 
TPC/D benchmark using NEATO. Section 4 covers 
related work and then, in Section 5, we present a sum- 
mary, conclusions, and future directions. 

2 EROC Components 

This section outlines the architecture of EROC by de- 
scribing the abstractions on which it is based and their 
implementations as reusable toolkit components. We 
show how the basic components can be layered and 
combined to form other components, including opti- 
mizers themselves. 

The classes we describe are only those that are re- 
lated specifically to optimization, called optimization 
classes. There is another group of classes, called sup- 
port classes, that includes implementations of lists, 
hash tables, stacks, queues, directed graphs, dynamic 
arrays, and a fast memory-allocator. These classes 
were used extensively in building the optimization 
classes. Space does not permit us to describe each 
class, or indeed to even completely describe the classes 
we present, but rather our goals are (1) familiarize 
the reader with the important components, and with 
the design principles which guided their development, 
namely identification of key abstractions and the reuse 
of components through layering and inheritance, (2) 
give sufficient description of the search components so 
we can later show how to compose search strategies. 

2.1 Expression Representations 

Expressions are a basic building block for many of 
the optimization classes. To understand the EROC’s 
search components, we first present the classes that 
implement expressions,. and then those that support 
efficient storage of groups of related expressions. 



MultiJxpr 

I 

Predicate-Component Operator-Argument 

G-IA 

PredJxpr Predicate Sort-Arg Groupby-Arg 

A 

&a-bpr Path-Expr 

Figure 1: Partial Expression Hierarchy 
2.1.1 The MultiJ3xpr Class 

In EROC, expressions include 

queries, or logical algebra expressions (‘join 
R.a=S.b (R S)‘), 

query execution plans, or physical algebra expres- 
sions (‘index-nested-loops R.a=S.b (R S)‘), 

path expressions (‘City.mayor.name’, ‘E.salary’), 

arithmetic expressions (‘R.a*7’), 

aggregate expressions (‘Avg(E.salary*2)‘), and 

predicates (‘Sum(Price*( l-Discount))> 10,000’). 

The implementations of all expressions utilize the 
Multi-Expr (‘multiple expression’) class. EROC’s im- 
plementation of expressions was’ inspired by the repre- 
sentation of terms in term rewriting systems, where 
terms can be represented as directed graphs whose 
nodes are variables and constants [Pv93]. EROC’s 
Multi-Expr class is therefore layered on top of the Di- 
rected-Graph class. Figure 1 shows that portion of 
EROC’s expression and operator argument hierarchy 
relevant to the expressions listed above’. (Operator 
arguments are described below .) 

The reuse achieved through inheritance and layer- 
ing gets us additional ‘free’ functionality for expres- 
sions. Having a common, extensible representation 
for all expressions allows any class that operates on 
Multi-Exprs to also operate on their subclasses. For 
example, rules (e.g., join associativity) can be applied 
not only to queries but also to predicates, for exam- 
ple, to implement a semantic optimization rule such 

1 We note that EROC USES C++ inheritance mechankns 
to reflect application domain subtyping (public inheritance in 
C++) and to enable code reuse where subtyping does. not 
apply (private inheritance in C++). An example of ap- 
plication domain subtyping is the OperatorArgument and 
Predicate relationship, while code reuse is enabled by the 
MultiExpr/Predicate-Component relationship. See [Cop92] for 
a discussion of object reuse in C++. 

as ‘E.salary < 5000 => False’. Layering expressions 
on top of the Directed-Graph class permits us to eas- 
ily implement directed graph-type functions, such as 
depth-first search, on the nodes in a query. Other func- 
tionality we can exploit because of the reuse of the 
Multi-Expr class is that provided by the ExprClass 
and ExprSpace classes to efficiently store groups of 
related expressions, for example to prevent redundant 
allocation of predicates or compactly store an opti- 
mizer’s search history. We describe these classes next. 

2.1.2 The Expr-Class and Expr-Space Classes 

Expressions may be grouped together for various pur- 
poses. For example, different representations of a 
query can be grouped together if they are algebraically 
equivalent. The Expr-Class class is an abstraction to 
support such groupings. The ExprSpace abstraction 
also groups logically related expressions, but provides 
the following additional features: 

l compactness, because the semantics of the class 
are that the same expression will never be stored 
twice, and inputs to Multi-Exprs can be classes 
of expressions (i.e., an ExprClass), not simply 
single Multi-Exprs, and 

l fast lookup of expressions. 

An important use of the ExprSpace class in EROC 
is for compactly storing an optimizer’s search history. 
In the next section we describe the classes that support 
EROC’s implementation of search space enumerators, 
which generate equivalent alternative representations 
of a query, and show how spaces of logical expressions 
produced by these enumerators can be mapped to cor- 
responding spaces of physical expressions based on an 
abstraction we call a mapper. 

2.2 Search Components - Expression Space 
Enumerators and Mappers 

In this section we describe the two EROC classes that 
are fundamental to building search engines. The Enu- 
merator class generates spaces (ExprSpace instances) 
of alternative representations of a query, while the 
Mapper class maps these alternatives to another space 
(i.e., a space of physical plans) based on cost. 

2.2.1 The Enumerator and Rule Classes 

We present, two Enumerator instances included in 
EROC, a generative enumerator and a transforma- 
tional enumerator. The algorithms they implement are 
not novel - rather the purpose of describing the enu- 
merators is (1) to show reusable functionality available 
to optimizer developers who use EROC, and (2) to fa- 
miliarize the reader with the two types of enumeration 
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as a basis for understanding how we composed search 
components to form NEATO’s hybrid search engine. 

EROC’s Enumerator class is an abstract base class 
[StrSl]. In the current version of the toolkit, there 
are two subclasses of Enumerator, BU-Enumerator 
(‘bottomup’, also known as a ‘generative’ enumerator) 
and Trans-Enumerator (‘transformational’ enumera- 
tor). The former is an implementation of a variant of 
the Starburst join enumeration algorithm, while the 
latter is a general purpose rule-based enumerator sim- 
ilar to the one in Volcano. 

The BUAmmerator Class 

A BU-Enumerator instance accepts as parameters (to 
a member function ‘apply-bu’) 

a target ExprSpace instance, 

a list of join predicates, instances of the class 
Join-Predicate, a subclass of Predicate, 

a list of non-join predicates, instances of the class 
Predicate (e.g., selection predicates), 

a list of input relations, instances of the Compos- 
ite-Collection class (a subclass of Collection), 

a sort constraint (final sort order), 

a projection list (those attributes that should be 
in the output), 

a groupby argument, 
GroupbyArg class, and 

a having clause, which is 

an instance of the 

a Predicate instance. 

When apply-bu completes, the ExprSpace in- 
stance will contain a set of expressions represented as 
MultiExprs. The number of Multi-Expr nodes will be 
the number of feasible joins [OL90] for the input query, 
plus additional nodes to represent groupby and hav- 
ing clauses. The implementation supports the search 
parameters of the Starburst algorithm, i.e., options to 
limit the number of relations in the inner join input 
and to enable/disable Cartesian products. The cur- 
rent implementation places non-join predicates as low 
in expressions as possible, although it is simple to ex- 
tend the implementation to find other interleavings of 
selections and joins (e.g., to handle expensive predi- 
cates [HS93]). 

The TransJZnumerator and Rule Classes 

A Trans-Enumerator instance is invoked with a 
set of transformation rules (instances of the Rule 
class), a MultiExpr (the query to be optimized), 
and an ExprSpace instance. After application, the 

ExprSpace contains a representation of all expres- 
sions derivable using the transformation rules. For 
example, given a complete set of join transformation 
rules and a join expression, a Trans-Enumerator in- 
stance will produce the same space of feasible joins as 
a BU-Enumerator instance. The current implemen- 
tation of Trans-Enumerator follows the left-to-right 
depth first rule application strategy of Volcano. EROC 
provides complete implementations of many common 
relational algebra transformation rules so implemen- 
tors do not have to redevelop them. 

We note that the Trans-Enumerator class is appli- 
cable to predicates (because the Predicate class is de- 
rived from the Multi-Expr class). In EROC we ex- 
ploit this reusability to transform predicates (specifi- 
cally, conjunctive join predicates) to be sure we detect 
equivalences among join expressions whose predicates 
may contain the same conjuncts in different sequences. 
For example, this ensures that the following two join 
queries are detected as equivalent because both pred- 
icates will be in the same ExprXlass instance (in the 
Expr-Space for predicates). 

l join (R.a=S.b A R.al=S.bl A R.a2=S.b2) (R S) 

l join (R.al=S.bl A R.a2=S.b2 A R.a=S.b) (R S) 

2.2.2 The Mapper Class 

Logical expressions are mapped by an optimizer search 
engine to a space of physical expressions. In the EROC 
architecture this mapping function is captured by the 
abstraction mapper. Given a (source) logical expres- 
sion space, a (target) physical expression space, and 
a goal (an instance of Goal), a Mapper instance will 
return a physical expression that meets whatever con- 
straint is specified by the goal. A goal is (1) a query, an 
expression space, or an expression class, together with 
(2) a set of properties the optimized plan must return 
For example, a goal may be the query ‘join R.a=S.b 
R S’ with the constraint ‘sorted on S.b’, which may be 
mapped to ‘merge-join R.a=S.b (sort/partition R.a R) 
(sort/partition S.b S)‘. 

There is an additional class Map that records the 
mappings from goals to physical algebra expressions, 
i.e., the mappings from expressions in the. logical 
search space to. expressions in the physical search 
space. There is one Map instance for each ExprXlass 
in the logical search space. The Map class supports 
dynamic programming (in the Volcano-Mapper, for in- 
stance) because goals are only solved once and the so- 
lution (physical plan) stored. If a goal is requested 
again, the solution is returned. 

EROC currently has one Mapper subclass, Vol- 
cano-Mapper, which is an implementation of the 
Volcano costing algorithm (described in detail in 
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[McK93]). We will later show that in EROCthis map- 
per is not restricted to being used with a transforma- 
tional (rule-based) enumerator as it was in Volcano, 
but can be used with the BU-Enumerator class to form 
NEATO’s search component, a highly efficient hybrid 
join optimizer. Figure 2 gives a high-level view of a 
Mapper and its member functions. 

We make a final observation on EROC’s search 
classes. EROC’s ExprXlass and ExprSpace classes 
are similar to Volcano’s equivalence class and MEMO 
data structures. However, in EROC the mapping from 
optimization abstractions to solution abstractions is 
much clearer. For example, in Volcano the MEMO 
dala strvctvre represented both the logical and physi- 
cal search spaces, and there was no clear mapping from 
any particular optimization abstraction to this struc- 
ture. EROC, on the other hand, makes this mapping 
much clearer, and from this we were able to better’un- 
derstand the composition of optimizer search strate- 
gies and use this understanding to develop NEATO’s 
search engine. In the next, section we present addi- 
tional solution domain abstractions EROC.provides to 
an optimizer implementor. 

2.3 Other Important EROC Classes 

We now describe other extensible EROC classes that 
provide common functionality which can be shared by 
optimizer developers. 

2.3.1 Operator Classes 

EROC provides several predefined operator classes, 
namely: ‘bulk’ operators, which consume and produce 
collections, such as Join, MergeJoin, NestedLoopsJoin, 
Groupby, * FileScan, IndexScan; predicate operators, 
such as >, <, AND, OR,‘etc.; aggregate operators, 
such as Sum, Avg, Max, Min, Count; and arithmetic 
operators, such as +, -, /, modulo, etc. 

The reason for predefining these operators is that 
in many data models the semantics of the operators 
are similar. For example, a join operator typically 
produces an output type2 that is the concatenation 

2Support for type information is provided by the Type-Info 
class, which is also (re)used to provide run-time type identifica- 
tion (RTTI) [StrSl] for EROC classes. 

of its input types. As another example, a merge join 
operator requires its inputs to be sorted on appropri- 
ate joining attributes, and produces sorted output. In 
other optimization tools, this functionality has to be 
coded by the optimizer implementor. In EROC, how- 
ever, a reasonable semantics is provided for operators 
but an optimizer implementor is free to redefine (via 
virtual functions) some or all operator semantics, or 
add a completely new operator class to the Operator 
hierarchy. 

Each operator has a ‘derive-property’ member func- 
tion that determines the output (collection3) proper- 
ties of an expression involving the operator. An impor- 
tant property derivation EROC provides is key de&a- 
lion, which permits optimizations such as elimination 
of SQL distinct operations. (See [Sha92] for a discus- 
sion of key derivation and elimination of SQL distinct 
operators.) 

2.3;2 The Operator Argument Classes 

EROC provides the following common operator argu- 
ment classes: 

sort arguments (class Sort-Arg), layered on or- 
dered lists of Predicate-Components (class Predi- 
cate-Component-List); 

groupby arguments (class GroupbyArg), layered 
on lists of Aggr-Exprs and Path-Exprs; 

predicates; 

partitioning and projection arguments (both lay- 
ered on class Predicate-Component-List). 

All Operator-Argument classes guarantee that du- 
plicate instances will not be allocated. These classes 
also provide member functions to support syntax 
checking, i.e., to see if an operator/argument pair is 
valid given one or more input collections. 

3 The Collection class encodes meta-information au optimizer 
needs about collections (e.g., files, relations), such as cardinality, 
type, partitioning, sort order, etc. 
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3 The NEAT0 Join Optimizer 

In this section we discuss the motivation for NEATO’s 
development, extensions we made to ERIC to create 

NEATO, and performance of NEAT0 on optimizing 
two complex TPC/D queries. 

The current Teradata optimizer gives excellent per- 
formance and has been highly tuned over many years 
of use. However, extending the optimizer with new 
techniques (e.g., new search strategies, theta semijoins, 
predicate movearound) is not as easy as it would be 
in an EROC-based optimizer. Out of this desire for 
extensibility the NEAT0 project was born. The goals 
of the NEAT0 project were (1) show that an EROC- 
based optimizer does not degrade (and hopefully im- 
proves) performance, and (2) EROC is indeed extensi- 
ble enough to allow incorporation of Teradata-specific 
optimizations and operators, as well as optimization 
techniques not found in the current, optimizer. 

3.1 Search Strategy 

NEAT0 implements a hybrid search strategy, using 
EROC’s BU-Enumerator class for join order enumer- 
ation and the Volcano-Mapper to perform mapping 
from logical to physical operators. To our knowledge 
this is the first, implementation that combines these 
two strategies, which have before been seen as mutu- 
ally exclusive. The strategy first enumerates all join 
(and, optionally, Cartesian product) orders, and the 
mapper then traverses and maps this space. We de- 
cided to use the Starburst-style join enumerator be- 
cause it is relatively easy to~understand and performs 
better than the transformational enumerator if joins 
and Cartesian products are being considered. We de- 
cided on the Volcano mapping algorithm because it is 
very efficient and its top-down costing and constraint 
passing allow discovery of plans that are harder to 
find with a bottomup mapping strategy [McK93]. To- 
gether, this enumerator and mapper generate the en- 
tire space of join expressions and considers all possible 
mappings to physical operators. Such a strategy guar- 
antees we will find the execution plan with minimum 
estimated cost, and the complexity of the join prob- 
lem for TPC/D benchmark queries is sufficiently low 
to permit exhaustive search. 

3.2 Extensions to EROC 

Table 1 shows the number of lines of code for 
EROC optimization classes4 and NEAT0 extensions 
to these classes. The entries show the amount of ‘code 
to implement,: basic expressions (including expression 
classes and spaces); enumerators (both transforma- 
tional and Starburst-based) and the Volcano mapper; 

4EROC support classes comprise another 7212 lines. 

transformation rules (including associated pre- and 
post-condition code); operators (including property 
derivation); collections; types; predicate components 
(predicates, path exprs., etc); other operator argu- 
ments (e.g., sort and groupby); miscellaneous classes. 
The extensions listed here were the only additional 
code we required to build NEAT05. 

We note that, search algorithm implementations 
comprise only 2418 lines, or 7% of the toolkit optimiza- 
tion code. The mechanisms to store expressions (e.g., 
search history) comprise another 1656 lines, or 5% of 
the total (counted as part of basic expression code in 
Table 1). This implies that only providing a generic 
search engine (or engines) and a mechanism to store 
search history, as other optimization tools do, leaves 
an optimizer implementor a great deal of complex code 
that must be implemented. EROC, on the other hand, 
eliminates the need for much of this redevelopment. 
We also note that development of the search compo- 
nents required a relatively small amount of total de- 
velopment time. For example, both the Starburst- 
style and transformational enumerators required ap-’ 
proximately one person-week each to develop, while 
the Volcano mapper took about three person-weeks to 
code and test. 

NEAT0 currently optimizes for Teradata’s two 
most important join algorithms, merge join and prod- 
uct (nested loops) join, full file scan, and four of Tera- 
data’s index access method8 The primary extensions 
we made to EROC to create NEAT0 were to (.I) incor- 
porate Teradata cost calculations for these seven oper- 
ators, and (2) encode Teradata-specific mappings from 
goals to partial solutions (which are used by EROC’s 
Volcano-based mapper class). These major extensions 
make up the value in the ‘Oper.’ column of Table 1 
for NEATO. 

The first extension was easily accomplished by cre- 
ating seven new subclasses, namely TeraDataMerge- 
Join (a subclass of EROC’s MergeJoin class), TeraDat- 
aProductJoin (a subclass of EROC’s NestedLoopJoin 
class), TeraDataFileScan (a subclass of EROC’s FileS- 
can class), TeradataPrimaryIndexScan (a subclass of 
EROC’s IndexScan operator), etc. For each new sub- 
class the ‘cost’ member function was redefined. 

For the second extension, we simply derived the new 
classes TeradataJoin (a subclass of EROC’s Join class) 
and TeradataGet (a subclass of EROC’s Get operator) 
and redefined the superclasses’. virtual functions that 
map goals to partial solutions. This member function 
is called ‘get-partialsolution’ and given a Goal (see 
Section 2.2.2 above) returns a set of physical opera- 

5There is additional code to mlerjace NEAT0 with the Ter- 
adata parser and execution engine. 

6 At the time of writing we are introducing the Teradata index 
nested loops algorithm and other access methods. 
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Table 1: Lines of Optimization Class Code 

Enums. 
and Pred. Other 

System Expr. Map. Rules Oper. Colls. Types Comps. Args. Other Total 
EROC 5366 2418 4121 4792 3524 4193 4359 2709 1129 32602 

NEAT0 0 0 0 6977 318 222 408 0 406 8331 

tors and associated input constraints that partially or 
fully satisfy the Goal. (See [McK93] for a complete ex- 
planation of Volcano’s goal-driven search algorithm.) 
This partial solution code is straightforward to imple- 
ment. However, there are many mapping choices in a 
parallel system (because of the combinations of par- 
titioning/replication/sorting strategies), and therefore 
more partial solutions than one would have to encode 
for a non-parallel DBMS. These mapping choices ac- 
count for the relatively large number of lines of code 
for NEAT0 under the heading ‘Oper.‘. 

3.3 Performance 

Tables 2 and 3 shows NEAT0 performance on opti- 
mizing TPC/D queries 5 and 8 for a 300 GB database. 
We chose these two queries because the number of joins 
is large (for the benchmark), with Query 5 containing 
joins of 6 relations and Query 8 containing joins of 8 
relations. The optimization times do not include the 
time to parallelize the plans since this is done in a 
post-optimization phase in Teradata. 

Table 2 shows exhaustive7 optimization without 
Cartesian products, while Table 3 shows results from 
considering all joins plus Cartesian products. The 
columns in the tables show enumeration, mapping, and 
total optimization times, estimated execution co&! 
maximum heap space, and the numbers of MultiExprs 
and ExprXlasses in the logical and physical expression 
spaces at the end of optimization. The experiments 
were run on a 150 MHz Spare 20 with a memory size 
of 128 MB. 

We note several points about NEATO’s perfor- 
mance and plan quality. First, for Query 5 Cartesian 
product introduction reduced the estimated plan cost 
by approximately 2%, while the plan cost for Query 
8 is the same in both cases. We found the additional 
investment in optimization time is worthwhile because 
of the net savings in combined optimization and esti- 
mated execution time. Second, NEATO’s plan quality 
is guaranteed to be at least as good as that of Ter- 
adata’s current optimizer because all plans are con- 
sidered (using NEATO’s current search strategy), and 

‘That is, all physical operators and partitioning/replication 
/sorting schemes were considered for all left-deep, right-deep, 
and bushy join trees. 

8For proprietary reasous we do not specify the cost units. 

NEAT0 in fact finds mappings that the current (non- 
exhaustive) optimizer does not. 

Third, we note the complexity of the search space 
for these queries. Table 2 shows that the size of the 
logical search space for Query 5 (8) is between the 
number of feasible joins for a g-relation (grelation) 
linear-shaped join and a 6-relation (8-relation) star- 
shaped join. (See [OLSS] for a discussion of feasible 
joins). Table 3 show% that NEAT0 considers the max- 
imum number of feasible joins for each of the queries9 . 
The complexity of Query 8 with all Cartesian products 
considered is between the complexities of a lo- and 
an ll-relation star join (without Cartesian products), 
and between the complexity of a 26- and a 27-relation 
linear join query (without Cartesian products). This 
shows that even using its current exhaustive search 
algorithm NEAT0 can easily find optimal plans for 
queries of these complexities. 

Finally, NEATO’s optimization time is dominated 
by the mapping phase. The reason is the relatively 
large number of mappings of goals to partial solu- 
tions in a parallel DBMS (like Teradata’s). This sug- 
gests we focus research into faster mapping algorithms 
rather than faster enumeration algorithms. We believe 
a prime candidate for this research is the paralleliza- 
tion of the Volcano mapping algorithm. ‘We summa- 
rize by noting that EROC was easy to extend to pro- 
duce an optimizer tailored to the Teradata environ- 
ment, and gives excellent performance on optimizing 
complex TPC/D queries. 

During NEATO’s development the question arose 
as to how to extend NEATO’s search strategy to 
handle queries whose complexity is clearly too high 
for exhaustive search. Two strategies we consider 
promising to handle these queries are randomizing 
[IK90, GLPK94] and greedy [CLR89] algorithms. We 
plan to implement these strategies using combinations 
of EROC’s existing enumeration and mapping classes 
(or extensions. to these), and discuss these plans in the 
future work section below. 

gThe number of points in the logical search space is slightly 
higher than the number of feasible joins because additional 
points are allocated for non-join expressions such as groupby. 
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Table 2: No Cartesian Products 

Enum. Map. Total Logical Logical Physical Physical 
Time Time Time Est. Heap Multi Expr Multi Expr 

Query (sec.) (sec.) (sec.) Cost (MB) Exprs Classes Exprs Classes 
5 0.06 0.26 0.32 3536 3.2 74 30 47 47 
8 0.10 1.19 1.29 3609 4.4 124 44 142 142 

Table 3: All Cartesian Products 

Enum. Map. Total Logical Logical Physical Physical 
Time Time Time Est. Heap Multi Expr Multi Expr 

Query (sec.) (sec.) (sec.) Cost (MB) Exprs Classes Exprs Classes 
5 0.20 1.31 1.51 3473 4.9 307 63 130 130 
8 1.35 10.39 11.74 3609 17.9 3033 255 583 583 

4 Related Work 

Both Volcano and EXODUS are based on transforma- 
tional, algebraic optimization. They differ primarily in 
their mapping algorithms and interleaving of enumer- 
ation and mapping. They provide implementors with 
a single generic search engine, a rule code generator, 
and an extensible framework. OPT++ [KD95] offers 
an implementor a variety of search engines (random- 
izing, System R-style, Volcano-style) in an extensible 
framework, and was influenced by object-oriented de- 
sign to support extensible search strategies found in 
[LV91]. All three of these tools provide one or more 
search strategies and leave the optimizer implementor 
the tasks of writing operator code, predicate and other 
operator argument code, catalog and property deriva- 
tion functions, etc. We have shown that in EROC only 
about 12% of the code is devoted to providing both 
Volcano- and Starburst-style search components, and 
the remainder is devoted to supporting those functions 
absent from these previous systems. While EROC pro- 
vides search components, it can also be viewed as com- 
plementary to these other optimization tools. For ex- 
ample, EROC’s operator argument and catalog classes 
could be used with the Volcano Optimizer ‘Generator 
to create an OpenOODB-type optimizer. 

In [LVZZ94] a query optimizer for a parallel 
database system is described, namely the EDS op- 
timizer. This optimizer, like EROC, is built on the 
principle of extensibility through object-oriented tech- 
niques. The authors see this approach as a contrast 
to the declarative rule-baaed approach to extensibility 
taken by EXODUS and Volcano, while EROC’s exten- 
sibility encompasses the rule-based approach. Their 
implementation is aimed at allowing extensibility by 
themselves rather than outside implementors and, as 
in OPT++, they have achieved extensibility primarily 
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in the search strategy. 
Cascades [Gra95] is an optimizer framework be- 

ing used as the basis- for optimizers for Tandem’s 
Nonstop SQL [CKP+93] and Microsoft’s SQL Server. 
This framework is based on object-oriented principles 
and includes a new optimization algorithm, baaed on 
the ordering of tasks, that permits exhaustive and 
heuristic transformation-based (rule-based) optimizrt- 
tion. EROC differs from Cascades in that EROC fo- 
cuses on providing building blocks that can be used to 
construct any type of optimizer search strategy rather 
than on providing a single optimization algorithm. It 
is also difficult to compare the two since it is un- 
clear (1) how much r&sable code Cascades provides, 
(2) how much effort is required to build an optimizer 
based on Cascades, and (3) what the performance of 
a Cascades-based optimizer is. 

5 Summary, Conclusions, and Future 
Directions 

EROC maps optimization abstractions (predicate, 
search space, enumerator, mapper, collection, type, 
etc.) to C++ classes, and mixes application do- 
main subtyping, inheritance of implementations, and 
layering to achieve reuse and extensibility. EROC 
proved valuable in building an efficient new join opti- 
mizer for the Teradata massively parallel DBMS. This 
optimizer, NEATO, not only gives excellent perfor- 
mance and finds low-cost plans for complex TPC/D 
queries, but is understandable and extensible. EROC’s 
reusable classes saved us a great deal of development 
effort since most of the code needed for the new join 
optimizer was already provided, and the extensions 
(customizations) we made were straightforward. We 
are also continuing development of an optimizer for 



Ode using EROC, and finding that EROC’s classes 
are sufficiently general to support development of an 
OODBMS optimizer. This finding is not surprising 
since EROC evolved in part from experiences build- 
ing the OpenOODB optimizer. EROC provides more 
functionality than previous optimization tools by ex- 
tending good modeling and reuse techniques to all as- 
pects of optimizer development rather than limiting 
its scope to the search problem. 

Future Work 

We plan to enhance EROC’s functionality by making 
the following extensions: 

implementations of randomizing and greedy 
search algorithms; 

a new subclass in the Predicate-Component hi- 
erarchy to support nested queries, and addition 
of unnesting techniques [Kim82, GW87, Day87, 
Mm921 to the toolkit’O; 

rules to support theta semijoin transformations; 

predicate inferencing support; 

a GIJI to support optimizer development and use, 
e.g., to display and manipulate expressions, cat- 
alog information (e.g., c.ollection and type infor- 
mation), etc. 

We are using EROC to build an automated tun- 
ing tool, which will suggest alterations to a phys- 
ical database design based on a given query suite. 
A tuning option we are exploring is caching of so- 
lutions for common subexpressions in a query suite. 
EROC’s Expr-Space class is being used as a basis for 
this cache since it supports common subexpression de- 
tection. EROC is also providing an experimental plat- 
form for research in classifying and analyzing optimiza- 
tion search algorithms [GLL+95]. 

NEATO’s search strategy will be extended to sup- 
port optimization of queries whose complexity is too 
high to permit exhaustive search. To make these ex- 
tensions we plan to build on our observations that 
many common search strategies can be described by 
their enumeration and costing methods, the interleav- 
ing of these methods, together with application of spe- 
cial search techniques, such as dynamic programming 
and branch-and-bound pruning. For example, greedy 

loThe current Teradata optimizer uses sophisticated unnest- 
ing techniques developed by Teradata. The NEAT0 join opti- 
mizer will be coupled with this existing unnesting code to fonu 
a complete SQL optimizer. The ‘unnesting algorithms we are 
going to add to EROC are similar to those found in the litera- 
ture, and our intention is to spare EROC users from having to 
reimplement these conunon techniques. 
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search techniques typically use a bottomup enumera- 
tion strategy interleaved with costing and pruning of 
both the logical and physical search space. System 
R also uses a bottomup enumerator and interleaves 
costing, but does not prune the logical space as ag- 
gressively as greedy search techniques, and augments 
the search with dynamic programming. Volcano uses a 
non-interleaved strategy with a transformation-based 
enumerator. Since we have the basic building blocks 
(enumerators, costing algorithm, commonsearch space 
representation) we should be able to add alternative 
strategies easily. We also plan to extend the toolkit 
with a component to estimate query complexity and 
invoke the most appropriate search strategy. 

We also want to experiment with techniques for 
commuting groupbys and joins [CS94, GHQ95]. Our 
strategy is to add another step to NEATO’s hy- 
brid strategy. This step will consist of invoking a 
transformational enumerator with a rule to commute 
groupby and join on an expression space produced by 
a BU-Enumerator instance. We believe that imple- 
menting this technique is more natural using trans- 
formation rules than integrating it inlo a bottomup 
enumerator. We have a common representation for a 
search space, so are free to mix transformational and 
generative enumeration strategies that operate on the 
representation. 
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