
Optimization of Queries with User-defined Predicates

Surajit Chaudhuri
Microsoft Research

surajitc@microsoft .com

Abstract

Relational databases provide the ability to
store user-defined functions and predicates
which can be invoked in SQL queries. When
evaluation of a user-defined predicate is rel-
atively expensive, the traditional methods of
evaluating predicates as early as possible is no
longer a sound heuristic. There are two pre-
vious approaches for optimizing such queries.
However, none of these approaches is able to
guarantee the optimal plan over the desired
execution space. We present an efficient tech-
nique that is able to guarantee the choice of an
optimal plan over the desired execution space.
The optimization algorithm that we present
has the desirable properties that (a) it is an
extension of the algorithm used by commercial
optimizers and never requires exhaustive enu-
meration of join ordering, (b) the complexity
of the algorithm is bounded by a polynomial
in the number of user-defined functions and
(c) requires no special assumptions on the cost
formulas for join. We also propose a conaer-
votive ZocaZ heutiatic that is even simpler but
produces nearly optimal plans. We have imple-
mented the algorithms by extending a System-
R style optimizer.

*Currently at Bell Laboratories, Murray Hill.

Pemaiarion to copy without fee all or part of this material ia

granted prorided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and itr date appear, and notice is

given that copying is by permission of the Verg Large Data Bare
Endowment. To copy othcrwiae, or to republish, requires a fee
and/o+ rpccial permission from the Endovment.

Proceedings of the 22nd VLDB Conference
Mumbai(Bombay), India, 1996

Kyuseok Shim*
IBM Almaden Research Center

shim@bell-labs.com

1 Introduction

In order to efficiently execute complex database appli-
cations, many major relational database vendors pro-
vide the ability to define and store user-defined func-
tions. Such functions can be invoked in SQL queries
and make it easier for developers to implement their
applications. However, such extensions make the task
of the execution engine and optimiser more challeng-
ing. In particular, when user-defined functions are used
in the Where clause of SQL, such predicates cannot be
treated as SQL built-in predicates. If the evaluation of
such a predicate involves a substantial CPU and I/O
cost, then the traditional heuristic of evaluating a pred-
icate as early as possible may result in a significantly
suboptimal plan. We will refer to such predicates as
user-defined (or, ezpenaive) predicates.

Consider the problem of identifying potential cus-
tomers for, a mail-order distribution. The mail-order
company wants to ensure that the customer has a high
credit rating, is in the age-group 30 to 40, resides in
the San Francisco bay area, and has purchased at least
$1,000 worth of goods in the last year. Such a query
involves a join between the Person and the Sales re-
lation and has two user-defined functions zone and
high-creditrating.

Select
From
Where

name, street-address, zip
Person, Sales
high-credit,rating(ss,no)
and age In C30,401
and zone(zip) = “bay axea”
and Person.name = Sales.buyer-name

Group By name, street-address, zip
Having Sum(sales.amount) > 1000

Let us assume that the predicate high-credit-rating
is expensive. In such a case, we may evaluate the
predicate after the join so that fewer tuples invoke the
above expensive predicate. However, if the predicate
is very selective, then it may still be better to execute

87

high-creditlating so that the cost of the join is re-
duced. Such queries involving user-defined predicates
occur in many applications, e.g., GE and multi-media.

This paper shows how commercial optimizers, many
of which are based on system R style dynamic program-
ming algorithm [SAC+79], can be extended easily to be
able to optimize queries with user-defined predicates.
We propose an easy extension of the traditional opti-
mizer that is efficient and that guarantees the optimal.
We associate a per tuple cost of evaluation and a selec-
tivity with every user-defined predicate (as in [HS93]).
While the task of optimizing queries with user-defined
predicates is important, there are other interesting di-
rections of research in user-defined predicates, e.g., use
of semantic knowledge, e.g., [PHH92, CS93].

As pointed out earlier, the traditional heuristic of
evaluating predicates as early as possible is inappropri-
ate in the context of queries with user-defined predi-
cates. There are two known approaches to optimizing
queries that treat user-defined predicates in a special
way. The first technique, used in LDL [CGK89] is ex-
ponential in the number of expensive predicates and
it fails to consider the class of traditional plans where
user-defined predicates are evaluated as early as possi-
ble. The second technique, known as Predicate Migra-
tion [HS93] is polynomial in the number of expensive
predicates and takes into consideration the traditional
execution space as well. However, this algorithm can-
not guarantee finding the optimal plan. Moreover, in
the worst case, it may need to exhaustively enumerate
the space of joins. (O(n!) in the number of joins n in
the query).

Our algorithm finds the optimal plan without ever
requiring to do an exhaustive enumeration of the space
of join orderings. The complexity of the algorithm is
polynomial in the number of user-defined functions’.
Our approach does not require any special assumptions
about the execution engine and the cost model. In
designing this optimization algorithm, we discovered a
powerful pruning technique (pushdown rule) that has
broader implication in other optimization problems as
well [CS96].

Although the optimization algorithm that guaran-
tees the optimal has satisfactory performance for a
large class of queries, its complexity grows with the
increasing query size. Therefore, we wanted to inves-
tigate if simpler heuristics can be used as an alterna-
tive. The conservative local heuristic that we present
guarantees optimality in several cases and experimen-
tal results show that it chooses an execution plan very

‘The complexity is exponential in the number of joins. This
in not unexpected rince the traditional join optimisstion problem
itself is NP-hard.

close to the optimal while being computationally in-
expensive. Thus, this heuristic serves as an excellent
alternative where query size or complexity of the opti-
mization algorithm is a concern.

We have implemented the optimization algorithm as
well as the heuristic by extending a System-R style op-
timizer. We present experimental results that ilbrstrate
the characteristics of the optimization algorithms pro-
posed in this paper.

The rest of the paper is organized as follows. In the
next section, we review the System R optimization al-
gorithm [SAC+791 which is the basis of many commer-
cial optimizers. Next, we describe the desired execution
space and review the past work on optimizing queries
with user-defined predicates. Sections 4 and 5 describe
the optimization algorithm and the conservative local
heuristic respectively. The performance results and im-
plementation details are given in Section 6.

2 System R Dynamic Programming Al-
gorit hm

Many commercial database management systems have
adopted the framework of the System R opti-
mizer [SAC+791 which uses a dynamic programming
algorithm. The execution of a query is represented
syntactically as an annotated join tree where the in-
ternal node is a join operation and each leaf node is
a base relation. The annotations provide the details
such as selection predicates, the choice of access paths,
join algorithms and projection attributes of the result
relation. The set of all annotated join trees for a query
that is considered by the optimizer wiIl be called the
ezecution space of the query. A cost function is used to
determine the cost of a plan in the execution space and
the task of the optimizer is to choose a plan of mini-
mal cost from the execution space. Most optimizers of
commercial database systems restrict search to only a
subset of the space of join ordering. Most optimizers
of commercial database systems restrict search to only
a subset of the space of join ordering. In many opti-
mizers, the execution space is restricted to have only
linear join trees, whose internal nodes have at least
one of its two child nodes as a leaf (base relation). In
other words, a join with N relations is considered as
a linear sequence of a-way joins. For each intermedi-
ate relation, the cardinality of the result size and other
statistical parameters are estimated.

Figure 1 (adopted from [GHK92]) illustrates the Sys-
tem R dynamic programming algorithm that finds an
optimal plan in the space of linear (left-deep) join
trees [SAC+79]. The input for this algorithm is a select-
project-join (SPJ) query on relations R~,...,B,,. The

88

procedure DPAlgorithm:
for i := 2 to n do (

for all S 2 (RI, &} s.t. IIS = i do (
be&Plan := a dummy plan with infinite cost
for all Rj, Sj s-t. S = (Rj} U Sj do (

p := joinPlan(optPlan(Sj), Rj)
if cost(p) 5 cost(bestPlan)

bestPlan := p
I
optPlan := bestPlan

I
I
return(optPZan((Ri, &}))

Figure 1: System R Algorithm for Linear Join Trees

function joinPlan(p,R) extends the plan p into another
plan that is the result of p being joined with the base re-
lation R in the best possible way. The function cost(p)
returns the cost of the plan p. Optimal plans for sub-
sets are stored in the optPlan() array and are reused
rather than recomputed.

The above algorithm does not expose two important
details of the System R optimization algorithm. First,
the algorithm uses hewistics to restrict the search
space. In particular, all selection conditions and sec-
ondary join predicates are evaluated as early as pos-
sible. Therefore, all selections on relations are evalu-
ated before any join is evaluated. Next, the algorithm
also considers interesting orders. Consider a plan P for
RI W R2 that uses sort-merge join and costs more than
another plan P’ that uses hash-join. Nonetheless, P
may still be the optimal plan if the sort-order used in
P can be reused in a subsequent join. Thus, the System
R algorithm saves not a single plan, but multiple opti-
mal plans for every subset S in the Figure, one for each
distinct such order, termed interesting order [SAC+79].
Thus, a generous upper bound on the number of plans
that must be optimized for a query with joins among
n tables is 0(2n) (the number of subsets of n tables)
times the number of interesting orders.

3 Execution Space and Previous Ap-
proaches

As mentioned earlier, for traditional SPJ queries, many
optimizers find an optimal from the space of linear
join orderings only. When user-defined predicates are
present, the natural extension to this execution space
consists of considering linear sequence of joins, and al-
lowing an expensive predicate to be placed following
any number of (including zero) joins. Thus, an expen-
sive selection condition can be placed either immedi-

ately following the scan of the relation on which it ap-
plies, or after any number of joins following the scan.
Likewise, an expensive secondary join predicate can be
placed either immediately after it becomes evaluable
(following the necessary joins), or after any number of
subsequent joins. In other words, this execution space
restricts the join ordering to be linear but allows expen-
sive predicates to be freely interleaved wherever they
are evaluable. We refer to this execution space as un-
constrained linear join trees. This is the same exe-
cution space that is studied in [HS93, He194]. In this
section, we discuss two approaches that have been stud-
ied in the past for optimizing queries with user-defined
predicates.

3.1 LDL Approach

In this approach, an expensive predicate is treated
as a relation from the point of view of optimiza-
tion. This approach was first used in the LDL project
at MCC [CGKSS] and subsequently at the Papyrus
project at HP Laboratories [CS93]. Viewing expen-
sive predicates as relations has the advantage that the
System-R style dynamic programming algorithm can
be used for enumerating joins as well as expensive pred-
icates. Thus, if e is an expensive predicate and RI and
Rz are two relations, then the extended join enumera-
tion algorithm will treat the optimization problem as
that of ordering RI, R2 and e using the dynamic pro-
gramming algorithm.

Shortcoming of the Approach:

This approach suffers from two drawbacks both of
which stem from the problem of over-generalizing and
viewing an expensive predicate as a relation. First, the
optimization algorithm is exponential not only in the
number of relations but also in the number of expen-
sive predicates. Let us consider the case where only
linear join trees are considered for execution. Thus, in
order to optimize a query that consists of a join of n
relations and k expensive predicates, the dynamic pro-
gramming algorithm will need to construct O(2Rtk) op
timal subplans. In other words, the cost of optimizing
a relation with n relations and k expensive predicates
will be as high as that of optimizing (n+k) relations.
Another important drawback of this approach is that
if we restrict ourselves to search only linear join trees,
then the algorithm cannot be used to consider all plans
in the space of unconstrained linear trees. In particu-
lar, the algorithm fails to consider plans that evaluate
expensive predicates on both operands of a join prior
to taking the join [He194]. For example, assume that
RI and Rz are two relations with expensive relations

89

ei and ez defined on them. Since the LDL algorithm
treats expensive predicates and relations alike, it will
only consider linear join sequences of joins and selec-
tions. However, the plan which applies el on Rx and
ez on RZ and then takes the join between the relations
RI and R2, is not a linear sequence of selections and
joins. Thus, this algorithm may produce plans that
are significantly worse than plans produced by even
the traditional optimization algorithm.

3.2 Predicate Migration

Predicate Migration algorithm improves on the LDL
approach in two important ways. First, it considers
the space of unconstrained linear trees for finding a
plan, i.e., considers pushing down selections on both
operands of a join. Next, the algorithm is polynomial
in the number of user defined predicates. However,
the algorithm takes a step backwards from the LDL
approach in other respects. This will be discussed later
in this section.

We will discuss two aspects of this approach. First,
we will discuss the predicate migration algorithm,
which given a join tree, chooses a way of interleaving
the join and the selection predicates. Next, we will de-
scribe how predicate migration may be integrated with
a System R style optimizer [HS93, He194].

The predicate migration algorithm takes as input a
join tree, annotated with a given join method for each
join node and access method for every scan node, and
a set of expensive predicates. The algorithm places the
expensive predicates in their “optimal” (see discussion
about the shortcomings) position relative to the join
nodes. The algorithm assumes that join costs are lin-
ear in the sizes of the operands. This allows them to
assign a rank for each of the join predicate in addition
to ass”gning ranks for expensive predicates. The notion
of ra 4 k has been studied previously in [MS79, KBZ86].
Having assigned ranks, the algorithm iterates over each
stream, where a stream is a path from a leaf to a root
in the execution tree. Every iteration potentially rear-
ranges the placement of the expensive selections. The
iteration continues over the streams until the modified
operator tree changes no more. It is shown in [HS93]
that convergence occurs in a polynomial number of
steps ‘in the number of joins and expensive predicates.

.The next part of this optimization technique con-
cerns integration with the System R style optimizer.
The steps of the dynamic programming algorithm are
followed and the optimal plan for each subexpres-
sion is generated with the following change. At each
join step, *the option of evaluating predicates (if ap-
plicable) is considev*J: Let P be the optimal plan of
u,(R w S) a=d*P’ be the optimal plan for CT,(R) W S.

If coat(P) < coat(P’), th en the algorithm prunes the
plan P’ without compromising the optimal. However,
if the plan for P’ is cheaper, then dynamic program-
ming cannot be used to extend the plan P’ Rather, the
plan P’ is marked as unprunable. Subsequently, when
constructing larger subplans, the algorithm ignores the
unprunable plans. After the dynamic programming al-
gorithm terminates, each such unprunable plans needs
to be extended through ezhauative enumeration, i.e.,
all possible ways of extending each unprunable plan
are considered.

Shortcomings of the Approach:

This approach to optimization has three serious draw-
backs that limit its applicability. First, the algorithm
requires that cost formulas of join to be linear in the
sizes of the inputs. Next, the algorithm cannot guar-
antee an optimal plan even if a linear cost model is
used. This is because the use of predicate migration
algorithm may force, estimations to be inaccurate. In
a nutshell, predicate migration require a join predi-
cate to be assigned a Tank, which depends on the cost
of the join and the latter is a functioti of the input
sizes of the relations. Unfortunately, the input sizes
for the join depends on whether the expensive pred-
icates have been evaluated! This cyclic dependency
forces predicate migration to make an ad-hoc choice in
calculating the rank. During, this step, the algorithm
potentially underestimates the join cost by assuming
that all expensive predicates have been pushed down.
This ad-hoc assumption sacrifices the guarantee of the
optimality (See Sect&n 5.2 of [He1941 for a detailed dis-
cussion). Finally, the global nature of predicate migra-
tion hinders integration with a System R style dynamic
programming algorithm. The algorithm may degen-
erate into exhaustive enumeration. Let us consider a
query that has n relations and a single designated ex-
penshe predicate e on the relation RI. Let us assume
that for the given database, the traditional plan where
the predicate e is evaluated prior to any join, is the
optimal plan. In such a case, plans for a,(Rx) W &
(i # 1) will be marked as unprunable. For each of
these plans, there are (n - 2)! distinct join orderings
and for each of these join orderings, there can be a
number of join methods. Thus, in the worst case, the
optimization process requires ezhauative enumeration
of the join space.

4 Dynamic Programming Based Opti-
mization Algorithms

Our discussion of the previous section shows that none
of the known approaches are guaranteed to find an Qp-

90

timal plan over the space of unconstrained linear join
trees. In this section, we present our optimization algo-
rithm which is guaranteed to produce an optimal plan
over the above execution space. To the best of our
knowledge, this is the first algor,ithm that provides such
a guarantee of optimality. The techniques presented in
this section are readily adaptable for other join execu-
tion spaces as well (e.g., bushy join trees) [CS96].

Our algorithm has the following important proper-
ties as well: (1) it is remarkably Tobust. It is free from
special restrictions on cost model or requirements for
caching (2) The algorithm integrates well with dynamic
programming based algorithm used in commercial op-
timizers, and never requires exhaustive enumeration.
(3) The algorithm is polynomial in the number of user-
defined predicates. We provide a succinct characteriza-
tion of what makes this optimization problem polyno-
mial and the parameters that determine its complexity
of optimization.

Thus, our algorithm successfully addresses the short-
comings of the Predicate migration algorithm with-
out sacrificing the benefit of considering the execution
space of unconstrained linear join trees and ensuring
that the complexity of optimization grows only poly-
nomially with the increasing number of user-defined
functions.

For notational convenience, we will indicate ordering
of the operators in a plan by nested algebraic expres-
sions. For example, (ue(R1) W &) w oe, (Rs) desig-
nates a plan where we first apply selection e on rela-
tion RI, then join that relation with R2 before join-
ing it with the relation R3, which has been reduced
by application of a selection condition e’. In describ-
ing the rest of this section, we make the following two
assumptions: (a) all user-defined predicates are aelec-
tions. This assumption is to simplify the presentation.
Our algorithms accommodate user-defined join predi-
cates as well and preserves the guarantee of optimality
as well as properties (l)-(3) above [CS96] (b) no tradi-
tional interesting orders are present. This assumption
is for ease of exposition only.

We begin by presenting the “naive” optimization al-
gorithm that guarantees optima&y and has properties
(1) through (3) b a ove. Next, we present two powerful
pruning techniques that significantly enhance the effi-
ciency of the optimization algorithm, as will be shown
later in the experimental section.

4.1 Naive Optimization Algorithm

The enumeration technique of our algorithm relies on
clever use of the following two key observations:
Equivalent Plan Pruning Rule: The strength of the
traditional join enumeration lies in being able to com-

pare the costs of different plans that represent the same
subexpression but evaluated in different orders. Since
selection and join operations may be commuted, we
can extend the same technique to compare and prune
plans for queries that have the same expensive pred-
icates and joins, i.e., if P and P’ are two plans that
represent the same select-project-join queries with the
same physical properties, and if Co&(P’) < Cost(P),
then P may be pruned. For example, we can com-
pare the costs of the plans P and P’ where P is the
plan (Ok W Rz) W ael(R3) and P’ is the plan
(Rz M ~ejR3) W ae(R1).
Selection Ordering: Let us consider conjunction of a set
of expensive selection predicates applied on a relation.
The problem of ordering the evaluation of these predi-
cates is the selection ordering problem. The complexity
of selection ordering is very diRerent from that of or-
dering joins among a set of relations. It is well-known
that for traditional cost models, the latter problem is
NP-hard. On the other hand, the selection ordering
problem can be solved in polynomial time. Further-
more, the ordering of the s&ctions does not depend
on the size of the relation on which they apply. The
problem of selection ordering was addressed in [HS93]
(cf. [KBZSS, MS79, WK90]). It utilizes the notion of
a rank. The ranic of a predicate is the ratio c/(1 - s)
where c is its cost per tuple and s is its selectivity.

Theorem 4.1: Consider the query oe(R) where e =
el A . . A e,. The optimal ordering of the predicates in
e is in the order of ascending ranks and is independent
of the size of R.

For example, consider two predicates e and et with
selectivities .2 and .6 and costs 100 and 25. Although
the predicate e is more selective, its rank is 125 and
the rank of e’ is 62.5. Therefore evaluation of e’ should
precede that of e. The above technique of selection
ordering can be extended; to broader classes of boolean
expressions [KMS92].

Ensuring Complete Enumeration Efficiently

Equivalent plan pruning rule allows us to compare two
plans that represent the same expression. This ob-
servation will help us integrate well with the System
R algorithm and avoid exhaustive enumeration (unlike
predicate migration). On the other hand, selection or-
dering tells us that (in contrast to the LDL algorithm),
we can treat selections unlike relations to make enumer-
ation efficient. Indeed, thii observation is what makes
our algorithm polynomial in the number of user-defined
predicates. Therefore, the challenge is to treat selec-
tions differently from joins while enumerating but to

91

be still able to compare costs of two plans when they
represent the same expression. In order to achieve this
goal, we exploit the well-known idea of interesting or-
ders [SAC+791 in a novel way.

We keep multiple plans that represent the join of the
same set of relations but differ in the sets of predicates
that have been evaluated. In other words, with every
join plan, an additional “tag” is placed, which records
the set of predicates that have been evaluated in the
plan. Thus, a tag acts very much like an interesting or-
der from the point of view of join enumeration. This is
a useful way of thinking about enumerating the space
of execution plans since the selection ordering rule en-
sures that we need “a few” tags. Notice that whenever
two plans represent the join of same set of relations and
agree on the tags, they can be compared and pruned.

Figure 2 illustrates the execution plans (and sub-
plans) that need to be considered when there are three
relations and two expensive selection predicates el and
ez on RI. PI, P2 and Pa are possible plans for RI W R2
(each with differing tags). The plans from Ps to’Pl3
are for RI W R2 W RJ. We will distinguish between
P5 and P6 since they will have different tags, but will
keep a single plan among P5, P7, 90 and Pl3. We now
formalize the above idea.

Tags

Let us consider a join step where we join two relations
RI and R2. Let us assume that (~1,. . . , p,) are the
predicates applicable on RI, in the order of the increas-
ing rank. From the selection ordering criterion, we con-
clude that if the predicate pj is applied on RI prior to
the join, then so must all the predicates pl., ,pj-1. In
other words, there can be at most (m + 1) possibilities
for-pushing down selections on RI : (a) not applying
any predicate at all (b) applying the first j predicates
only where j is between 1 and m. Likewise, if the pred-
icates applicable on R2 are ((11,. . .,qd), then there are
at most (s+ 1) possibilities. Thus, altogether there can
be (m + l)(s + 1) plans for the join between RI and
R2 that differ in the applications of selections prior to
the join. We can denote these plans by Po,o, . . . , Pm,,
where P,.,t designates the plan that results from eval-
uating (p1 , . . . ,pz) on RI and (41,. . . , qt) on Rz prior
to the join. The selection ordering plays a crucial role
in reducing the number of tags from exponential to
a polynomial in the number of user defined predicates.
Observe that if we cannot have a linear ordering among
selections, then we have to consider cases where any
subset of the selection predicates are chosen for evalu-
ation prior to the join. In that case, in the above join
between RI and R2, the number of plans can be as
many as 2”+‘.2*+1.

92

We generalize the above idea in a straight-forward
fashion. For a subquery consisting of the join among
relations {&I,. . . , al}, there will be at most (nor ,,
l)(mz + l)..(ml-I+ l)(ml+ 1) optimal plans that need
to be kept where mj represents the number of expen-
sive predicates that apply on &j. We will associate a
distinct tag with each of these plans over the same sub-
query. We now sketch how tags may be represented.
We assign a number to each expensive predicate ac-
cording to the ordering by rank. If an user-defined
selection condition is present over w of the relations
(say, &I, . . . , R,,,) in the query, then with each plan,
we associate a vector of width w. If < al, ..a, > is
the tag vector with a plan P, then it designates that
all expensive predicates of rank lower or equal to aj on
&j have been evaluated in P for all 1 5 j 5 w. We
defer a full discussion of the scheme for tagging to the
extended version of our forthcoming report [CS96], but
illustrate the scheme with the following example.

Example 4.2 : Consider a query that represents a
join among four relations RI, .., Ra and nine selections
where the selections are numbered by their relative in-
creasing rank. The relation RI has three predicates
numbered 2,5,6. Let R2 have three predicates 1,3,4.
Let RS have predicates 7,8,9. The relation Rq has no
predicates defined. The tag vector has three positions,
where the ith position represents predicates on the re-
lation &. There are altogether 16 plans for join over
{RI, R2}, each with a distinct tag. Consider the plan
for the tag vector < 5,4,0 >. This plan can be joined
with the relation R3. Depending on the selection pred-
icates evaluated prior to the join, there will be alto-
gether 8 plans with different tag vectors that extend
the above plan. In particular, a plan will be generated
with a tag vector < 5,4,8 >. This plan can be com-
pared with the plan obtained by extending a plan for
(R2, Rg) with the tag vector < 0,4,8 > through a join
with RI and evaluating predicates 2 and 5 on RI prior
to the join. I

In the above example, we illustrated how we can prune
plans with the same tag vector and over the same set
of relations. This is unlike the approaches in [HS93,
He1941 where once a user-defined predicate has been
“pushed-down”, the plan is unprunable.

Algorithm: The extensions needed to the algorithm
in Figure 1 for the naive optimization algorithm are
straightforward. There is no longer a single optimal
plan for Sj (in Figure l), but there may be multiple
plans, one for each tag vector. Thus, we will need to
iterate over the set of possible tags. For each such op-

timal plan .Sj with a tag t, we consider generating all

(Rl R2) (R2 R3)

Rl R2 Rl R2 Rl R2

Pl P2 P3

CR1 R2 R3)
. . . .

/...A......_..
. .

Rl R2 Rl R2 “..,Rl R2 -.:’
. . ‘..

PS P6 p7 __..... ...’

R2 R3

P4

Rl R2 Rl R2

P8 P9

fi3 fil Rl ,&:

Rl R2 R2 R3 R2 R3 R2 R3

PlO Pll P12 P13

Figure 2: Search Space of Naive Optimisation Algorithm

possible legal tags for S. For each such tag t’, join.??an
needs to be invoked to extend the optimal plan Sj. We
need to also ensure that we compare costs of plans that
have the same tag.

4.2 Complexity

In the optimisation algorithm that we presented, we ex-
ploited dynamic programming as well as selection or-
dering. The latter makes it possible for us to have
an optimisation algorithm which is polynomial in k
whereas the former made it possible for us to retain
the advantage of avoiding exhaustive enumeration of
the join ordering. The efficiency of our algorithm is
enhanced by the applications of pruning rules that will
be described in the next section.

Let us consider a query that consists of a join among
n relations and that has k user-defined predicates. Let
us assume that only g of the n relations have one or
more user-defined selection conditions. Furthermore,
let us be the maximum number of expensive predicates
that may apply on one relation. In such cases, the
number of tags can be no more than (1 + w)g . Further-
more, we can show that the total number of subplans
that need to be stored has a generow upper-bound of
2”(1 + w/2)8. Note that since n is the total number
of relations and k is the total number of user-defined
predicates, g 5 n and w 5 k. Therefore, the above for-
mula can be used to derive an upper-bound of (2 + k)“.
Hence, for a given n, the upper-bound is a polynomial
in k. The above is a very generous upper bound and
a more detailed analysis will be presented in [CS96].
Observe that as in the case of traditional join enumer-

ation, the complexity is exponential in n.

The analysis of our complexity shows that the com-
plexity is sensitive to the distribution of predicates
among relations as well as to the number of predicates
that may apply to a single relation. In particular, if
alI user-defined predicates apply to the same relation,
then the complexity is 0(2”)(l+k/2), a linear function
of k. The complexity of this algorithm grows with the
number of relations over which user-defined predicates
occur since they increase the number of tags exponen-
tially. In the full paper, we study the effect of varying
distributions of user-defined predicates on efficiency of
the optimisation algorithms [CS96].

It is important to recognise how we are able to avoid
the worst cases that predicate migration algorithm en-
counters. Predicate migration algorithm has worst run-
ning time when user-defined predicates turn out to be
relatively inexpensive (i.e., has low rank). It is so since
in such cases, unprunable plans are generated (See Sec-
tion 3). On the other hand, our optimisation algorithm
prepares for all possible sequences of predicate push-
down through the use of tags. Furthermore, since in
many applications, we expect the number of expensive
user-defined functions in the query to be a few and less
than the number of joins, it is important to ensure that
the cost of join enumeration does not increase sharply
due to presence of a few user-defined predicates. How-
ever, as pointed out earlier, even with a single user-
defined predicate over n joins, the worst-case complex-
ity of predicate migration can be O(n!). Our approach
overcomes the above shortcoming of predicate migra-
tion effectively.

93

4.3 Efficient Pruning Strategies

The naive algorithm can compare plans that have the
same tags only. In this section, we will augment our
“naive” optimization algorithm with two pruning tech-
niques. The pruning techniques that we propose here
allow us to compare and prune plans that have different
tags. These pruning techniques are sound, i.e., guar-
anteed not to compromise the optimality of the chosen
plan.

Pushdown Rule

This rule says that if the cost of evaluating the selec-
tions (prior to the join) together with the cost of the
join after the selections’are applied, is less than the cost
of the join without having applied the selections, then
we should push down the selections ‘. For example,
in Figure 2, if the cost of Pz is less than the cost of
Ps we can prune Ps. In naive optimization algorithm,
we had to keep both PS and Ps since they had differ-
ent tags, i.e., different numbers of expensive predicates
were applied.

Lemma 4.3: Let P’ be a plan for Ihe join R W S.
Led P be a plan 2hat applies an user-defined predicate
e on the relation R before taking the join wilh S, (i.e.,
O,(R) W S). If Cost(P) 5 Cost(P’), then the plan P’
may be pruned.

We refer to the above lemma as the pushdown rule.
The soundness of the above lemma follows from the ob-
servation that for SPJ queries with the same interesting
order, the cost is a monotonic function of sizes of rela-
tions [CS96]. A consequence of this rule is that if P’ is
a plan that has a set S’ of expensive predicates applied,
then it can be pruned by another plan P over the same
set of relations where (a) Cost(P) 5 Cost(P’) (b) P
has a set S of expensive predicates applied where S is
a superset of S’ (therefore, S j S’). Given two plans
over the same set of relations, we can easily check (b)
by examining the tag vectors of P and P’ [CS96]. If
indeed (b) holds, then we say T dominates T’, where
T’ and T are tags of P’ and P. We can rephrase the
above lemma to conclude the following:

Corollary 4.4: If P and P’ are two plans over ihe
same set of relations with the tags T and T’ such that
T dominates Tt, and P is cheaper than P’, then P’
may be pruned.

For a given plan P, the set of plans (e.g., P’) that the
above corollary allows us to prune will be denoted by
pushdown_expensiue(P).

2Strictly speaking, the lemma can be used to compare planr
P and P’ that have the same interesting order.

Example 4.5: Let us consider the previous exam-
ple. For the plan that represents the join among
{RI, Rz, Rs}, there will be altogether 64 tags. How-
ever, if the cost of the plan with the tag < 6,4,9 > is
lower than that of < 5,4,8 >, we can use the pushdown
rule to prune the latter plan. I

Pullover Rule

This rule says that if locally deferring evaluation of a
predicate leads to a cheaper plan than the plan that
evaluates the user-defined predicate before the join,
then we can defer the evaluation of the predicate with-
out compromising the optimal. The soundness of this
rule uses the dynamic programming nature of the Sys-
tem R algorithm and can be established by an inductive
argument. For example, if the cost of the plan txtend-
ing Ps with evaluation of ez (i.e., o,,(aelR1 W Rz)) is
less than the cost of Ps in Figure 2, we can prune Ps.
In naive optimization algorithm, we had to keep both
Ps and Pz since they had different tags, i.e., different
number of predicates were applied to each of the plans.

Lemma 4.6: Let e be a user-defined predicate on a
relation R. Let P and P’ represent the opGma1 plans for
u,(R W S) and oe(R) W S respectively. If Cost(P) 5
Cost(P’), dhen the plan P’ may be pruned.

We refer to the above as the pullover rule since the
plan P in the lemma corresponds to the case where the
predicate is pulled up. This rule can also be used in the
context of predicate migration to reduce the number of
unprunable plans generated (cf. [HS93]). We can use
the pullover rule for pruning plans as follows. Let us
consider plans P and P’ over the same set of relations
but with different tags T and T’. If the tag T dominates
Tt, then all predicates that are evaluated in 2” are also
evaluated in T. Let Dif f (T, Tt) represent the set of
predicates that are evaluated in T but not in T’. We
can then use the Pullover rule to obtain the following
corollary. Intuitively, the corollary says that we can
compare cost(P), with that of cost(P’) + 6 where 6 is
the cost of evaluating predicates Diff(T, T’) after the
join in P’.

Corollary 4.7: Let P and P’ be two plans with tags T
and T’ over the same set of rela#ons and T dominates
T’. Let Prr be the plan obtained by applying the pred-
icates in Diff(T, T) to P’. If cost(P”) < cod(P),
then P may be pruned.

For a given P, we can construct a set of all such plans
P’ each of which may be used to prune P. We can refer
to the above set as pullover-cheaper(P). The following
example illustrates the corollary. For example, consider

94

Example 4.5 with the following change: the cost of the
plan P with the tag T =< 6,4,9 > is higher than the
cost of the plan P’ with the tag T’ =< 5,4,8 >. Notice
that the tag < 6,4,9 > dominates the tag < 5,4,8 >.
The set Diff(T, T’) = (6,9}. In such a case, the above
lemma allows us to prune the plan P if the cost of the
plan P’ with the added cost of evaluating the set of
predicates (6,9} after the join exceeds the cost of P.

4.4 Optimization Algorithm with Pruning

In this section, we augment the naive optimization al-
gorithm with the pruning strategies. The extended al-
gorithm is presented in Figure 3. The Plantable data
structure stores all plans that need to be retained for
future steps of the optimizer. For every subset of re-
lations, the data structure stores potentially multiple
plans. The different plans correspond to different tags.
Storing such plans requires a simple extension of the
data structure used to represent plans with interesting
orders in the traditional optimizers.

In determining the access methods and choice of join
methods, the algorithm behaves exactly like the tra-
ditional algorithm in Figure 1. However, when there
are s applicable user-defined predicates on the operand
Sj and F applicable predicates on the operand Rj, the
algorithm iteratively considers all (r + l)(s + 1) possi-
bilities which corresponds to applying the first u pred-
icates and the first v predicates on Sj and Rj respec-
tively where the predicates are ordered by ranks. This
is the inner loop of the algorithm and is represented by
extjoi~2lan. It should be noted that Sj is an interme-
d&e relation and so the first u predicates on Sj may
include predicates on multiple relations that have been
joined to form Sj.

The choices of u and v uniquely determine the tag
for the plan p in Figure 3. The plan p will be compared
against plans over the same set of relations that have
already been stored. The plan p is pruned and the
iteration steps to the next (u,v) combination if. one
of the following two conditions holds: (1) If p is more
expensive than the plan in the Plantable with the same
tag, if any. (2) If the set of plans puZZover-cheaper(p)
is empty, i.e., the pullover rule cannot be used to prune
P-

Otherwise, the predicate ad&&able(p) becomes true
and the plan p is added to PZantabZe. Next, this new
plan p is used to prune plans that are currently in
plantable. In the algorithm, we have designated this
set of pruned plans by pruneset(They may be:
(1) The stored plan with the same tag, if it exists in
the Plantable and is more expensive. (2) The set of
plans in puddown~xpensive(p) , i.e., plans that may
be pruned with p using the pushdown rule.

procedure Extended-DP-Algorithm:
for i := 2 to n do {

for all S c (RI, &) s.t. llS[l = i do (
bestPlan := a dummy plan with infinite cost
for all Rj, Sj s-t. S = {Rj) U Sj do (

s := Number of evabrable predicates on Sj
T := Number of evaluable predicates on Rj
for all u := 0 to s do
for all v := 0 to r do
p := extjoinPlan(optPlan(Sj), Rj,u,v)
if addtotable(p) then (

remove pruneset (p)
add p to Plantable

1
3

3
3
for all plan q of (RI, I&) do

Final = complete the plan q
and estimate its cost

return (MinCost(Final))

Figure 3: The Optimization Algorithm with Pruning
for Linear Join Trees

At the end of the final join, we consider all plans
over the relations {R 1, ..&3. Some of these plans may
need to be completed by adding the step to evaluate
the remainder of the predicates. Finally, the cheapest
among the set of completed plans is chosen.

5 Conservative Local Heuristic

Although the optimization algorithm with novel prun-
ing techniques guarantees the optimal plan and is com-
putationally efficient, the conservative local heuristic
that we propose in this section has remarkable qualities
that make it an attractive alternative for implementa-
tion. First, incorporating the heuristic in an existing
System-R style optimizer iz easier since tags do not
need to be maintained. Next, incorporating the heuris-
tic increases the number of subplans that need to be
optimized for a query by no more than a factor of 2
compared to the traditional optimization, independent
of the number of user-defined predicates in the query.
Finally, there are a number of important cases where
the algorithm guarantees generation of an optimal ex-
ecution plan.

The simplest heuristics correspond to pushing all ex-
pensive predicates down or deferring evaluation of ail
expensive predicates until the last join. These heuriz-
tics do not take into account the costs and selectivities
of the predicates and therefore generate plans of low

95

quality. Recently, a new heuristic, Pullrank, was pro-
posed but it was found that the heuristic fails to gener-
ate plans of acceptable quality [IIe194]. We begin by de-
scribing PullRank, characterizing its shortcomings and
then presenting the conservative local heuristic.

Pullrank maintains at most one plan over the same
set of relations. At each join step, for every choice of
the set of predicates that are pushed down, the Pull-
rank algorithm estimates the sum of the costs (we will
call it completion cost) of the following three compo-
nents (i) Cost of evaluating expensive predicates that
are pushed down at this step (ii) Cost of the join, tak-
ing into account the selectivities of expensive predi-
cates that are applied (iii) Cost of evaluating the re-
mainder of the user-defined functions that are evalu-
able before the join but were deferred past the join.
Pullrank chooses the plan that has the minimum com-
pletion cost. Thus, the algorithm greedily pushes down
predicates if the cost of deferring the evaluation of pred-
icates past the join is more expensive, i.e., if Pullrank
decides that evaluating a predicate u before a join j is
cheaper than evaluating the predicate u immediately
following j, then evaluation of u will precede j in the
final plan, i.e., Pullrank will not consider any plans
where u is evaluated after j. Thus, Pullrank fails to
explore such plans where deferring evaluation of pred-
icates past more than one joins is significantly better
than choosing to greedily push down predicates based
on local comparison of completion costs.

In order to address the above drawback of Pullrank,
the conservative local heuristic picks one additional
plan (in addition to the plan picked by Pullrank) at
each join step based on sum of the costs of (i) and
(ii) only. Let us refer to this cost metric as pwhdown-
join cost. This is the same as assuming that deferred
predicates are evaluated for “free” (i.e., cost compo-
nent (iii) is zero). In other words, the plans chosen
using such a metric favor deferring predicates unless
the evaluation of predicates helps reduce the cost of
the current join. Thus, since conservative local heuris-
tic picks two plans, one for completion cost and the
other for pushdown-join cost, it is possible that the
plan where the predicate u is deferred past j as well as
the plan where u is pushed down prior to j (chosen by
Pullrank), is considered towards the final plan. Thus,
conservative local heuristic can find optimal plans that
Pullrank and other global heuristics fail to find due to
its greedy approach. This is illustrated by the following
example.

Example 5.1: Consider the query Q = a,(&) W
Rz W Rs. Let us assume that the plan cr, (Rr W Rz) W
Ra) is optimal. Note that none of the global heuristic : ,.i
that either pushes down or pulls up all the selections

96

can find the optimal. If the plan for a,(Rr) w Ra
is cheaper than a,(& W I&), then pullrank greedily
pushes down P and fails to obtain the optimal. How-
ever, our algorithm uses the plan RI cu Ra in the next
join step to obtain the optimal. This is an example
where a pullup followed by a pushdown was optimal
and therefore only our algorithm was able to find it. m

For join of every subset of relations, at most two
plans are stored by conservative local heuristic. There-
fore, we never need to consider optimizing more than
O(2n+‘) plans. Thus, unlike the algorithm in Figure 3,
the number of subplans that need to be optimized does
not grow with the increasing number of user-defined
predicates. In general, conservative local heuristic may
miss an optimal plan. Intuitively, this is because in
this algorithm, distinctions among the tags are not
made. Nevertheless, the experimental results indicate
that the quality of the plan is very close to the opti-
mal plan [CS96]. Furthermore, as the following lemma
states, the conservative local heuristic produces an op
timal plan in several important special cases.

Lemma 5.2: The conservative local heuristic produces
an optimal execution plan if any one or more of the fol-
lowing conditions are true:(l) The query has a single
join. (2) The query has a single user-defined predicate.
(3) The optimal plan corresponds to the case where all
the predicates are pushed down. (4) The optimal corre-
spends to the case where all the predicates are deferTed
until all the joins are completed.

6 Performance Evaluation

We implemented the optimization algorithms proposed
in this paper by extending a System R style optimizer.
In thii section, we present results of doing performance
evaluations on our implementations. In particular, we
establish:
(1) The pruning strategies that we proposed improve
the performance of naive optimiaation algorithm sig-
nificantly.
(2) The plans generated by the traditional optimiza-
tion algorithm suffers from poor quality.
(3) The plans generated by PullRank algorithm are
better (less expensive) than the plans generated by
a traditional optimizer, but is still significantly worse
than the optimal.
(4) The conservative local heuristic algorithm reduces
the optimization overhead and it generates plans that
are very close to the optimal.

8000
E
s a 7000

-0 a,
v

6000

E 5000

c’ W 4000

5 ;. 3000

f 2000
2

1000
c

Traditional Algorithm -+JY
Pull-Rank Algorithm -+---

Corisetvative Local Heuristic Algorithm.,!‘a
Optimization Algorithm with Prun’ni * ‘-

4 Naive Optimization Alg,yf m -A---
,*’

,l”

/’
,,,.”

,,/

,’
,,d

,_,.J’ ,A- -----+--~:‘...
is ,3--‘--; _,._,__ m _........ ---.-.

&;&: --. O---..--

_ ___._____.._.__. + _________...... .+ __.___.__.__.___ * -.

,’

0 I I

1 2 3 4 5 6 1 2 3 4 5 6
Number of UDPs for One Relation Number of UDPs for One Relation

6 Join Query 6 Join Query

Traditional Algorithm -
Pull-Rank Algorithm -+---

Conservative Local Heuristic Algorithm .-Q----- ,,

Figure 4: Performance on Varying Number of User-defined Predicates

Experimental Testbed

Experiments ware performed on an IBM RS/SOOO
workstation with 128 MB of main memory, and running
AIX 3.2.5. We have used an experimental framework
similar to that in [IK90, CS94]. The algorithms were
run on queries consisting of equality joins only. The
queries were tested with a randomly generated relation
catalog where relation cardinalities ranged from 1000 to
100000 tuples, and the numbers of unique values in join
columns varied from 10% to lOO%.of the corresponding
relation cardinality. The selectivity of expensive predi-
cates were randomly chosen from 0.0001 to 1.0 and the
cost per tuple of expensive predicates was represented
by the number of I/O (page) accesses and was selected
randomly from 1 to 1000. Each query was generated to
have two projection attributes. Each page of a relation
was assumed to contain 32 tuples. Each relation had
four attributes, and was clustered on one of them. If a
relation was not physically sorted on the clustered at-
tribute, there was a B+-tree or hashing primary index
on that attribute. These three alternatives were equally
likely. For each of the other attributes, the probability
that it had a secondary index was l/2, and the choice
between a B+-tree and hashing secondary index were

, again uniformly random. We considered block nested-
loops, merge-scan, and simple and hybrid hash joins.
The interesting orders are considered for storing sub-
plans. In our experiment, only the cost for number of
I/O (page) accesses was accounted.

We performed two sets of experiments. In the first
set, we varied the number of user-defined predicates
that apply on one relation. In the second set, we var-
ied the distribution of the user-defined predicates on

multiple relations in the query. Due to lack of space,
we present only the experiments where the number of
user-defined selections that apply on a relation are var-
ied. The results of the other experiments will be dis-
cussed in [CS96]. The second set of experiments shed
light on how the distribution of the user-defined pred-
icates among relations in the query influences the cost
of optimization. The results also shows how our con-
servative local heuristic sharply reduces the overhead
of optimization under varying distributions.

Effect of Number of User defined Predicates

Due to the lack of space, we will show the results for
S-join (i.e. join among 7 relations) queries only but sim-
ilar results were obtained for other queries (e.g. 4join
and lo-join queries) as well. The detailed performance
study with various queries will be presented in [CS96].
In this experiment, one relation in the query was cho-
sen randomly and the number of expensive predicates
applicable was varied from 1 to 6. The results pre-
sented here for each data point represents averages of
100 queries, generated randomly.

We experimented how the optimization algorithms
behave as we increase the number of expensive predi-
cates for the randomly selected relation in the queries.
Figure 4 shows the number of enumerated plans and
the quality of plans generated by each algorithm. A
comparison of the performances of the naive optimiza-
tion algorithm and optimization algorithm with prun-
ing shows that our proposed pruning techniques are ex-
tremely effective. Note that both these algorithms are
guaranteed to be optimal. Over all queries, the naive
optimization algorithm enumerated about 3 times more

97

plans than optimization algorithm with pruning.
The result on quality of plans shows the relative cost

of plans generated by each algorithms. The cost of plan
generated by optimization algorithm with pruning was
scaled as 1.0. Since naive optimization algorithm and
optimization algorithm with pruning always generate
optimal plans, 1.0 represents the cost of both optimal
plans. The figure illustrates that the quality of plan
generated by traditional optimizer suffers significantly
while the quality of plan generated by PullRank algo-
rithm gets worse as the number of expensive predicates
increases.

Conservative local heuristic chooses plans that are
identical to or very close to the optima13. This is il-
lustrated by the fact that the graphs for the heuristic
and the optimization algorithm are practically indistin-
guishable. Although in this experiment, conservative
local heuristic doesn’t reduce the number of enumer-
ated plans significantly compared to the optimization
algorithm with pruning, this observation does not ex-
tend in general, particularly when the user-defined se-
lections are distributed among multiple relations In the
latter cases, the conservative local heuristic proves to
be the algorithm of choice, since it continues to choose
plans close to the optimal plan with much less opti-
mization overhead [CS96].
Acknowledgement: We are indebted to Joe Heller-
stein for giving us detailed feedback on our draft in a
short time. The anonymous referees provided us with
insightful comments that helped improve the draft.
Thanks are due to Umesh Dayal, Nita Goyal, Luis
Gravano and Ravi Krishnamurthy for their help and
comments. Without the support of Debjani Chaud-
huri and Yesook Shim, it would have been impossible
to complete this work.

References

[CGK89] D. Chimcnti, R. Gamboa, and R.’ Krishna-
murthy. Towards an open architecture for LDL.
In Proceedinga of the ffith International VLDB
Conference, pages 195-203, Amsterdam, The
Netherlands, August 1989.

[CS93] S. Chaudhuri and K. Shim. Query optimization
in the presence of foreign functions. In Proceed-
ingr of the 19th International VLDB Conference,
Dublin, Ireland, August 1993.

[CS94] S. Chaudhuri and K. Shim. Including group-
by in query optimization. In Proceeding8 of the

3Note that the optimization algorithm with pruning becomes
the same (u coxuervative local heuristic algorithm when the num-
ber of expensive predicate is one. Thus, the number of enumer-
ated planz for both algorithms are the same when we have only
one expensive prcdicste.

[CS96]

[GHK92]

[He1941

[HS93]

[IK90]

[KBZ86]

[KMS92]

[MS791

[PHH92]

[SAC+ 791

[WK90]

20th International VLDB Conference, Santiago,
Chile, Sept 1994.

S. Chaudhuri and K. Shim. Optimization with
user-defined predicates. Technical report, 1996.
In preparation.

S. Ganguly, W. Hasan, and R. Krishnamurthy.
Query optimization for parallel execution. In
Proceedings of the 1992 ACM-SIGMOD Confer-
ence on the Management of Data, pages 9-18,
San Diego, CA, May 1992.

J. M. Hellerstein. Predicate migration place-
ment. In Proceedings of the 1994 ACM-SIGMOD
Conference on the Management of Data, pages
325-335, Minneapolis, MN, May 1994.

J. M. HeIierstein and M. Stonebraker. Predi-
cate migration: Optimization queries with ex-
pensive predicates. In Proceedings of the 1993
ACM-SIGMOD Conference on the Management
of Data, pages 267-276, Washington, D.C., May
1993.

Y. E. Ioannidii and Y. Kang. Randomized aigo-
rithms for optimizing large join queries. In Pro-
ceedings of the 1990 ACM-SIGMOD Conference
on the Manage ment of Data, pages 312-321, At-
lantic City, NJ, May 1990.

R. Krishnamurthy, H. Boral, and C. Zanialo.
Optimization of nonrecursive queries. In Pro-
ceedinga of International Conference on Very
Large Data Baser, pages 128-137, Kyoto, Japan,
Aug 1986.

A. Kemper, G. Moerkotte, and M. Steinbrunn.
Optimizing boolean expressions in object-bases.
In Proceedinga of the 18th Conference on Very
Large Databares, Morgan Kaufman pubr. [Loa
Altor CA), Vancouver, August 1992.

C.L. Monma and J.B. Sidney. Sequencing with
series-parallel precedence constraints. Mathe-
maticr of Opemtionr Rerearch, 4:215-224, 1979.

H. Pirahesh, Joseph M. Hellerstein, and Waqar
Hasan. Extensible/rule based query optimiza-
tion in starburst. In Proceeding8 of the 1999
ACM-SIGMOD Conferepce on the Management
of Data, pages 39-48, San Diego, CA, May 1992.

P. G. Selinger, M. M. Astrahan, D. D. Chamber-
lin, Il. A. Lorie, and T. G. Price. Access path
selection in a relational database management
system. In Proceedingr of the ACM SIGMOD In-
ternational Sgmporium on Management of Date,
pages 23-34, Boston; MA, June 1979.

K-Y. Whang and R. Krishnamurthy. Query opti-
mization in a memory-resident domain relational
calculus database system. ACM tinractionr on
Databare Sy&emr, 15(1):67-95, March 1990.

98

