
Filter Trees for Managing Spatial Data
Over a Range of Size Granularities

Kenneth C. Sevcik and IVikos Koudas
Computer Systems Research Institute

University of Toronto, Ontario, Canada

Abstract

We introduce a new file organization for the
storage and manipulation of spatial (or multi-
dimensional) data that is able to execute spa-
tial join operations with great efficiency. The
Filter Tree information structure is a hierar-
chical organization that tends to separate spa-
tial entities by size, placing larger entities at
the higher levels of the Filter Tree, and smaller
entities at lower levels. Within each level, in-
dex entries for the entities are ordered by a
space-filling curve (Hilbert curve). This allows
the algorithms to use bulk I/O requests, ex-
ploiting the locality in the index information,
and minimizing the number of I/O transfers
from disk. We provide algorithms for con-
structing Filter Trees, for performing range
queries on a Filter Tree, and for performing
spatial joins between a pair of Filter Trees.

Finally, we include results from experiments
using a prototype implementation of Filter
Trees to treat both synthetic and real sets
of spatial entities. Our experimental results
show that full spatial joins can always be
done more efficiently with Filter Trees than
with current competitive methods, and that in
some cases the improvement in performance is
very large.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee

and/or special permission from the Endowment.

Proceedings of the 22nd VLDB Conference
Mumbai(Bombay), India, 1996

1 Introduction

An ever increasing number and range of applications
involve the storage and manipulation of spatial or
multi-dimensional data. These applications include
geographic information systems, animation, virtual re-
ality, robotics, remote sensing and data mining. In all
these applications, some attribute values are drawn
from large fully-ordered domains (e.g., coordinate po-
sitions in Euclidean space). This makes it possi-
ble to view the entities to be stored in the database
as occupying positions or hyper-volumes in a multi-
dimensional space. Queries investigate the intersec-
tions and relative positions in space between pairs
of entities and between entities and specified hyper-
rectangular volumes.

Many multi-key file organizations have been de-
signed, analyzed, and used. These organizations sup-
port the operation of locating all items contained in
a specified hyper-range of the space, or locating the
item(s) “closest” to a specified point in the space ac-
cording to some distance metric. Some of these orga-
nizations have been extended or generalized to han-
dle items that correspond not to points, but to hyper-
volumes in the multi-dimensional space.

In this paper, we introduce a new file structure
called Filter Trees. We describe algorithms for the con-
struction of Filter Trees and for the processing of range
queries and spatial joins on Filter Trees. We demon-
strate, using a mixture of analysis and experimen-
tation with a prototype implementation, that Filter
Trees have substantial performance advantages over
previously proposed file structures in processing some
spatial queries of the types needed in applications such
as those mentioned earlier, specifically spatial joins.

Filter Trees derive their relative advantages through
the principles of hierarchical representation, size sepa-
mtion, and locality of accesses. Filter Trees involve a
recursive binary partitioning of the data space in each
dimension. Entities associated with a particular level
are all grouped together. Each entity is placed at the

16

lowest-level of the tree at which it is fully enclosed by a
single cell of the partition at that level. This method of
determining the level at which an entity is stored tends
to cause larger entities to be stored high in the tree (be-
cause they can be contained only in large cells), while
smaller entities tend to sink to lower levels of the tree
because they fit into smaller cells. Sometimes small
entities will be caught at higher levels in the tree be-
cause they happen to lie across the boundary between
two large cells. However, under reasonable statistical
assumptions about where entities are placed, the frac-
tion of such entities is small.

The algorithms for processing Filter Trees are de-
signed to limit the portion of the index and data space
that must be explored in order to respond to a query,
and also to maximize the degree of locality within the
portion of space that is explored. The locality is ex-
ploited by using space filling Hilbert curves (of differ-
ent degrees at different levels of the hierarchy) to order
the items stored at a particular level.

The remainder of the paper is organized as fol-
lows. Section 2 reviews relevant prior work. Section
3 presents the precise definition of Filter Trees, and
describes the algorithms for constructing and using
them. In Section 4, the properties and behavior of
Filter Trees are analyzed under some simple assump-
tions about the characteristics of the entities stored in
the structure. Section 5 contains experimental results
with a prototype implementation of Filter Trees, using
both synthetic and real data sets. Finally, Section 6
recaps the essential points of the paper.

2 Related Work

A primary goal for Object Relational Data Base Man-,
agement Systems (ORDBMS) and Geographical Infor-
mation Systems (GIS) is to provide efficientaccess to
multidimensional data. The access methods that pro-
vide access paths to such data are called Spatial Access
Methods (SAMs) or Multidimensional Access Methods.

Typical queries for multidimensional access meth-
ods are range queries, nearest neighbor queries and
spatial joins. Spatial Access Methods have been an
active area of research over the years. They can
be categorized as either entity-grouping or space-
partitioning [Sam90]. With the entity grouping ap-
proach, the way in which entities are clustered and
stored in blocks is determined by what items are stored
and the order in which they are inserted. Space parti-
tioning approaches impose a regular decomposition of
the space.

A very popular way to organize and access multidi-
mensional objects is the R-tree [Gut84]. In an R-tree,
multidimensional objects are represented by their Min-
imum Bounding Rectangles (MBR), which may over-

lap. Consequently the R-tree does not impose any de-
composition in the space. Because of the overlap in the
index entries, the organization and. grouping of data
into blocks has great impact on the performance of the
method. Several variations on R-trees have been pro-
posed, like the Rt-tree [SRF87], the e-tree [BKSSSO]
and the Hilbert R-tree [KF94].

Space filling curves [Jag901 have been used for clus-
tering multidimensional objects. Hilbert curves have
been shown to have better clustering properties than
alternatives [KF93].

Abel and Smith [AS831 first proposed a method to
organize rectangles based on their sizes. A similar
approach was proposed by Kedem [Ked82] [SamgO].
Six and Widmeyer used size separation to extend grid
files to represent hyper-rectangles rather than points
[SWSS]. Hutflesz, Six, and Widmeyer later proposed
the R-File, which uses a multi-resolution representa-
tion to yield improved performance for range queries
relative to R-trees [HSWSO]. Another form of size sep-
aration proposed by Guenther [GueSl] was based on
oversize shelves for the storage of items that would
otherwise span many nodes at lower levels of the hier-
archies.

Orenstein and Manola proposed PROBE for use
in image database applications [OM88]. The method
uses a hierarchical representation reflecting the con-
tainment of objects in sub-quadrangles. Z-ordering is
also used to assure a degree of locality. The method is
shown by the authors to be useful in evaluating range
queries, but no experimental performance results are
reported for spatial join performance.

Thus, hierarchical representation, size separation,
and space-filling curves have all been used in vari-
ous previously proposed multidimensional information
structures. However, by combining them, Filter Trees
can perform spatial joins with a guaranteed minimal
number of block reads from disk. Other methods that
have been proposed cannot make such guarantees. Ex-
cept for R-Trees, experimental results on the perfor-
mance of spatial joins of hyper-rectangles are not avail-
able.

3 Filter Trees

3.1 Assumptions

In this section, we define a new file structure, called
Filter Trees ,, that is suitable for the storage and pro-
cessing of spatial data. We introduce Filter Trees in
a rather limited context initially to facilitate the pre-
sentation. The initial assumptions are:

l the spatial objects are two-dimensional rectan-
gles,

17

l their dimensions lie in the range (2-L, 1) for some
L, and

l there are no updates to the set of objects.

The two dimensional case is easiest to understand
and is most relevant to geographic information systems
for representing maps. However, there are many other
applications that require use of three or more dimen-
sions. Fortunately, the two basic mechanisms of the
Filter Tree, namely binary recursive partitioning and
Hilbert curve ordering, both generalize to higher di-
mensions [JaggO]. Because the number of cells at level
j in a k dimensional Filter Tree is 2kj, however, the
number of levels that it is practical to use decreases as
k increases.

If the domains of the attributes that define the mul-
tidimensional space are not (0,l) or if the distributions
of values are not uniform, then appropriate functional
transformation can be applied to object coordinates,
and also to query coordinate specifications, in order to
transform the objects such that they are mapped to
be uniformly distributed within the unit hypercube.

While many (perhaps most) spatial database appli-
cations deal with static or nearly static sets of spatial
entities, there are other spatial database applications
in which updates reflect the addition, deletion, move-
ment, and transformation of spatial entities. These
updates occur interleaved with queries through the
lifetime of the Filter Tree. To handle such applica-
tions with Filter Trees, some space can be systemati-
cally left in each block to allow for efficient insertions
and modifications to the set of spatial entities. As
has been shown with variations of B-trees, this tech-
nique can lead to storage utilization in the 80% to 90%
range and still handle updates efficiently. Correspond-
ingly, the processing of range queries and spatial joins
will generally require 10% to 20% more block transfers
than in the static case in which blocks are fully packed.

3.2 Definition

In two-dimensional space, we assume that each entity
to be stored in the database consists of (1) a shape,
which is defined by a simple, closed polygon, and (2)
additional information. The entity records, which in-
clude the shape and the additional information, are
stored in blocks to form the bulk of the database.

From the twodimensional shape of each object,
we may calculate the minimum bounding rectangle,
(MBR), which is the smallest rectangle that is aligned
with the axes of the two-dimensional space and en-
closes the entity’s shape. The storage of and access to
an entity in the Filter Tree is baaed completely on its
MBR. For convenience of exposition, we will refer to

.o .I

til m

Figure 1: Hilbert Curves of degree 1 (Hi) and 2 (Hz)
the two dimensions as x and y, although their interpre-
tation in specific cases will depend on the application.

The minimum bounding rectangle is specified by the
coordinates of its lower left corner (xl, 91) and upper
right corner (xh, &), where cl and 21, (respectively, ~1
and yh) are the smallest and largest values of the I (re-
spectively y) coordinate, anywhere along the perime-
ter of the entity’s shape. The coordinates of the cen-
tre of the MBR are (z,, yc), where 2, = 9, and

Yc = 9.
Physical storage of both MBRs and entity records

requires a serialized ordering of the entities. To obtain
this serialized order while retaining locality of over-
lapping and neighboring entities in two-dimensional
space, we map the center of each entity’s MBR to a
space filling Hilbert curve. The Hilbert curve position
of the center of the MBR (xe, yc) can be calculated
from the binary representations of the coordinates, x,
and yc. For z curves, this requires only an interleav-
ing of the bits of the binary representations of xc and
y=; for Hilbert curves in two dimensions, the trans-
formation is more complex, involving manipulation of
bit pairs based on a state transition table. The al-
gorithms and state transition table are available else-
where [Bia69][SK95].

Our use of Hilbert curves involves relating (x, y)
coordinate pairs in the unit square (with k bits of pre-
cision) to Hilbert values in the unit line (with 2k bits
of precision) ‘. Thus each of the 4k cells in level k of a
Filter Tree can be identified either by a pair of k-bit x
and y coordinates, or equivalently by the correspond-
ing 2k bit binary fraction representing a Hilbert value.

Figure 1 illustrates this relationship for Hilbert
curves of degree 1 and 2. Note that:

l The (2k bit) Hilbert value of a level k cell is the
prefix of the (2k+2 bit) Hilbert values of the four
level k+l subcells, where the four subcells are dis-
tinguished by appending 00, 01, 10 and 11 as the
least significant bits of the 2k+2 bit binary frac-
tions.

‘Most previous work has enumerated degree k Hiibert curves
using the integers 0 to 4k - 1. The binary fractions used in our
work are precisely the integers used by others divided by 4k for
degree k Hilbert curves. ’

18

l For a cell at level k with a 2k bit Hilbert curve
value, the cell at level k-l containing the level k
cell corresponds to the Hilbert value of the subcell,
but truncated after the 2k-2nd bit.

l For every 2k bit binary fraction, b, the corre-
sponding cell is adjacent to the two cells that cor-
respond to b+4-k and b-4-k (unless one of these
numbers is outside (0,l)).

The last point means that the Hilbert curve is an
optimal space-filling curve in the sense that no serial-
ization of the cells can do any better than having every
pair of adjacent 2k bit binary fractions correspond to
cells that are adjacent in two-space.

3.3 Hierarchy of Filters

The Filter Tree is based on a hierarchy of regular grids
that divide the unit square into subsquares. At level
j, the grid consists of lines at 3, k = 0,. . . ,2j in
both the z and y dimensions. For example, the level
3 grid partitions the unit square into 64 squares of
size l/8 x l/8. The hierarchy has L levels, where the
smallest MBR’s have sides no smaller than 2-L.

Each entity to be stored in the Filter Tree is associ-
ated with a level in the tree by examining its MBR. At
an intuitive level, we drop the MBR through the grids
at the levels of the hierarchy. The MBR of an entity
comes to rest at the first level at which its MBR is not
fully contained within a single cell. If an MBR has one
side of length greater than 2-j, then it will be associ-
ated with a level no lower than j. Thus relatively large
rectangles are guaranteed to be associated with higher
levels in the tree, and relatively small rectangles will
tend to be associated with lower levels. According to
their locations, however, some small rectangles will be
associated with high levels (because they happen to
straddle grid lines at high levels).

More mathematically, the level of the hierarchy with
which an entity is associated is determined as follows:
Express the z and y coordinates of the MBR as binary
fractions, and count the number of initial bits in which
21 agrees with zh and also yl agrees with yh. If that
number is i, then the entity is associated with level j
of the hierarchy.

Figure 2 illustrates this process for three rectangles
of differing sizes. Entity A is large and resides at level
1 of the Filter Tree. Entity B is much smaller, and fits
within a l/8 by l/8 cell, so it is associated with level 3
of the tree. Entity C is smaller still, but its location on
the line z = l/2 causes it to be associated with level
0 of the tree.

The bulk of the data in a Filter Tree is located in
the entity records. Each entity record contains all the
information associated with the corresponding entity.

Figure 2: Filter Tree Example
It is desirable (although not mandatory) to order the
entity records according to the Hilbert values of the
centers of their MBRs so that proximity in two-space
is preserved in the serialized entity record file as much
as possible.

Entity records are located through entity descrip-
tors. For each ‘entity, there is a corresponding entity
descriptor stored in the entity descriptor file. An en-
tity descriptor contains:

l specification of the minimum bounding rectangle
(MBR) of the entity, (XI, YI), (zh, Yh),

l the Hilbert curve coordinate associated with the
center of the MBR, H(x,, y,) 2

l a pointer to the disk block in which the corre-
sponding entity record is stored.

The entity descriptor file is organized so that: (1)
the descriptors for all the entities associated with a
particular level are stored together; and (2) within
each level, the descriptors are ordered by the Hilbert
value of the centre of their MBRs. A consequence of
(2) is that the entities contained in a particular cell of a
particular level will all be stored contiguously. The de-
scriptors are packed into blocks, with each block con-
taining about 50 to 100 entity descriptors (assuming
32 bytes per descriptor and a block size in the range
of a few kilobytes).

For the part of the entity descriptor file associated
with each level of the Filter Tree, there is a cell in-
dex. The cell index is a B-tree that records the Hilbert
value of the last entity descriptor in each block. This
requires one (12 byte) entry in the cell index for each
block of the entity descriptor file for the level (plus a
small additional cost for the upper levels of the B-tree).

2Although H(tC,yc) can be derived from (q,yi) and
(zh,y~,), both are stored in the entity descriptor to avoid re-
peated conversions.

19

3.4 Processing Algorithms

3.4.1 Construction Algorithm

The algorithm for constructing a Filter Tree from a
set of entities is given in Figure 3. This algorithm
presumes a static set of entity records. In the static
case, the effort to construct the tree (sorting the entity
records themselves into Hilbert order, packing them
into blocks, and storing the blocks contiguously on sec-
ondary storage) will be amortized over all the queries
answered using the tree.

3.4.2 Spatial Joins Using Filter Trees

In this section, we describe how spatial joins are exe-
cuted using a Filter Tree structure. Spatial joins deal
with correlations of entities between two or more spa-
tial data sets according to some correlation predicate.
This predicate can specify conditions on the overlap
between two entities, the maximum (minimum) dis-
tance between them, etc., and only entity pairs that
satisfy the predicate will be included in the spatial
join. Spatial joins find many applications in GIS and
they are particularly useful in spatial data mining ap-
plications [NH94].

Join processing proceeds in two steps. The first
step, identifies a list of candidate pairs that might
qualify to be in the output. This set is derived based
on the partial evaluation of the predicate with the in-
formation included in the entity descriptors. The next
step, called the refinement step, tests the full predi-
cate against the full entity records for each object pair
produced during the filter step. Thus, the purpose
of the first step is to narrow the search space of the
refinement step, in order to reduce the number of en-
tity records that must be read from disk. Any valid
indexing method will identify the same set of candi-
date pairs and will transfer the same number of entity
records from disk, applying the same algorithms for
predicate evaluation. Therefore, the critical factor in
choosing a method for performing spatial joins is the
performance of the first step.

A spatial join between two Filter Trees involves an
index sweeping process. However, the structure of the
Filter Tree makes the sweeping process very efficient.
For any pair of data sets, their full spatial join can be
computed with the minimal amount of IO, namely by
reading each block of the entity descriptor file at most
once.

Consider the hierarchies of filters, r;‘l and F2, shown
in figure 4. There are three levels in each hierarchy.
If we wish to search for matches between entity de-
scriptors in cell 0 of FI and all the cells of F2 we may
restrict our search to cell 0 of F2 and its enclosing cells
at higher levels (in the direction of the arrow in figure

20

Lo-1 2

Figure 4: Spatial Join example ’
4). NO other cells need be considered, since, by the
definition of the Filter Tree hierarchy, cells are dis-
joint. In a similar fashion, matching the descriptors
in the 15th cell of level 2 in Fl involves looking at the
corresponding cell in F2 and its enclosing cell at level
1 only.

The spatial join algorithm is designed to allow every
cell at each level of the tree to be processed in this way
while reading each block of the descriptor index file
only once. This is accomplished by sweeping concur-
rently through the entity descriptor files for each level
of each participating Filter Tree in increasing Hilbert
value order. When Hilbert value h is being passed
over, there are 2L pages that must be in memory, one
for each level in each tree.

We identify processing intervals within the range
(0,l) in terms of end markers taken from each block
of the entity descriptor file. Let eljF be the highest
Hilbert value of any entity descriptor in the jth block
of level 1 of the Filter Tree F. There are as many
end markers as there are blocks in the entity deserip-
tor files of both trees together. We sort the full set
Of 6Qj F values and delete any duplicates. Then the
Hilbert value ranges delineated by successive pairs of
end marker values in the sorted list have the prop
erty that they are fully contained within one block at
each level of each participating tree. Consequently, it
is possible to process each such interval in turn while
keeping in memory just one block from each level of
each tree. When processing of all possible join pairs
has progressed to Hilbert value elj Fi, then we are done
with the jth block of level 1 of tree Fi, and we replace
it by the i + 1st block of level 1, enabling us to pro-
ceed with the next processing interval. All eljF1 values
are not necessarily unique. Processing intervals ended
by non-unique values will simply cause more than one
block to be replaced before starting the next process-
ing interval.

Within a processing interval, the following actions
are carried out. Levels 0 to L of each tree are addressed
in turn, and the spatial join step illustrated in Figure 4
is carried out on the set of entities in the current block
of that level. Let SIF*(e,,, e,+i) denote the set of en-

Given a set of entity descriptors:

l Create from each entity record an entity descriptor:

1. From the shape of the entity, derive its minimum bounding rectangle.

2. From the corners of the MBR, determine the level of the Filter Tree at which the entity is
to be stored.

3. From the coordinates of the center of the MBR, derive the Hilbert value associated with
the entity.

4. Include in the entity descriptor a pointer to the block of secondary storage that contains
the entity record.

l Create the entity descriptor files for each level of the Filter Tree:

1. Group the entity descriptors for each level of the tree.

2. For each level, sort the entity descriptors according to Hilbert value order.

3. Pack the entity descriptors into contiguous blocks of secondary storage, inserting an entry
for each block into the B-tree cell index for the level. The entry specifies the Hilbert value
of the last entity descriptor in the block.

Figure 3: Filter Tree Construction Algorithm
tity descriptors in level 1 of tree Fi that have Hilbert
values in the range (e,, e,+r). By the way the process-
ing intervals were defined, all the entity descriptors in
all these sets will be in memory while the processing
interval is treated. Then for levels I = 0,. . . , L in turn,
we:

l match entries in SIF1(e,, e,+i) against those in
S1-iF2(e n,en+l) for i’= 0,. . .,I.

l match entries in SIFz(e,,e,+l) against those in
Sl-jF1(e n,en+i)fori=l,...,I

(Note that the ranges of i differ in the two
steps in order to avoid matching SrF’ (e,, cn+i) and
Sr”(e n, en+11 twice.1

The spatial join carried out in this way is as effi-
cient as possible, reading each entity descriptor block
only once, and yet requiring that only one block of
each level of each tree be in memory at a time (except
in exceptional circumstances where a large number of
entries have identical coordinates). By doubling the
(small) memory requirement, a double-buffering tech-
nique can be used to overlap the reading of one block
at a particular level with the processing of the previous
one.

The basic algorithm for spatial joins as described
above can be optimized in some ways at the cost of
some increase in complexity. Also, some exceptional
cases must be handled. More discussion and the corn:
plete algorithm are available elsewhere [SK95].

3.4.3 Range Queries

In this section, we present the range query algofithm
for Filter Trees. Given a query window specified by
its lower left and upper right point coordinates, we
wish to retrieve all entities in the tree that overlap
this window. Assume that the coordinates of the lower
left point are (21, yi) and the coordinates of the upper
right point are (zh, yh). In order to answer the query,
we have to search each level in the Filter Tree. How-
ever, searching within each level can be very efficient,
because we can identify the relevant blocks to fetch.

At each level, each cell that covers any part of the
query area must be examined. Within each level, the
set of cells to be examined will form a set of Hilbert
value intervals. The union of the intervals at level k
will be a subset of the intervals at level k - 1, reflecting
the fact that some cells included at level k - 1 have only
one or two (rather than four) subcells included at level
k.

Once an interval to be scanned is identified, the cell
index can be used to identify the first and last blocks
of the entity descriptor file that contain entities with
Hilbert values in the interval. Then all blocks from
the first through the last can be read with a single IO
request.

At lower levels of the tree (say 10 and below), the
number of cells is so large that we must avoid having to
enumerate all the cells in a range query. (Most cells at
these levels will be empty anyway, since the number of
cells will surpass the number of entities stored in the
tree.) Because the construction algorithm for Filter
Trees packs the contents of successive cells (empty and

21

otherwise) into blocks, we need only determine what
sequence of blocks contain entities with Hilbert values
in a specified range.

In order to determine a set of Hilbert value intervals
that together cover all the cells touched by a range
query, we use the following approach. We choose a
specific level of the Filter Tree, called c, to be the
containment level for processing the query. This means
that intervals to be processed will be identified and
expressed with Hilbert values of precision 2c bits.

From the query coordinates, (t[, yl), (c,,, ii), we
can identify the minimal rectangular set of cells at
level c that completely covers the query area. Ev-
ery interval that passes through the query area starts
and ends with one of the cells on the outer border of
the rectangular area. Consequently, we can identify
all the relevant intervals by traversing the perimeter
of the rectangular area, and keeping track of all level
c cells that are the start and/or the end of an interval.
For each level c cell on the border of the query area,
the Hilbert values of the cell and its neighboring cell
outside the query area are calculated and compared.
(Cells covering the corners of the query will have to
be compared with adjacent cells in each dimension.)
When the Hilbert value of the border cell is exactly
4” bigger than that of its neighbor, then that cell
is the start of a new interval; when the Hilbert value
of the border cell is exactly 4-c smaller than that of
its neighbor, the border cell is the end of an inter-
val. By recording all the cells that start intervals and
all those that end intervals while traversing the entire
query border, and then simply sorting the two sets, all
intervals are identified by pairs of entries in the two
sorted sets. Choosing a larger value for c causes the
intervals selected to include less marginal area outside
the query at the cost of having a larger number of
border cells to traverse.

Section 4.2 will present an analysis of the effect of
choosing a particular containment level. The appro-
priate choice depends more on the number of entities
stored in the Filter Tree than on the precise dimen-
sions of the query. For around 10,000 entities, level 6
is a good choice, whereas for 10,000,000 entities level
11 is good. The analysis to support these choices is
given in Section 4.2

Each interval determined by the steps outlined
above can be used to identify a sequence of blocks
in the entity descriptor file for each level of the tree.
Each sequence of blocks can be read with a single bulk
IO request . If k is the lowest level of the Filter Tree at
which the query area is fully enclosed in a single cell,
then only a single interval (or sequence of blocks) will
be required at levels 0 through k of the tree. Below

t level k, there will generally be two or more intervals
involved, each corresponding to a sequence of blocks.

These sequences of blocks may be adjoining or even
overlapping in a single block at the ends. By consider-
ing all the sequences of blocks involved for a particular
level of the filter tree and merging all sequences that
overlap or are adjacent, it is possible to do a minimal
number of bulk IO requests to obtain all the relevant
entities to the query at that level of the Filter Tree.
Note that it may pay to merge two sequences even if
they are separated by a block or two rather than ad-
jacent or overlapping, since the single longer bulk IO
request including the intervening blocks may be less
costly than two IO requests for the sequences sepa-
rately.

4 Analysis of Filter Trees

In this section, we analyze some properties of Filter
Trees. For this purpose, we will make specific assump-
tions about the distributions of sizes and placements of
(the minimum bounding rectangles of) entities stored
in the Filter Tree.

4.1 Distribution of Entities Over Levels

First, we consider the probability distribution across
levels of the Filter Tree of d x d objects, assuming that
the object centers are uniformly distributed over the
unit square. At Filter Tree level j, d x d objects will
fall through only if their centers are at least distance $
from the lines & for i = 0,l.. .2j in both the z and y
dimensions. Thus, in order to fall through level-j, the
center of a d x d object must be in one of # squares,
each of which has area (8 - d)2. Consequently, the
fraction of d x d objects that fall below level j is:

4j(+ - d)2 = (1 - 2jd)2.

Since the fraction that fall through level j-l
2j-1d)2, then the fraction that reside precisely
jis

fd(j) = 2jd(l - ;2jd)

(1)
is (1 -
at level

(2)

Knowing that the cumulative total at levels 0
through j is 2j+‘d - @d2, we can conclude that the
distribution of level occupancy for d x d objects is:

{

d(2 - d) j=O

fd(j) = 2jd(l - 32jd)
(1 - +2” d)d)2 4

j = 1 -‘,
j = kib)

k(d) - 1 (3)

where k(d) = [- log, dl is the lowest level to which
any d x d.object can fall (since d must be less than
2-k). Then the average level occupied in the Filter
Tree by d x d objects is:

k(d)

I(d) = 2 jfd(j)
j=O

(4

22

Figure 5: The border of a range query covered by a
rectangle of a cell at level c of the Filter Tree

Note that, for the internal levels of the tree, since
2jd = 2j”$, f4j) = fd12(j + 1).

The distribution of level occupancy and the average
level occupied by squares of size d both indicate that
only a small fraction of small squares are caught at lev-
els significantly higher than the lowest level to which
squares of their size can fall. This illustrates the size
separation achieved by the Filter Tree structure.

If the probability density function of the sizes of
objects to be stored in the Filter Tree is p(d), then the
aggregate distribution of level occupancy is given by:

The analysis above can be generalized to apply to
rectangular entities rather than square ones. Details
are available elsewhere [SK95].

4.2 Range Query Precision and Cost

In describing the algorithm for processing range
queries in Section 3.4.3, we pointed out the importance
of limiting the total length of the Hilbert value ranges
that are searched to process the range query. Here we
analyze the tradeoff between the computation invested
to restrict the ranges and the excess portion of space
searched outside the query area.

.

At each level of the Filter Tree, we must examine
each cell that is either enclosed or intersected by the
border of the query range. For lower levels of the tree,
however, there are too many cells to consider each one
individually. Instead, we choose (carefully) a particu-
lar level of the Filter Tree to be the containment level,
c, and calculate the minimal set of Hilbert value ranges
required to cover all cells at that level that are con-
tained in or overlap the query range.

Consider now a particular range query with dimen-
sions d, by d,, and a chosen containment level, c. Fig-
ure 5 illustrates the situation that must hold whenever

min(d, , dy) > 2-=+l. The range query processing al-
gorithm described in Section 3.4.3 identifies and scans
all the Hilbert value ranges that cover the ra2 x nY
cells at level c. The cost of identifying the ranges is
the calculation of the Hilbert value for each boundary
cell and their external neighboring cells. This requires
a total of 4(n, + ny - 1) calculations of a Hilbert value
from (2, y) coordinate pairs.

The portion of Hilbert value ranges searched un-
necessarily (because it is outside the query area but
inside the bordering cells) is n,ny2-2c - d,d,. Al-
lowing for the worst possible dimensions, d, and dy,
and the worst possible alignment of the query with the
cells at level c, an upper bound on the proportion of
the space scanned unnecessarily, W, is given by:

W = n,ny2-2c - d,d, _< 2-(‘-‘)(d, + dy + 2-(‘-‘))

(6)
since d, > (n, - 2)2-c and d, 2 (nV - 2)2-“. Ex-

pressing the number of required Hilbert value calcula-
tions, nH, in terms of d, and du, we have:

nH = 4(%?! •t ny - 1) L 4((& + d,)2C + 3) (7)

For a range query of dimensions d, x d, on a Filter
Tree that stores IV spatial entities, we would like the
containment level, c, to provide an appropriate trade-
off between the computation required (nH) and the
excess area scanned (W). The fact that increasing c
by one roughly halves W while roughly doubling nH
suggests that any weighted sum of W and nH will have
a concave upward shape indicating the existence of an
optimal c value that minimizes the function. Further,
the optimal c value will be one for which the two com-
ponents of the cost function have approximately equal
magnitude. In particular consider minimizing the cost
function:

C total = (nHxCxcff)+(wxT x CB) (8)

where:

0 CH = processor time required per level to convert
(t, y) to a Hilbert value,

l CB = cost of reading and scanning a block of en-
tity descriptors, and

l b = blocking factor of entity descriptors.

The first term represents the cost of doing all the
Hilbert value calculations of cells along the border of
the query, and the second term estimates the cost of
processing Hilbert value ranges outside the query if the
intervals to be scanned are chosen at level c. Due to the
concave upward shapes of these two component curves,

23

N best c

10,000 6 or 7
100,000 8
1,000,000 9 or 10
10,000,000 11

Table 1: Best values of c for different data base sizes
the value of C that minimizes Ctotal is the integer that
best satisfies:

nHxcxc~~WX~Xc~ (9)

Substztuting for nH and W from 7 and 8 respec-
tively, retaining only dominant terms on each side and
dividing by (& + dY) yields:

c x 2c+2 x CH r ; x 2+-l) x cl3 (10)

or
(1 (11)

In our implementation, b is about 60 and c x Cx is
very close to c x 0.05 milliseconds. If we assume 6’~
is about 30 milliseconds then the equation becomes
c x 22c+1 2 10 x N. Based on these assumed parameter
values, Table 1 shows the best choice of c for various
values of N.

By retaining only the dominant terms in develop-
ing equation 10, the dependence of choice of c on the
query dimensions is lost. While in general we can af-
ford a slightly larger value of c for queries with smaller
dimensions (b’ecause their perimeters are smaller), this
is a secondary effect. It is sufficient to choose c once
for each Filter Tree according to the number of entities
it contains.

5 Experimental Results

In order to assess the performance benefits and limi-
tations of Filter Trees, we conducted a series of exper-
iments involving spatial joins and range queries, using
the algorithms described in Section 3.4. We experi-
mented with both real and synthetic data sets 3.

The Filter Trees in our experiments have at most 21
levels (numbered 0 to 20), because the real data sets
that were available to us produce at most 21 levels
in their Filter Tree representation. We used data sets
extracted from the TIGER data file of US Bureau of
the Census [BurSl]. The first one consisted of 53,145
line segments representing road segments from Long

3All of.our experiments were conducted on a Sun Spare 20
with a 6OMHz Supersparc+, SPEC Int 92 4492, SPEC FP 92
4888.

Beach County, California. We will refer to this set as
the LB data set. The second file consisted of 39,068
lines .segments representing road segments in Mont-
gomery County, Maryland. We will refer to this file
as the MG data set. We used these data sets because
they have been used previously by other researchers.
While they are “real”, it is unlikely they are “typical”
of spatial data sets because they treat sequences of
highway segments and hence exhibit a low degree of
overlap among intervals. For that reason, we also gen-
erated some synthetic data sets using various discrete
probability distributions.

In a Filter Tree, the distribution of the sizes of the
entities is of great importance, since it determines the
occupancy of each level. We experimented with two
distributions to generate synthetic data sets:

l “equal area coverage ” where 9 = f$$ for all

d’, d” pairs. We generated one data set follow-
ing this distribution, having 50,000 descriptors in
levels 5 to 12. We refer to this as the EA data
set.

l triangular shaped distribution. Given a “peak”
level and min and max levels, the sizes of MBRs
in the synthetic data set has a triangular shaped
distribution.

More formally the “triangular distribution” is de-
fined as:

xl+*(&) Qldlt2

13-&&y) x2 I d I 23
(12)

where xl, x3, x2 correspond to the minimum, maxi-
mum and peak level. The motivation for using the
triangular distribution came from observation of the
distributions of the sizes in the LB and MC data sets.
Using the “triangular distribution”, we generated two
synthetic data sets with 50,000 descriptors: Set TR1
was generated using x1 = 4,x2 = 17, x3 = 20 and TR2
using xl = 4, x2 = 15, x3 = 20.

For all the experiments we conducted with Filter
Trees, we present the corresponding performance of
Hilbert R-trees for comparison. The experiments are
based on the static versions of both Filter Trees and
R-Trees. We chose to present performance numbers
for Hilbert R-trees because they outperform all other
variants in the R-tree family for range queries and we
expect they are also better for spatial joins due to their
clustering properties [KF94]. It would be desirable
to compare the performance of Filter Trees against
additional spatial data structures, but experimental
results for others are available either for range queries
only or not at all [HSWSO], [OM88].

24

5.1 Spatial Joins

We present and discuss tb experimental results ob-
tained from the application of our spatial join algo-
rithm to the real and synthetic data sets. For all exper-
iments, we present the measured response time and the
proportions of IO and CPU time. The estimates for IO
time are obtained by precisely counting the number of
IO operations occurring during each experiment and
charging 30 ms for each IO operation. CPU time is
then the measured response time minus the estimated
IO time. Although these estimates are not exact, they
suggest the balance between IO and CPU time in the
join algorithms. Leaf index blocks have exactly the
same structure for both access methods. However the
index fanout of the Filter Tree is much higher than
that for R-trees. For our prototype implementation
the fanout for Filter Trees was 63 and for R-trees 42
(- 34% higher for Filter Trees). In an enhanced im-
plementation, Filter Trees can have fanout up to three
times bigger than that of R-trees.

For comparison with the Filter Tree join algorithm,
we implemented the best R-tree join algorithm pro-
posed by Brinkhoff et al. [BKS93]. The R-tree join al-
gorithm involves an index sweeping process. When the
indexes have the same height, the. algorithm proceeds
top-down sweeping index blocks at the same height.
At a specific height, the pairs of overlapping descrip-
tors are computed and, at the same time, the rect-
angles of their intersections are computed also. This
information is used to guide the search in the lower
levels, since descriptors not overlapping the rectangle
of intersection of their parents need not be consid-
ered for the join. The algorithm uses a buffer pin-
ning technique that follows a greedy approach trying
to keep relevant blocks in the buffer in order to min-
imize block re-reads. When the indexes do not have
the same height, the algorithm proceeds as described
above up to a certain point and then degenerates into
a series of range queries.

For all the experiments, we assumed that the R-
tree indexes and the Filter Tree cell indexes fit entirely
in main memory. This is a realistic assumption even
for large data files and it is especially true for Filter
Trees since the index size is smaller than for R-trees
for most data sets. For our spatial join experiments
we experimented with the following types of joins: (a)
self joins joining a data set with itself (which is useful
in identifying pairs of overlaps within a data set) and
(b) joining two distinct data sets. For the latter, we
used two different alternatives:

l joining one of LB and MG with one of TR1 and
TR2, or

I l joining a data set (D) and a synthetic data set

(0’) generated from D as follows: If t,,, and
I/,,,~~ are largest sizes of any entity in D in the
z and y dimensions, respectively, then for each
entity in D, we generate a new entity in D’ having
as a lower left point the center of the entity from D
and sizes in x and y uniformly distributed between
zero and x,,, and y,,,,, respectively. That way,
a synthetic set with statistical properties similar
to D is generated.

In figure 6a, we present the performance of self joins
for the LB data set, for R-trees and Filter Trees. For
the R-tree join, we varied the buffer size available dur-
ing the join operation and we present it as a percentage
of the total number of blocks of both files. Increased
buffer size improves the IO behavior of the R-tree join
algorithm. This basically means that the buffer hit ra-
tio increases, since more blocks can stay memory resi-
dent. The buffer pinning part of the R-tree join algo-
rithm tries to minimize the number of re-reads for data
blocks and the increased buffer size obviously helps.

The LB data set in its Filter Tree representation
has 19 levels. This means that the Filter Tree join can
proceed with only 38 blocks of buffer space, which is
only 2.2% of the total set of blocks. Filter Trees pro-
vide 10% savings in response time when 5% buffering
is available for R-trees. The Filter Tree performance
is matched by the R-tree when 20% buffering of the
underlying space is provided to the R-tree. Figure 6b
presents the results of the same experiment using the
EA data set. Filter Trees can perform the join with
almost 50% savings in response time with 2.1% buffer
space, relative to an R-tree with 5% buffering. Even
with 20% buffering available for R-trees, Filter Trees
still achieve 23% savings requiring only 2.1% buffer
space.

Figures 7a,b present experimental results for the
join performance of Filter Trees and R-trees, using *
the MG data. Filter Trees perform the best in both
cases achieving 32% and 23% savings in response time
respectively relative to the R-tree with 5% buffering
case.

Figures 8a,b present join results for the TR1 and
TR2 data sets with sets having similar statistical prop
erties. The general trends for the performance of the
R-tree join algorithm remain the same, with increased
buffer size improving the total response time. How-
ever, .for these data sets, the buffer pinning mecha-
nism of the ‘R-tree algorithm is not so effective, since a
higher buffering percentage is needed in order for the
algorithm to attain IO efficiency. In particular, even
with 20% buffering, R-trees have to read each block
three times on average to perform the join. The Filter
Tree join algorithm can proceed with only 34 blocks,
which is 2.1% of the total file size. Comparing figures

25

100
160

60

60
140

-

s 70

c 60

I

f;;;

50
q cPuThl. # q CPlJThl.

f

40 q IO mm

30

20
1

60
80 El

q IOnnw

40

70 20

0 0

5% 10% 15% 20x 2.2%
5% IOU 15% 20K 2.1%

Rlraa Rem Flww Fmuw cnlr Trr
Flew Rtr Rtr ma Cilln Trr

(a) LB data set, self join (b) EA data set, self join

Figure 6: Performance of self joins for real and synthetic data sets

100 I 100 ̂

60 c 60

f 40 60 40 60

20 20

0 0

5% 10% 15% 20% 2.2% 5% R- 10% 15% 20% 2.1%

mrw R&r mw Rtr cstr rr69 trea R+r FItam mea Clnw Trw

(a) Join performance results for MG and TR1 (b) Join performance results for MG and MG’

Figure 7: Join performance for R-trees and Filter trees using the MG data set
8a and 8b, it is interesting to note that, as the peak of
the distribution is shifted toward lower levels, the R-
tree join algorithm becomes less efficient. An increase
in the number of larger entities in the file causes more
ambiguity in the R-tree index. As a consequence, the
IO and CPU time requirements of the R-tree join al-
gorithm is higher4.

We expect that, in the scope of real life spatial data
base applications, the performance benefits of the Fil-
ter Tree approach will range somewhere between those
reported for the LB and MG data sets (in figure 6)
and those for the TR1 and TR2 data sets (in figure 8).

5.2 Range Queries

In this section we describe experimental results for the
performance of range queries on Filter Trees. Filter
Trees, due to their size separation principle, require
at least one disk access at every level of the tree in
order to answer a range query. We investigate the total
number of blocks transfered versus query size for one
real data set (LB) and one synthetic data set (TR1).

We processed 100 random queries inside LB and
TR1 and found the average number of disk accesses
per query. With buffering turned off, R-trees perform
better for range searches on LB. For small queries
(on the order of 0.001 of the space) R-trees require an

‘The above observations hold for an additional distribution
we experimented with, in which the descriptor fraction at each
level follows the Zipf distribution.

average of 3-4 disk accesses to answer the queries. The
same queries, in Filter Trees, require one disk access
for each level and incur a higher cost. As the query
size increases, both R-trees and Filter Trees require
more disk accesses on the average. With 5% buffering
of the total file size for both R-trees and Filter Trees,
no improvement is obtained with R-trees . This is
expected since the queries are random. However.for
Filter Trees, the average cost of each disk access is
lower for any query size, because the cost of visiting
each level in the hierarchy is amortized over all queries.
For Filter Trees, lower levels are likely to fit in a single
block (as is the case for levels 2 and 3 of the LB set).
These levels, as well as other levels with few blocks
per level, will remain in memory, as each query will
use them. Consequently the cost of accessing these
levels is amortized over all queries.

For range queries on TR1, R-tree searches are not
very efficient. Small queries require on average almost
20 disk accesses. For this data set, Filter Trees are
able to perform a little better for range searches, since
they need about one disk access per level (TR1 has
17 levels). When the degree of overlap between MBRs
becomes larger and the index height increases, R-tree
searches become inefficient, because the search follows
many paths down to the leaves and often finds noth-
ing relevant. Filter Trees can adapt better to distri-
butions with high overlap between MBRs. Their per-
formance for large range queries remains worse than
R-trees however.

26

5% 10% 15% 20K 2.,x 5K 10% 15% 20% 2.1% R+m Rru -... - mu RIma rmrrrr Rbr Rbw Rem Rbr Cib Trrr

(a) Join performance results for TR1 and TR1 (b) Join performance results for TR2 and TR2’

Figure 8: Join performance for R-trees and Filter-trees on Synthetic Data sets

500
“--
450 450

400 400

350 150

c 300

250

cl I CPulmw c 300

250
I lonm 200 200

150 150

100 100

50 50

0 0

6 Conclusions

We have presented Filter Trees, an efficient structure
for performing .spatial join operations between sets of
spatial objects. The Filter Tree structure is based on
three principles:

l Hierarchical &presentation - Each entity is asso-
ciated with a level that corresponds to a particular
granularity of space partitioning.

l Size Separation - Entities of different sizes tend
to be associated with different levels of the tree.

l Spatial Locality - Within each level, entities are
ordered by their positions along a space-filling
Hilbert curve in order to cause entities in a portion
of the multidimensional space to map to contigu-
ous pdrtions of the linear storage space as much
as possible.

Together these principles lead to a file structure that
is capable of supporting spatial joins more efficiently
than alternatives that have been proposed and evalu-
ated previously.

References
[AS831 D. J. Abel and J. L. Smith. A Data Structure and

Algorithm Based on a Linear Key for a Rectangle
Retrieval Problem. Computer Vision, Graphics,
and Image Processing 24, pages l-13, March 1983.

[Bia69] T. BiaUy. Space-Filling Curves: Their Genera-
tion and Their Application to Bandwidth Reduc-
tion. IEEE Trans. on Information Theory, IT-
15(6):658-664, November 1969.

[BKS93] Thomas Brinkhoff, Hans-Peter Kriegel, and
Bernhard Seeger. Efficient Processing of Spatial
Joins using R-trees. Proceedings of ACM SIG-
MOD, pages 237-246, May 1993.

[BKSSSO] N. Beckmann, Hans-Peter Kriegel, Ralf Schnei-
der, and Bernhard Seeger. The R* - tree: An Ef-
ficient and Robust Access Method for Points and
Rectangles. Proceedings of ACM SIGMOD, pages
220-231, June 1990.

[Burg11 Bureau of the Census. TIGER/Line Census Files.
March 1991.

[GueSl] Oliver Guenther. Evaluation of Spatial Ac-
cess Methods with Oversize Shelves. Geographic
Database Managment Systems, Workshop Pro-
ceedings, Capri, Italy, pages 177-193, May 1991.

[Gut841 A. Guttman. R-trees : A Dynamic Index Struc-
ture for Spatial Searching. Proceedings of ACM
SIGMOD, pages 47-57, June 1984.

[HSWSO] Andreas Hutflesz, Hans- Werner Six, and Peter
Widmeyer. The R-File: An Efficient Access Struc-
ture for Proximity Queries. Proc. 6th Int. Conf.
on Data Engineering, pages 372-379, 1990.

[Jag901 H. V Jagadish. Linear Clustering of Objects with
Multiple Attributes. Proceedings of ACM SIG-
MOD, pages 332-342, May 1990.

[Ked82] G. Kedem. The Quad-CIF tree: A Data Structure
for Hierarchical On-line Algorithms. Proceedings
of the Nineteenth Design Automation Conference,
pages 352-357, June 1982.

[KF93] Ibrahim Kamel and Christos Faloutsos. On Pack-
ing R-Trees. Second Int. Conf. on Information
ann3Knowledge Management (CIKM), November

[KF94] Ibrahim Kamel and Christos Faloutsos. Hilbert
R-tree: An Improved R-tree Using Fractals. Pro-
ceedings of VLDB, pages 500-510, September
1994.

[NH941 Raymond T. Ng and Jiawei Han. Eficient and
E&ctive Clustering Methods for Spatial Data
Mining. Proceedings of VLDB, pages 144-155,
September 1994.

[OMSS] Jack A. Orenstein and Frank A. Manola. PROBE
Spatial Data Modeling and Query Processing in an
Image Database Application. IEEE Transactions
on Software Engineering, Vol. 14, No. 5, pages
611-629, May 1988.

[Sam901 Hanan Samet. The Design and Analysis of Spatial
Data Structures. Addison Wesley publishing Co.,
June 1990.

[SK951 Kenneth C. Sevcik and Nikos Koudas. Filter Trees
for Managing Spatial Data Over a Range of Size
Granularities. Computer Systems Research Insti-
tute, CSRI-TR-333. University of Toronto, Octo-
ber 1995.

[SRF87] Timos Sellis, Nick Roussopoulos, and Christos
Faloutsos. The R+ -tree : A Dynamic Index for
Multi-dimensional Data. Proceedings of VLDB
1987, pages 507-518, September 1987.

[SW881 Hans-Werner Six and Peter Widmeyer. Spatial
Searching in Geometric Databases. Prc. 4th Int.
Conf. on Data Engineering, pages 496-503, 1988.

27

