
A Product Specification Database
for Visual Prototyping

Kazutoshi SUMIYA Kouichi YASUTAKE Hirohiko TANAKA
sumiyaBist.mei.co.jp yasutake@isl.mei.co.jp hirohiko@isl.mei.co.jp

Norio SANADA Yoshihiko IMAI
sanada@isl.mei. co.jp imai@isl.mei. co. jp

Matsushita Electric Industrial Co., Ltd.
Information and Communications Technology Laboratory

1006 Kadoma, Kadoma-shi, Osaka 571, JAPAN

Abstract

We propose a product specification database
which is suited to product evolution, model-
ing the product specification as an object. In
this database, we propose a behavioral con-
straint to maintain consistency. Furthermore,
this database can manage visual specifica-
tion, such as operational specification, which
is hard to handle in an ordinary database.
We have been developing Visual CASE: an
object-oriented software development system
for home appliances. Visual CASE is a vi-
sual prototyping system based on the object
model we propose. In this paper, we show
that the product specification is easy to exam-
ine, using visual prototyping. We also discuss
implementation issues of the database applied
to the home appliance software development
process.

Permission to copy without fee all or part of this mate&l is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, OT to republish, requires a fee
and/or special permission from the Endowment.

Proceedings’of the 21st VLDB Conference
Ziirich, Switzerland, 1995

1 Introduction

Prototyping methodologies have been of great inter-
est recently, and many results have been presented.
However, most of these approaches are applicable to
programs but not to other specifications, such as user
operations[GB95]. The user operations are the most
important factors, especially in the area of products
with SUI (solid user interface), for example, control
machines and home appliances. It is very difficult to
design a specification of the product, because the spec-
ification is too complex to describe on text and on pa-
per documents. To solve the problem, we have been
developing Visual CASE: an object-oriented software
development system[SOHIOS] [ISYH93]. This system is
a visual prototyping system based on the object model
we propose. The idea of the object model is to incor-
porate the cont,ainer object model[KBCG89] with the
constraints on the message passing mechanism and in-
heritance scheme.

Meanwhile, many new models of equipment such as
microwave ovens and washing machines are put on the
market at least annually. Home appliances are char-
acterized by the constant releasing’of newly designed
products day after day. There are many models and
many designs for one piece of equipment. For example,
for microwave oven - economy-model, grill-model,
and convection-model are models with differing
functions. English-design, French-design, and
German-design are designs for specific markets. Gen-
erally, there are many candidates for specification in
real manufacture management. In our experience,
100s of candidates must be examined to produce one
product. As the divisions produce 100s of products

666

annually for just one change in basic model specifica-
tions, 10000s of candidates must be examined.

Candidates are regarded as versions of the products.
The version graph of a product family is ve$y com-
plex because there are many,, versions in- &certain ba-
sic model and the basic model evolves it&!f,frequently.
Several version models and configuration management
techniques have been proposed[KatSO][SciSl]. ‘How-
ever, most of these, models and techniques are not
efficient at maintaining consistency among versions
in large quantities. On the other hand, multi-media
database systems provide the framework to handle
many kinds of data[Mas91]. However, these systems
can not handle the specifications, such as user opera-
tion and indication of blinking LEDs and lamps.

Our approach to solving these problems is to make
clear the relationship between a new basic model and
an old basic model. This is in respect to schema main-
taining. The class libraries are designed as candidates
of the components, and sets of the instance objects are
designed as product specifications. Our goal is to pro-
vide the objects with high flexibility and reusability of
product specifications. The flexibility of the objects
enables product designers to modify the product spec-
ifications partially in a rapid and intuitive way. In
other words, they can prototype the -product specifi-
cations in a trial-and-error manner. The reusability of
the objects makes it easy to keep track of product evo-
lution. It enables product designers to review the past
specifications which correspond to the up-to-date spec-
ifications. Generally consistency needs to be guaran-
teed between the class hierarchies and the instance ob-
jects when the class hierarchy is being evolved[Osb89]
[Zicgl]. We developed a database system to manage
the class library and the instance objects, using a re-
lease method.

The remainder of this paper is divided as follows:
Section 2 discusses requirements for visual prototyping
and Visual CASE. Section 3 gives the data model, the
version management, and the query of product speci-
fication database. Section 4 discusses implementation
issues of Visual CASE. Section 5 summarizes our re-
sults and suggests our future plan.

2 Visual Prototyping

Several prototyping system have been proposed. In
Section 2.1, we discuss essential factors of software pro-
totyping. In Section 2.2 we describe Visud,CAS,E and
evaluate this system.

2.1 Prototyping System

We discuss properties which should be satisfied in a
prototyping system. In [ITH92], the software proto-
typing environment should satisfy the following prop-
erties:

G “1: Executability

2. Fitness for target environment

3. Rapid constructibility and modifiability

4. Refinability in stepwise fashion

In property (1) and (2), an executable language and
environment should be satisfied. In property (3) and
(4), a data management method should be established.

Prototyping is effective in enhancing design quality
in the product development process, especially in the
software development process. Developers can exam-
ine many candidates for a product through a trial-and-
error method. Many prototyping methodologies have
been proposed[GB95]. Most of these are designed for
software development. However, it is also necessary
for developers to manage other kinds of specifications.

Several visual prototyping methodologies have been
proposed[Shu91]. One other prototyping tool for ma-
chine control interfaces is CISP[KA93], which is an
extension of Apple’s HyperCard, offering a series of
features built on top of the standard HyperCard ca-
pabilities. This tool allows the user to simulate a sys-
tem interface by clicking buttons on the CRT display.
CISP is applied to the interface design of VCRs. In
this tool, there are two problems as follows: One is
that the design discussed cannot be handled in the
target system directly. The other is that the approach
could become unwieldy if care is not taken during the
scaling-up process, though it is easy to handle on a
small scale.

2.2 Visual CASE

We claim that visualization is required in the product
manufacturing process because program and specifica-
tions should be illustrated to the designers. In addi-
tion, a visual interface should be provided to construct
the specifications. We have been developing Visual
CASE: an object-oriented software development sys-
tem for home appliances and released the Visual CASE
system to several divisions where home appliances are
produced. These divisions have been applying the sys-
tem to case studies of their software manufacture man-
agement .

667

Figure 1: Screen Image of Development using Visual CASE

the actual physical product; the displayed remaining
time will be decremented and the wash LED will start
blinking if the start button is activated by clicking it
on the CRT display.

Figure 2 shows the comparison of development pro-
cesses: software development process not using Visual

Figure 2: Comparison of Development Processes

Figure 1 shows the screen image using Visual
CASE to examine the specifications of a washing
machine’[NUF+95]. With the view shown in the fig-
ure, the product designers can operate the ‘pseudo’
control panel of a washing machine on the CRT dis-
play by touching various displayed buttons. The con:
trol panel on the CRT display will behave as if it were

able effectiveness is the fact that Visual CASE elimi-

CASE and software development process using Visual

nates the unnecessary productions of physical mockups

CASE. The study shows that Visual CASE reduced

thanks to its visual prototyping ability. Due to the in-
terdependent relationship between the components of
the development process, if the design of the compo-

the time to fix the initial conceptual design by a factor

nent could not be decided, the next stages would also
become delayed. As a whole, Visual CASE can cut
50% off the time of overall software production pro-
cesses.

of 20%[TAUs94]. The major reason for this remark-

‘The control panel of this product was designed by Visual
CASE and actually put on the market.

We have applied Visual CASE in several divisions
and was effective, for only one individual basic model.
However we must manage the version of candidates in
Visual CASE, when many basic models are designed.

668
. ,

Soundness of version graph should be maintained in
the development process. The old components should
work in the current schema. Therefore we designed a
product specification database for Visual CASE. Vi-
sual CASE DB is a product specification database for
home appliances. In Section 3 we describe the desired
features for the object mode, version management, and
queries.

3 Product Specification Database

In order to realize the visual prototyping of home
appliances, we propose the construction of a prototyp-
ing system based on a database system storing prod-
uct specifications. This database system is the first
of its kind. In other words, this database system is
a specially designed multi-media database for home
appliance development. We call this database sys-
tem a product specification database. In this sec-
tion, we propose the software model that represents
product specifications, the version management of the
database, and the query using operation-sequence.

3.1 Object Model

For the software model for home appliances, we’ciaim
that a product specification is represented by func-
tions and user operations to fire them. To represent
product specifications, we apply our idea to the object-
oriented approach[RBP+Sl]. In other words, we view
each product specification as an object: a p&duct
specification object. In addition, a product spec-
ification object contains other objects: component
objects.

3.1.1 Product Specification Object

A product specification object is a container object
whose constituent elements are some component ob-
jects. A product specification object corresponds to
one particular product in the real world. A component
object represents its function. Examples of component
objects in a washing machine are power button, timer,
water level LED, washing cycle button, and washing
cycle.

The set of component objects is structured as a class
hierarchy (i.e. class library): a component class hi-
erarchy. In this class hierarchy, a descendant class in-
herits from ancestral class information. Figure 3 shows
a product specification object that contains several
component objects. The arrows between objects indi-
cate the messages. There is no relationship (i.e. part-
of) among contained component objects in a product
specification object.

It is possible to compose several product specifica-
tion objects from one component class hierarchy. In
general, a container object captures the framework to
include its content objects and the operational mech-
anism to constrain them. Further discussions about
container objects can be seen in [TNY+93]. Unless the
container object offers any constraint, its constituent
elements are free to enter and leave their container.
Therefore, container objects can offer a rather more
flexible environment than the one that composite ob-
jects provide since product designers are allowed to
attach and detach constituent elements to the product
specification.

LAUSIV is a programming language in which the
object model we propose is implemented2. It is like
well-known object-oriented languages such as C++
and Objective-C. The inheritance scheme of the state
attribute is extended in this language because the
state attribute must be considered distinct from other
general attributes, In addition, constraints among
classes on the extended messages passing mechanism
are adopted.

The following example describes the component
class TimerControlSequence, which is a direct de-
scendant of ControlSequence.

class TimerControlSequence : ControlSequence{
/* definition of state attributes */
state:

timer-state =
{‘waiting’,‘setting’,‘executing’};

. . . .

. . . .

/* definition of general attributes */
attribute:

integer start-time;
integer end-time;
integer interval;

. . . .

/* definition of behavior */
behavior:

SetTimer from < class TimerButton> {
if (timer-state == ‘waiting’){

timer-state = ‘setting’;
interval = end-time - start-time;

1
. . . .
. . . .

1
1

Each class has three parts, which are state attribute,
general attribute and behavior. In this example, three

2There is no meaning, but it is simply the word “visual”
reversed.

669

Component Class Hierarchy Product Specificatiori Object

Figure 3: Component Class Hierarchy and Product Specification Object

states are assigned to the state attribute timer-state.
Three integer variables are declared in the general at-
tributes. In the behavior S&Timer, it is declared that
the message SetTimer is received only from a class
which is a descendant of class TimerButton and the
procedure is carried out when the message is received.

In the example shown below, the component class.
MinuteSecondTimerControlSequenceis a descendant,
class of the component class TimerControlSequence.
TimerControlSequence which has a state attribute
timer-state, which is assigned to either state
waiting, setting, or executing.

class TimerControlSequence {
state:

timer-state =
{'waiting, 'setting', 'executing')

>

class MinuteSecondTimterControlSequence :
TimerControlSequence {

state:
timer-state.setting =

{'setting-minute', 'setting-second'}
1

In MinuteSecondTimerControlSequence, the state
setting is refined to setting-minute and
setting-second. In this example, setting is a
generalized state for TimerControlSequence, while
setting-minute and setting-second are refined
states for MinuteSecondTimerControlSequence

3.1.2 Consistency Management

Several frameworks for schema updates have been pro-
posed [Osb89] [Zicgl]. In [Zicgl], two basic types of
consistency are discussed, namely structural and be-
havioral consistency. Structural consistency refers to
the static characteristic of the database, and behav-
ioral consistency refers to the dynamic part of the

database. The behavioral consistency is too severe
to maintain schema, however, it is certainly useful
to check class hierarchies. Especially when a schema
evolves frequently (i.e. prototyping), we consider that
the consistency should allow a certain behavioral in-
consistency. We introduce weakly behavioral con-
sistency to maintain schema reasonably. Weakly be-
havioral consistency is maintained by the two types of
constraint given below. The constraint prevents the
method from failing (i.e. run-time errors) and from
changing the behavior (i.e. the expected method’s re-
sult is different).

In the constraint we propose, a component object
can’ designate a component class as the receiver class
instead of a particular instance of the class in sending a
message. The message issued by the object will be de-
livered to the object(s) belonging to the receiver class
if such object(s) exists in the container object. Oth-
erwise, the constraint mechanism will look for another
object that belongs to the descendant of the desig-
nated receiver class. If no such objects are found, the
message will be ignored as in the former case. Also,
a component object can designate a component class
as the sender class for a particular behavior. Namely,
the behavior will be fired only by the messages that
the objects belonging to the sender class or its descen-
dant classes dispatch. Messages sent from unspecified
classes will be discarded. As a whole, our proposing
constraint is characterized by the following:

. Sender Constraint The message sender can
specify a receiver class instead of a particular object
in sending messages. The sender constraint is repre-
sented by the following notation:

< class ReceiverClassName> <- MessageName

670

Receiver Constraint The message receiver can
specify a sender class in declaring behavior. The re-
ceiver constraint is represented by the following nota-
tion:

MessageName from < class SenderClassName>

In the following example, we show the constraints
in Figure 4.

Figure 4: A Constraint among Component Objects

/* Sender Class */
class TimerButton : Button {

. . . .

Receive Constraint

behavior:
ButtonOn {

. . . .
CC class TimerControlSequence> <- SetTimer];

/* Receiver Class */
class TimerControlSequence : ControlSequence (

behavior :
. . . .

SetTimer from < class TimerButton> {

In Figure 4, the component class TimerButton de-
clares the component class TimerControlSequence as
a receiver class of the message SetTimer. Similarly,
the component class TimerControlSequence desig-
nates TimerButton as a sender class of SetTimer. As
a result, the relationship between TimerButton and
TimerControlSequence is described by the constraint
imposed on the message sending mechanism relating
to SetTimer.

3.2 Version Management

There are many versions of a product specification
object, because it is possible to compose several

product specification objects from one component
class hierarchy. For example, for a microwave oven
- ‘94-English-design, ‘94-French-design and
‘94-German-design are composed from the compo-
nent class hierarchy ‘94-GRILL-MODEL. On the other
hand, a component class hierarchy is evolved by adding
classes, modifying classes, and removing classes. For
example, a product modification for a microwave
oven - from ‘94-GRILL-MODEL to ‘95-GRILL-MODEL,
the component class IO-MinutesButton is attached
and the component class SteamSensor is modi-
fied. The relationship between the component class
hierarchy and the product specifications may be
contradictory in the evolution. For example, as
SteamSensor is modified in the product modifica-
tion, ‘94-English-design and ‘94-German-design
will work. However, ‘94-French-design won’t work,
because the combination of new SteamSensor and
‘94-GRILL-MODEL components are not compatible
only in this case.

We propose a configuration management method
to solve this problem, which is called the release
method. This method prevents a component class
hierarchy destructing if its hierarchy evolves. Figure 5
shows the release method as follows:

Phase 1 The product specification object al is com-
posed from current component class hierarchy cr.
In the same way, a2 and a3 are also composed. In
this case, the current list of product specification
objects includes al, a2, and a3.

Phase 2 A class in (Y is modified and new product
specification object bl is composed. At this time,
if a2 has a modified class object, we must check
whether the product specification is contradictory
to (Y. If it is not contradictory, go to Phase 3a.
Otherwise go to Phase 3b.

Phase 3a The current component class is /3 evolved
from (Y and the current list of product specifica-
tion objects includes a2.

Phase 3b The current component class is /3 evolved
from (Y and a2 is released to rel a,?? with rel CY. In
this case, the current list of product specification
objects doesn’t include a2.

The released version of the product specification
object is detached from the current list of prod-
uct specification objects. At this time, the compo-
nent class hierarchy, from which the product speci-
fication object is composed, is detached and stored
with the product specification object. The reason

671

Current Component Hierarchy

Current List of
Product Specifiiation Object

Figure 5: Release Method

to Sweden-MODEL and Norway-MODEL, and still more
Component Database Product Specification Database

Figure 6: Component Database and Product Specifi-
cation Database

why the component class hierarchy is also stored is
as follows: (1) The product specification object is
guaranteed to work completely. (2) The component
class hierarchy evolves individually. In this way, it
is easy to distinguish the released version from the
current main version of the component class hierar-
chy. For example, the released version of the com-
ponent class hierarchy NorthEuropean-MODEL evolves

branches to NorthAmerican-MODEL and so on,
We implement our object model on two databases.

One of the databases is the product specification
database which manages versions of product speci-
fication objects. The other database is the compo-
nent databaqe which manages the versions of class
hierarchies. We compose product specification objects
in the product specification database from compo-
nent objects defined in the component database. Fig-
ure 6 shows the relationship between the component
database and the product specification database.

3.3 Query by Operation-Sequence

We claim a new function for visual Lprototyping
should be provided. We propose a query using
operation-sequence[SYS+9213. The mechanism uses
an operation-sequence as a query though the conven-
tional database uses textual language (like SQL).

When an .operation-sequence is carried out, a state
or states within one or more components within a
product changes. We have designed an extension to
the conventional class object, the state attribute. A

3The query mechanism in this section is still in the planning
stage, so it is still to be implemented.

672

specifically designed inheritance mechanism allows the
abstraction and refinement of states. A state is main-
tained within a component so that state can therefore
be abstracted to allow the comparison of states within
different components.

There are many kinds of operation-sequences for
different operating equipment. For example, for set-
ting the timer of a VCR;

product [buttonl, buttonZ,...] 8
./

A [Timer, Month, Day, Hour, Minute]

B [Timer, TapeMode, Hour,,Minute, Month, Day]

C [Timer, Hour, Minute,TapeMode] .-

Example 1: Find the operation-sequence of
product A, corresponding with operation-sequence
[Timer,Hour,Minute].

get [Timer, Hour, Minute] of {A}

The query of Example 1 returns the operation-
sequence:

[Timer, Month, Day, Hour, Minute]

Example 2: Find the most similar product to
operation-sequence [Timer, TapeMode, Hour, Minute]
in product A, B, and C. The query is:

choose [Timer, TapeMode, Hour, Minute] in {A, B, C}

The query of Example 2 returns the product B because
the abstract state of B’s operation-sequence is equiva-
lent to the abstract state of the query (i.e. A: {time-
setting}, B: { mo d e-setting, time-setting}, C: {time-
setting, mode-setting}, and the query:; {mode-setting,
time-setting}).

673

4 Implement at ion

In this section, we describe implementation issues of
the database functions in the manufacturing process.
In section 4.1 we describe the system architecture of
the Visual CASE system. In section 4.2, we describe
the consistency management of Visual CASE system.

4.1 Architecture of Visual CASE

Visual CASE is a software development system specif-
ically designed for the embedded software in home
appliances and provides a framework which can be
used by all the developers: product planners, prod-
uct designers, and software developers. The architec-
ture of Visual CASE supports various software devel-
opment stages from the conceptual specification design
to executable code generation. Visual CASE runs on

Sun OS with Open Windows 2.0 and Object-Oriented
Application Development Software “GainMomentum”
[Miy93] [Syb94].

Figure 7: Visual Components and Program Compo-
nents

The component objects dealt with in Visual CASE
have not only a level representing a function of a com-
ponent but another two levels. In other words, a com-
ponent object is linked to two subcomponents: a visual
component and a program component. To simulate
product operations, Visual CASE uses the visual com-
ponent. To synthesize the executable program, Visual
CASE uses the program component. Figure 7 shows
the relationship of components and these subcompo-
nents.

Figure 8 shows the architecture of Visual CASE.
Visual CASE consists of six tools and five ‘managers4.
The tools provide the developers with the interface to
manipulate products and components in the product
specification database and the component database.
The managers provide the tools with the interface to
access the product specification database and the com-
ponent database.

The component editor provides the developers
with an interface to create, delete and modify a com-
ponent object. The component browser provides
the developers with an interface to traverse a compo-
nent class hierarchy and paste a component object on
a product specification object. The product specifi-
cation editor allows the developers to create, delete
and modify a product specification object. The prod-
uct specification presenter allows the presentation
of’the appearance of a product specification object
on the CRT display. The developers can operate the

4The product specification browser, the component query
manager, and the product specification query manager are yet
to be implemented.

Visual CASE DBMS

Visual CASE DE

I JJ Pmduct SpecHicallonl

Figure 8: Architecture of Visual CASE

‘pseudo’ product on the CRT display. The program
synthesizer generates a control skeleton of the target
software. This synthesizer uses program components
to collect program fragments. The product specifi-
cation browser provides the developers with an in-
terface to traverse the product specification database.
These tools have a graphical user interface on the CRT
display.

The component manager receives the request to
retrieve and store the component objects from the
component browser and the component editor, and
to pass the class definitions to the product specifica-
tion editor. The product specification manager
receives the request to retrieve and store the product
specification objects from the product specification ed-
itor, product specification presenter, and program syn-
thesizer. The component query manager and the
product specification query manager receive the
request to search the component object and the prod-
uct specification object from the component browser
and product specification browser.

In Figure 1, the top part shows the product spec-
ification presenter presents all the visual subcompo-
nents of the component objects contained in the prod-
uct specification object of a particular washing ma-
chine. The bottom right part shows the view of the
component editor for a particular component object
to let the designers edit the component class defini-
tion. The view is divided into five sub-windows that

display elements of the corresponding component ob-
ject: the visual component, the program component,
the specification parameters, the state attributes, the
attributes, and the behavior. The bottom left part
shows the view of the component browser to let the
designers modify the component hierarchy.

4.2 Consistency Manager

The consistency manager observes the consistency
between-the current class hierarchy and the current list
of product specification objects. The component man-
ager receives the request from the consistency manager
to check which class hierarchy is current and which
classes are modifying. The product specification man-
ager receives the request from the consistency man-
ager to check the current list of product specification
objects. The consistency manager transfers the re-
leased component class hierarchy and product speci-
fication objects into the component database and the
product specification database respectively, using the
access methods of the DBMS(core).

The Visual CASE DBMS(core) provides access
methods of the component database and the prod-
uct specification database to all managers. The
DBMS(core) is implemented on GainMomentum. As
GainMomentum adopts Objectivity/DB[Obj90] as a
storage manager, the DBMS(core) indirectly accesses
Objectivity/DB ‘through GainMomentum standard
functions. The component database has two storages:

674

working storage and released storage. The product
specification database has also two storages: working
storage and release storage. The working storages in-
clude the current versions and the released storages
include the released versions.

5 Conclusions

We have described a framework for prototype tech-
niques of software development. Our approach is to
design a data model for product specifications: the
product specification object and the component ob-
ject, to provide the release method and to construct a
product specification database. The main advantage
of the database is its ability to manage the consistency
of class hierarchies and instance objects in large quan-
tities.

We have also discussed implementation issues of the
database applied to Visual CASE: an object-oriented
software development system for home appliances. Vi-
sual CASE has been applied to the real manufacture
management process. A control panel designed by Vi-
sual CASE has actually been put on the market. The
case study has shown that Visual CASE reduced the
time to fix the initial conceptual design effectively and
the users continuously made good use of Visual CASE
for the development process.

The four properties described in Section 2 are sat-
isfied in Visual CASE as follows:

1. The system can examine functions and perfor-
mance using visual description.

2. The system can maintain compatibility between
prototype and target software by synthesizing a
program from the code fragments, using program
synthesizer.

3. The system can easily modify the specification
with an interface through visual tools, using
the Visual CASE DB as a product specification
database.

4. The system can manage the evolution of the spec-
ifications by the release method while maintaining
consistency.

There are several issues to be pursued about prod-
uct specification database: long term transaction, view
construction and so on. Our future work focuses on
applying Visual CASE DB as a product specification
database to actual software development of home ap-
pliances and verify the reusability and flexibility of our
model.

Acknowledgments

We gratefully acknowledge helpful discussions with
Yoshifumi Masunaga, professor at University of Li-
brary and Information Science, on several points in
this paper. We would also like to thank Katsumi
Tanaka, professor at ,Kobe University, for the advice
on the model we propose. Visual CASE is a result of
a team effort. Other team members include Takeshi
Nawata, Takuya Sekiguchi, Toshihiro Hishida, and
Satoshi Kawabata. We would also like to thank Tim
Cornish for polishing up the English, Chika Takayama
and Yuko Hamada for drawing the figures in this pa-
per.

References

[GB95]

[ISYH93]

[ITH92]

[KA93]

[KatSO]

V. Scott Gordon and James M. Bieman.
Rapid prototyping: Lessons learned. IEEE
Software, 12(1):85-95, January 1995.

Y. Imai, K. Sumiya, ,K. Yasutake, and
S. Haruna. Visual CASE: A Software De-
velopment System for Home Appliances.
In proceedings of the IEEE 17th Interna-
tional Computer Software and Applications
Conference(COMPSAC9~), Phoenix, AZ,
U.S.A, pages 11-18, November 1993.

K. Itoh, Y. Tamura, and S. Honiden. Tran-
sObj: Software prototyping environment
for real-time transaction-based software
system appIications. Intetiational JOUT-
nal of Software Engineering and Knowl-
edge Engineering, 2(1):5-30, March 1992.

Halskov Kim and H. Peter Aiken. Expe-
riences Using Cooperative Interactive Sto-
ryboard Prototyping. Communications of
the ACM, 36(4):57-64, 1993.

R. H. Katz. Toward a Unified Frame-
work for Version Modeling in Engineer-
ing Databases. ACM Computing Surveys,
22(4):375-408, December 1990.

[KBCG89] W. K im, J. Banerjee, H. T. Chou, and
J. F. Garza. Composite Object Revisited.
In proceedings of the ACM SIGMOD Inter-
national Conference, pages 337-347, June
1989.

[MasSl] Y. Masunaga. Design issues of OMEGA:
An object-oriented multimedia database

675

management system. Transaction of In- Advanced Database System Symposium,
formation Processing Society of Japan, pages 53-61. IPSJ, December 1992. (in
14(1):60-74, January 1991. Japanese).

[Miy93] Y. Miyabe. Object-Oriented Multi-Media
Application Development Software. In pro-
ceedings of 8th German-Japanese Forum
on Information Technology, May 1993.

[TAU+ 941

[NUFf95] Y. Nukina, W. Uchiyama, H. Fujii,
Y. Omura, K. Iwamoto, and H. Tanaka.
Washing machine with double cascades. In
National Technical Report, pages 3-9. Mat-
sushita Electric Industrial Co., February
1995. (in Japanese).

H. Tanaka, S. Abe, W. Uchiyama,
E. Ishizaki, T. Nawata, and Y. Imai. Pro-
totyping System for Home Appliances -
Case Studies in Control Panel Design.
In Proceedings of 14th Quality Manage-
ment Symposium on Software Production,
pages 9-16. JUSE(Union of Japanese Sci-
entists and Engineers), September 1994.
(in Japanese).

[TNY+93] K. Tanaka, S. Nishio, M. Yoshikawa,
S. Shimojo, J. Morishita, and T. Jozen.
Obase object database model: Towards a
more flexible object-oriented database sys-
tem. In Proceedings of the International
Symposium on Next Generation Database
Systems and Their Applications, pages
159-166, September 1993.

[Obj90]

[Osb89]

Objectivity. Objectivity Database System
Overwiew. Objectivity Inc., 1990.

Sylvia L. Osborn. The Role of Polymor-
phism in Schema Evolution in an Object-
Oriented Database. IEEE trans. of Knowl-
edge and Data Engineerings, 1(3):310-317,
September 1989.

[RBP+Sl] J. Rumbaugh, M. Blaha, W. Premer-
lani, F. Eddy, and W. Lorensen. Object-
Oriented Modeling and Design. Prentice
Hall, 1991.

[SciSl] E. Sciore. Multidimensionai Versioning for
Object-Oriented Databases. In proceed-
ings of Second International Conference on
Deductive and Object-Oriented Databases,
December 1991.

[ShuSl] Nan C. Shu. Visual Programming. Van
Nostrand Reinhold, 1991.

[SOHI93] K. Sumiya, T. Ohtsu, S. Haruna, and
Y. Imai. Visual CASE: An Object-
Oriented Software Development System
for Home Appliances. In proceedings of
11th International Conference on Tech-
nology of Object-Oriented Languages and
Systems(TOOLS USA’93), pages 97-107.
Interactive Software Engineering, August
1993.

[WW Sybase. Gaim Momentum User’s Guide.
Sybase, Inc, 1994.

[SYSf92] K. Sumiya, K. Yasutake, N. Sanada,
S. Haruna, and Y. Imai. Query by
operation-sequence: Extending query for
product specification databases. In

[Zicgl] R. Zicari. A Framework for Schema Up-
dates In An Object-Oriented Database
System. IEEE ICDE91, pages 2-13, 1991.

676

