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ABSTRACT 

In this paper we present a prototype system for 
the management of earth science dam ‘which is 
novel in that it takes a DBMS centric view of the 
the task. Our prototype -- called “BigSur” -- is 
shown’in the context of its use by two geographi- 
cally distributed scientific groups with demand- 
ing data storage and processing requirements. 
BigSur currently stores 1 Terabyte of data, about 
one thousandth of the volume EOSDIS must 
store. We .‘claim that the design principles 
embodied in BigSur provide sufficient flexibility 
to achieve the difficult scientific and technical 
objectives of Mission to.Planet Earth. 

1. INTRODUCTION 

The goal of NASA’s Mission to Planet Earth 
(MTPE) is to better understand the Earth as an integrated 
system and to study the effects of human activity on it. 
Because this research requires collaboration among geo- 
graphically dispersed scientific groups, and history shows 
that such cooperation is very difficult, NASA will need to 
construct a data management infrastructure to assist them. 
Currently, such systems are cumbersome, and the study of 
global change has suffered because many of its brightest, 
most innovative practitioners have avoided the analysis of 
data, and the use of data to verify their models. Further, 
these systems provide little or no support for the sharing 
of information among researchers; they have tended to 
focus on the gathering and storage of data, rather than its 
dissemination.[DOZ92] As the objective of Earth Observ- 
ing System’s Data and Information System (EOSDIS) is 
to foster synergistic interactions among users from a vari- 
ety of disciplines, it’s technical objective must be to grant 
each participant desk-top access to the collective knowl- 
edge of their peers. 
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Data management for MTPE. will involve technical 
problems of striking scale and complexity. The Earth 
Observing System (EOS) component ,of MTPE will con- 
sist of- 20 instruments on 6 satellites to be launched 
between 1998 and, 2002, remaining in orbit for 15 years, 
continually gathering data about the planet,,The system 
will eventually make ava&ble, to the global scientific 
community on a fuhand open basis an unprecedented 10 
Petabytes of raw data and the scientific data products 
derived from it. It is difficult to predict the size of the 
EOSDIS user community, because in addition to the 
10,000 scientific groups, MTPE’s findings will come to 
the attention of an enormously curious public -- the Inter- 
net 20 million. EOSDIS will have a very large, very 
diverse user community scattered $1 over the world. 

Also, EOSDIS must be more than simply a dis- 
tributed clearing house for satellite data., It must process 
each sensor’s raw bit stream into some scientifically 
digestible format. Raw data must be calibrated into appro- 
priate radiometric units’ based on ‘ancillary readings from 
surface based instruments. Calibrated data is further pro- 
cessed through several discrete steps, eventually yielding 
a multi-band raster file. Data may only be rendered for 
viewing by scientific investigators at this final stage of 
processing, or they may use it to produce animations of 
sea, surface temperature, or highly refined information like 
polygonal thematic maps where some biological or geo- 
logical property is associated with each spatial entity. 
Over and above massive data storage, EOSDIS will be a 
system with considerable data processing responsibilities. 

The ultimate objective of MTPE is the construction 
of comprehensive models of the earth system to assist in 
the management of global climate change. Scientific data 
for different geographic regions and times will be collated 
and used to refine current models of the Earth system. As 
more data is gathered these models will evolve. Once 
mathematically specified, they will be written into com- 
puter simulations generating decades of forecasts based 
on some set of initial conditions. EOSDIS is to be the sys- 
tem in which these various process models are compared 
with reality. 
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In this paper we present the BigSur prototype, a 
1: 1000 scale model of what we think such a system might 
look like. BigSur was developed with the cooperation of 
two scientific groups we introduce in Section 2. These 
groups are typical of those who will make use of EOS- 
DIS’s facilities to further their science. BigSur integrates a 
satellite feed and the output of a running computer model 
of the atmosphere into a DBMS centric system, and pro- 
vides an environment in which these users may specify 
and deploy a range of scientific data processing functions. 
BigSur has almost all the features EOSDIS will require to 
meet it’s scientific objectives, and is designed to scale into 
a system the size of EOSDIS. We conclude Section 2 with 
a list of several key technical considerations facing imple- 
mentors of such a system. 

Section 3 introduces the BigSur prototype, begin- 
ning with a description of its major components, and 
moving on to demonstrate how they work together to 
resolve the scientific questions and , data processing 
requirements identified in Section 2. 

Finally, we conclude this paper and include a sum- 
mary of the questions which remain, unanswered by this 
prototype. 

2. USER SCENARIOS, ‘1 

In this section we introduce the two scientific 
groups whose data management needs have guided our 
development. These groups pursue independent research 
agendas, one specializes in remote sensing and the other 
climate modeling, but both would benefit from .collabora- 
tion. 

2.1. Institute for Computational Earth Sci- 
ence Systems (ICESS) 

The University of California, Santa Barbara campus 
is home to the Institute for Computational Earth Science 
Systems (ICE%). ICESS is an institute providing an envi- 
ronment in which Earth Science and Computer science 
are strongly coupled, although their research focus is 
earth science with an emphasis on the processes govern- 
ing environmental optics of the Earth. ICESS maintains a 
TeraScan ground station capable of receiving telemetry 
from the Advanced Very High Resolution -Radiometer 
(AVHRR) aboard the National Oceanic and Atmospheric 
Administration (NOAA) satellite. Throughout this paper 
we refer to instances of such data as ,‘large objects’. A 
large object is a logically atomic array of bytes, which is 
typically greater than 8K in size. 
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Data from overpasses of the NOAA platform is 
received three times per day by a dish on the roof of Elli- 
son Hall, and is dumped onto a single, large disk partition. 
This telemetry is an example of a real time data feed, 

pushed down from space, which must be stored with com- 
plete reliability since it can never be re-constructed. Once 
stored, this data is fed into one end of the processing 
pipeline shown in Figure 2.1, in order to produce the 
multi-band rasters which constitute AVHRR data. 

A year of processing at ICESS generates about 
1000, 12 Mbytes AVHRR rasters and requires the storage 
of 3000 intermediate images, a total of about 50 Giga- 
bytes of data. The necessity of storing these intermediate 
steps will be explained shortly. This covers just the area 
visible in a single pass, roughly the three westernmost 
state of the United States, approximately 1/25Oth of the 
globe’s surface area. 

It is possible that, due to a bug in the code perform- 
ing one of the steps or incorrect callibration table data, 
some sub-set of this processing must be redone. This 
explains why the storage of the intermediate files is desir- 
able. Rather than re-submit-raw data to the entire pipeline 
it would be better to’ repeat only elements of the process 
flow affected by the error. During the late 1980’s, the 
Antarctic ozone hole went undetected for several years 
because code processing bit data interpreted values out- 
side a certain range as erroneous readings and ‘filled’ the 
hole in. As EOSDIS is to be a supplier of quality data, it 
must include some means of repairing its holdings from 
this kind of problem. 

From the large collection of material available, an 
investigator wishes to work with only what is relevant to 
their efforts. However, the scope of these efforts, both spa- 
tio-temporal and thematic, varies from investigator to 
investigator, and even from session to session. Sometimes 
investigators have’questions relafing to a small geographic 
region; the size of the body of water in an alpine lake, for 
example, Other times they, may concern themselves with 
questions about warm’ currents which are as big as the 
oceans themselves! 

Clearly, the interaction between a scientific user and 
the data:EOSDIS manages needs to be very ad hoc. Users 
will work with data sets they identify by criteria like time, 
geo-spatial location and data lineage and they will vary 
these criteria as they attempt to discern significant pat- 
terns in the data. ‘EOSDIS should be designed with this 
kind of flexible interaction’ between scientific users and 
the data in mind. 

2.2. UCLA Department of AtmospherCc Sci- 
ences (UCLA) 

The UCLA Department of Atmospheric Sciences is 
constructing a computer simulation of the earth’s atmo- 
sphere in order to predict climatic changes given certain 
observed trends. Such computer systems are based on 
conceptual models of the Earth’s atmosphere, chemistry 
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Figure 2.1: Data Processing Schema; NOAA Data to Scientific Data Products 

and oceans. These models are derived from a set of differ- 
ential equations representing the relationship between real 
world phenomenon; ground wetness, temperature, wind 
speed and direction. Given some set of initial conditions 
-- real world measurements of atmospheric conditions, for 
example -- these programs are designed to predict the 
behaviour of these variables decades into the future. 

The UCLA General Circulation Model (GCM) tiles 
the atmosphere into a 72 x 44 x 15 array. For each ele- 
ment of this array, the program predicts the value of 23 
variables. At set intervals, the state of the model is cap- 
tured ,and stored along with enough metadata’ to uniquely 
identify the sample. Every simulated ‘day generates -20 
Mbytes of data. A century of simulated time would pro- 
duce about 700 Gigabytes of data, and require metadata 
entries for about 400 large objects. 

The long term storage of model results is made nec- 
essary by the fact that over time, the aspect of the model’s 
results which is of interest changes. Ten years ago the 
central Pacific Ocean was largely ignored. Then it was 
realised that the mid-Pacific oceanic current El Nino 
exerts tremendous influence over US weather patterns, so 

many historically uninteresting models were reinvesti- 
gated. 

Within this array data, climate modelers look for 
atmospheric features like cyclones, or changes in ocean 
currents[MESRW]. Typically they wish to compare 
model run results, rendering of slices output identified by 
model run, initial conditions and time into the run ie 
“What did models X and Y predict for the mid-Pacific in 
the year 2000?” They also need to know what model run 
data they have’ stored. Once the model’s data has been 
ingested by the system, investigators will be interact with 
it in ‘an almost exclusively ad hoc mode using sophisti- 
cated rendering or animation software. 

2.3. Integration 

While the ultimate objective is to compare the pre- 
dictions of computational models with actual observation, 
there are several immediate benefits in merging these data 
sets. 

For example, there is the mutual benefit derived 
from sharing reference information. We have ingested a 
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signifigant amount of point and polygonal survey data 
into BigSur which can be used to verify geo-rectification 
by comparing the course of a stream in the image with 
precise ground surveys. The atmospheric science group 
wishes to systematize the way they verify their models by 
ingesting other modeler’s results and data systematically 
gathered from weather balloons. We also anticipate that 
BigSur ,will foster the co-development of client applica- 
tions flexible enough to be used in both environments. 

Ultimately however, BigSur’s objective is the same 
as NASA’s EOSDIS: providing an environment to evalu- 
ate competing conceptual models of the earth system by 
comparing their predictions with actual data. This com- 
parison requires that we perform a spatial joinsover appro- 
priately processed dam from these two sources. 

2.4. Summary of Technical Requirements 

BigSur must find solutions for several technical 
problems in order to fulfill its user requirements. These 
problems are the same ones faced by EOSDIS: only Big- 
Sur’s scale is smaller. 

Scallability. BigSur handles about 1 Terabyte of 
data, about one thousandth of what EOSDIS will be 
obliged to manage and process. Every feature of 
BigSur’s design and implementation must address 
this. 

Distribution. BigSur must manage the movemement 
of data and the running of processes over widely 
distributed sites. 

Parallelism. The only way to perform the process- 
ing and input/output BigSur is required to deliver, 
given the resources at our disposal, is to design the 
system to take advantage of parallelism at. every 
opportunity. 

3. BigSur’s Architecture 

In the BigSur prototype of EOSDIS, we have 
adopted a DBMS centric view of this task. Each data set 
has been added to an Illustra database containing the Big- 
Sur metadata schema, and%BigSur provides location trans- 
parent access to the entire. holdings. All interactions with 
data in this schema are in the form of Illustra SQL, a 
dialect of SQL which is extended to’ include new data 
types and functions. This results in a clean, simple, con- 
sistent interface which provides the necessary ad hoc flex- 
ibility and permits BigSur all the advantages of a DBMS; 
minimized redundancy, consistency, a ready means to 
share data among users, enforced standards and data 
integrity, and sophisticated security features. 

Users work with the data sets BigSur manages 
through one of a variety of client applications which may 

formulate the Illustra SQL. The needs of each user group 
are sufficiently specific that each requires the ability to 
write its own applications, and the political reality of 
EOSDIS is that a single, ubiquitious application would be 
counter-productive. The UCLA team requires sophisti- 
cated 3d rendering tools which permit them to navigate 
their model output, while UCSB uses a mix of 2d render- 
ers, public domain and commercial image processing 
toolkits, all in a heterogeneous computer environment. 

In order to present a consistent API to user pro- 
grams, and provide an environment in which processing 
of data may be done in a parallel, location transparent 
way, we have wrapped the DBMS in a layer of software 
glue. Ideally, BigSur would use a fully distributed DBMS 
like Mariposa[STONW], which handles location trans- 
parency as part of its core functionality. Unfortunately 
there is no commercial system of this type available so we 
have been obliged to implement a rudimentery subset of 
these features as extensions to Illustra SQL. Also, Big& 
must move data -objects among participating sites, a 
requirement which precludes the use of traditional dis- 
tributed DBMSs which simply partition tables and per- 
form query decomposition. BigSur uses the popular 
Tcl/Tk package for this because it is a flexible GUI appli- 
cation development tool, a complete scripting language, 
and RPC environment. 

Each site participating in the BigSur system runs a 
local installation of the Illustra ORDBMS and a set of the 
middleware services. User applications write queries 
against their local DBMS. Metadata in each database is 
replicated between participating sites, which are linked 
via a high bandwidth network, necessary to acommodate 
the large volumes of data which must be moved around. 
Large objects are allocated a unique handle -- similar to a 
Universal Resource Locator (URL) -- which allows any 
BigSur site location transparent access to the object. As 
the amount of metadata which must be copied around is 
typically a minute fraction of a single large object, this 
approach should scale well. An additional advantage of 
this approach is its backup and recovery utility. If a fail- 
ure causes the loss of metadata at one site, BigSur simply 
synchronizes it with one of its replication peers. 

This architecture is shown in Fig 3.1. We shall dis- 
cuss the design and implementation of each component in 
subsequent sections. 

3.1. Illustra DBMS and the BigSur Metadata 
Schema 

As we have described, EOSDIS will be the reposi- 
tory for order 10^7 large data objects from which an 
investigator wishes to examine a small set in a timely, ad 
hoc fashion. This is clearly a data management problem 
for which a DBMS is the appropriate solution. Such a 
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system is well within the tolerances of existing DBMSs 
which use a query language like SQL. Further, the consol- 
idation of information about the total holdings in a DBMS 
will greatly assist in the management of the Big&n’s 
space resources. Because of the location transparency 
afforded by the middleware layer, data may be moved 
from site to site in accordance with some optimization 
strategy. 

However earth science data is too complex to be 
readily managed using commercial systems, many of 
which are predicated on a small fixed library of data types 
and designed for industrial applications where the ten- 
dency is toward small, simple data structures. This com- 
plexity has up until now been the major inhibiting factor 
in the development of DBMS centric systems for the man- 
agement of earth science data. For example, we are. con- 
fronted with an abundance of file format standards for 
raster and image data (Net-CDF, HDF, Crib) each associ- 
ated with a library of codei Remote sensing scientists deal 
with more than just raster images becttuse their objectives, 
thematic mapping, elevation. models, topological 

mapping, and field reportage, requires that they be able to 
handle, vector, point and textual information. As time 
passes. the number of earth science data types will 
increase to the point where this aspect of the system 
becomes an exercise in data management on its own, so 
whatever benefits acrue from writing a one-off specialist 
DBMS would erode quickly. 

In creating a metadata schema, Big&r was required 
to resolve a paradox. On the one hand, each participating 
site wanted a degree of schema autonomy. Each had a 
small.but signifigant set of attributes which were specific 
to their science, Historically this has led to the develop- 
ment of distinct schemas, for every earth science group. 
Yet these groups wanted to cooperate, and to share their 
data, which required a degree of consistency in the 
schemas they used. 

Features of the hldstra Object Relational DBMS 
helped us to resolve each of these problems. The Illustra 
ORDBMS includes a powerful, extensible type mecha- 
nism. New types and functions are easily added to the 
library available and become elements in the Illustra SQL 
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relational query language. We have written type libraries 
for the plethora of file formats endemic to scientific data 
processing. Our users are abstracted from this engineering 
detail -- their SQL queries return consistent results regard- 
less of physical organization -- but if information about 
underlying file formatting is desired it is .stored as part of 
the metadata. We use the Illustra Image and 2d Spatial 
type libraries to pose sophisticated GIS style queries over 
raster and spatial types[ILL95]. Much of BigSur’s func- 
tionality is implemented as extensions to the SQL query 
language in Illustra. 

The Illustra ORDBMS allows schema designers to 
use many object oriented data modelling techniques like 
inheritance. In order to overcome the difficult problem of 
different schemas in each user’s domain, we created a 
library of metadata super-classes which are inherited into 
BigSur’s domain specific schemas. The design of this 
class library is discussed below. Where extra attributes 
were required, the super-classes were extended by their 
sub-class. However, inheritance on its own wasn’t suffi- 
cient. We also used standard relational views combined 
with query rewrite rules to provide a simplified view to to 
Big&n’s users which did not violate the integrity of the 
underlying schema. I 

The design of the metadata super-class library intro- 

For example, an AVHRR image is a ScientificArray 
with three dimensions. Two of these correspond to X and 
Y coordinates describing the geographical extent of the 
Image’s coverage. Each element of the third dimension 
corresponds to one AVHRR band. Raster files are arrays 
of double precision floating point numbers, a fact which is 
also stored in the ScientificArray type. In the BigSurOb- 
ject we fix the ScientificArray’s origin to some geospatial 
coordinates. The BigSurObject portion of the schema was 
based on the Spatial Archive and Interchange Format 
(SAIF)[SAIF94]. 

This section of the schema is not mandatory. Some 
users are interested in highly unstructured text data 
OCRed from field journals, or more conventional rela- 
tional tables of data, so BigSur does not require that these 
super-classes are used. 

One area where none of the standards provided 

duced above was far from trivial. Much energy had been 
invested in designing standards for metadata schemas, and 
our prototype leveraged these efforts as much as possible, 
extending them only where they fell short of our require- 
ments. [JTA94] This library of super-classes, what we 
refer to as the BigSur schema, is divided into three mod- 
ules. The first is based on the US Federal Government 
Data Committee Content Stand&s for Digital Spatial 
Metadata (FGDC) jFGDC94], and it stores the identifica- 
tion information and general audit information for each 
large object. This module includes the data’s origin and 
general spatio- temporal information, locates the large 
object in the real world, authorial ,and citation informa- 
tion, as well as security and a set of audit trail information 
about the memdata itself. This is the general catalog of all 
information available in BigSur, and it w’as inherited with- 
out much ornamentation by each user group. ! 

The second section of the schema manages a com- 

direction was lineage, the reproducible, audit trail for 
every item, which is the third module in the BigSur 
schema. When a user adds a new scientific function, it is 
cataloged along with the ordered set of the parameters it 
requires. When a new dataobject is added to the BigSur 
schema -- which is synonymous with saying that one of 
these functions has been run -- we store the function cre- 
ating it, and the arguements passed as each of its parame- 
ters, with the new object’s other metadata. We give more 
detail about this aspect of BigSur’s data management in 
Section 3.2 when we discuss the processing environment. 

Illustra is a’ mature DBMS, complete with concur- 
rency control, transaction processing and query optimiz- 
ing features. It’s novel ‘no overwrite’ storage system 
means that writers rarely block readers and allows us to 
implement a system with IDegree 3 consistency. 

3.2. Middleware .66Glue” Layer 
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The BigSur prototype must do more than act as a 
simple repository. It is required to manage the processing 
of data, as well as itsrstorage. Figure 3.2 shows how such 
a processing scheme looks. 

plex set of information which describe the contents of 
each large object in considerable detail. This section is 
called the BigSurObject module. Each’BigSur large object 
is of a type’“we call ScientificArray, which inherits the 
location transparent type introduced above: The Scientifi- 
&-ray is a multidimensional data type where the individ: 
ual elements of the n-array may be complex objects. Sci- 
entificArrays support operations like HyperSlab(), which 
takes a ScientificArray and arguements describing some 
portion of it which is to be ‘sliced’ out. The BigSurObject 
portion of the schema ties each ScientificArray to the real 

Within. the pipeline, some process Pl (say ‘Cali- 
brate’ satellite imagery, for example) is run over data 
added by PO (‘Ingest’ from a sensor’s bit stream) This 
new data object is then subjected to another processing 
step P2 (‘Navigate’) the results of which may be used by 
other processes, and so on. Each process adds metadata -- 
including lineage information which catalogs whatever 
data objects the process took as input -- to BigSur’s 
schema. There may be many of these pipelines running 
concurrently over data from distinct PO processes, with 
each image at a different stage of processing. Output from 
any of these processes may be input to more than one 

world. 
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other process, and the production of a single large object 
may require several others as arguements, so the relation- 
ships among processes within BigSur may characterised 
as a directed acyclic graph. 

The first thing the middleware glue layer provides is 
a means by which this processing of data may occur in a 
heterogenus, distributed environment. In BigSur, these 
processes are initiated by Illustra SQL queries, and each 
requires considerable computer resources to resolve. The 
only way this can be made ,scalable is by designing Big- 
Sur’s middleware layer as a completely parallel-system, 
which performs load balancing optimization, moves inter- 
mediate data and does so in a fault tolerant way. 

At each BigSur site, clusters of machines which are 
nominated as processing clients register themselves with a 
schema in the Illustra database. When an expensive user 
function is to be run, an Illustra function selects the best 
machine available based on a matrix of statistics about 
each machine; CPU architecture, available memory and 
disk, and so on. The expensive function is scheduled to 
the selected machine where it is run, while the Illustra 
server process waits for it to complete. Given hardware of 
sufficient power for the Illustra server this design simply 
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requires the addition of processing clients to scale up. 

One of the key decisions facing EOSDIS is how 
much of this work to do in advance of any demand for the 
data, and how much to leave undone until it is demanded. 
We call these two modes of processing ‘Eager’ and ‘Lazy’ 
respectively. It does not seem feasible to pre-compute 
every process pipeline. On the other hand, some popular 
data is obviously better off being done in anticipation of 
demand for it. ,In BigSur we provide mechanisms for both 
processing modes. Once we have been in production for 
some time we will work toward a scheme where as much 
data is pre-computed as we have hardware resources 
available, basing .our priorities on what, data products Big- 
Sur’s users demand most frequently. 

The DBMS centric architecture of BigSur provides 
a way to prevent redundant processing. Because each 
large object stores details about how the process creating 
it was invoked, if the’ process is invoked again with the 
same arguements, this can be detected from the state of 
the database. Thus if the same query is submitted to the 
Illustra database twice, the first time it will create the 
large object it ,returns, and the second time it simply 
returns the large object created initially. Further, because 



of BigSur’s distributed design, if a process has been run 
anywhere then it has been run everywhere, ensuring opti- 
mal use of computer and storage resources. This example 
illustrates the first benefit of the integration of lineage and 
workflow within the DBMS. 

A second benefit acrues when we consider ‘Eager’ 
evaluation. The Illustra ORDBMS includes the active 
database features common to commercial RDBMS sys- 
tems. In BigSur, Illustra’s rule mechanism is used to raise 
an alert whenever a process adds data. If the data just 
added is necessary to complete another process in the 
pipeline, then this Eager process may be invoked automat- 
ically . When an investigator adds something new to Big- 
Sur’s catalog of scientific data processes, they indicate 
which other function’s output could be used as input to it. 
In this way they connect their new function into the pro- 
cess pipeline. If they mark this relationship as an Eager 
link, their new process is run whenever sufficient data 
becomes available from prior process. Thus investigators 
may co-opt each other’s results into their own, and ‘plug 
in’ to each other’s work Aows, features which actively 
promotes the kind of cooperation NASA must foster in 
EOSDIS . 

This scheme can be extended to implement a par- 
tially materialized view. When a user issues an Illustra 
SQL query which requests the results of a particular pro- 
cess, but the perquisite data to run that process is not 
available, BigSur has all the information it needs to create 
what is needed by invoking another function. Thus, the 
only reason that even the most highly processed data is 
unavailable is if no raw bit stream with the desired proper- 
ties exists. This feature gives scientific investigators enor- 
mous leverage over their data set. In addition, it means 
that BigSur can limit its processing to precisely that 
which is required by end users, which has tremendous 
potential for reducing the computational burden on the 
system. 

Lineage and workflow management in a DBMS is a 
powerful innovation. It allows researchers to understand 
how the data they are examining was,created. It provides a 
means by which errors within the process pipeline may be 
detected. When a process is found to have a problem, it is 
an easy task to find out which of the myriad of data 
objects is tainted and needs to be re-produced. And 
through the mechanism of the partially materialized view 
it provides leverage over both the scientific and technical 
problems of EOSDIS. I 

3.3. Gateways and Client Applications 

EOSDIS will need to interoperate with a variety of 
external systems; repositories of older remote sensing 
imagery, other earth science data systems, and systems 
with only an orthogonal interest in earth science, like 

libraries. This is handled in BigSur by writing gateways to 
the middlware API. For example, we will be providing a 
239.50 gateway which will allow Big&r to interoperate 
with library systems, and an ODBC interface allows users 
to develop applications using the popular Microsoft Win- 
dows and NT client toolkits. 

In order to accommodate the needs of the Internet 
20 million, we have a HTTP gateway allowing our user’s 
to write World Wide Web applications. We have proto- 
typed several small client applications using his approach. 

3.4. Storage Management 

The daunting question of EOSDIS’s size presents 
implementors with several difficulties. We expect that 
EOSDIS data will be accessible without human interven- 
tion which implies that the bulk of it will reside on a hier- 
achical tertiary storage, the vast bulk of which will be 
near-line tape. Currently we are using a 10 Terabyte 
Metrum tape robot a and group HP optical disk juke 
boxes, which the Illustra ORDBMS views as a collection 
of file systems. It seems likely that users will not wish to 
access all data with equal indifference. Recent satellite 
imagery, for example, will be the subject of more interest 
than older data, so it is reasonable to expect some of it to 
reside on magnetic disk, avoiding the long mount and 
seek times inherent in tape robot storage. How such a 
large database can be secured against total system failure 
is an interesting research question, but in BigSur we sim- 
ply write every large object twice. 

This redundant write strategy affords us fault toler- 
ance, as well as recovery. When an access request is 
made for an instance of a ScientificArray type, the func- 
tion responsible for returning the data interrogates its 
environment to discover where the most available copy of 
the object is stored. If one. of the devices is inoperative, 
the object is retrieved off the alternate. More typically 
however, the user requests a subset of data from within 
the file. Because the Illustra ORDBMS has no control 
over the caching strategies used by these systems, and can 
only get file level -- rather than block level -- access, this 
approach is far from optimal. 

Ideally,,,the DBMS servicing BigSur should have 
more control over the placement of data on the various 
physical media in the hierachical storage. With more 
information about data location at its disposal the DBMS 
engine could make better oprimizing choices about query 
execution, and prefetch data from slow to faster storage to 
improve response time. In addition, because the DBMS is 
in the best position to store information about access pat- 
terns, it can run more sophisticated caching algorithms 
than those available in the absence of complete informa- 
tion. For example, the DBMS may be able to perceive that 
several requests have been made for data which reside on 

727 



a single tape, or determine which of the blocks in a full 
cache is the least commonly used. 

We are working with the developers of the High 
Performance Storage System at Lawrence Livermore Labs 
on these issues. [HPSS93] 

4. Conclusions 

We have introduced BigSur, an innovative proto- 
type system for the management of earth science data. 
Specifically, it was designed to fulfill the requirements of 
two scientific communities, but its broader goal was to 
demonstrate how NASA’s EOSDIS could be constructed. 
It’s DBMS centric architecture facilitates the kind of 
information sharing necessary for effective scientific col- 
laboration because it provides an environment in which to 
integrate multiple data sets. 

The BigSur prototype demonstrates the feasibility 
of a quite novel approach to the management of earth sci- 
ence data. Its focus on the use of an ORDBMS for data 
management -- a tenet of our design -- provides solutions 
to the problems of complex type and process management 
common in earth science information systems. ‘l)pe and 
function extensibility overcomes many of the reservations 
scientific users have expressed about the use of DBMS 
technology. Object oriented data modeling techniques 
like inheritance ensures that each research group remains 
independent of others while ensuring that collaboration is 
possible. 

The integration of lineage information with work- 
flow made possible by the use of an extensible DBMS 
system is a powerful innovation. It allows the abstraction 
of the BigSur’s holdings into a view of the data processed 
to varying degrees, while ensuring that only as much work 
is done as is required by the user community. As users 
add processes and types to the system the variety of data 
available to them grows accordingly. This approach 
allows users to leverage each other’s efforts, promoting 
the desired synergies between research disciplines. From 
being at best an occasional adjunct to earth science meta- 
data, BigSur shows that lineage information is central to 
the efficient production of quality data sets. 

We intend to continue with the incremental devel- 
opment of BigSur, adding a number’ of other user groups, 
and revisiting the vexatious to&of schema’ design. At 
this point in time we are limited by the availability of sta- 
ble tertiary storage devices and’ network bandwidth, 
though we will address our attention to these concerns 
once the core features of BigSur are stable. 
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