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Abstract 

Relational databases provide the ability to 
store user-defined functions and predicates 
which can be invoked in SQL queries. When 
evaluation of a user-defined predicate is rel- 
atively expensive, the traditional methods of 
evaluating predicates as early as possible is no 
longer a sound heuristic. There are two pre- 
vious approaches for optimizing such queries. 
However, none of these approaches is able to 
guarantee the optimal plan over the desired 
execution space. We present an efficient tech- 
nique that is able to guarantee the choice of an 
optimal plan over the desired execution space. 
The optimization algorithm that we present 
has the desirable properties that (a) it is an 
extension of the algorithm used by commercial 
optimizers and never requires exhaustive enu- 
meration of join ordering, (b) the complexity 
of the algorithm is bounded by a polynomial 
in the number of user-defined functions and 
(c) requires no special assumptions on the cost 
formulas for join. We also propose a conaer- 
votive ZocaZ heutiatic that is even simpler but 
produces nearly optimal plans. We have imple- 
mented the algorithms by extending a System- 
R style optimizer. 

*Currently at Bell Laboratories, Murray Hill. 

Pemaiarion to copy without fee all or part of this material ia 

granted prorided that the copies are not made or distributed for 
direct commercial advantage, the VLDB copyright notice and 
the title of the publication and itr date appear, and notice is 

given that copying is by permission of the Verg Large Data Bare 
Endowment. To copy othcrwiae, or to republish, requires a fee 
and/o+ rpccial permission from the Endovment. 

Proceedings of the 22nd VLDB Conference 
Mumbai(Bombay), India, 1996 

Kyuseok Shim* 
IBM Almaden Research Center 

shim@bell-labs.com 

1 Introduction 

In order to efficiently execute complex database appli- 
cations, many major relational database vendors pro- 
vide the ability to define and store user-defined func- 
tions. Such functions can be invoked in SQL queries 
and make it easier for developers to implement their 
applications. However, such extensions make the task 
of the execution engine and optimiser more challeng- 
ing. In particular, when user-defined functions are used 
in the Where clause of SQL, such predicates cannot be 
treated as SQL built-in predicates. If the evaluation of 
such a predicate involves a substantial CPU and I/O 
cost, then the traditional heuristic of evaluating a pred- 
icate as early as possible may result in a significantly 
suboptimal plan. We will refer to such predicates as 
user-defined (or, ezpenaive) predicates. 

Consider the problem of identifying potential cus- 
tomers for, a mail-order distribution. The mail-order 
company wants to ensure that the customer has a high 
credit rating, is in the age-group 30 to 40, resides in 
the San Francisco bay area, and has purchased at least 
$1,000 worth of goods in the last year. Such a query 
involves a join between the Person and the Sales re- 
lation and has two user-defined functions zone and 
high-creditrating. 

Select 
From 
Where 

name, street-address, zip 
Person, Sales 
high-credit,rating(ss,no) 
and age In C30,401 
and zone(zip) = “bay axea” 
and Person.name = Sales.buyer-name 

Group By name, street-address, zip 
Having Sum(sales.amount) > 1000 

Let us assume that the predicate high-credit-rating 
is expensive. In such a case, we may evaluate the 
predicate after the join so that fewer tuples invoke the 
above expensive predicate. However, if the predicate 
is very selective, then it may still be better to execute 
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high-creditlating so that the cost of the join is re- 
duced. Such queries involving user-defined predicates 
occur in many applications, e.g., GE and multi-media. 

This paper shows how commercial optimizers, many 
of which are based on system R style dynamic program- 
ming algorithm [SAC+79], can be extended easily to be 
able to optimize queries with user-defined predicates. 
We propose an easy extension of the traditional opti- 
mizer that is efficient and that guarantees the optimal. 
We associate a per tuple cost of evaluation and a selec- 
tivity with every user-defined predicate (as in [HS93]). 
While the task of optimizing queries with user-defined 
predicates is important, there are other interesting di- 
rections of research in user-defined predicates, e.g., use 
of semantic knowledge, e.g., [PHH92, CS93]. 

As pointed out earlier, the traditional heuristic of 
evaluating predicates as early as possible is inappropri- 
ate in the context of queries with user-defined predi- 
cates. There are two known approaches to optimizing 
queries that treat user-defined predicates in a special 
way. The first technique, used in LDL [CGK89] is ex- 
ponential in the number of expensive predicates and 
it fails to consider the class of traditional plans where 
user-defined predicates are evaluated as early as possi- 
ble. The second technique, known as Predicate Migra- 
tion [HS93] is polynomial in the number of expensive 
predicates and takes into consideration the traditional 
execution space as well. However, this algorithm can- 
not guarantee finding the optimal plan. Moreover, in 
the worst case, it may need to exhaustively enumerate 
the space of joins. (O(n!) in the number of joins n in 
the query). 

Our algorithm finds the optimal plan without ever 
requiring to do an exhaustive enumeration of the space 
of join orderings. The complexity of the algorithm is 
polynomial in the number of user-defined functions’. 
Our approach does not require any special assumptions 
about the execution engine and the cost model. In 
designing this optimization algorithm, we discovered a 
powerful pruning technique (pushdown rule) that has 
broader implication in other optimization problems as 
well [CS96]. 

Although the optimization algorithm that guaran- 
tees the optimal has satisfactory performance for a 
large class of queries, its complexity grows with the 
increasing query size. Therefore, we wanted to inves- 
tigate if simpler heuristics can be used as an alterna- 
tive. The conservative local heuristic that we present 
guarantees optimality in several cases and experimen- 
tal results show that it chooses an execution plan very 

‘The complexity is exponential in the number of joins. This 
in not unexpected rince the traditional join optimisstion problem 
itself is NP-hard. 

close to the optimal while being computationally in- 
expensive. Thus, this heuristic serves as an excellent 
alternative where query size or complexity of the opti- 
mization algorithm is a concern. 

We have implemented the optimization algorithm as 
well as the heuristic by extending a System-R style op- 
timizer. We present experimental results that ilbrstrate 
the characteristics of the optimization algorithms pro- 
posed in this paper. 

The rest of the paper is organized as follows. In the 
next section, we review the System R optimization al- 
gorithm [SAC+791 which is the basis of many commer- 
cial optimizers. Next, we describe the desired execution 
space and review the past work on optimizing queries 
with user-defined predicates. Sections 4 and 5 describe 
the optimization algorithm and the conservative local 
heuristic respectively. The performance results and im- 
plementation details are given in Section 6. 

2 System R Dynamic Programming Al- 
gorit hm 

Many commercial database management systems have 
adopted the framework of the System R opti- 
mizer [SAC+791 which uses a dynamic programming 
algorithm. The execution of a query is represented 
syntactically as an annotated join tree where the in- 
ternal node is a join operation and each leaf node is 
a base relation. The annotations provide the details 
such as selection predicates, the choice of access paths, 
join algorithms and projection attributes of the result 
relation. The set of all annotated join trees for a query 
that is considered by the optimizer wiIl be called the 
ezecution space of the query. A cost function is used to 
determine the cost of a plan in the execution space and 
the task of the optimizer is to choose a plan of mini- 
mal cost from the execution space. Most optimizers of 
commercial database systems restrict search to only a 
subset of the space of join ordering. Most optimizers 
of commercial database systems restrict search to only 
a subset of the space of join ordering. In many opti- 
mizers, the execution space is restricted to have only 
linear join trees, whose internal nodes have at least 
one of its two child nodes as a leaf (base relation). In 
other words, a join with N relations is considered as 
a linear sequence of a-way joins. For each intermedi- 
ate relation, the cardinality of the result size and other 
statistical parameters are estimated. 

Figure 1 (adopted from [GHK92]) illustrates the Sys- 
tem R dynamic programming algorithm that finds an 
optimal plan in the space of linear (left-deep) join 
trees [SAC+79]. The input for this algorithm is a select- 
project-join (SPJ) query on relations R~,...,B,,. The 
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procedure DPAlgorithm: 
for i := 2 to n do ( 

for all S 2 (RI, . . . . &} s.t. IIS = i do ( 
be&Plan := a dummy plan with infinite cost 
for all Rj, Sj s-t. S = (Rj} U Sj do ( 

p := joinPlan(optPlan(Sj), Rj) 
if cost(p) 5 cost(bestPlan) 

bestPlan := p 
I 
optPlan := bestPlan 

I 
I 
return(optPZan((Ri, . . . . &})) 

Figure 1: System R Algorithm for Linear Join Trees 

function joinPlan(p,R) extends the plan p into another 
plan that is the result of p being joined with the base re- 
lation R in the best possible way. The function cost(p) 
returns the cost of the plan p. Optimal plans for sub- 
sets are stored in the optPlan() array and are reused 
rather than recomputed. 

The above algorithm does not expose two important 
details of the System R optimization algorithm. First, 
the algorithm uses hewistics to restrict the search 
space. In particular, all selection conditions and sec- 
ondary join predicates are evaluated as early as pos- 
sible. Therefore, all selections on relations are evalu- 
ated before any join is evaluated. Next, the algorithm 
also considers interesting orders. Consider a plan P for 
RI W R2 that uses sort-merge join and costs more than 
another plan P’ that uses hash-join. Nonetheless, P 
may still be the optimal plan if the sort-order used in 
P can be reused in a subsequent join. Thus, the System 
R algorithm saves not a single plan, but multiple opti- 
mal plans for every subset S in the Figure, one for each 
distinct such order, termed interesting order [SAC+79]. 
Thus, a generous upper bound on the number of plans 
that must be optimized for a query with joins among 
n tables is 0(2n) (the number of subsets of n tables) 
times the number of interesting orders. 

3 Execution Space and Previous Ap- 
proaches 

As mentioned earlier, for traditional SPJ queries, many 
optimizers find an optimal from the space of linear 
join orderings only. When user-defined predicates are 
present, the natural extension to this execution space 
consists of considering linear sequence of joins, and al- 
lowing an expensive predicate to be placed following 
any number of (including zero) joins. Thus, an expen- 
sive selection condition can be placed either immedi- 

ately following the scan of the relation on which it ap- 
plies, or after any number of joins following the scan. 
Likewise, an expensive secondary join predicate can be 
placed either immediately after it becomes evaluable 
(following the necessary joins), or after any number of 
subsequent joins. In other words, this execution space 
restricts the join ordering to be linear but allows expen- 
sive predicates to be freely interleaved wherever they 
are evaluable. We refer to this execution space as un- 
constrained linear join trees. This is the same exe- 
cution space that is studied in [HS93, He194]. In this 
section, we discuss two approaches that have been stud- 
ied in the past for optimizing queries with user-defined 
predicates. 

3.1 LDL Approach 

In this approach, an expensive predicate is treated 
as a relation from the point of view of optimiza- 
tion. This approach was first used in the LDL project 
at MCC [CGKSS] and subsequently at the Papyrus 
project at HP Laboratories [CS93]. Viewing expen- 
sive predicates as relations has the advantage that the 
System-R style dynamic programming algorithm can 
be used for enumerating joins as well as expensive pred- 
icates. Thus, if e is an expensive predicate and RI and 
Rz are two relations, then the extended join enumera- 
tion algorithm will treat the optimization problem as 
that of ordering RI, R2 and e using the dynamic pro- 
gramming algorithm. 

Shortcoming of the Approach: 

This approach suffers from two drawbacks both of 
which stem from the problem of over-generalizing and 
viewing an expensive predicate as a relation. First, the 
optimization algorithm is exponential not only in the 
number of relations but also in the number of expen- 
sive predicates. Let us consider the case where only 
linear join trees are considered for execution. Thus, in 
order to optimize a query that consists of a join of n 
relations and k expensive predicates, the dynamic pro- 
gramming algorithm will need to construct O(2Rtk) op 
timal subplans. In other words, the cost of optimizing 
a relation with n relations and k expensive predicates 
will be as high as that of optimizing (n+k) relations. 
Another important drawback of this approach is that 
if we restrict ourselves to search only linear join trees, 
then the algorithm cannot be used to consider all plans 
in the space of unconstrained linear trees. In particu- 
lar, the algorithm fails to consider plans that evaluate 
expensive predicates on both operands of a join prior 
to taking the join [He194]. For example, assume that 
RI and Rz are two relations with expensive relations 
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ei and ez defined on them. Since the LDL algorithm 
treats expensive predicates and relations alike, it will 
only consider linear join sequences of joins and selec- 
tions. However, the plan which applies el on Rx and 
ez on RZ and then takes the join between the relations 
RI and R2, is not a linear sequence of selections and 
joins. Thus, this algorithm may produce plans that 
are significantly worse than plans produced by even 
the traditional optimization algorithm. 

3.2 Predicate Migration 

Predicate Migration algorithm improves on the LDL 
approach in two important ways. First, it considers 
the space of unconstrained linear trees for finding a 
plan, i.e., considers pushing down selections on both 
operands of a join. Next, the algorithm is polynomial 
in the number of user defined predicates. However, 
the algorithm takes a step backwards from the LDL 
approach in other respects. This will be discussed later 
in this section. 

We will discuss two aspects of this approach. First, 
we will discuss the predicate migration algorithm, 
which given a join tree, chooses a way of interleaving 
the join and the selection predicates. Next, we will de- 
scribe how predicate migration may be integrated with 
a System R style optimizer [HS93, He194]. 

The predicate migration algorithm takes as input a 
join tree, annotated with a given join method for each 
join node and access method for every scan node, and 
a set of expensive predicates. The algorithm places the 
expensive predicates in their “optimal” (see discussion 
about the shortcomings) position relative to the join 
nodes. The algorithm assumes that join costs are lin- 
ear in the sizes of the operands. This allows them to 
assign a rank for each of the join predicate in addition 
to ass”gning ranks for expensive predicates. The notion 
of ra 4 k has been studied previously in [MS79, KBZ86]. 
Having assigned ranks, the algorithm iterates over each 
stream, where a stream is a path from a leaf to a root 
in the execution tree. Every iteration potentially rear- 
ranges the placement of the expensive selections. The 
iteration continues over the streams until the modified 
operator tree changes no more. It is shown in [HS93] 
that convergence occurs in a polynomial number of 
steps ‘in the number of joins and expensive predicates. 

.The next part of this optimization technique con- 
cerns integration with the System R style optimizer. 
The steps of the dynamic programming algorithm are 
followed and the optimal plan for each subexpres- 
sion is generated with the following change. At each 
join step, *the option of evaluating predicates (if ap- 
plicable) is considev*J: Let P be the optimal plan of 
u,(R w S) a=d*P’ be the optimal plan for CT,(R) W S. 

If coat(P) < coat(P’), th en the algorithm prunes the 
plan P’ without compromising the optimal. However, 
if the plan for P’ is cheaper, then dynamic program- 
ming cannot be used to extend the plan P’ Rather, the 
plan P’ is marked as unprunable. Subsequently, when 
constructing larger subplans, the algorithm ignores the 
unprunable plans. After the dynamic programming al- 
gorithm terminates, each such unprunable plans needs 
to be extended through ezhauative enumeration, i.e., 
all possible ways of extending each unprunable plan 
are considered. 

Shortcomings of the Approach: 

This approach to optimization has three serious draw- 
backs that limit its applicability. First, the algorithm 
requires that cost formulas of join to be linear in the 
sizes of the inputs. Next, the algorithm cannot guar- 
antee an optimal plan even if a linear cost model is 
used. This is because the use of predicate migration 
algorithm may force, estimations to be inaccurate. In 
a nutshell, predicate migration require a join predi- 
cate to be assigned a Tank, which depends on the cost 
of the join and the latter is a functioti of the input 
sizes of the relations. Unfortunately, the input sizes 
for the join depends on whether the expensive pred- 
icates have been evaluated! This cyclic dependency 
forces predicate migration to make an ad-hoc choice in 
calculating the rank. During, this step, the algorithm 
potentially underestimates the join cost by assuming 
that all expensive predicates have been pushed down. 
This ad-hoc assumption sacrifices the guarantee of the 
optimality (See Sect&n 5.2 of [He1941 for a detailed dis- 
cussion). Finally, the global nature of predicate migra- 
tion hinders integration with a System R style dynamic 
programming algorithm. The algorithm may degen- 
erate into exhaustive enumeration. Let us consider a 
query that has n relations and a single designated ex- 
penshe predicate e on the relation RI. Let us assume 
that for the given database, the traditional plan where 
the predicate e is evaluated prior to any join, is the 
optimal plan. In such a case, plans for a,(Rx) W & 
(i # 1) will be marked as unprunable. For each of 
these plans, there are (n - 2)! distinct join orderings 
and for each of these join orderings, there can be a 
number of join methods. Thus, in the worst case, the 
optimization process requires ezhauative enumeration 
of the join space. 

4 Dynamic Programming Based Opti- 
mization Algorithms 

Our discussion of the previous section shows that none 
of the known approaches are guaranteed to find an Qp- 
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timal plan over the space of unconstrained linear join 
trees. In this section, we present our optimization algo- 
rithm which is guaranteed to produce an optimal plan 
over the above execution space. To the best of our 
knowledge, this is the first algor,ithm that provides such 
a guarantee of optimality. The techniques presented in 
this section are readily adaptable for other join execu- 
tion spaces as well (e.g., bushy join trees) [CS96]. 

Our algorithm has the following important proper- 
ties as well: (1) it is remarkably Tobust. It is free from 
special restrictions on cost model or requirements for 
caching (2) The algorithm integrates well with dynamic 
programming based algorithm used in commercial op- 
timizers, and never requires exhaustive enumeration. 
(3) The algorithm is polynomial in the number of user- 
defined predicates. We provide a succinct characteriza- 
tion of what makes this optimization problem polyno- 
mial and the parameters that determine its complexity 
of optimization. 

Thus, our algorithm successfully addresses the short- 
comings of the Predicate migration algorithm with- 
out sacrificing the benefit of considering the execution 
space of unconstrained linear join trees and ensuring 
that the complexity of optimization grows only poly- 
nomially with the increasing number of user-defined 
functions. 

For notational convenience, we will indicate ordering 
of the operators in a plan by nested algebraic expres- 
sions. For example, (ue(R1) W &) w oe, (Rs) desig- 
nates a plan where we first apply selection e on rela- 
tion RI, then join that relation with R2 before join- 
ing it with the relation R3, which has been reduced 
by application of a selection condition e’. In describ- 
ing the rest of this section, we make the following two 
assumptions: (a) all user-defined predicates are aelec- 
tions. This assumption is to simplify the presentation. 
Our algorithms accommodate user-defined join predi- 
cates as well and preserves the guarantee of optimality 
as well as properties (l)-(3) above [CS96] (b) no tradi- 
tional interesting orders are present. This assumption 
is for ease of exposition only. 

We begin by presenting the “naive” optimization al- 
gorithm that guarantees optima&y and has properties 
(1) through (3) b a ove. Next, we present two powerful 
pruning techniques that significantly enhance the effi- 
ciency of the optimization algorithm, as will be shown 
later in the experimental section. 

4.1 Naive Optimization Algorithm 

The enumeration technique of our algorithm relies on 
clever use of the following two key observations: 
Equivalent Plan Pruning Rule: The strength of the 
traditional join enumeration lies in being able to com- 

pare the costs of different plans that represent the same 
subexpression but evaluated in different orders. Since 
selection and join operations may be commuted, we 
can extend the same technique to compare and prune 
plans for queries that have the same expensive pred- 
icates and joins, i.e., if P and P’ are two plans that 
represent the same select-project-join queries with the 
same physical properties, and if Co&( P’) < Cost(P), 
then P may be pruned. For example, we can com- 
pare the costs of the plans P and P’ where P is the 
plan (Ok W Rz) W ael(R3) and P’ is the plan 
(Rz M ~ejR3) W ae(R1). 
Selection Ordering: Let us consider conjunction of a set 
of expensive selection predicates applied on a relation. 
The problem of ordering the evaluation of these predi- 
cates is the selection ordering problem. The complexity 
of selection ordering is very diRerent from that of or- 
dering joins among a set of relations. It is well-known 
that for traditional cost models, the latter problem is 
NP-hard. On the other hand, the selection ordering 
problem can be solved in polynomial time. Further- 
more, the ordering of the s&ctions does not depend 
on the size of the relation on which they apply. The 
problem of selection ordering was addressed in [HS93] 
(cf. [KBZSS, MS79, WK90]). It utilizes the notion of 
a rank. The ranic of a predicate is the ratio c/(1 - s) 
where c is its cost per tuple and s is its selectivity. 

Theorem 4.1: Consider the query oe(R) where e = 
el A . . A e,. The optimal ordering of the predicates in 
e is in the order of ascending ranks and is independent 
of the size of R. 

For example, consider two predicates e and et with 
selectivities .2 and .6 and costs 100 and 25. Although 
the predicate e is more selective, its rank is 125 and 
the rank of e’ is 62.5. Therefore evaluation of e’ should 
precede that of e. The above technique of selection 
ordering can be extended; to broader classes of boolean 
expressions [KMS92]. 

Ensuring Complete Enumeration Efficiently 

Equivalent plan pruning rule allows us to compare two 
plans that represent the same expression. This ob- 
servation will help us integrate well with the System 
R algorithm and avoid exhaustive enumeration (unlike 
predicate migration). On the other hand, selection or- 
dering tells us that (in contrast to the LDL algorithm), 
we can treat selections unlike relations to make enumer- 
ation efficient. Indeed, thii observation is what makes 
our algorithm polynomial in the number of user-defined 
predicates. Therefore, the challenge is to treat selec- 
tions differently from joins while enumerating but to 
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be still able to compare costs of two plans when they 
represent the same expression. In order to achieve this 
goal, we exploit the well-known idea of interesting or- 
ders [SAC+791 in a novel way. 

We keep multiple plans that represent the join of the 
same set of relations but differ in the sets of predicates 
that have been evaluated. In other words, with every 
join plan, an additional “tag” is placed, which records 
the set of predicates that have been evaluated in the 
plan. Thus, a tag acts very much like an interesting or- 
der from the point of view of join enumeration. This is 
a useful way of thinking about enumerating the space 
of execution plans since the selection ordering rule en- 
sures that we need “a few” tags. Notice that whenever 
two plans represent the join of same set of relations and 
agree on the tags, they can be compared and pruned. 

Figure 2 illustrates the execution plans (and sub- 
plans) that need to be considered when there are three 
relations and two expensive selection predicates el and 
ez on RI. PI, P2 and Pa are possible plans for RI W R2 
(each with differing tags). The plans from Ps to’Pl3 
are for RI W R2 W RJ. We will distinguish between 
P5 and P6 since they will have different tags, but will 
keep a single plan among P5, P7, 90 and Pl3. We now 
formalize the above idea. 

Tags 

Let us consider a join step where we join two relations 
RI and R2. Let us assume that (~1,. . . , p,) are the 
predicates applicable on RI, in the order of the increas- 
ing rank. From the selection ordering criterion, we con- 
clude that if the predicate pj is applied on RI prior to 
the join, then so must all the predicates pl., ,pj-1. In 
other words, there can be at most (m + 1) possibilities 
for-pushing down selections on RI : (a) not applying 
any predicate at all (b) applying the first j predicates 
only where j is between 1 and m. Likewise, if the pred- 
icates applicable on R2 are ((11,. . .,qd), then there are 
at most (s+ 1) possibilities. Thus, altogether there can 
be (m + l)(s + 1) plans for the join between RI and 
R2 that differ in the applications of selections prior to 
the join. We can denote these plans by Po,o, . . . , Pm,, 
where P,.,t designates the plan that results from eval- 
uating (p1 , . . . ,pz) on RI and (41,. . . , qt) on Rz prior 
to the join. The selection ordering plays a crucial role 
in reducing the number of tags from exponential to 
a polynomial in the number of user defined predicates. 
Observe that if we cannot have a linear ordering among 
selections, then we have to consider cases where any 
subset of the selection predicates are chosen for evalu- 
ation prior to the join. In that case, in the above join 
between RI and R2, the number of plans can be as 
many as 2”+‘.2*+1. 
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We generalize the above idea in a straight-forward 
fashion. For a subquery consisting of the join among 
relations {&I,. . . , al}, there will be at most (nor ,, 
l)(mz + l)..(ml-I+ l)(ml+ 1) optimal plans that need 
to be kept where mj represents the number of expen- 
sive predicates that apply on &j. We will associate a 
distinct tag with each of these plans over the same sub- 
query. We now sketch how tags may be represented. 
We assign a number to each expensive predicate ac- 
cording to the ordering by rank. If an user-defined 
selection condition is present over w of the relations 
(say, &I, . . . , R,,,) in the query, then with each plan, 
we associate a vector of width w. If < al, ..a, > is 
the tag vector with a plan P, then it designates that 
all expensive predicates of rank lower or equal to aj on 
&j have been evaluated in P for all 1 5 j 5 w. We 
defer a full discussion of the scheme for tagging to the 
extended version of our forthcoming report [CS96], but 
illustrate the scheme with the following example. 

Example 4.2 : Consider a query that represents a 
join among four relations RI, .., Ra and nine selections 
where the selections are numbered by their relative in- 
creasing rank. The relation RI has three predicates 
numbered 2,5,6. Let R2 have three predicates 1,3,4. 
Let RS have predicates 7,8,9. The relation Rq has no 
predicates defined. The tag vector has three positions, 
where the ith position represents predicates on the re- 
lation &. There are altogether 16 plans for join over 
{RI, R2}, each with a distinct tag. Consider the plan 
for the tag vector < 5,4,0 >. This plan can be joined 
with the relation R3. Depending on the selection pred- 
icates evaluated prior to the join, there will be alto- 
gether 8 plans with different tag vectors that extend 
the above plan. In particular, a plan will be generated 
with a tag vector < 5,4,8 >. This plan can be com- 
pared with the plan obtained by extending a plan for 
(R2, Rg) with the tag vector < 0,4,8 > through a join 
with RI and evaluating predicates 2 and 5 on RI prior 
to the join. I 

In the above example, we illustrated how we can prune 
plans with the same tag vector and over the same set 
of relations. This is unlike the approaches in [HS93, 
He1941 where once a user-defined predicate has been 
“pushed-down”, the plan is unprunable. 

Algorithm: The extensions needed to the algorithm 
in Figure 1 for the naive optimization algorithm are 
straightforward. There is no longer a single optimal 
plan for Sj (in Figure l), but there may be multiple 
plans, one for each tag vector. Thus, we will need to 
iterate over the set of possible tags. For each such op- 

timal plan .Sj with a tag t, we consider generating all 



(Rl R2) (R2 R3) 

Rl R2 Rl R2 Rl R2 

Pl P2 P3 

CR1 R2 R3) 
. . . . 

/...A......_.. 
. . 

Rl R2 Rl R2 “..,Rl R2 -.:’ 
. . ‘.. 

PS P6 . . . . . p7 __..... ...’ 

R2 R3 

P4 

Rl R2 Rl R2 

P8 P9 

fi3 fil Rl ,&: 

Rl R2 R2 R3 R2 R3 R2 R3 

PlO Pll P12 P13 

Figure 2: Search Space of Naive Optimisation Algorithm 

possible legal tags for S. For each such tag t’, join.??an 
needs to be invoked to extend the optimal plan Sj. We 
need to also ensure that we compare costs of plans that 
have the same tag. 

4.2 Complexity 

In the optimisation algorithm that we presented, we ex- 
ploited dynamic programming as well as selection or- 
dering. The latter makes it possible for us to have 
an optimisation algorithm which is polynomial in k 
whereas the former made it possible for us to retain 
the advantage of avoiding exhaustive enumeration of 
the join ordering. The efficiency of our algorithm is 
enhanced by the applications of pruning rules that will 
be described in the next section. 

Let us consider a query that consists of a join among 
n relations and that has k user-defined predicates. Let 
us assume that only g of the n relations have one or 
more user-defined selection conditions. Furthermore, 
let us be the maximum number of expensive predicates 
that may apply on one relation. In such cases, the 
number of tags can be no more than (1 + w)g . Further- 
more, we can show that the total number of subplans 
that need to be stored has a generow upper-bound of 
2”(1 + w/2)8. Note that since n is the total number 
of relations and k is the total number of user-defined 
predicates, g 5 n and w 5 k. Therefore, the above for- 
mula can be used to derive an upper-bound of (2 + k)“. 
Hence, for a given n, the upper-bound is a polynomial 
in k. The above is a very generous upper bound and 
a more detailed analysis will be presented in [CS96]. 
Observe that as in the case of traditional join enumer- 

ation, the complexity is exponential in n. 

The analysis of our complexity shows that the com- 
plexity is sensitive to the distribution of predicates 
among relations as well as to the number of predicates 
that may apply to a single relation. In particular, if 
alI user-defined predicates apply to the same relation, 
then the complexity is 0(2”)(l+k/2), a linear function 
of k. The complexity of this algorithm grows with the 
number of relations over which user-defined predicates 
occur since they increase the number of tags exponen- 
tially. In the full paper, we study the effect of varying 
distributions of user-defined predicates on efficiency of 
the optimisation algorithms [CS96]. 

It is important to recognise how we are able to avoid 
the worst cases that predicate migration algorithm en- 
counters. Predicate migration algorithm has worst run- 
ning time when user-defined predicates turn out to be 
relatively inexpensive (i.e., has low rank). It is so since 
in such cases, unprunable plans are generated (See Sec- 
tion 3). On the other hand, our optimisation algorithm 
prepares for all possible sequences of predicate push- 
down through the use of tags. Furthermore, since in 
many applications, we expect the number of expensive 
user-defined functions in the query to be a few and less 
than the number of joins, it is important to ensure that 
the cost of join enumeration does not increase sharply 
due to presence of a few user-defined predicates. How- 
ever, as pointed out earlier, even with a single user- 
defined predicate over n joins, the worst-case complex- 
ity of predicate migration can be O(n!). Our approach 
overcomes the above shortcoming of predicate migra- 
tion effectively. 
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4.3 Efficient Pruning Strategies 

The naive algorithm can compare plans that have the 
same tags only. In this section, we will augment our 
“naive” optimization algorithm with two pruning tech- 
niques. The pruning techniques that we propose here 
allow us to compare and prune plans that have different 
tags. These pruning techniques are sound, i.e., guar- 
anteed not to compromise the optimality of the chosen 
plan. 

Pushdown Rule 

This rule says that if the cost of evaluating the selec- 
tions (prior to the join) together with the cost of the 
join after the selections’are applied, is less than the cost 
of the join without having applied the selections, then 
we should push down the selections ‘. For example, 
in Figure 2, if the cost of Pz is less than the cost of 
Ps we can prune Ps. In naive optimization algorithm, 
we had to keep both PS and Ps since they had differ- 
ent tags, i.e., different numbers of expensive predicates 
were applied. 

Lemma 4.3: Let P’ be a plan for Ihe join R W S. 
Led P be a plan 2hat applies an user-defined predicate 
e on the relation R before taking the join wilh S, (i.e., 
O,(R) W S). If Cost(P) 5 Cost(P’), then the plan P’ 
may be pruned. 

We refer to the above lemma as the pushdown rule. 
The soundness of the above lemma follows from the ob- 
servation that for SPJ queries with the same interesting 
order, the cost is a monotonic function of sizes of rela- 
tions [CS96]. A consequence of this rule is that if P’ is 
a plan that has a set S’ of expensive predicates applied, 
then it can be pruned by another plan P over the same 
set of relations where (a) Cost(P) 5 Cost(P’) (b) P 
has a set S of expensive predicates applied where S is 
a superset of S’ (therefore, S j S’). Given two plans 
over the same set of relations, we can easily check (b) 
by examining the tag vectors of P and P’ [CS96]. If 
indeed (b) holds, then we say T dominates T’, where 
T’ and T are tags of P’ and P. We can rephrase the 
above lemma to conclude the following: 

Corollary 4.4: If P and P’ are two plans over ihe 
same set of relations with the tags T and T’ such that 
T dominates Tt, and P is cheaper than P’, then P’ 
may be pruned. 

For a given plan P, the set of plans (e.g., P’) that the 
above corollary allows us to prune will be denoted by 
pushdown_expensiue(P). 

2Strictly speaking, the lemma can be used to compare planr 
P and P’ that have the same interesting order. 

Example 4.5: Let us consider the previous exam- 
ple. For the plan that represents the join among 
{RI, Rz, Rs}, there will be altogether 64 tags. How- 
ever, if the cost of the plan with the tag < 6,4,9 > is 
lower than that of < 5,4,8 >, we can use the pushdown 
rule to prune the latter plan. I 

Pullover Rule 

This rule says that if locally deferring evaluation of a 
predicate leads to a cheaper plan than the plan that 
evaluates the user-defined predicate before the join, 
then we can defer the evaluation of the predicate with- 
out compromising the optimal. The soundness of this 
rule uses the dynamic programming nature of the Sys- 
tem R algorithm and can be established by an inductive 
argument. For example, if the cost of the plan txtend- 
ing Ps with evaluation of ez (i.e., o,,(aelR1 W Rz)) is 
less than the cost of Ps in Figure 2, we can prune Ps. 
In naive optimization algorithm, we had to keep both 
Ps and Pz since they had different tags, i.e., different 
number of predicates were applied to each of the plans. 

Lemma 4.6: Let e be a user-defined predicate on a 
relation R. Let P and P’ represent the opGma1 plans for 
u,(R W S) and oe(R) W S respectively. If Cost(P) 5 
Cost(P’), dhen the plan P’ may be pruned. 

We refer to the above as the pullover rule since the 
plan P in the lemma corresponds to the case where the 
predicate is pulled up. This rule can also be used in the 
context of predicate migration to reduce the number of 
unprunable plans generated (cf. [HS93]). We can use 
the pullover rule for pruning plans as follows. Let us 
consider plans P and P’ over the same set of relations 
but with different tags T and T’. If the tag T dominates 
Tt, then all predicates that are evaluated in 2” are also 
evaluated in T. Let Dif f (T, Tt) represent the set of 
predicates that are evaluated in T but not in T’. We 
can then use the Pullover rule to obtain the following 
corollary. Intuitively, the corollary says that we can 
compare cost(P), with that of cost(P’) + 6 where 6 is 
the cost of evaluating predicates Diff(T, T’) after the 
join in P’. 

Corollary 4.7: Let P and P’ be two plans with tags T 
and T’ over the same set of rela#ons and T dominates 
T’. Let Prr be the plan obtained by applying the pred- 
icates in Diff(T, T) to P’. If cost(P”) < cod(P), 
then P may be pruned. 

For a given P, we can construct a set of all such plans 
P’ each of which may be used to prune P. We can refer 
to the above set as pullover-cheaper(P). The following 
example illustrates the corollary. For example, consider 
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Example 4.5 with the following change: the cost of the 
plan P with the tag T =< 6,4,9 > is higher than the 
cost of the plan P’ with the tag T’ =< 5,4,8 >. Notice 
that the tag < 6,4,9 > dominates the tag < 5,4,8 >. 
The set Diff(T, T’) = (6,9}. In such a case, the above 
lemma allows us to prune the plan P if the cost of the 
plan P’ with the added cost of evaluating the set of 
predicates (6,9} after the join exceeds the cost of P. 

4.4 Optimization Algorithm with Pruning 

In this section, we augment the naive optimization al- 
gorithm with the pruning strategies. The extended al- 
gorithm is presented in Figure 3. The Plantable data 
structure stores all plans that need to be retained for 
future steps of the optimizer. For every subset of re- 
lations, the data structure stores potentially multiple 
plans. The different plans correspond to different tags. 
Storing such plans requires a simple extension of the 
data structure used to represent plans with interesting 
orders in the traditional optimizers. 

In determining the access methods and choice of join 
methods, the algorithm behaves exactly like the tra- 
ditional algorithm in Figure 1. However, when there 
are s applicable user-defined predicates on the operand 
Sj and F applicable predicates on the operand Rj, the 
algorithm iteratively considers all (r + l)(s + 1) possi- 
bilities which corresponds to applying the first u pred- 
icates and the first v predicates on Sj and Rj respec- 
tively where the predicates are ordered by ranks. This 
is the inner loop of the algorithm and is represented by 
extjoi~2lan. It should be noted that Sj is an interme- 
d&e relation and so the first u predicates on Sj may 
include predicates on multiple relations that have been 
joined to form Sj. 

The choices of u and v uniquely determine the tag 
for the plan p in Figure 3. The plan p will be compared 
against plans over the same set of relations that have 
already been stored. The plan p is pruned and the 
iteration steps to the next (u,v) combination if. one 
of the following two conditions holds: (1) If p is more 
expensive than the plan in the Plantable with the same 
tag, if any. (2) If the set of plans puZZover-cheaper(p) 
is empty, i.e., the pullover rule cannot be used to prune 
P- 

Otherwise, the predicate ad&&able(p) becomes true 
and the plan p is added to PZantabZe. Next, this new 
plan p is used to prune plans that are currently in 
plantable. In the algorithm, we have designated this 
set of pruned plans by pruneset( They may be: 
(1) The stored plan with the same tag, if it exists in 
the Plantable and is more expensive. (2) The set of 
plans in puddown~xpensive(p) , i.e., plans that may 
be pruned with p using the pushdown rule. 

procedure Extended-DP-Algorithm: 
for i := 2 to n do { 

for all S c (RI, . . . . &) s.t. llS[l = i do ( 
bestPlan := a dummy plan with infinite cost 
for all Rj, Sj s-t. S = {Rj) U Sj do ( 

s := Number of evabrable predicates on Sj 
T := Number of evaluable predicates on Rj 
for all u := 0 to s do 
for all v := 0 to r do 
p := extjoinPlan(optPlan(Sj), Rj,u,v) 
if addtotable(p) then ( 

remove pruneset (p) 
add p to Plantable 

1 
3 

3 
3 
for all plan q of (RI, . . . . I&) do 

Final = complete the plan q 
and estimate its cost 

return (MinCost(Final)) 

Figure 3: The Optimization Algorithm with Pruning 
for Linear Join Trees 

At the end of the final join, we consider all plans 
over the relations {R 1, ..&3. Some of these plans may 
need to be completed by adding the step to evaluate 
the remainder of the predicates. Finally, the cheapest 
among the set of completed plans is chosen. 

5 Conservative Local Heuristic 

Although the optimization algorithm with novel prun- 
ing techniques guarantees the optimal plan and is com- 
putationally efficient, the conservative local heuristic 
that we propose in this section has remarkable qualities 
that make it an attractive alternative for implementa- 
tion. First, incorporating the heuristic in an existing 
System-R style optimizer iz easier since tags do not 
need to be maintained. Next, incorporating the heuris- 
tic increases the number of subplans that need to be 
optimized for a query by no more than a factor of 2 
compared to the traditional optimization, independent 
of the number of user-defined predicates in the query. 
Finally, there are a number of important cases where 
the algorithm guarantees generation of an optimal ex- 
ecution plan. 

The simplest heuristics correspond to pushing all ex- 
pensive predicates down or deferring evaluation of ail 
expensive predicates until the last join. These heuriz- 
tics do not take into account the costs and selectivities 
of the predicates and therefore generate plans of low 
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quality. Recently, a new heuristic, Pullrank, was pro- 
posed but it was found that the heuristic fails to gener- 
ate plans of acceptable quality [IIe194]. We begin by de- 
scribing PullRank, characterizing its shortcomings and 
then presenting the conservative local heuristic. 

Pullrank maintains at most one plan over the same 
set of relations. At each join step, for every choice of 
the set of predicates that are pushed down, the Pull- 
rank algorithm estimates the sum of the costs (we will 
call it completion cost) of the following three compo- 
nents (i) Cost of evaluating expensive predicates that 
are pushed down at this step (ii) Cost of the join, tak- 
ing into account the selectivities of expensive predi- 
cates that are applied (iii) Cost of evaluating the re- 
mainder of the user-defined functions that are evalu- 
able before the join but were deferred past the join. 
Pullrank chooses the plan that has the minimum com- 
pletion cost. Thus, the algorithm greedily pushes down 
predicates if the cost of deferring the evaluation of pred- 
icates past the join is more expensive, i.e., if Pullrank 
decides that evaluating a predicate u before a join j is 
cheaper than evaluating the predicate u immediately 
following j, then evaluation of u will precede j in the 
final plan, i.e., Pullrank will not consider any plans 
where u is evaluated after j. Thus, Pullrank fails to 
explore such plans where deferring evaluation of pred- 
icates past more than one joins is significantly better 
than choosing to greedily push down predicates based 
on local comparison of completion costs. 

In order to address the above drawback of Pullrank, 
the conservative local heuristic picks one additional 
plan (in addition to the plan picked by Pullrank) at 
each join step based on sum of the costs of (i) and 
(ii) only. Let us refer to this cost metric as pwhdown- 
join cost. This is the same as assuming that deferred 
predicates are evaluated for “free” (i.e., cost compo- 
nent (iii) is zero). In other words, the plans chosen 
using such a metric favor deferring predicates unless 
the evaluation of predicates helps reduce the cost of 
the current join. Thus, since conservative local heuris- 
tic picks two plans, one for completion cost and the 
other for pushdown-join cost, it is possible that the 
plan where the predicate u is deferred past j as well as 
the plan where u is pushed down prior to j (chosen by 
Pullrank), is considered towards the final plan. Thus, 
conservative local heuristic can find optimal plans that 
Pullrank and other global heuristics fail to find due to 
its greedy approach. This is illustrated by the following 
example. 

Example 5.1: Consider the query Q = a,(&) W 
Rz W Rs. Let us assume that the plan cr, (Rr W Rz) W 
Ra) is optimal. Note that none of the global heuristic : ,.i 
that either pushes down or pulls up all the selections 
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can find the optimal. If the plan for a,(Rr) w Ra 
is cheaper than a,(& W I&), then pullrank greedily 
pushes down P and fails to obtain the optimal. How- 
ever, our algorithm uses the plan RI cu Ra in the next 
join step to obtain the optimal. This is an example 
where a pullup followed by a pushdown was optimal 
and therefore only our algorithm was able to find it. m 

For join of every subset of relations, at most two 
plans are stored by conservative local heuristic. There- 
fore, we never need to consider optimizing more than 
O(2n+‘) plans. Thus, unlike the algorithm in Figure 3, 
the number of subplans that need to be optimized does 
not grow with the increasing number of user-defined 
predicates. In general, conservative local heuristic may 
miss an optimal plan. Intuitively, this is because in 
this algorithm, distinctions among the tags are not 
made. Nevertheless, the experimental results indicate 
that the quality of the plan is very close to the opti- 
mal plan [CS96]. Furthermore, as the following lemma 
states, the conservative local heuristic produces an op 
timal plan in several important special cases. 

Lemma 5.2: The conservative local heuristic produces 
an optimal execution plan if any one or more of the fol- 
lowing conditions are true:(l) The query has a single 
join. (2) The query has a single user-defined predicate. 
(3) The optimal plan corresponds to the case where all 
the predicates are pushed down. (4) The optimal corre- 
spends to the case where all the predicates are deferTed 
until all the joins are completed. 

6 Performance Evaluation 

We implemented the optimization algorithms proposed 
in this paper by extending a System R style optimizer. 
In thii section, we present results of doing performance 
evaluations on our implementations. In particular, we 
establish: 
(1) The pruning strategies that we proposed improve 
the performance of naive optimiaation algorithm sig- 
nificantly. 
(2) The plans generated by the traditional optimiza- 
tion algorithm suffers from poor quality. 
(3) The plans generated by PullRank algorithm are 
better (less expensive) than the plans generated by 
a traditional optimizer, but is still significantly worse 
than the optimal. 
(4) The conservative local heuristic algorithm reduces 
the optimization overhead and it generates plans that 
are very close to the optimal. 
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Figure 4: Performance on Varying Number of User-defined Predicates 

Experimental Testbed 

Experiments ware performed on an IBM RS/SOOO 
workstation with 128 MB of main memory, and running 
AIX 3.2.5. We have used an experimental framework 
similar to that in [IK90, CS94]. The algorithms were 
run on queries consisting of equality joins only. The 
queries were tested with a randomly generated relation 
catalog where relation cardinalities ranged from 1000 to 
100000 tuples, and the numbers of unique values in join 
columns varied from 10% to lOO%.of the corresponding 
relation cardinality. The selectivity of expensive predi- 
cates were randomly chosen from 0.0001 to 1.0 and the 
cost per tuple of expensive predicates was represented 
by the number of I/O (page) accesses and was selected 
randomly from 1 to 1000. Each query was generated to 
have two projection attributes. Each page of a relation 
was assumed to contain 32 tuples. Each relation had 
four attributes, and was clustered on one of them. If a 
relation was not physically sorted on the clustered at- 
tribute, there was a B+-tree or hashing primary index 
on that attribute. These three alternatives were equally 
likely. For each of the other attributes, the probability 
that it had a secondary index was l/2, and the choice 
between a B+-tree and hashing secondary index were 

, again uniformly random. We considered block nested- 
loops, merge-scan, and simple and hybrid hash joins. 
The interesting orders are considered for storing sub- 
plans. In our experiment, only the cost for number of 
I/O (page) accesses was accounted. 

We performed two sets of experiments. In the first 
set, we varied the number of user-defined predicates 
that apply on one relation. In the second set, we var- 
ied the distribution of the user-defined predicates on 

multiple relations in the query. Due to lack of space, 
we present only the experiments where the number of 
user-defined selections that apply on a relation are var- 
ied. The results of the other experiments will be dis- 
cussed in [CS96]. The second set of experiments shed 
light on how the distribution of the user-defined pred- 
icates among relations in the query influences the cost 
of optimization. The results also shows how our con- 
servative local heuristic sharply reduces the overhead 
of optimization under varying distributions. 

Effect of Number of User defined Predicates 

Due to the lack of space, we will show the results for 
S-join (i.e. join among 7 relations) queries only but sim- 
ilar results were obtained for other queries (e.g. 4join 
and lo-join queries) as well. The detailed performance 
study with various queries will be presented in [CS96]. 
In this experiment, one relation in the query was cho- 
sen randomly and the number of expensive predicates 
applicable was varied from 1 to 6. The results pre- 
sented here for each data point represents averages of 
100 queries, generated randomly. 

We experimented how the optimization algorithms 
behave as we increase the number of expensive predi- 
cates for the randomly selected relation in the queries. 
Figure 4 shows the number of enumerated plans and 
the quality of plans generated by each algorithm. A 
comparison of the performances of the naive optimiza- 
tion algorithm and optimization algorithm with prun- 
ing shows that our proposed pruning techniques are ex- 
tremely effective. Note that both these algorithms are 
guaranteed to be optimal. Over all queries, the naive 
optimization algorithm enumerated about 3 times more 
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plans than optimization algorithm with pruning. 
The result on quality of plans shows the relative cost 

of plans generated by each algorithms. The cost of plan 
generated by optimization algorithm with pruning was 
scaled as 1.0. Since naive optimization algorithm and 
optimization algorithm with pruning always generate 
optimal plans, 1.0 represents the cost of both optimal 
plans. The figure illustrates that the quality of plan 
generated by traditional optimizer suffers significantly 
while the quality of plan generated by PullRank algo- 
rithm gets worse as the number of expensive predicates 
increases. 

Conservative local heuristic chooses plans that are 
identical to or very close to the optima13. This is il- 
lustrated by the fact that the graphs for the heuristic 
and the optimization algorithm are practically indistin- 
guishable. Although in this experiment, conservative 
local heuristic doesn’t reduce the number of enumer- 
ated plans significantly compared to the optimization 
algorithm with pruning, this observation does not ex- 
tend in general, particularly when the user-defined se- 
lections are distributed among multiple relations In the 
latter cases, the conservative local heuristic proves to 
be the algorithm of choice, since it continues to choose 
plans close to the optimal plan with much less opti- 
mization overhead [CS96]. 
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