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Abstract 

There is mounting evidence [Man77, SchSI] 
that real datasets are statistically self-similar, 
and thus, ‘fractal’. This is an important in- 
sight since it permits a compact statistical 
description of spatial datasets; subsequently, 
as we show, it also forms the basis for the 
theoretical analysis of spatial access methods, 
without using the typical, but unrealistic, uni- 
formity assumption. 

In this paper, we focus on the estimation of 
the number of quadtree blocks that a real, spa- 
tial dataset will require. Using the the well- 
known Hausdorff fractal dimension, we derive 
some closed formulas which allow us to predict 
the number of quadtree blocks, given some few 
parameters. Using our formulas, it is possible 
to predict the space overhead and the response 
time of linear quadtrees/z-ordering [OM88], 
which are widely used in practice. In order 
to verify our analytical model, we performed 
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an extensive experimental investigation using 
several real datasets coming from different do- 
mains. In these experiments, we found that 
our analytical model agrees well with our ex- 
periments as well as with older empirical ob- 
servations on 2-d [Gae95b] and 3-d [ACF+94] 
data. 

1 Introduction 

Spatial databases have numerous applications, includ- 
ing geographic information systems, medical image 
databases [ACF+94], multimedia databases (after ex- 
tracting n features from each object, and mapping it 
into a point in n-d space [Jaggl, FRM94]), as well as 
traditional databases, where each record with n at- 
tributes can be considered as a point in n-dimensional 
space [Giit94]. 

In order to guarantee the fast retrieval of the data 
stored in these databases, spatial access methods are 
typically used. In practice, the prevailing methods 
seem to be two: (a) the R-trees [Gut841 and its vari- 
ants [SRF87, BKSSSO], and (b) methods based on a 
regular subdivision of the data space such as linear 
quadtrees [Gar82] and z-ordering [OM84]. The terms 
‘linear quadtrees’ and ‘z-ordering’ essentially denote 
the same method and therefore, will be used inter- 
changeably. 

Linear quadtrees have been very popular for 2- 
dimensional spaces. One, of the major applica- 
tion is in. geographic information systems: linear 
quadtrees have been used both in production sys- 
tems, like the TIGER system at the U.S. Bu- 
reau of Census [WhiBl] (http: //tiger. census. gov/ 
tiger/tiger. html), which stores the map and sta- 
tistical data of the U.S.A., as well as research proto- 
types such ,as QUILT [SSN87], PROBE [OM88], and 
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GODOT [GR94]. For higher dimensions, act-trees 
have been used in 3-d graphics and robotics [BB82]; in 
databases of 3-d medical images [ACF+94], etc. There 
are several good reasons for the popularity of these 
methods, such as their simplicity, their robustness and 
that the indexing keys can be inserted into ubiquitous 
one-dimensional access methods, e.g., B-trees. 

In all the above cases, it is important to know the 
number of index entries (z-values) that a specified re- 
gion will be decomposed into, since the performance of 
the spatial access methods is correlated with the num- 
ber of index entries [Ore89, Gae95b, Gae95a]. For a 
query region, the number of z-values is related to the 
number of disk accesses that will be required; for a 
data region, the number of z-values is directly related 
to the storage requirements for this region, as we de- 
scribe in subsection 2.2. Ideally, one could predict for 
each given dataset the number of indexing entries by 
using some parameter. 

In a previous.paper [FK94], we presented an anal- 
ysis of R-trees using the Hausdorff fractal dimension. 
Recently, we also showed that the theory of fractals 
can be successfully used for estimating the selectivity 
of spatial queries [BF95]. The results presented are 
very encouraging, since the estimates based on frac- 
tals yielded very good results compared with other 
assumptions typically made. In [BF95], we already 
pointed out that fractals may also be a suitable tool 
for the analysis of spatial access methods based on 
a regular decomposition of the data space such as z- 
ordering [OM84]. Here, we will substantiate this claim 
by providing an analysis of linear quadtrees that uses 
the theory of the well-known Hausdorff fractal dimen- 
sion. 

The contributions of this work are the following: 
First, we highlight and exploit the fact that most 
real datasets are self-similar (fmctal). Second, us- 
ing an existing, successful assumption for ‘random 
quadtrees’ [VM96], we show that the number of in- 
dex entries for an object follows a power law, with 
exponent the so-called ‘Hausdorff’ fractal dimension 
of the object’s boundary. Third, we show that our 
result agree perfectly with previous analytical re- 
sults and that it explains our older empirical work 
[Gae95b, ACF+94], h w ere we first pointed out the ex- 
istence of the power law. Lastly, we present exper- 
imental results, to demonstrate the accuracy of our 
formulas for real datasets. 

The remainder of this paper is organized as fol- 
lows: After giving an introduction to fractals and to 
quadtrees in Section 2, we present our analysis in Sec- 
tion 3. Section 4 presents some experimental results 
on real datasets. Section 5 compares our results with 
older ones, and describes how a practitioner could uti- 
lize our formulas. Section 6 lists the conclusions and 

future work. 

2 Survey - Background 

2.1 Introduction to fractals 

Intuitively, a set of points is a fractal if it exhibits 
self-similarity over all scales. This is illustrated by an 
example: Figure l(a) shows the first few steps in con- 
structing the so-called Sierpinski triangle. Figure l(b) 
gives a 5,000-point sample, termed ‘Sierpinski5K’ 
dataset from now on. Theoretically, the Sierpinski tri- 
angle is derived from an equilateral triangle ABC by 
excluding its middle (triangle A’B’C’) and by recur- 
sively repeating this procedure for each of the resulting 
smaller triangles. The resulting set of points exhibits 
‘holes’ in any scale; moreover, each smaller triangle 
is a miniature replica of the whole triangle. In gen- 
eral, the characteristic of fractals is this self-similarity 
property: parts of the fractal are similar (exactly or 
statistically) to the whole fractal. 

(a) Sierpinski triangle 

\ *. . . . . 

(b) ‘Sierpinski5K’ dataset (c) its box-counting plot 

Figure 1: The Sierpinski tTiangk, a theoretical fractal: 
(a) the first steps of its recursive construction (b) a 
sample of 5,000 points and (c) its box-counting plot 

Like all fractals, the Sierpinski triangle is a rich source 
of paradoxes: it is a point-set with area zero and 
with infinite-length perimeter. Thus, it is not a l- 
dimensional Euclidean object (otherwise it would have 
finite length perimeter), but it is not a Z-dimensional 
Euclidean object either, since it has zero area. 

The way to resolve the issue is to consider. frac- 
tional values for the dimensionality, which are called 
fractal dimensions. There are more than one fractal 
dimensions [BF95], but among them the Hausdorff or 
box-counting fractal dimension DH is the one that is 
suitable for our application. 
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It is quite easy to compute for a given data set 
embedded in an E-dimensional address space its frac- 
tal dimension DH by using the box-counting method 
[SchSl]. This method imposes an E-dimensional grid 
with (hyper-)cubic grid cells of side T and counts the 
number N(r) of cells that are penetrated by the set of 
points (i.e., that contain one or more of its points). By 
repeating the above, for grids of difference sides, and 
we can plot the N(r) versus T, in log-log scales. This 
plot is often called the box-counting plot. 

If the point-set is self-similar for a range of scales r E 
(ri, rz), then its box-counting plot will be a straight 
line for this range. Its negated slope is defined as the 
Hausdorff fractal dimension DH of the point-set for 
the range of scales (ri , ~2): 

Definition 1 (Hausdorff fractal dimension) For 
a point-set that has the self-similarity property in the 
range of scales (~1, rz), its Hausdorff fmctal dimension 
DH for this mnge is measured as 

DH = _’ l”dN(r)) alog = constant ri < r < r2 

Notice that, for Euclidean objects, their fractal 
dimension equals their Euclidean dimension. Thus, 
lines, line segments, circles, and all the standard curves 
have DH=~; planes, disks and standard surfaces have 
DH=~; Euclidean volumes in E-dimensional space 
have DH= E. 

Figure l(b) shows the box-counting plot for DH for 
the SierpinskiSK dataset. Notice that the slope for 
r E (e-4.5,e-1) is 1.574, very close to the theoretical 
value of log3/log2 = 1.585 [Man77]. 

2.2 Quadtrees and z-ordering 

The terminology is easiest described in 2-d address 
space; the generalizations to E dimensions should be 
obvious. Following the quadtree literature, the address 
space is a square, called an image, and it is represented 
as a 2K x 2K array of 1 x 1’ squares. Each such square 
is called a pixel. 

Consider the four equal squares that the image can 
be decomposed into. Each such square is called a 
level-l block a level-k block can be recursively defined 
as one of the four equal squares that constitute a level- 
(k - 1) block. Thus, the pixels are level-K blocks; the 
image is the (only) level-O block. We can represent 
this process as a Cway tree: the root is at level 0, and 
it has four children, the four level-l blocks. The edges 
of this tree can be labeled with P-bit binary strings, 
where the first bit indicates the horizontal direction 
(‘left/right’, for ‘O/i’ respectively) and the second bit 
indicates the vertical direction (‘down/up’, for ‘O/l’ 
respectively). Then, we have: 

Definition 2 The z-value of a level-k block is the con-, 
catenation of the labels of the edges, from the root to 
the node of the quadtree that corresponds to this level-k 
block. 

An object in the image is represented by turning 
the appropriate pixels to ‘black’; the rest (i.e., back- 
ground) pixels remain ‘white’. 

Definition 3‘ The level-K quadtree decomposition of 
an object within an image is the unique, minimal set 
of blocks of levels 0 through K that cover the object 
exactly, without covering extra space. 

By ‘minimal set of blocks’ we mean ‘minimum car- 
dinality’: That is, the target set of blocks does not 
contain any quadruplet of level-k blocks that can be 
consolidated to a single, level-(k-l) block. The ef- 
ficient way to obtain the quadtree decomposition is 
by recursively dividing the object into blocks, until 
they are homogeneous or until we reach the pixel level 
(level-K blocks). F or a 2-dimensional object, the re- 
sult of such a decomposition is a 4-way tree, which 
is termed as the region quadtree [Kli71]. Blocks that 
are empty/full/partially-full are represented as white, 
black and gray nodes in the quadtree, respectively. See 
Figure 2(b) for an example. 

For efficiency reasons (eg., see [Ore89]), we often ap- 
proximate an object with a ‘coarser resolution’ object. 
Formally, we have: 

Definition 4 The level-k quadtree decomposition of 
an object (k < K) is the minimal set of blocks of levels 
0 through k that cover the object completely, while they 
cover the smallest possible additional area. 

Thus, given the level-K quadtree decomposition, rep 
resented as a four-way tree, the level-k decomposition 
is derived by (a) dropping all the nodes at levels j 
(J’ > k) (b) turning the gray nodes at level-k to black 
nodes and (c) consolidating black nodes, if necessary. 
Figure 2 shows an object in a 4x4 image (K=2), its 
level-2 decomposition, its level-l decomposition and 
the corresponding approximation of the object. No- 
tice how the block with z-value ‘00’ turned from ‘gray’ 
to ‘black’, to create the level-l quadtree decomposition 
of the original shaded rectangle. 

Definition 5 Let Nb(k) denote the total number of 
blocks of a level-k quadtree decomposition. 

Since every block has a unique z-value, we can rep- 
resent a level-k quadtree decomposition of an object 
by listing the corresponding z-values. Thus, the z- 
values of the shaded rectangle in figure 2(a) are ‘0001’ 
(for ‘left-down; left-up’) ‘0011’ and ‘01’. Following 
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(a) a spatial object (d) corresponding approx. 

(b) its level-2 quadtree (c) its level-l quadtree 

Figure 2: Counter-clockwise, from top-left: (a) The 
shaded rectangle is decomposed into three blocks. fb) 
the corresponding level-2 -quadtree, with z-values ii, 
0001 and 0011 (c) the level-l quadtree, with z-values 
01, 00 (d) the corresponding approximate spatial object 
- the lightly-shaded region is the enlargement, due to 
the approm’mation. 
[Gae95b], the maximum permissible length of the z- 
values that correspond to a level-k quadtree decompo- 
sition is called the granularity g. Obviously, for a 2-d 
address space: 

gz2.k 

In general, for an E-d address space 

g=E.k (1) 

As described above, the lengths of the z-values have 
to be even (in general, multiples of E). There are 
variations of z-ordering, where the z-values can have 
arbitrary lengths. For simplicity, we ignore those vari- 
ations in this paper, although we believe that they are 
amenable to a similar analysis like the upcoming one. 

As described above, quadtrees have been used 
to store objects in main memory. For disk stor- 
age, the prevailing approach is the so-called lin- 
ear quadtree [Gar82], or, equivalently the z-ordering 
method [OM84]. Using the z-values as just described, 
each object (and range query) can be uniquely repre- 
sented by a set of z-values, namely the z;values of the 
blocks of its level-i quadtree decomposition. Each such 
z-value can be treated as a key of a record of the form 
(z-.value, object-id, other attributes . . . ), and it can be 
inserted in a file structure such as a B+-tree. Table 1 
illustrates such a relation, containing the z-values of 
the shaded rectangle of Figure 2(a). 

Additional objects in the same address space can be 
handled in the same way; their z-values will be inserted 
into the same B+-tree. Thus, spatial queries can be 

served by operations on the B+-tree: For example, a 
range query which specifies a region and asks for all the 
objects in it, will be decomposed into a set of z-values; 
the B+-tree can be searched to retrieve matching z- 
values and the corresponding objects. 

z-value object id (other attributes) 

. . . . . . 
0001 ‘ShadedRectangle’ . . . 
. . . 
0011 ‘ShadedRectangle’ 1:: 
. . . 
01 ‘ShadedRectangle’ 1:: 
. . . . . . .a. 

Table 1: Illustration of the relational table that will 
store the z-values of the sample shaded rectangle. 

Given the above discussion, the terms ‘number of 
quadtree blocks’ and ‘number of z-values’ are identical, 
and are used interchangeably for the rest of this paper. 

Before presenting our analysis, we first want to re- 
call some previous empirical and analytical results, in 
order to put our work into context. 

2.3 Analysis of quadtree decomposition 

Previous attempts have been restricted to 2- 
dimensional polygons [HS79], squares [Dye82, Sha88], 
2-d rectangles [Fa192] and E-d hyper-rectangles 
[FJM94]. In a closely related previous paper [Gae95b], 
we showed experimentally that the number of blocks 
Nb(k) of a level-k quadtree decomposition grows ex- 
ponentially with the level k of the quadtree. Adapting 
the notation, we showed that 

h&,(k) cc (Dz)g = (Dz)2’k (2) 

where the granularity is g = 2 + k for a 2-d address 
space, and where the value D, was defined as the frac- 
la1 z-ordering dimension of the specific spatial object. 
D, was shown to be the major determinant for the 
number of index entries resulting from a level-K de- 
composition. However, the relationship of D, to DH 
was not clear and therefore, we will clarify this point 
in this paper. 

Figure 3(a-b) shows the boundary’of Middle Fran- 
conia in Germany along with a plot of the natural log- 
arithm of the number of z-values versus the granularity 
g, i.e., the maximum permissible length for z-values. 
Similar experimental data on 3-d human brain im- 
ages [ACF+94] used act-trees (= 3-d quadtrees), and 
showed that the number of act-tree blocks for brain 
organs grows as 

N*(k) o( 22.63” 
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Figure 4(a) shows such a brain organ; Figure 4(b) 
shows the (logarithm-base-2 log, of the) number of 
act-tree leaf nodes, as a function of the level k, along 
with the regression line. 

Figure 3: (a) ‘Franconia’ dataset: Boundary of Middle 
Franconia. (b) natural logarithm of the number of its 
z-values vs. granularity g = 2 . k). 

Figure 4: 3-d medical data from [ACF+94]: (a) One 
brain hemisphere from an atlas (b) (log,) of number 
of its act-tree blocks Nb(k) vs. level k 

Assumptions for Random Quadtrees: 

In the analysis of quadtrees and their related algo- 
rithms, it is important to have a statistical model of 
typical, real quadtrees. Such a successful assumption 
[VM96, SS85] postulates that the probabilities p,,, , pb, 
p, of white, black and gray nodes (respectively) is in- 
dependent of the position and of the level. Experiments 
in [SS85] for nearest neighbor queries showed that the 
‘level-independence’ assumption leads to accurate pre- 
dictions, for main-memory 2-d quadtrees. 

This is the fundamental assumption for the upcom- 
ing analysis, which, as we show, agrees well with the 
experiments. 

3 Analysis 

The goal of this section is to determine the number 
Nb(k) of index entries that a spatial object will re- 

Symbols 
E 

9(i) 
b(i) 
PW 

Pb 

P9 
DH 

Ab 

Nb(k) 

9 

Definitions. 
dimension of the embedding address space 
expected number of gray nodes at level i 
expected number of black nodes at level i 
probability to have a white node 
probability to have a black node 
probability to have a gray node 
Hausdorff fractal dimension of boundary 
total area (hyper-volume) of black pixels 
at the first k levels 
number of z-values (=quadtree blocks) 
for the level-k decomposition 
granularity: length of longest permissible 
z-value (=E x k) 

Table 2: Summary of Symbols and Definitions. 
quire in its level-k quadtree decomposition. We would 
like this formula to be a function of a few, easy-to- 
estimate parameters of the object, such as the nature 
of its boundary (as measured by its Hausdorff fractal 
dimension DH), the area or more generally, the hyper- 
volume of the object &, etc. 

The strategy we use is to exploit the self-similarity 
that most real datasets exhibit, and to express both 
the input (&, DH), as well as the output parameters 
(Nb(k)) in terms of the level-independent probabilities 
pa, pb for gray/black nodes. We make the following 
conventions: 

l the root of the quadtree is at level 0, and it is 
always gray 

l the address space has been normalized to the unit 
hyper-cube. 

The fundamental assumption [VM96] is that the 
black/gray/white probabilities are level-independent. 
The only exceptions are the root, which is gray, and 
the last level K, which has only black pixels. For the 
intermediate levels, we have: 

Assumption 1 (Level-independence) A (gray) 
parent node has black, gmy and white children with 
probabilities pb, ps, p, respectively, independent of the 
level of the parent node. 

We note that the corresponding three probabilities 
sum to unity: pb + pa + p, = 1. Using the above 
assumption, we can estimate the expected number of 
black and gray nodes b(i), g(i) at level i: 

Lemma 1 The expected number of gmy nodes g(i) at 
level i is given by: 

9(i) = PEP,)’ (3) 
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Proof: By solving the recursion 

g(i) = g(i - 1) ’ 2Ep, (4 

The idea is that each gray node at level i - 1 has 2E 
children, out of which a fraction ps are gray. The 
initial condition is 

g(O) = 1 (5) 

since the root at level 0 is always gray. QED 

Lemma 2 The expected number of black nodes at a 
given level i is given by 

b(i) = 2Epb (2Ep,)(i-‘) (6) 

Proof: There are g(i - 1) parents at the (i - 1)-th 
level, each with 2E children; out of them, a fraction pb 
are black. QED 

Next, we need a ‘macroscopic’ parameter to help us 
estimate pb. This parameter is the total black area 
(hyper-volume) At,. 

Lemma 3 The hyper-volume (‘black area’) As is 
given by 

Pb 
At, = - 

1-P, 
(7) 

Proof: Combining the hyper-volumes of the individual 
black nodes at all levels i = 1, . . . co gives: 

fib = 2 b(i)2-iE 
i=l 

Substituting b(i) from Lemma 2 and adding the terms 
of the geometric series, we complete the proof. QED 

Now we need a second ‘macroscopic’ parameter, to 
help us estimate pg. This parameter is the Hausdorff 
fractal dimension DH of the boundary. 

Lemma 4 The Hausdorff fractal dimension DH of 
the boundary is given by: 

DH = E + k&‘g) (8) 

Proof: iFrom Lemma 1 we have that the number g(i) 
of gray nodes at level i grows as 

g(i) = PEpg)’ 
= (2i)E+ldp,) (9) 

The crucial observation is that g(i) is almost exactly 
the number of cells of side r = 2-’ that the boundary 
penetrates. The only exceptions occur when a stretch 
of the boundary coincides with a (horizontal or ver- 
tical) dividing line of the quadtree decomposition. If 
we neglect these rare cases, the exponent is by defini- 
tion the Hausdorff fractal dimension of the boundary. 

QED 
We are ready for the main theorem: 

Theorem 1 For an E-dimensional spatial object, 
whose level-K quadtree decomposition obeys the the 
‘level-independence’ assumption, the number of blocks 
Nb(k) for any level-k decomposition (k 5 K) is given 
by 

j%,(k) = 2kDn . cl - c, (lo) 

where 

and 
cz = Aa(2E - zDH) 

2DH - 1 

(11) 

(12) 
Proof: Recall that the gray nodes at level k are turned 
to black, and, possibly, consolidated, to form larger 
blocks. Assuming that consolidation is rare (at least 
for shapes without extremely convoluted boundary), 
the desired number of blocks Nb( k) is the number of 
black nodes at levels 1 . ..k. plus the number of gray 
nodes at the last level k, which are ‘treated as black’ 
ones: 

Nb(k) = g(k) + 2 b(i) 
i=l 

(13) 

Substituting the values of g(k) and b(i) from Lem- 
mas (1) and (2), we obtain a geometric progression. 
Adding its terms, we obtain: 

h(k) = (2EPg)k + (zE%‘b) (;2;;1; ’ (14 

= (2Epg)k(l + 2ETL 1) - 2Epb 
2Ep, - 1 

Using Lemma (3) and Lemma (4) we obtain Eq. (11) 
and (12). QED 

Thus, we have achieved our goal: we have ex- 
pressed the number of blocks Nb(k) only in terms of 
‘macroscopic’ parameters, and specifically, the Haus- 
dorff fractal dimension DH of its boundary and the 
total area (hyper-volume) Ab of the object. For large 
k, the constant Cz contributes little since it is smaller 
than Cl, which is multiplied by an exponentially grow- 
ing term. Ignoring CZ leads to a power law: 

&(k) % 2kDH . cl I (15) 

with Cr given by Eq. (11). 

4 Experiments on Real Datasets 

In this section, we provide the results of some of the 
experiments we undertook in order to verify the accu- 
racy of our analytical formulas. We used real, as well 
as synthetic data sets (with known fractal dimensions, 
as ‘sanity checks’). For the real data sets, we tried to 
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use as diverse data as we had available: 2-d and 3-d 
address spaces, with points, lines and volumes. Specif- 
ically, we used: 

l 2-d points: 

- ‘IUE’: longitude-latitude co-ordinates of 
stars in the sky, from NASAs Infrared- 
Ultraviolet Explorer (Figure 4.1(a), 15,135 
points, DH = 1.88). 

- ‘MGcounty’: a point data set with cross- 
roads of the Montgomery County of Mary- 
land, USA (Figure 4.1(b), 27,282 points, 
DH = 1.71), 

- ‘LBcounty’: cross-roads of the Long-Beach 
County of California, USA (Figure 4.1(c), 
36,548 points, DH = 1.70) 

l 2-d segments: 

- ‘Fbnconia’: the boundary of Middle Fran- 
conia of Germany (Figure 3(a), 147 edges, 
DH = 1.14) 

l 3-d volume: the brain-atlas data: the dataset and 
the results are shown in Figure 4. 

The synthetic data set was 

l Sierpinski5K: the Sierpinski triangle (Fig- 
ure l(a), 5,000 points, DH = 1.58) 

4.1 Check for self-similarity 

In a first experiment, we checked each dataset to see 
whether it is self similar and then we computed the 
Hausdorff fractal dimension of its boundary using the 
box-counting plot. Figure 4.l(a-c) show some of the 
corresponding box-counting plots, e.g., Figure 3(b) 
and Figure l(c) show the plots for the ‘Franconia’ and 
‘Sierpinski5K’ datasets respectively. Notice that they 
all exhibit fractal (i.e., self-similar) behavior for several 
scales. 

4.2 Accuracy of prediction 

In the second set of experiments, we compare the ac- 
tual number of blocks Nb(lc) with our analytical pre- 
dictions. For each dataset, we determined apart from 
the Hausdorff fractal dimension as shown in the pre- 
vious section, the area At,. Next, we computed the 
number of quadtree leaf nodes N&(k) using formula 
and and plotted its base-2 logarithm as a function of 
the level k. 

Figures 7(a-e) compare the actual values for the 
number of leaf nodes depicted as ‘bullets’ with the 
analytically predicted values from Theorem 1 (solid 

(a) .‘IUE’ (b) ‘MGcounty’ 

(c) ‘LBcounty’ 

Figure 5: Three real datasets: (a) star coordinates 
from NASA (6) crossroads from Montgomery county, 
Maryland (c) crossroads from Long Beach county, Cal- 
ifornia. 

sLoFl3 = mJ7748 SLOPE--1.71587 

(a) ‘IUE’ (b) ‘MGcounty’ 
SLOPE=-1.14304 

$1 

1 

5 . . 
4 

0 m 
0 2 4 6 8 - 10 

(c) ‘Franconia’ 

Figure 6: Box-count plots for the computation of the 
Hausdorff fractal dimension DH for selected datasets- 

line). The horizontal axis is the level k ofthe quadtree 
decomposition; the vertical axis is logarithmic (log, 
specifically) for reasons of presentation. 

Notice that the accuracy of the formula is very 
good for all the datasets. However, this observation is 
not restricted to the results presented, but also holds 
for other datasets. According to our experiments, it 
should further be noticed that our observations also 
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Figure 7: Accumcy of prediction for the (logarithm of) 
number of blocks Nb(k), as a function of the level k. 
Actual values (‘bullets ‘); analytical predictions (solid 
line). 
apply to more complex datasets composed of objects 
having strongly varying complexities. The fractal di- 
mension DH captures the complexity of the datasets. 

5 Discussion 

Here we discuss the following issues: (a) how do older 
quadtree analyses compare with our result? (b) how 
often should we expect to encounter fractal datasets? 
(c) how would a practitioner benefit from our result? 

5.1 Older analyses 

Qur formula agrees with previous analyses, or even 
includes them as special cases: Steiglitz and Hunter 
[HS79] proved that the number of quadtree leaf nodes 
for a 2-d polygon is proportional to its perimeter. 
Thus, they showed that it is the boundary that plays 
crucial role - our formula goes even further, general- 
izing the result for arbitrary (self-similar) E-d spatial 

objects, and showing that the major parameter is the 
‘ruggedness’ of the boundary, as measured by the frac- 
tal dimension DH. In [FJM94] we showed that the 
number of quadtree nodes for an E-d hyper-rectangle 
is proportional to its hyper-surface: Thus, the number 
of quadtree blocks will follow a power law with expo- 
nent E - 1, because the hyper-surface is a manifold’of 
dimensionality E - 1, both traditional, as well as frac- 
tal. Again, this agrees with our formula, which pre- 
dicts that for a given level-i decomposition, the num- 
ber of z-values will grow exponentially, with exponent 
DH=E-I. 

As mentioned earlier, in [Gae95b], we showed exper- 
imentally that the number of z-values follows a power 
law, for several 2-d datasets (E = 2). That is, 

(16) 

Compared with our formula 

Nb(k) CC 2kDH 

we would have a perfect agreement, if only 

DH = 2 .log,(D,) 

and in general if 

DH = E. log,(D,) (17) 

Table 3 exactly illustrates that this agreement 
holds, for our experimental datasets. For each dataset, 
we computed the slope of the regression line, which 
corresponds to right-hand-side of Eq. 17, i.e., E . 
log,(D,). Table 3 lists the slope of the regression line 
(column 2), and the Hausdorff fractal dimension (col- 
umn 3) of the corresponding dat,aset. For each dataset 
that the ‘level-independence’ assumption holds, the 
two numbers should be very close. Not.ice that this 
is indeed the case; the difference is typically in the 
third significant digit. 

This result is particularly interesting, since it read- 
ily allows us to use the analytical model presented in 
[Gae95b] f or d t e ermining a good c’hoice of the granu- 
larity. In this paper it has been shown experimentally 
as well as analytically that the performance of the spa- 
tial access method z-ordering is sensitive to the chosen 
granularity: 

Finally, in [ACF+94] we observed experimentally 
that the number of act-tree blocks for human MRI 
brain scans was Nb(k) o( 22:63k. Notice that 2.63 is 
close to 2.73-2.79, which is the range of the typical 
fractal dimension of the surface of mammalian brains 
[Man77]. 
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Data set actual slope of box-counting 
logz (N(k)) vs k Hausdorff 

Synthetic dataset 
Sierpinski5K 1.586 

frac. dim.‘DH 

1.58 

Table 3: Accuracy of the exponent in our power law: 
The second column is the slope of the regression line 
of the graph log2(&(k)) versus the level k. The third 
column is the Hausdorff fmctal dimension DH of the 
boundary, using the box counting method. 
5.2 Popularity of fractal datasets 

Real datasets seem to be self-similar more often than 
not: The literature on fractals [Man77, SchSl] pro- 
vides a long list of real, self-similar structures, in- 
cluding coastlines and country borders (with LIH typi- 
cally 1.1-1.3); periphery of clouds and rainfall patches 
(DH d:$5); surface of mammalian brain (=2.73- 
2.79); human pulmonary system (DH M 2.9); stock- 
price plots over time ( DH = 1.5). 

5.3 Practical Considerations 

The question is ‘how would a practitioner use the 
above results?’ Given a data-set (set of points, or a 
region), the first step is to estimate the fractal dimen- 
sion DH. This can be done with an O(N log N) algo- 
rithm [BF95], or even by consulting the literature on 
fractals, for the typical DH of the dataset of interest. 
For example, if our application focuses on 3-d human 
brain scans, a crude estimate of DH would be 2.7. 
The second step is the estimation of the proportional- 
ity constant Cr, for which we need an estimate of the 
total hyper-volume (= black area) Ab. Such an esti- 
mate should be easy to obtain, or to approximate: For 
example, if the minimum bounding rectangle (MBR) 
of the object of interest is known, we can use the vol- 
ume of the MBR as a estimate of Ag or the volume of 
an enclosing polytop. 

Thus, a practitioner could have accurate estimates 
for the number of quadtree blocks that a spatial ob- 
ject will require. This is useful in at least two set- 
tings: (a) if the object is a data object, we need to 
estimate the number of quadtree blocks for a given 
(exact or approximate) decomposition; this is needed 
to estimate the space overhead of the resulting B+- 
tree index, where each z-value yields a different record 
(see Table 2.2) (b) for query optimization: given a 

range query, our formula can predict the number of 
quadtree blocks it will decompose into, and therefore 
the number of ‘probes’ (E leaf accesses M random disk 
accesses) that we will have to do in the B+-tree in- 
dex. This assumption is justified, since in practice the 
number of probes is correlated with the number of dik 
accesses. 

As for the most common quadtree decomposition 
strategies, we notice that our analysis covers for the 
error-bound strategy. 

6 Conclusions 

We have derived a closed formula that estimates the 
number Nb(k) of quadtree blocks for an E- dimen- 
sional object that has the ‘level independence’ prop- 
erty. Our approach unified three observations, which 
have been made independently: 

the ‘level independence’ assumption, which is the 
basis of statistical models for quadtrees [VM96, 
SS85], 

the theory of fractals, which claims that spatial 
objects of the real world are often self-similar, and 
have a non-integer ‘Hausdorff’ fractal dimension 
[Man77, SchSl] and 

empirical observations that a power law holds for 
the number of quadtree blocks for 2-d and 3-d 
data [Gae95b, ACF+94] 

We showed. that the ‘level independence’ assump- 
tion implies a power law for the number of quadtree 
nodes, for any dimensionality E of the address space. 
Moreover, we showed that the exponent of the power 
law is the Hausdorff fractal dimension of the boundary 
of the object. Additional, smaller contributions are 

l the estimation of the constant of proportionality 
Cr, which is typically neglected in the literature 
of fractals; 

l the verification of the accuracy of the formula, on 
several, real data sets. Thus, our formula can help 
with the estimation of the space requirements for 
a linear quadtree representation of a dataset, as 
well as with the selectivity estimation and query 
optimization for geographic and, in generai, spa- 
tial databases. 

Future work includes the use of fractal concepts for 
the analysis of other quadtree/z-ordering algorithms, 
like ‘nearest-neighbor’ queries and ‘spatial joins’. 
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