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Abstract 

We introduce a new file organization for the 
storage and manipulation of spatial (or multi- 
dimensional) data that is able to execute spa- 
tial join operations with great efficiency. The 
Filter Tree information structure is a hierar- 
chical organization that tends to separate spa- 
tial entities by size, placing larger entities at 
the higher levels of the Filter Tree, and smaller 
entities at lower levels. Within each level, in- 
dex entries for the entities are ordered by a 
space-filling curve (Hilbert curve). This allows 
the algorithms to use bulk I/O requests, ex- 
ploiting the locality in the index information, 
and minimizing the number of I/O transfers 
from disk. We provide algorithms for con- 
structing Filter Trees, for performing range 
queries on a Filter Tree, and for performing 
spatial joins between a pair of Filter Trees. 

Finally, we include results from experiments 
using a prototype implementation of Filter 
Trees to treat both synthetic and real sets 
of spatial entities. Our experimental results 
show that full spatial joins can always be 
done more efficiently with Filter Trees than 
with current competitive methods, and that in 
some cases the improvement in performance is 
very large. 
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1 Introduction 

An ever increasing number and range of applications 
involve the storage and manipulation of spatial or 
multi-dimensional data. These applications include 
geographic information systems, animation, virtual re- 
ality, robotics, remote sensing and data mining. In all 
these applications, some attribute values are drawn 
from large fully-ordered domains (e.g., coordinate po- 
sitions in Euclidean space). This makes it possi- 
ble to view the entities to be stored in the database 
as occupying positions or hyper-volumes in a multi- 
dimensional space. Queries investigate the intersec- 
tions and relative positions in space between pairs 
of entities and between entities and specified hyper- 
rectangular volumes. 

Many multi-key file organizations have been de- 
signed, analyzed, and used. These organizations sup- 
port the operation of locating all items contained in 
a specified hyper-range of the space, or locating the 
item(s) “closest” to a specified point in the space ac- 
cording to some distance metric. Some of these orga- 
nizations have been extended or generalized to han- 
dle items that correspond not to points, but to hyper- 
volumes in the multi-dimensional space. 

In this paper, we introduce a new file structure 
called Filter Trees. We describe algorithms for the con- 
struction of Filter Trees and for the processing of range 
queries and spatial joins on Filter Trees. We demon- 
strate, using a mixture of analysis and experimen- 
tation with a prototype implementation, that Filter 
Trees have substantial performance advantages over 
previously proposed file structures in processing some 
spatial queries of the types needed in applications such 
as those mentioned earlier, specifically spatial joins. 

Filter Trees derive their relative advantages through 
the principles of hierarchical representation, size sepa- 
mtion, and locality of accesses. Filter Trees involve a 
recursive binary partitioning of the data space in each 
dimension. Entities associated with a particular level 
are all grouped together. Each entity is placed at the 
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lowest-level of the tree at which it is fully enclosed by a 
single cell of the partition at that level. This method of 
determining the level at which an entity is stored tends 
to cause larger entities to be stored high in the tree (be- 
cause they can be contained only in large cells), while 
smaller entities tend to sink to lower levels of the tree 
because they fit into smaller cells. Sometimes small 
entities will be caught at higher levels in the tree be- 
cause they happen to lie across the boundary between 
two large cells. However, under reasonable statistical 
assumptions about where entities are placed, the frac- 
tion of such entities is small. 

The algorithms for processing Filter Trees are de- 
signed to limit the portion of the index and data space 
that must be explored in order to respond to a query, 
and also to maximize the degree of locality within the 
portion of space that is explored. The locality is ex- 
ploited by using space filling Hilbert curves (of differ- 
ent degrees at different levels of the hierarchy) to order 
the items stored at a particular level. 

The remainder of the paper is organized as fol- 
lows. Section 2 reviews relevant prior work. Section 
3 presents the precise definition of Filter Trees, and 
describes the algorithms for constructing and using 
them. In Section 4, the properties and behavior of 
Filter Trees are analyzed under some simple assump- 
tions about the characteristics of the entities stored in 
the structure. Section 5 contains experimental results 
with a prototype implementation of Filter Trees, using 
both synthetic and real data sets. Finally, Section 6 
recaps the essential points of the paper. 

2 Related Work 

A primary goal for Object Relational Data Base Man-, 
agement Systems (ORDBMS) and Geographical Infor- 
mation Systems (GIS) is to provide efficientaccess to 
multidimensional data. The access methods that pro- 
vide access paths to such data are called Spatial Access 
Methods (SAMs) or Multidimensional Access Methods. 

Typical queries for multidimensional access meth- 
ods are range queries, nearest neighbor queries and 
spatial joins. Spatial Access Methods have been an 
active area of research over the years. They can 
be categorized as either entity-grouping or space- 
partitioning [Sam90]. With the entity grouping ap- 
proach, the way in which entities are clustered and 
stored in blocks is determined by what items are stored 
and the order in which they are inserted. Space parti- 
tioning approaches impose a regular decomposition of 
the space. 

A very popular way to organize and access multidi- 
mensional objects is the R-tree [Gut84]. In an R-tree, 
multidimensional objects are represented by their Min- 
imum Bounding Rectangles (MBR), which may over- 

lap. Consequently the R-tree does not impose any de- 
composition in the space. Because of the overlap in the 
index entries, the organization and. grouping of data 
into blocks has great impact on the performance of the 
method. Several variations on R-trees have been pro- 
posed, like the Rt-tree [SRF87], the e-tree [BKSSSO] 
and the Hilbert R-tree [KF94]. 

Space filling curves [Jag901 have been used for clus- 
tering multidimensional objects. Hilbert curves have 
been shown to have better clustering properties than 
alternatives [KF93]. 

Abel and Smith [AS831 first proposed a method to 
organize rectangles based on their sizes. A similar 
approach was proposed by Kedem [Ked82] [SamgO]. 
Six and Widmeyer used size separation to extend grid 
files to represent hyper-rectangles rather than points 
[SWSS]. Hutflesz, Six, and Widmeyer later proposed 
the R-File, which uses a multi-resolution representa- 
tion to yield improved performance for range queries 
relative to R-trees [HSWSO]. Another form of size sep- 
aration proposed by Guenther [GueSl] was based on 
oversize shelves for the storage of items that would 
otherwise span many nodes at lower levels of the hier- 
archies. 

Orenstein and Manola proposed PROBE for use 
in image database applications [OM88]. The method 
uses a hierarchical representation reflecting the con- 
tainment of objects in sub-quadrangles. Z-ordering is 
also used to assure a degree of locality. The method is 
shown by the authors to be useful in evaluating range 
queries, but no experimental performance results are 
reported for spatial join performance. 

Thus, hierarchical representation, size separation, 
and space-filling curves have all been used in vari- 
ous previously proposed multidimensional information 
structures. However, by combining them, Filter Trees 
can perform spatial joins with a guaranteed minimal 
number of block reads from disk. Other methods that 
have been proposed cannot make such guarantees. Ex- 
cept for R-Trees, experimental results on the perfor- 
mance of spatial joins of hyper-rectangles are not avail- 
able. 

3 Filter Trees 

3.1 Assumptions 

In this section, we define a new file structure, called 
Filter Trees ,, that is suitable for the storage and pro- 
cessing of spatial data. We introduce Filter Trees in 
a rather limited context initially to facilitate the pre- 
sentation. The initial assumptions are: 

l the spatial objects are two-dimensional rectan- 
gles, 
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l their dimensions lie in the range (2-L, 1) for some 
L, and 

l there are no updates to the set of objects. 

The two dimensional case is easiest to understand 
and is most relevant to geographic information systems 
for representing maps. However, there are many other 
applications that require use of three or more dimen- 
sions. Fortunately, the two basic mechanisms of the 
Filter Tree, namely binary recursive partitioning and 
Hilbert curve ordering, both generalize to higher di- 
mensions [JaggO]. Because the number of cells at level 
j in a k dimensional Filter Tree is 2kj, however, the 
number of levels that it is practical to use decreases as 
k increases. 

If the domains of the attributes that define the mul- 
tidimensional space are not (0,l) or if the distributions 
of values are not uniform, then appropriate functional 
transformation can be applied to object coordinates, 
and also to query coordinate specifications, in order to 
transform the objects such that they are mapped to 
be uniformly distributed within the unit hypercube. 

While many (perhaps most) spatial database appli- 
cations deal with static or nearly static sets of spatial 
entities, there are other spatial database applications 
in which updates reflect the addition, deletion, move- 
ment, and transformation of spatial entities. These 
updates occur interleaved with queries through the 
lifetime of the Filter Tree. To handle such applica- 
tions with Filter Trees, some space can be systemati- 
cally left in each block to allow for efficient insertions 
and modifications to the set of spatial entities. As 
has been shown with variations of B-trees, this tech- 
nique can lead to storage utilization in the 80% to 90% 
range and still handle updates efficiently. Correspond- 
ingly, the processing of range queries and spatial joins 
will generally require 10% to 20% more block transfers 
than in the static case in which blocks are fully packed. 

3.2 Definition 

In two-dimensional space, we assume that each entity 
to be stored in the database consists of (1) a shape, 
which is defined by a simple, closed polygon, and (2) 
additional information. The entity records, which in- 
clude the shape and the additional information, are 
stored in blocks to form the bulk of the database. 

From the twodimensional shape of each object, 
we may calculate the minimum bounding rectangle, 
(MBR), which is the smallest rectangle that is aligned 
with the axes of the two-dimensional space and en- 
closes the entity’s shape. The storage of and access to 
an entity in the Filter Tree is baaed completely on its 
MBR. For convenience of exposition, we will refer to 

.o .I 

til m 

Figure 1: Hilbert Curves of degree 1 (Hi) and 2 (Hz) 
the two dimensions as x and y, although their interpre- 
tation in specific cases will depend on the application. 

The minimum bounding rectangle is specified by the 
coordinates of its lower left corner (xl, 91) and upper 
right corner (xh, &), where cl and 21, (respectively, ~1 
and yh) are the smallest and largest values of the I (re- 
spectively y) coordinate, anywhere along the perime- 
ter of the entity’s shape. The coordinates of the cen- 
tre of the MBR are (z,, yc), where 2, = 9, and 

Yc = 9. 
Physical storage of both MBRs and entity records 

requires a serialized ordering of the entities. To obtain 
this serialized order while retaining locality of over- 
lapping and neighboring entities in two-dimensional 
space, we map the center of each entity’s MBR to a 
space filling Hilbert curve. The Hilbert curve position 
of the center of the MBR (xe, yc) can be calculated 
from the binary representations of the coordinates, x, 
and yc. For z curves, this requires only an interleav- 
ing of the bits of the binary representations of xc and 
y=; for Hilbert curves in two dimensions, the trans- 
formation is more complex, involving manipulation of 
bit pairs based on a state transition table. The al- 
gorithms and state transition table are available else- 
where [Bia69][SK95]. 

Our use of Hilbert curves involves relating (x, y) 
coordinate pairs in the unit square (with k bits of pre- 
cision) to Hilbert values in the unit line (with 2k bits 
of precision) ‘. Thus each of the 4k cells in level k of a 
Filter Tree can be identified either by a pair of k-bit x 
and y coordinates, or equivalently by the correspond- 
ing 2k bit binary fraction representing a Hilbert value. 

Figure 1 illustrates this relationship for Hilbert 
curves of degree 1 and 2. Note that: 

l The (2k bit) Hilbert value of a level k cell is the 
prefix of the (2k+2 bit) Hilbert values of the four 
level k+l subcells, where the four subcells are dis- 
tinguished by appending 00, 01, 10 and 11 as the 
least significant bits of the 2k+2 bit binary frac- 
tions. 

‘Most previous work has enumerated degree k Hiibert curves 
using the integers 0 to 4k - 1. The binary fractions used in our 
work are precisely the integers used by others divided by 4k for 
degree k Hilbert curves. ’ 
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l For a cell at level k with a 2k bit Hilbert curve 
value, the cell at level k-l containing the level k 
cell corresponds to the Hilbert value of the subcell, 
but truncated after the 2k-2nd bit. 

l For every 2k bit binary fraction, b, the corre- 
sponding cell is adjacent to the two cells that cor- 
respond to b+4-k and b-4-k (unless one of these 
numbers is outside (0,l)). 

The last point means that the Hilbert curve is an 
optimal space-filling curve in the sense that no serial- 
ization of the cells can do any better than having every 
pair of adjacent 2k bit binary fractions correspond to 
cells that are adjacent in two-space. 

3.3 Hierarchy of Filters 

The Filter Tree is based on a hierarchy of regular grids 
that divide the unit square into subsquares. At level 
j, the grid consists of lines at 3, k = 0,. . . ,2j in 
both the z and y dimensions. For example, the level 
3 grid partitions the unit square into 64 squares of 
size l/8 x l/8. The hierarchy has L levels, where the 
smallest MBR’s have sides no smaller than 2-L. 

Each entity to be stored in the Filter Tree is associ- 
ated with a level in the tree by examining its MBR. At 
an intuitive level, we drop the MBR through the grids 
at the levels of the hierarchy. The MBR of an entity 
comes to rest at the first level at which its MBR is not 
fully contained within a single cell. If an MBR has one 
side of length greater than 2-j, then it will be associ- 
ated with a level no lower than j. Thus relatively large 
rectangles are guaranteed to be associated with higher 
levels in the tree, and relatively small rectangles will 
tend to be associated with lower levels. According to 
their locations, however, some small rectangles will be 
associated with high levels (because they happen to 
straddle grid lines at high levels). 

More mathematically, the level of the hierarchy with 
which an entity is associated is determined as follows: 
Express the z and y coordinates of the MBR as binary 
fractions, and count the number of initial bits in which 
21 agrees with zh and also yl agrees with yh. If that 
number is i, then the entity is associated with level j 
of the hierarchy. 

Figure 2 illustrates this process for three rectangles 
of differing sizes. Entity A is large and resides at level 
1 of the Filter Tree. Entity B is much smaller, and fits 
within a l/8 by l/8 cell, so it is associated with level 3 
of the tree. Entity C is smaller still, but its location on 
the line z = l/2 causes it to be associated with level 
0 of the tree. 

The bulk of the data in a Filter Tree is located in 
the entity records. Each entity record contains all the 
information associated with the corresponding entity. 

Figure 2: Filter Tree Example 
It is desirable (although not mandatory) to order the 
entity records according to the Hilbert values of the 
centers of their MBRs so that proximity in two-space 
is preserved in the serialized entity record file as much 
as possible. 

Entity records are located through entity descrip- 
tors. For each ‘entity, there is a corresponding entity 
descriptor stored in the entity descriptor file. An en- 
tity descriptor contains: 

l specification of the minimum bounding rectangle 
(MBR) of the entity, (XI, YI), (zh, Yh), 

l the Hilbert curve coordinate associated with the 
center of the MBR, H(x,, y,) 2 

l a pointer to the disk block in which the corre- 
sponding entity record is stored. 

The entity descriptor file is organized so that: (1) 
the descriptors for all the entities associated with a 
particular level are stored together; and (2) within 
each level, the descriptors are ordered by the Hilbert 
value of the centre of their MBRs. A consequence of 
(2) is that the entities contained in a particular cell of a 
particular level will all be stored contiguously. The de- 
scriptors are packed into blocks, with each block con- 
taining about 50 to 100 entity descriptors (assuming 
32 bytes per descriptor and a block size in the range 
of a few kilobytes). 

For the part of the entity descriptor file associated 
with each level of the Filter Tree, there is a cell in- 
dex. The cell index is a B-tree that records the Hilbert 
value of the last entity descriptor in each block. This 
requires one (12 byte) entry in the cell index for each 
block of the entity descriptor file for the level (plus a 
small additional cost for the upper levels of the B-tree). 

2Although H(tC,yc) can be derived from (q,yi) and 
(zh,y~,), both are stored in the entity descriptor to avoid re- 
peated conversions. 
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3.4 Processing Algorithms 

3.4.1 Construction Algorithm 

The algorithm for constructing a Filter Tree from a 
set of entities is given in Figure 3. This algorithm 
presumes a static set of entity records. In the static 
case, the effort to construct the tree (sorting the entity 
records themselves into Hilbert order, packing them 
into blocks, and storing the blocks contiguously on sec- 
ondary storage) will be amortized over all the queries 
answered using the tree. 

3.4.2 Spatial Joins Using Filter Trees 

In this section, we describe how spatial joins are exe- 
cuted using a Filter Tree structure. Spatial joins deal 
with correlations of entities between two or more spa- 
tial data sets according to some correlation predicate. 
This predicate can specify conditions on the overlap 
between two entities, the maximum (minimum) dis- 
tance between them, etc., and only entity pairs that 
satisfy the predicate will be included in the spatial 
join. Spatial joins find many applications in GIS and 
they are particularly useful in spatial data mining ap- 
plications [NH94]. 

Join processing proceeds in two steps. The first 
step, identifies a list of candidate pairs that might 
qualify to be in the output. This set is derived based 
on the partial evaluation of the predicate with the in- 
formation included in the entity descriptors. The next 
step, called the refinement step, tests the full predi- 
cate against the full entity records for each object pair 
produced during the filter step. Thus, the purpose 
of the first step is to narrow the search space of the 
refinement step, in order to reduce the number of en- 
tity records that must be read from disk. Any valid 
indexing method will identify the same set of candi- 
date pairs and will transfer the same number of entity 
records from disk, applying the same algorithms for 
predicate evaluation. Therefore, the critical factor in 
choosing a method for performing spatial joins is the 
performance of the first step. 

A spatial join between two Filter Trees involves an 
index sweeping process. However, the structure of the 
Filter Tree makes the sweeping process very efficient. 
For any pair of data sets, their full spatial join can be 
computed with the minimal amount of IO, namely by 
reading each block of the entity descriptor file at most 
once. 

Consider the hierarchies of filters, r;‘l and F2, shown 
in figure 4. There are three levels in each hierarchy. 
If we wish to search for matches between entity de- 
scriptors in cell 0 of FI and all the cells of F2 we may 
restrict our search to cell 0 of F2 and its enclosing cells 
at higher levels (in the direction of the arrow in figure 
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Figure 4: Spatial Join example ’ 
4). NO other cells need be considered, since, by the 
definition of the Filter Tree hierarchy, cells are dis- 
joint. In a similar fashion, matching the descriptors 
in the 15th cell of level 2 in Fl involves looking at the 
corresponding cell in F2 and its enclosing cell at level 
1 only. 

The spatial join algorithm is designed to allow every 
cell at each level of the tree to be processed in this way 
while reading each block of the descriptor index file 
only once. This is accomplished by sweeping concur- 
rently through the entity descriptor files for each level 
of each participating Filter Tree in increasing Hilbert 
value order. When Hilbert value h is being passed 
over, there are 2L pages that must be in memory, one 
for each level in each tree. 

We identify processing intervals within the range 
(0,l) in terms of end markers taken from each block 
of the entity descriptor file. Let eljF be the highest 
Hilbert value of any entity descriptor in the jth block 
of level 1 of the Filter Tree F. There are as many 
end markers as there are blocks in the entity deserip- 
tor files of both trees together. We sort the full set 
Of 6Qj F values and delete any duplicates. Then the 
Hilbert value ranges delineated by successive pairs of 
end marker values in the sorted list have the prop 
erty that they are fully contained within one block at 
each level of each participating tree. Consequently, it 
is possible to process each such interval in turn while 
keeping in memory just one block from each level of 
each tree. When processing of all possible join pairs 
has progressed to Hilbert value elj Fi, then we are done 
with the jth block of level 1 of tree Fi, and we replace 
it by the i + 1st block of level 1, enabling us to pro- 
ceed with the next processing interval. All eljF1 values 
are not necessarily unique. Processing intervals ended 
by non-unique values will simply cause more than one 
block to be replaced before starting the next process- 
ing interval. 

Within a processing interval, the following actions 
are carried out. Levels 0 to L of each tree are addressed 
in turn, and the spatial join step illustrated in Figure 4 
is carried out on the set of entities in the current block 
of that level. Let SIF*(e,,, e,+i) denote the set of en- 



Given a set of entity descriptors: 

l Create from each entity record an entity descriptor: 

1. From the shape of the entity, derive its minimum bounding rectangle. 

2. From the corners of the MBR, determine the level of the Filter Tree at which the entity is 
to be stored. 

3. From the coordinates of the center of the MBR, derive the Hilbert value associated with 
the entity. 

4. Include in the entity descriptor a pointer to the block of secondary storage that contains 
the entity record. 

l Create the entity descriptor files for each level of the Filter Tree: 

1. Group the entity descriptors for each level of the tree. 

2. For each level, sort the entity descriptors according to Hilbert value order. 

3. Pack the entity descriptors into contiguous blocks of secondary storage, inserting an entry 
for each block into the B-tree cell index for the level. The entry specifies the Hilbert value 
of the last entity descriptor in the block. 

Figure 3: Filter Tree Construction Algorithm 
tity descriptors in level 1 of tree Fi that have Hilbert 
values in the range (e,, e,+r). By the way the process- 
ing intervals were defined, all the entity descriptors in 
all these sets will be in memory while the processing 
interval is treated. Then for levels I = 0,. . . , L in turn, 
we: 

l match entries in SIF1(e,, e,+i) against those in 
S1-iF2(e n,en+l) for i’= 0,. . .,I. 

l match entries in SIFz(e,,e,+l) against those in 
Sl-jF1(e n,en+i)fori=l,...,I 

(Note that the ranges of i differ in the two 
steps in order to avoid matching SrF’ (e,, cn+i) and 
Sr”(e n, en+11 twice.1 

The spatial join carried out in this way is as effi- 
cient as possible, reading each entity descriptor block 
only once, and yet requiring that only one block of 
each level of each tree be in memory at a time (except 
in exceptional circumstances where a large number of 
entries have identical coordinates). By doubling the 
(small) memory requirement, a double-buffering tech- 
nique can be used to overlap the reading of one block 
at a particular level with the processing of the previous 
one. 

The basic algorithm for spatial joins as described 
above can be optimized in some ways at the cost of 
some increase in complexity. Also, some exceptional 
cases must be handled. More discussion and the corn: 
plete algorithm are available elsewhere [SK95]. 

3.4.3 Range Queries 

In this section, we present the range query algofithm 
for Filter Trees. Given a query window specified by 
its lower left and upper right point coordinates, we 
wish to retrieve all entities in the tree that overlap 
this window. Assume that the coordinates of the lower 
left point are (21, yi) and the coordinates of the upper 
right point are (zh, yh). In order to answer the query, 
we have to search each level in the Filter Tree. How- 
ever, searching within each level can be very efficient, 
because we can identify the relevant blocks to fetch. 

At each level, each cell that covers any part of the 
query area must be examined. Within each level, the 
set of cells to be examined will form a set of Hilbert 
value intervals. The union of the intervals at level k 
will be a subset of the intervals at level k - 1, reflecting 
the fact that some cells included at level k - 1 have only 
one or two (rather than four) subcells included at level 
k. 

Once an interval to be scanned is identified, the cell 
index can be used to identify the first and last blocks 
of the entity descriptor file that contain entities with 
Hilbert values in the interval. Then all blocks from 
the first through the last can be read with a single IO 
request. 

At lower levels of the tree (say 10 and below), the 
number of cells is so large that we must avoid having to 
enumerate all the cells in a range query. (Most cells at 
these levels will be empty anyway, since the number of 
cells will surpass the number of entities stored in the 
tree.) Because the construction algorithm for Filter 
Trees packs the contents of successive cells (empty and 
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otherwise) into blocks, we need only determine what 
sequence of blocks contain entities with Hilbert values 
in a specified range. 

In order to determine a set of Hilbert value intervals 
that together cover all the cells touched by a range 
query, we use the following approach. We choose a 
specific level of the Filter Tree, called c, to be the 
containment level for processing the query. This means 
that intervals to be processed will be identified and 
expressed with Hilbert values of precision 2c bits. 

From the query coordinates, (t[, yl), (c,,, ii), we 
can identify the minimal rectangular set of cells at 
level c that completely covers the query area. Ev- 
ery interval that passes through the query area starts 
and ends with one of the cells on the outer border of 
the rectangular area. Consequently, we can identify 
all the relevant intervals by traversing the perimeter 
of the rectangular area, and keeping track of all level 
c cells that are the start and/or the end of an interval. 
For each level c cell on the border of the query area, 
the Hilbert values of the cell and its neighboring cell 
outside the query area are calculated and compared. 
(Cells covering the corners of the query will have to 
be compared with adjacent cells in each dimension.) 
When the Hilbert value of the border cell is exactly 
4” bigger than that of its neighbor, then that cell 
is the start of a new interval; when the Hilbert value 
of the border cell is exactly 4-c smaller than that of 
its neighbor, the border cell is the end of an inter- 
val. By recording all the cells that start intervals and 
all those that end intervals while traversing the entire 
query border, and then simply sorting the two sets, all 
intervals are identified by pairs of entries in the two 
sorted sets. Choosing a larger value for c causes the 
intervals selected to include less marginal area outside 
the query at the cost of having a larger number of 
border cells to traverse. 

Section 4.2 will present an analysis of the effect of 
choosing a particular containment level. The appro- 
priate choice depends more on the number of entities 
stored in the Filter Tree than on the precise dimen- 
sions of the query. For around 10,000 entities, level 6 
is a good choice, whereas for 10,000,000 entities level 
11 is good. The analysis to support these choices is 
given in Section 4.2 

Each interval determined by the steps outlined 
above can be used to identify a sequence of blocks 
in the entity descriptor file for each level of the tree. 
Each sequence of blocks can be read with a single bulk 
IO request . If k is the lowest level of the Filter Tree at 
which the query area is fully enclosed in a single cell, 
then only a single interval (or sequence of blocks) will 
be required at levels 0 through k of the tree. Below 

t level k, there will generally be two or more intervals 
involved, each corresponding to a sequence of blocks. 

These sequences of blocks may be adjoining or even 
overlapping in a single block at the ends. By consider- 
ing all the sequences of blocks involved for a particular 
level of the filter tree and merging all sequences that 
overlap or are adjacent, it is possible to do a minimal 
number of bulk IO requests to obtain all the relevant 
entities to the query at that level of the Filter Tree. 
Note that it may pay to merge two sequences even if 
they are separated by a block or two rather than ad- 
jacent or overlapping, since the single longer bulk IO 
request including the intervening blocks may be less 
costly than two IO requests for the sequences sepa- 
rately. 

4 Analysis of Filter Trees 

In this section, we analyze some properties of Filter 
Trees. For this purpose, we will make specific assump- 
tions about the distributions of sizes and placements of 
(the minimum bounding rectangles of) entities stored 
in the Filter Tree. 

4.1 Distribution of Entities Over Levels 

First, we consider the probability distribution across 
levels of the Filter Tree of d x d objects, assuming that 
the object centers are uniformly distributed over the 
unit square. At Filter Tree level j, d x d objects will 
fall through only if their centers are at least distance $ 
from the lines & for i = 0,l.. .2j in both the z and y 
dimensions. Thus, in order to fall through level-j, the 
center of a d x d object must be in one of # squares, 
each of which has area (8 - d)2. Consequently, the 
fraction of d x d objects that fall below level j is: 

4j(+ - d)2 = (1 - 2jd)2. 

Since the fraction that fall through level j-l 
2j-1d)2, then the fraction that reside precisely 
jis 

fd(j) = 2jd(l - ;2jd) 

(1) 
is (1 - 
at level 

(2) 

Knowing that the cumulative total at levels 0 
through j is 2j+‘d - @d2, we can conclude that the 
distribution of level occupancy for d x d objects is: 

{ 

d(2 - d) j=O 

fd(j) = 2jd(l - 32jd) 
(1 - +2” d)d)2 4 

j = 1 -‘, 
j = kib) 

k(d) - 1 (3) 

where k(d) = [- log, dl is the lowest level to which 
any d x d.object can fall (since d must be less than 
2-k). Then the average level occupied in the Filter 
Tree by d x d objects is: 

k(d) 

I(d) = 2 jfd(j) 
j=O 

(4 
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Figure 5: The border of a range query covered by a 
rectangle of a cell at level c of the Filter Tree 

Note that, for the internal levels of the tree, since 
2jd = 2j”$, f4j) = fd12(j + 1). 

The distribution of level occupancy and the average 
level occupied by squares of size d both indicate that 
only a small fraction of small squares are caught at lev- 
els significantly higher than the lowest level to which 
squares of their size can fall. This illustrates the size 
separation achieved by the Filter Tree structure. 

If the probability density function of the sizes of 
objects to be stored in the Filter Tree is p(d), then the 
aggregate distribution of level occupancy is given by: 

The analysis above can be generalized to apply to 
rectangular entities rather than square ones. Details 
are available elsewhere [SK95]. 

4.2 Range Query Precision and Cost 

In describing the algorithm for processing range 
queries in Section 3.4.3, we pointed out the importance 
of limiting the total length of the Hilbert value ranges 
that are searched to process the range query. Here we 
analyze the tradeoff between the computation invested 
to restrict the ranges and the excess portion of space 
searched outside the query area. 

. 

At each level of the Filter Tree, we must examine 
each cell that is either enclosed or intersected by the 
border of the query range. For lower levels of the tree, 
however, there are too many cells to consider each one 
individually. Instead, we choose (carefully) a particu- 
lar level of the Filter Tree to be the containment level, 
c, and calculate the minimal set of Hilbert value ranges 
required to cover all cells at that level that are con- 
tained in or overlap the query range. 

Consider now a particular range query with dimen- 
sions d, by d,, and a chosen containment level, c. Fig- 
ure 5 illustrates the situation that must hold whenever 

min( d, , dy ) > 2-=+l. The range query processing al- 
gorithm described in Section 3.4.3 identifies and scans 
all the Hilbert value ranges that cover the ra2 x nY 
cells at level c. The cost of identifying the ranges is 
the calculation of the Hilbert value for each boundary 
cell and their external neighboring cells. This requires 
a total of 4(n, + ny - 1) calculations of a Hilbert value 
from (2, y) coordinate pairs. 

The portion of Hilbert value ranges searched un- 
necessarily (because it is outside the query area but 
inside the bordering cells) is n,ny2-2c - d,d,. Al- 
lowing for the worst possible dimensions, d, and dy, 
and the worst possible alignment of the query with the 
cells at level c, an upper bound on the proportion of 
the space scanned unnecessarily, W, is given by: 

W = n,ny2-2c - d,d, _< 2-(‘-‘)(d, + dy + 2-(‘-‘)) 

(6) 
since d, > (n, - 2)2-c and d, 2 (nV - 2)2-“. Ex- 

pressing the number of required Hilbert value calcula- 
tions, nH, in terms of d, and du, we have: 

nH = 4(%?! •t ny - 1) L 4((& + d,)2C + 3) (7) 

For a range query of dimensions d, x d, on a Filter 
Tree that stores IV spatial entities, we would like the 
containment level, c, to provide an appropriate trade- 
off between the computation required (nH) and the 
excess area scanned (W). The fact that increasing c 
by one roughly halves W while roughly doubling nH 
suggests that any weighted sum of W and nH will have 
a concave upward shape indicating the existence of an 
optimal c value that minimizes the function. Further, 
the optimal c value will be one for which the two com- 
ponents of the cost function have approximately equal 
magnitude. In particular consider minimizing the cost 
function: 

C total = (nHxCxcff)+(wxT x CB) (8) 

where: 

0 CH = processor time required per level to convert 
(t, y) to a Hilbert value, 

l CB = cost of reading and scanning a block of en- 
tity descriptors, and 

l b = blocking factor of entity descriptors. 

The first term represents the cost of doing all the 
Hilbert value calculations of cells along the border of 
the query, and the second term estimates the cost of 
processing Hilbert value ranges outside the query if the 
intervals to be scanned are chosen at level c. Due to the 
concave upward shapes of these two component curves, 
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N best c 

10,000 6 or 7 
100,000 8 
1,000,000 9 or 10 
10,000,000 11 

Table 1: Best values of c for different data base sizes 
the value of C that minimizes Ctotal is the integer that 
best satisfies: 

nHxcxc~~WX~Xc~ (9) 

Substztuting for nH and W from 7 and 8 respec- 
tively, retaining only dominant terms on each side and 
dividing by (& + dY) yields: 

c x 2c+2 x CH r ; x 2+-l) x cl3 (10) 

or 
(1 (11) 

In our implementation, b is about 60 and c x Cx is 
very close to c x 0.05 milliseconds. If we assume 6’~ 
is about 30 milliseconds then the equation becomes 
c x 22c+1 2 10 x N. Based on these assumed parameter 
values, Table 1 shows the best choice of c for various 
values of N. 

By retaining only the dominant terms in develop- 
ing equation 10, the dependence of choice of c on the 
query dimensions is lost. While in general we can af- 
ford a slightly larger value of c for queries with smaller 
dimensions (b’ecause their perimeters are smaller), this 
is a secondary effect. It is sufficient to choose c once 
for each Filter Tree according to the number of entities 
it contains. 

5 Experimental Results 

In order to assess the performance benefits and limi- 
tations of Filter Trees, we conducted a series of exper- 
iments involving spatial joins and range queries, using 
the algorithms described in Section 3.4. We experi- 
mented with both real and synthetic data sets 3. 

The Filter Trees in our experiments have at most 21 
levels (numbered 0 to 20), because the real data sets 
that were available to us produce at most 21 levels 
in their Filter Tree representation. We used data sets 
extracted from the TIGER data file of US Bureau of 
the Census [BurSl]. The first one consisted of 53,145 
line segments representing road segments from Long 

3All of.our experiments were conducted on a Sun Spare 20 
with a 6OMHz Supersparc+, SPEC Int 92 4492, SPEC FP 92 
4888. 

Beach County, California. We will refer to this set as 
the LB data set. The second file consisted of 39,068 
lines .segments representing road segments in Mont- 
gomery County, Maryland. We will refer to this file 
as the MG data set. We used these data sets because 
they have been used previously by other researchers. 
While they are “real”, it is unlikely they are “typical” 
of spatial data sets because they treat sequences of 
highway segments and hence exhibit a low degree of 
overlap among intervals. For that reason, we also gen- 
erated some synthetic data sets using various discrete 
probability distributions. 

In a Filter Tree, the distribution of the sizes of the 
entities is of great importance, since it determines the 
occupancy of each level. We experimented with two 
distributions to generate synthetic data sets: 

l “equal area coverage ” where 9 = f$$ for all 

d’, d” pairs. We generated one data set follow- 
ing this distribution, having 50,000 descriptors in 
levels 5 to 12. We refer to this as the EA data 
set. 

l triangular shaped distribution. Given a “peak” 
level and min and max levels, the sizes of MBRs 
in the synthetic data set has a triangular shaped 
distribution. 

More formally the “triangular distribution” is de- 
fined as: 

xl+*(&) Qldlt2 

13-&&y) x2 I d I 23 
(12) 

where xl, x3, x2 correspond to the minimum, maxi- 
mum and peak level. The motivation for using the 
triangular distribution came from observation of the 
distributions of the sizes in the LB and MC data sets. 
Using the “triangular distribution”, we generated two 
synthetic data sets with 50,000 descriptors: Set TR1 
was generated using x1 = 4,x2 = 17, x3 = 20 and TR2 
using xl = 4, x2 = 15, x3 = 20. 

For all the experiments we conducted with Filter 
Trees, we present the corresponding performance of 
Hilbert R-trees for comparison. The experiments are 
based on the static versions of both Filter Trees and 
R-Trees. We chose to present performance numbers 
for Hilbert R-trees because they outperform all other 
variants in the R-tree family for range queries and we 
expect they are also better for spatial joins due to their 
clustering properties [KF94]. It would be desirable 
to compare the performance of Filter Trees against 
additional spatial data structures, but experimental 
results for others are available either for range queries 
only or not at all [HSWSO], [OM88]. 
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5.1 Spatial Joins 

We present and discuss tb experimental results ob- 
tained from the application of our spatial join algo- 
rithm to the real and synthetic data sets. For all exper- 
iments, we present the measured response time and the 
proportions of IO and CPU time. The estimates for IO 
time are obtained by precisely counting the number of 
IO operations occurring during each experiment and 
charging 30 ms for each IO operation. CPU time is 
then the measured response time minus the estimated 
IO time. Although these estimates are not exact, they 
suggest the balance between IO and CPU time in the 
join algorithms. Leaf index blocks have exactly the 
same structure for both access methods. However the 
index fanout of the Filter Tree is much higher than 
that for R-trees. For our prototype implementation 
the fanout for Filter Trees was 63 and for R-trees 42 
(- 34% higher for Filter Trees). In an enhanced im- 
plementation, Filter Trees can have fanout up to three 
times bigger than that of R-trees. 

For comparison with the Filter Tree join algorithm, 
we implemented the best R-tree join algorithm pro- 
posed by Brinkhoff et al. [BKS93]. The R-tree join al- 
gorithm involves an index sweeping process. When the 
indexes have the same height, the. algorithm proceeds 
top-down sweeping index blocks at the same height. 
At a specific height, the pairs of overlapping descrip- 
tors are computed and, at the same time, the rect- 
angles of their intersections are computed also. This 
information is used to guide the search in the lower 
levels, since descriptors not overlapping the rectangle 
of intersection of their parents need not be consid- 
ered for the join. The algorithm uses a buffer pin- 
ning technique that follows a greedy approach trying 
to keep relevant blocks in the buffer in order to min- 
imize block re-reads. When the indexes do not have 
the same height, the algorithm proceeds as described 
above up to a certain point and then degenerates into 
a series of range queries. 

For all the experiments, we assumed that the R- 
tree indexes and the Filter Tree cell indexes fit entirely 
in main memory. This is a realistic assumption even 
for large data files and it is especially true for Filter 
Trees since the index size is smaller than for R-trees 
for most data sets. For our spatial join experiments 
we experimented with the following types of joins: (a) 
self joins joining a data set with itself (which is useful 
in identifying pairs of overlaps within a data set) and 
(b) joining two distinct data sets. For the latter, we 
used two different alternatives: 

l joining one of LB and MG with one of TR1 and 
TR2, or 

I l joining a data set (D) and a synthetic data set 

(0’) generated from D as follows: If t,,, and 
I/,,,~~ are largest sizes of any entity in D in the 
z and y dimensions, respectively, then for each 
entity in D, we generate a new entity in D’ having 
as a lower left point the center of the entity from D 
and sizes in x and y uniformly distributed between 
zero and x,,, and y,,,,, respectively. That way, 
a synthetic set with statistical properties similar 
to D is generated. 

In figure 6a, we present the performance of self joins 
for the LB data set, for R-trees and Filter Trees. For 
the R-tree join, we varied the buffer size available dur- 
ing the join operation and we present it as a percentage 
of the total number of blocks of both files. Increased 
buffer size improves the IO behavior of the R-tree join 
algorithm. This basically means that the buffer hit ra- 
tio increases, since more blocks can stay memory resi- 
dent. The buffer pinning part of the R-tree join algo- 
rithm tries to minimize the number of re-reads for data 
blocks and the increased buffer size obviously helps. 

The LB data set in its Filter Tree representation 
has 19 levels. This means that the Filter Tree join can 
proceed with only 38 blocks of buffer space, which is 
only 2.2% of the total set of blocks. Filter Trees pro- 
vide 10% savings in response time when 5% buffering 
is available for R-trees. The Filter Tree performance 
is matched by the R-tree when 20% buffering of the 
underlying space is provided to the R-tree. Figure 6b 
presents the results of the same experiment using the 
EA data set. Filter Trees can perform the join with 
almost 50% savings in response time with 2.1% buffer 
space, relative to an R-tree with 5% buffering. Even 
with 20% buffering available for R-trees, Filter Trees 
still achieve 23% savings requiring only 2.1% buffer 
space. 

Figures 7a,b present experimental results for the 
join performance of Filter Trees and R-trees, using * 
the MG data. Filter Trees perform the best in both 
cases achieving 32% and 23% savings in response time 
respectively relative to the R-tree with 5% buffering 
case. 

Figures 8a,b present join results for the TR1 and 
TR2 data sets with sets having similar statistical prop 
erties. The general trends for the performance of the 
R-tree join algorithm remain the same, with increased 
buffer size improving the total response time. How- 
ever, .for these data sets, the buffer pinning mecha- 
nism of the ‘R-tree algorithm is not so effective, since a 
higher buffering percentage is needed in order for the 
algorithm to attain IO efficiency. In particular, even 
with 20% buffering, R-trees have to read each block 
three times on average to perform the join. The Filter 
Tree join algorithm can proceed with only 34 blocks, 
which is 2.1% of the total file size. Comparing figures 
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Figure 6: Performance of self joins for real and synthetic data sets 
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Figure 7: Join performance for R-trees and Filter trees using the MG data set 
8a and 8b, it is interesting to note that, as the peak of 
the distribution is shifted toward lower levels, the R- 
tree join algorithm becomes less efficient. An increase 
in the number of larger entities in the file causes more 
ambiguity in the R-tree index. As a consequence, the 
IO and CPU time requirements of the R-tree join al- 
gorithm is higher4. 

We expect that, in the scope of real life spatial data 
base applications, the performance benefits of the Fil- 
ter Tree approach will range somewhere between those 
reported for the LB and MG data sets (in figure 6) 
and those for the TR1 and TR2 data sets (in figure 8). 

5.2 Range Queries 

In this section we describe experimental results for the 
performance of range queries on Filter Trees. Filter 
Trees, due to their size separation principle, require 
at least one disk access at every level of the tree in 
order to answer a range query. We investigate the total 
number of blocks transfered versus query size for one 
real data set (LB) and one synthetic data set (TR1). 

We processed 100 random queries inside LB and 
TR1 and found the average number of disk accesses 
per query. With buffering turned off, R-trees perform 
better for range searches on LB. For small queries 
(on the order of 0.001 of the space) R-trees require an 

‘The above observations hold for an additional distribution 
we experimented with, in which the descriptor fraction at each 
level follows the Zipf distribution. 

average of 3-4 disk accesses to answer the queries. The 
same queries, in Filter Trees, require one disk access 
for each level and incur a higher cost. As the query 
size increases, both R-trees and Filter Trees require 
more disk accesses on the average. With 5% buffering 
of the total file size for both R-trees and Filter Trees, 
no improvement is obtained with R-trees . This is 
expected since the queries are random. However.for 
Filter Trees, the average cost of each disk access is 
lower for any query size, because the cost of visiting 
each level in the hierarchy is amortized over all queries. 
For Filter Trees, lower levels are likely to fit in a single 
block (as is the case for levels 2 and 3 of the LB set). 
These levels, as well as other levels with few blocks 
per level, will remain in memory, as each query will 
use them. Consequently the cost of accessing these 
levels is amortized over all queries. 

For range queries on TR1, R-tree searches are not 
very efficient. Small queries require on average almost 
20 disk accesses. For this data set, Filter Trees are 
able to perform a little better for range searches, since 
they need about one disk access per level (TR1 has 
17 levels). When the degree of overlap between MBRs 
becomes larger and the index height increases, R-tree 
searches become inefficient, because the search follows 
many paths down to the leaves and often finds noth- 
ing relevant. Filter Trees can adapt better to distri- 
butions with high overlap between MBRs. Their per- 
formance for large range queries remains worse than 
R-trees however. 
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Figure 8: Join performance for R-trees and Filter-trees on Synthetic Data sets 
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6 Conclusions 

We have presented Filter Trees, an efficient structure 
for performing .spatial join operations between sets of 
spatial objects. The Filter Tree structure is based on 
three principles: 

l Hierarchical &presentation - Each entity is asso- 
ciated with a level that corresponds to a particular 
granularity of space partitioning. 

l Size Separation - Entities of different sizes tend 
to be associated with different levels of the tree. 

l Spatial Locality - Within each level, entities are 
ordered by their positions along a space-filling 
Hilbert curve in order to cause entities in a portion 
of the multidimensional space to map to contigu- 
ous pdrtions of the linear storage space as much 
as possible. 

Together these principles lead to a file structure that 
is capable of supporting spatial joins more efficiently 
than alternatives that have been proposed and evalu- 
ated previously. 
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