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Abstract 

This paper presents the parallel enhancements 
which allowed the port of the Teradata Database 
from TOS, a proprietary ldbit Operating Sys- 
tem, to an SVR4 Unix system. It gives an archi- 
tectural overview of how the Teradata Database 
solves the main VLDB problems: performance 
and reliability. We will present the transition from 
the Database Computer DBC/lOlZ nodes (Inter- 
face Processors-IFPs and Access Module Proces- 
sors - AMPS) to the virtual processors (vprocs), 
which run concurrently in, a collection of SMP 
nodes. We also present the Parallel Database 
Environment (PDE) add-on package to Unix that 
makes this possible. We will discuss the results of 
our performance enhancement work and the 
directions for the future. 

Introduction 

Twelve years ago, the Teradata DataBase Computer or 
DBC became the world’s tirst massively parallel computer 
for database processing. That computer system, operating 
on a large collection of uni-processor Intel x86 nodes with 
a proprietary operating system (TOS), pioneered the MPP 
relational database market. Today there are over 400 sites 
with these systems. In this paper we describe this original 
system in overview, then present the work which was 
involved in m-implementing the Teradata database soft- 
ware on today’s modern generation of large-scale mas- 
sively parallel systems where each node of the system is a 
powerful Symmetric Multi-Processor (SMP) computer 
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Figure 1: The Original DBC 

running the Unix operating system. This work was very 
challenging and presented some unitlue problems. We 
present here some overall architectural concepts of this 
work along with a couple of implementation ‘highlights. 
We then show the importance of the OS interface to the 
perforniance of the database withthe results of our efforts 
to maxim& the’ performance of the Teradata database 
software in this envhonment. : 

The Tkadata DBC/lOlZ ., 

The DBC is a database management system. Its main ele- 
ments are Interface Processor nodes (IFPs) and Access 
Module Processor nodes (AMP@ connected by a propri- 
etary network (the YNET). Each of these elements is an 
x86 urn-processor with 8 to 16 megabytes of memory run- 
ning a proprietary operating system (TOS) in 16 bit mode. 
The IFP node provides the connection to clients through 
an IBM channel or ethernet interface. An AMP has up to 
10 gigabytes of attached disk TOS together with the Tera- 
data Database software fully paralleliies all functions 
among these simple nodes. A DBC basic configuration is 
presented in Figuq 1. 

In a DBC, data is represented as a collection of tables, 
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relational in nature, spread over all the configured disks, 
according to a hash algorithm. 

The IFPs receive user requests (queries) and translate 
them in internal request steps that are forwarded over the 
YNET to the AMPS. They also coordinate the responses 
that come from the AMPS and pre&nt the, r&i&s to the‘ 
users. The AMPS receive requests from the IFPs, p&form 
the required data .~manipu.lath% and, &nd appropriate 
responses back over the Y%lET~Since the database tiles 
are evenly distributed across the disks of all the AMPS, the 
workloadisb~ed.wherlanIFfreceivesarequ~~.~,~~~~~ 
parser task interprets it using the data dictionay which ,.. ‘” 
contains information about all&e databases/tables in the 
system. It resolves symbolic names and makes integrity 
checks. The request is then split into a series of data 
manipulation steps whose execution is monitored by a dis- 
patcher. The dispatcher sends the steps on the YN@T. 
toward their destination. As mentioned befote, the rows of 
a table are evenly distributed amongst all AMPS in a sys- 
tem, so that all AMPS could work at the same time on the 
data of a given table. If a request is for data in a single row 
(i.e. “prime key” request), the IFP will transmit it toward 
the AMP on which the data resides. If the request is for 
multiple rows, the steps will be forwarded to all participat- 
ing AMPS. 

.Under normal ope&ion, e+zh node+ assigned exclusive 
1 use of a subset of the, shared disks. Ip case of node failure, 

the disks v&Id bpxsignq-j*o the’ remaining nodes in the 
clique, thus&&@&g fuB availability of all the data. A 
general diagran&o&he system is shown in Figure 4. 

Given the power of the SMP node, it is necessary to 
provide for imra-node parallelism as well as the inter-node 
parallelism of’the DBC. We accomplish this by running 
multiple instances of AMPS and/or IFPs in a node. Each 
such instance constitutes a virtual processor (vproc). 

L 

Teradata on Unix/PDE 

A multitude of factors drove us to the development of a 
new system to replace TOS and to support the Teradata 
database software into the future. Among them were the 
emergence of 32-bit mode, supporting larger physical and 
virtual memory sixes, open systems trends, and the avail- 
ability of the SMP node in which multiple CPUs, sharing 
memory, concur in solving the ~wo&load presented to the 
node. The decision was made to build upon AT&T’s Fault 
resilient MP-RAS SVB4 Unix as the base operating sys- 
tem for the new version of Teradata. To this basic operat- 
ing environment we ad’ded exCensi& to support a parallel 
environment, to provide a sit@ system view, to support a 
parallel debugger; ‘and,to m,ake it easierto port the Tera- 
data datalpse softw~ from TO& We .czill these e5&n- 
sions PaMel Database Envir&&ent or PDE. “&&g&eml 
relationship of this software in the system. is shtin in Fig- 
ure 2. 

We will introduce PDE by describing two of its funda- 
mental concepts - cliques and-virtual processors. The sys- 
tem is made up of large, powerful SMP nodes arranged 
into cliques and each running ‘multiple virtual processors. 
These nodes are connected by a scalable inter-connect 
called the Bynet. 

A collection of processor nodes connected to shared 
external data storage is termed a clique. Cliques are the 
fundamental physical building blocks of this system. 

Database Code 

UN.jX ._ I PDE ,, ., 

.- ,/ 
KERNEL’ 

Figut6.2: New System Software 

The virtual piocessor concept adds a level of abstrac- 
tion between. the multi-threading of a work unit, and the 
phys@al layout of the computing system allowing us to 
host i shared nothing database otran MPP platform made 
up o@ared~~$#emory SMP nodes. This concept results in 
better co$@I$ver the degree of parallelism and provides 
for higher system Milability without undue programming 
overhead in the application. Each virtual processor is 
given its ,own private logical disk space, called a virtual 
di%‘(vdisk). The vajsk may actually be a conglomeration 
of, several ph@cal disk drive units. Vdisks can be 
accessed by any&cessor node within a clique allowing a 
vproc to be started and run anywhere within a clique. 

The Teradata database code commits all transactions to 
disk. In order to improve performance and at the same 
time provide for the p&ibili@y of a node failure we use the 
high -bandwidth, interconnect to keep the mod&d seg- 
ments that belong tb one node in a backup node within the 
same clique. 

PDE provides the ability to run multiple virtual pmces- 
sors on a processor node, Each virtual processor is isolated 
from the.others on the same node. There is no shared con- 
text between vprocs on the same node. This enables the 
concept of location transparency where the application is 
unaware of the physjzal. location of a vproc. This becomes 
an important consideration allowing the system to operate 
in the presence of a failed node. 
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Without Vprocs With Vprocs 

Figure 3: Increased Parallelism Provided By VPROCs 

The introduction of cliques end vprocs brings addi- 
tional parallelism and higher availability to the system. 
MO factors contribute to the additional parallelism: .I 

1. Disk Utilization: If a processor node has multiple 
storage devices (disk drives) attached,- a single 
thread of execution might occupy only one of 
those devices at a time, leaving the others 
under-utilized or even idle. With vprocs, the 
degree of parallelism is increased to include up to 
one thread per disk, rather than one thread per 
node. .:, 

2. CPU Utilization: Having multiple vprocs per 
node allows increased parallelism for a single 
query enabling it to utilize all of the available 
CPUS. 

TICi is illustrated in Figure 3. 

To accomplish better availability we allow for vproc 
migration. In the, case of a node failure, all the vprocs 
assigned to the failed node are restarted on the remaining 
nodes of theclique. The resultant configuration, shown in 

/ Proceyor Nodes \ 

Figure 5: Clique Recovery - VPROC Migration 

Figure 5, operates with less processing power, but the par- 
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allel application still has the same number of vprocs and 
retains full access to all data storage. 

Our implementation of virtual processors is at the 
operating system data structure level, and in its intercon- 
nect software. By providing the virtual environment at the 
data structure level, the partitioning and isolation of vprocs 
can be provided at a much lower performance cost than 
traditional virtual machine implementations.’ 

The Unix/PDE system keeps track of each task/process 
and the virtual processor to which it belongs. Whenever a 
task is scheduled its vproc is active, so that allocation of 
per vpmc resources is unique to the vproc. This minimizes 
the interference from the other tasks running in the system. 
Allocated names, for example, are unique within each 
vproc. Unix/PDE assigns vprocs to processor nodes at sys- 
tem start-up time based on a load-balancing algorithm. At 
that time a translation table of vproc <--> node is created 
and stored. When a message is sent to a mailbox at a par- 
ticular vproc the interconnect software looks up the vproc 
-a node translation in the table, sends the message to the 
designated node, and the recipient then routes it locally to 
the appropriate mailbox in the proper vproc. 

Implementation ’ 

Unix/PDE provides to the database code the same type of 
services that TOS provides. Each Vproc runs approxi- 
mately 100 tasks, which frequently map/unmap database 
segments. The segments of the database are’ sometimes 
heavily shared. There is also a class of objects called Glo- 
bal Distributed Objects toward which all the processes on 
a node have visibility, and which are kept in sync across 
the system. This functionality is implemented as an add-on 
at the kernel level because of performance, security, better 
control, and debuggability. 

The main SVR4 features around which we designed 
PDE are SVR4’s object oriented approaches to process 
scheduling and virtual memory management. We ‘intro- 
duced a new scheduling class (Unix usually provides Time 
Sharing, Real Time, etc.) for the tasks working for the 
database. This allowed us to get control on events like 
sleep, semm, preempt, wakeup, etc. This is extremely 
important to the implementation of the parallel debugger. 
We also introduced a virtual segment driver, which 
allowed us to manage the database blocks. A virtual seg- 
ment driver allows the definition of the action to be taken 
when noticeable events occur, for a given virtual range (e.g 
faults, change of protection, acquiring and dropping of 
maps, etc.) Using this facility we were able to implement 
all the mapping and interlocking mechanisms required by 
the database code, without paying a high overhead price. 

There are many innovations included in PDE, but in 
this paper we will describe just two of them: the shared 
map segments and the node flush synchronization through 

shared disk. The shared map segments are important for 
the handling of the database shared segments and for the 
GDOs. The node flush mechanism is a critical component 
for implementing cliques. 

It is a well known fact, that in Unix, sharing data or 
text between a large number of processes is both memory 
and time consuming. In order to alleviate this problem, we 
introduced a new type of segment, the shared map seg- 
ment. The basic concept is to use a shared page table to 
improve the management of the shared physical memory. 

User 2 
l-l 

Physical Pages 

Figure 6: Classic Shared Memory 
In a system with hundreds of processes sharing in read 
only mode sign&ant amounts of data (e.g. shared librar- 
ies, and in the PDE case, Global Distributed Objects) the 
fact that we use a single page table to gain access to the 
sha&i data, saves hundreds of pages for the system. It is . 

User 1 User 2 

I Physical Pages 

Figure 7: Shared Page Table 

also much easier to track the shared data, and eventually to 
change it, since there is only onemapping to change and 
not hundreds. In a typicalcon8guration, we have an g-way 
SMP node, with 10 to 14. vprocs and consequently around 
1400 processes. In this case; using a shared map segment, 
reduces the amount of memory needed for page tables by 
5.6 MB for each 4MB of shared memory. This can add up 
to a savings of over lOO-200MB during typical operation. 
Another advantage of this schema is that the chance of hit- 
ting the page table in the cache and not having to go to 
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memory for it is much improved. The overhead of the 
hardware .layer of the operating system, which walks all 
the mappings of a physical page, checking the referenced 
and modilied bits, in order to maintain consistency, is also 
very much reduced. This solution allowed us to implement 
the functionality needed for ‘the Global Distributed 
Objects, with very small overhead, and with substantial 
savings of memory. 

Another innovative technique was used for synchroniz- 
ing the flushing of database segments by the primary or 
the backup node, through shared disk tokens. As explained 
before, the database uses a node in the same clique 
(backup node) to keep a copy of the modified segments of 
a primary node. This allows us to use low latency inter- 
connect I/O in order to implement a write cache, saving 
the performance penalty of the much slower disk Q0 when 
committing updates to the database. When an exceptional 
condition occurs such as a node crash, power failure, etc. 
PDE has to ensure data integrity, and for this reason either 
the primary or the backup, but not both, have to flush their 
modified segments to disk. It is preferable to gush the pri- 
mary, because it has the most recent data. To make sure 
that only one node flushes, without relying on the Bynet 
which may be in an error condition, the PDE uses shared 
disk tokens to implement a persistent storage semaphore 
and a set of flags to control this operation. We have 
defined a synchronization segment on a shared disk, and 
rely on the fact that we can write a primary or backup 
token in two different sectors of this, segment and then 
atomically read them both. The tokens have values like: 
PLUSHINGJNIT, FLUSHING-WANTED, 
FLUSHINGJNPROGRESS, FLUSHINGpONE. Each node 
will write its token, starting with FLUSHING~WANTED, 
atomically read both tokens, and depending on the token 
combination, flush or watch the other node flushing. Thii 
guarantees that as long as otie of the nodes is functioning a 
valid state will be created on the disk Following this flush, 
when the system restarts, the areas of disk which were 
being handled by the failed node can be reassigned to any 
other node with shared access to the disk storage. 

Performance work 

It was no surprise that initially the new system performed 
worse than the current TOS based system. A serious effort 
was put into fixing the performance bottlenecks. In doing 
this we created different workloadprofiles to characterize 
the system behavior. Among them were: concurrent DSS 
workloads, consisting 0f.a number of concurrently running 
complex DSS query streams, @in workloads with row 
redistribution, full file scans, etc. Improving the perfor- 
mance of a complex system is lie peeling an onion. The 
removal of each bottleneck unveils the problems lurking 
below. Over the period of six months we were able to con- 

stantly peel away layers of the performance problem 
onion. This work resulted in one and a half orders of mug- 
nitude improvement in the performance of the database 
software under realistic workloads. Most of the perfor- 
mance bottlenecks were related to the inherent differences 
in the two environments: the uni-processor small memory 
of the DBC/1012 vs. the 8-way SMP and 2GB of memory 
of the modem Unix server. This “fatness” of the node 
requires that careful attention be paid to, the areas of flow 
control and scheduling of work, system overhead, and effi- 
cient access to scarce system resources through fine 
grained locks. 

We built tools to observe the hot points in the system 
(e.g. excessive lock spinners) and to tind out the cause of 
excessive idle time (pinpointing the sleep reasons of 
“busy” tasks - tasks working onbehalf of a given query). 
Through this work we improved the performance step by 
step. Sometimes the gain of a particular improvement was 
small, but some specific steps were big winners. 

One of, our first observations was that having huge 
physical memory (up to 2 GB) did not automatically 
ensure better performance.‘The cache of the database seg- 
ments grew proportionally with installed memory, and the 
techniques to store and retrieve from that cache became 
inadequate(e.g. the number of segments on one hash 
bucket grew to 400). So, our first step was to increase by 
an order of magnitude the number of hash buckets for the 
database segments, and to change the locking protocols 
used to access them in order to provide for liner locking 
granhlafi~. We also improved the algorithm used to ran- 
domize the distribution of these segments on the hash 
buckets. Combined, these actions reduced’ considerably 
the locking contention in the memory management inter- 
face. 

In order to provide for maximum throughput of the 
database under intense workload conditions, the Teradata 
software relies on a work flow control scheme which shuts 
down the arrival of new work when the resources of a 
vproc have reached a certain level of congestion. By 
improving the granularity at which we controlled this 
work flow we were able to increase the overall perfor- 
mance of the system. 

The nature of the database activity causes the pro- 
cesses working on behalf of a query to go through. many 
transitions of the nature: ‘running/waiting for I/O/run- 
ning’. In the case of a multiprocessing system it is impor- 
tanttorunataskonthesamec~asoftenaspossiblein 
order to maximize the usefulness of information in the 
CPU’s cache. ‘lhis was enabled by code in the scheduler to 
track and maintain CPU affinity for each task 

Another major gain came from the elimination of the 
Unix OS control over the lower level hardware mapping 
of the database memory objects. The standard UNIX code 
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goes to great lengths to keep track of the usage of memory 
pages in order to optimize its demand paging scheme. 
Since PDE controls the caching of the database segments, 
these pages are not subject to demand paging and this 
overhead is unnecessary. 

Other performance gains were realized from not zero- 
ing the scratch segments for the database (the database 
code is aware and initializes only the needed areas), com- 
pacting the messages, avoiding as much as possible lock- 
ing contentions, and improving on the tracing system lock 
granularity. 

Some additional gains came from changes to the data- 
base code to operate more efficiently .in this new SMP/ 
MPP environment. For example the merge join loop was 
optimized and the overhead of row redistribution was con- 
siderably r&iced by batching up to 4KB of rows to a des- 
tination. 

The result of our performance work is illustrated in the 
perfinmance progression charts - Figures 8 and 9; These 
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Figure 8: Redistribution Joins Performance 

figures show the reduction in elapsed time that was real- 
ized as each of the performance enhancements was put 
into place for two of the standard query workloads. 
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Figure 9: Concurrent DSS Performance 

Summary 

The scalable; massively parallel, Teradata database has 
been successfully por&d from me DBC/1012 with its 
uni-p~sor, limitetj memory nodes to a new scalable 
MPP system u#g large SMp nodes running the Unix 
SVR4 IMP-RAS, operating. system. By building on the 
object oriented features of ,SVR4, viz the scheduling 
classes and segment classes, we have. created an arch&- 
hu-e which provides for scalable intra-node parallelism 
through vprocs and for high availability through the orga- 
nization of the nodes into cliques. 

We have demonstrated a way to support a scalable 
shared nothing architecture on a large shared memory, 
multi-processing node that results in high performance by 
n$nimizing the system overhead for common functions 
and ensuring maximumconcurrence for the system service 
software through fine grained locking of scarce resources. 
The experience that we have gained from this effort will 
serve us well in the future as we look to other platforms 
and the Windows NT operating system. 
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