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Abstract 

We describe a scheme to fragment and dis- 
tribute centralized databases. ’ The problem 
is motivated by trends towards down-sizing 
and reorganization, reflecting actual, often dis- 
tributed responsibilities within companies. A 
major practical requirement is that existing 
application code must be left unchanged. 
We present SQL extensions to specify owner- 
ship and data replication information declar- 
atively. From this, a compiler generates trig- 
gers and view definitions that implement the 
distributed scheme, on top of a collection of 
local databases. Our strategy has been ap- 
plied successfully at Telenor - the Norwegian 
telephone comp.any. 

1 Introduction 

It is known that distributed databases are, often more 
cost-effective than their centralized counterparts, re- 
flect better the organizational structure of compa- 
nies, allow incremental growth, and have the poten- 
tial of increasing performance, reliability, and avail- 
ability of database systems [CP85, OV91]. The re- 
placement of centralized systems by distributed solu- 
tions is clearly a trend, driven not by the availability of 
new equipment but rather by profound restructuring 
changes in the way companies operate. Many compa- 
nies however, already have a huge investment in cen- 
tralized database systems, and the prohibitive cost of 
re-implementing their current, working systems pre- 
vents them from adopting distributed solutions that 
would fit their needs better. Instead, what they need 
is an evolutionary database de-centralization path. 
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In a sense, the database de-centralization is the con- 
verse of database federation, which aim at presenting 
an integrated system on top of independently devel- 
oped databases [SL90]. Both re-engineering mech- 
anisms rely heavily on concepts and techniques de- 
veloped ,for multi-databases [LMRSO] but, although 
some concerns are common, each has its particular 
needs. Implementable solutions to federation and 
de-centralization are likely to be adopted relatively 
quickly in practice, as they address the day-to-day COII- 

terns of dynamic, evolving companies. 
Database de-centralization consists of replacing a 

single, central data repository by a collection of inter- 
connected local databases, without restricting the ser- 
vices formerly provided by the central system. Tech- 
nically, the distributed model has the potential of im- 
proving performance and data availability, as local 
databases are likely to be smaller, locking contention 
can be reduced, transaction load can be split over sev- 
eral processors, and data can be placed closer to dis- 
tributed users. Administratively, it can also shift a 
share of the responsibility over both data and hard- 
ware to the actual producers/consumers of informa- 
tion. In addition to the typical issues of distributed 
database design, de-centralization introduces the no- 
tion of data ownership. 

In many cases, the obvious alternative of replacing 
the centralized database by a sophisticated distributed 
database (e.g. with two-phase commit, distributed 
query processing, voting mechanisms for replica con- 
sistency, and so on) is impractical. Some features of 
distributed databases ate not always needed for de- 
centralization, yet they come at a cost and introduce 
extra overhead; and, perhaps more importantly, the in- 
terface offered to applications may change for the dis- 
tributed database (e.g. we might be forced to change 
database vendors), thus making necessary a thorough 
revision of all existing applications. 

The approach developed in this paper is based on 
having a collection of local databases communicating 
in a loosely coupled fashion, in the style described in 
[GMK88]. The DBMS formerly used for the central- 

654 



ized system is then used for each local database, with 
an additional thin “distribution layer” implemented 
with triggers. Our work includes SQL extensions for 
the specification of data fragmentation and distribu- 
tion, from which a compiler derives the necessary trig- 
gers. This approach requires no modifications to ex- 
isting applications, the existing database schema, or 
underlying DBMS, and can be implemented with off- 
the-shelf components. Clearly, giving up mechanisms 
such as two-phase commit affects the behavior and 
properties of the distributed system. Although our 
specific solution is suitable only for applications that 
can tolerate slightly out-of-date data from remote ma- 
chines, we do point out issues that arise in any data 
de-centralization process. 

This paper is organized as follows. The remain- 
der of this section describes the DIBAS database de- 
centralization project. Section 2 presents an overview 
of our distributed architecture. Section 3 introduces 
our formal model. Section 4 and 5 deal with the spec- 
ification of data ownership and distribution, respec- 
tively. Section 6 summarizes our proposal and com- 
pares it with other alternatives. Section 7 presents 
our conclusions. Examples of fragmentation rules, and 
generated SQL code are found in the appendix. 

1.1 The DIBAS project 

DIBAS (Distributed dataBASe) is a joint project of 
SINTEF DELAB with the research division of Telenor 
(a state-owned Norwegian Telecom company) to im- 
prove the efficiency of some of the databases and in- 
formation systems of the operational divisions. Like 
other providers of telephone services in Europe, Te- 
lenor is being pushed to increase competitivity as a 
result of governmental liberalization policies. Fdr the 
database infrastructure and services, a driving concern 
is to have flexibility in the assignment of responsibili- 
ties and costs, in a climate of administrative restruc- 
turing, with short-term cost-effective solutions. 

We present here the principles used to restructure 
one of the databases of the operational division of Te- 
lenor. The database contains over 150 tables with 
information about utilization of telephonelisdn trunk 
lines and switches, and changes projected for the fu- 
ture. There is a mix of analog and digital equip- 
ment, and both historical data, current status, prog- 
nosis, and plans are maintained. Applications on the 
database include network configuration, traffic mea- 
surement and statistics, routing, subscriber usage, 
prognosis and planning. 

2 Architectural overview 

In addition to local autonomy, a prime motivation 
for database de-centralization is the potential of im- 

proving performance and data availability: Each lo- 
cal database will be (much) smaller than a centralized 
database, locking contention and network traffic can 
be reduced, and the transaction load can be split over 
several processors. A major requirement in our case 
is that the database must be partially replicated, that 
replication is transparent to the users (applications and 
programmers), and that data must be replicated in 
a peer-to-peer (as opposed to “master-slave”) fashion. 
Other requirements to a possible de-centralization of 
the database were that no modifications could be done 
to existing applications and their databases or to the 
underlying DBMS. 

Briefly,- the basic idea of DIBAS is to take a central- 
ized implementation, determine data ownership, and 
store data at each owner site. Data is replicated ac- 
cording to user and application needs, so that all data 
access can be done locally at each site. Conflicting 
updates are avoided by ensuring that data imported 
from (owned by) other sites is read-only. Distribu- 
tion of replicated data is done incrementally and asyn- 
chronously. The scheme of a site with a local database 
is shown in Figure 1, whose components are explained 
below. 

2.1 Fragmentation and data ownership 

A key concept for de-centralization is data owner- 
ship, which induces a partitioning of the centralized 
database. Each table of the database is partitioned 
into horizontal non-overlapping fragments, and an 
owner is assigned to each fragment. Ownership en- 
tails exclusive write access, as well as control over who 
else can read specific portions of data. 

Although this can be generalized, we assume that 
owners are identified with sites and local databases. 
The assumption is consistent with common working 
environments,in corporations and, frequently this data 
fragmentation directly rqflects responsibility for real- 
world objects described by the data. This also suggests 
a natural starting point for data distribution: Each site 
owns a fragment of every table of the original database, 
and each fragment is stored in the local database of its 
owner. Fragments may be empty, contain some, or all 
the tuples of a table. 

2.2 Data replication 

Users do not issue distributed transactions in our ar- 
chitecture. Instead, transactions are submitted to lo- 
cal databases. Since only local data is available, to 
access data owned by other sites, it must be imporled 
beforehand. Data owners specify the&portion of their 
data that they are willing to export to other sites. The 
process of export/import implements a form of asyn- 
chronous data replication, which is maintained by the 
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Figure 1: Site with local database. 

system. Imported and owned fragments of a given ta- 
ble are stored in the same physical table of the local 
database. This allows efficient processing of read-only 
transactions, but can lead to inconsistencies for read- 
write transactions. Therefore, imported data can be 
read only. 

[CW90, cw91, CW93]. 

Restricting imported data to be read-only does not 
guarantee global serializability, but there is still a 
range of correctness criteria applicable, depending on 
the choice of a data propagation policy [GMK@]. 
Techniques for the asynchronous update of replicated 
data include gossip protocols [HHW89], submission of 
transactions on persistent queues [CW93], and peii- 
odical or on-demand distributed update transactions. 
We use the latter approach: A data distribution appli- 
cation replicates data using distributed transactions, 
and two-phase commit. 

2.3 Triggers 

To enforce ownership constraints and to support in- 
cremental update of replicated data, we rely on the 
use of triggers, currently available ‘in most commer- 
cial DBMSs [Sto92]. Such triggers are automatically 
activated by the DBMS in response to data manipu- 
lation requests issued by transactions. The specifics 
of when and how triggers are activated differ in vari- 
ous systems and theoretical models [MD89, SJGPSO, 
WCL91, SybSO]. But they provide an architecturally 
sound place to insert a layer ‘of additional services 
between applications and the DBMS, as is done in 

Like [CW90, CW91, CW93], we take a list of declar- 
ative specifications and compile them into a collection 
of database triggers, which implement the required 
service. In our case, it is ownership and replication 
rules that are declaratively specified. The compiler 
produces triggers, view definitions, and stored proce- 
dures that are installed in the local databases. These 
triggers verify ownership and support data replication, 
as explained below. 

For concreteness, we assume Sybase triggers 
[SybSO], which behave as follows. A trigger is a pre- 
compiled stored procedure which can contain an arbi- 
trary sequence of SQL statements, and is associated 
with a pair of the form [lab/e, operation], where op- 
eration is either insert, delete, or update. A trigger 
on [R, o] is executed automatically after an SQL state- 
ment performs operation o on table R on behalf of 
some transaction, and before the next SQL statement 
of the same transaction. At most one trigger is al- 
lowed per pair [R; 01. The SQL statements of the trig- 
ger body may refer to any part of the database, and 
has special access to the data modified by the trigger- 
ing operation: Old values of modified tuples are avail- 
able in the deleted virtual table, new tuple values are 
available in the inserted virtual table. Sybase trigger 
firing and executionis thus set-oriented [HW93]. Trig- 
gers fire on simple modification events, but arbitrary 
database transition conditions may be specified using 
the deleted and inserted tables. A trigger which 
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modifies the database state, may fire other triggers re- 
cursively. 

2.4 Incremental update of replicas 

Owner sites keep track of the data they have exported 
to other sites to update replicated data in an incre- 
mental way. Instead of re-sending complete table frag- 
ments, they send only the necessary deletions and in- 
sertions to be executed at the remote site. To accom- 
plish this, triggers automatically store modifications 
to locally owned data, with timestamp and operation, 
in for-distribution log tables. We maintain one for- 
distribution log table for each replicated base table. 

A separate data-distribution application performs 
asynchronous propagation of replicated-data from the 
for-distribution log tables, taking into account the 
timestamp of updates previously sent to each site. Lo- 
cal timestamps are adequate for this incremental repli- 
cation scheme. To ensure the consistency of incremen- 
tal updates, we need the guarantee that data propa- 
gation commands are committed at the remote sites. 

3 Formal model 
c 

In this section we describe a formal model behind our 
approach, and discuss correctness guarantees that can 
be given by the system. 

3.1 Ownership and distribution predi- 
cates 

An important property of our system is ‘that ‘tuple 
ownership is not always defined solely on the content of 
an individual tuple (e. g. attribute value in some spe- 
cific range), but may also depend on the the database 
state. For example, ownership of a,tuple with an ex- 
ternal key may be defined to be the same as that .of the 
tuple referenced. Ownership is specified on a table-by- 
table basis, using a predicate with three ‘arguments: 
C?R(~, 27f3, S); such predicate returns TRUE if tuple t, 
consistent with the schema of A, is owned by site S, 
given database contents DB. It corresponds, in prac- 
tice, to an SQL subquery with free variables t, S, re- 
turning an empty/non-empty result.. For correctness, 
ownership predicates must assign a unique owner to 
each tuple. That is, the ownership must partition the 
database. 

Distribution is handled similarly. However, to 
allow selective export of data to different sites; 
the predicate uses both source and destination site: 
VR(t, Va, S,, Sd). We allow multiple, independent 
distribution predicates for each table. In practice, 
the distribution predicate for a table corresponds to 
a union of SQL queries, returning the set of tuples to 
be replicated from a sender site to a recipient site. 

3.2 Database fragmentation and local- 
ity 

The central database is fragmented into a collection 
of databases, based on the predicates defined above. 
Given an ownership predicate OR for relation R, the 
fragment F(OR, VB, S) c R consists of those tuples 
in R owned by site S. For a collection of ownership 
predicates 0 = OR,, . . . , OR,, the database fragment 
owned by S is F(0, VB, S). Fragments based on dis- 
tribution predicates are denoted similarly. 

In our architecture, the central database DB 
is replaced by a collection of local databases 
VBs,, . . . ,VBs,. Given a collection of ownership and 
distribution,predicates, (?,D, each local database con- 
sists of the data it owns, plus the data it imports from 
other sites: 

FLOSS, = F(C’,VB, Si) U U F(T’, VB, Sj, Si). 

j#i 

The above expression amounts to the initial dis- 
tribution of the centralized data to the different 
local databases. After distribution, locality is a 
basic assumption of our .approach. In particular, 
each site must be able to determine, based only 
on its local data, what it owns and what it must 
export. Formally, this becomes: For every Si, 
qo, W&) = F.(U, VBs,, 5); and for every Sj # 
Si, F(V,VB,Si,~Sj) = F(V,VBS~,S~,S~). 

A way to guarantee locality is to make sure data de- 
pendencies “do not cross ownership boundaries.” That 
is, if ownership of tuple tl depends on that of t2, then 
their owner is the same. In this case, we have a fixed- 
boint 

F(O,VB, Si) = F’(O) F(O~VB~ Si), S’i). 

There is a similar property for distribution pred- 
icates. Sometimes, it is necessary for dependencies 
to cross ownership boundaries. However, our current 
experience indicates that this kind of dependency is 
rare, and can be handled as follows. Extra data VBo 
needed to determine ownership should be distributed 
to all sites, and VBo itself should never be modified 
during normal operation. Modifying VBo would be 
handled as database reconfigurations, by special pro- 
tocols. Relations in VBo can be regarded as dictionary 
tables,, are owned,by a central site, and are replicated 
in their entirety to all other sites. 

Locality is also critical to continue running formerly 
centralized applications. An application can be exe- 
cuted correctly at site Si, if all the data it requires 
is contained in VBsi, and every tuple t it deletes or 
inserts (modeling updates as deletion followed by in- 
sertion) is owned by Si. 
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3.3 Convergence of triggers 

Since our architecture relies on the use of triggers, we 
need to address the issue of convergence of those trig- 
gers [ZH90, AWH92]. 

With respect to ownership, triggers must ensure 
that read-only fragments imported from other sites are 
not modified by local transactions. If data ownership 
can be tested locally, then triggers can verify appro- 
priate ownership of every modified tuple and abort 
transactions that attempt to violate this constraint. 

When, as a result of a local transaction in Si, a 
distribution fragment 3(@, DBsi, Si, Sj) changes, the 
modifications must be sent to and installed in the 
database of Sj. We say that the data propagation is 
pending until the modifications are actually sent and 
installed at the remote site. Locality can be used to 
guarantee that if local transactions stop being sub- 
mitted, then in finite time trigger activation will also 
stop, and data will be replicated correctly. Assume 
that distribution can be determined locally, by owned 
data; that is, for every Si # Sj, 

Data distributed to some site Sj cannot affect the data 
owned by S’, and therefore no further data distribu- 
tion is initiated. 

3.4 Serializability of transactions 

Asynchronous propagation of replicated data gives up 
global serializability of transactions in favor of greater 
availability and performance. Local transactions have 
no guarantee that their imported data is up to date 
(although users should be able to request the system 
for a “data re-fresh”). 

The notion of fragmentwise seri,alizability defined in 
[CMK88] applies to our architecture as follows: (1) 
Schedules consisting solely of transactions issued on a 
given site ,Si are serializable; and (2) data distribution 
can be done so replicated data is atomically updated, 
and reflects no partial effects of transactions commit- 
ted at other sites. 

4 Ownership types 

We distinguish several cases occurring in practice 
where the specification of ownership can be made in a 
simple fashion, and appropriate ownership tests can be 
generated automatically. These special cases are iden- 
tified as ownership types. Based on these ownership 
types we generate triggers which reject transactions 
that attempt to modify data not owned by the site, 
and log valid changes in a for-distribution log table. 
The generated triggers have the following form:’ 

‘This general form can in many cases be (and is actually) 
optimized. 

if exists ( 
select * from deleted MODIFIED2 
where not ( <ownership predicate> 1 

or exists ( 
select * from inserted MODIFIED 
where not ( <ownership predicate> ) 

then begin 
rollback transaction 
return 

end 
else begin /* log changes */ 

insert into <for-distribution log> 
select getdate0, 'd' , * from deleted 
insert into <for-distribution log> 
select getdateo, 'i' , * from inserted 

end 

The <ownership predicate> is generated based on the 
ownership type of each table, and will usually reference 
the name of the current site. We assume that this is 
available in the SQL variable @site. 

We illustrate next the different ownership types with 
simplified examples from an application for planning 
extensions and changes to the telephone network.3 Te- 
lenor is divided into regions, each responsible for its 
own part of the network. Apart from data describing 
equipment within their region, planners need only lim- 
ited, read-only access to other relevant data, usually 
from neighbor regions. This partitioning of responsi- 
bility is directly reflected in the ownership and distri- 
bution rules. 

We use the following tables in the examples. Key 
columns are underlined. 

TABEXPORT(TABNAME, OWNER, RECIP > 
TABOWNER(TABNAME, OWNER) 
ORGUNIT(ORGID, OWNER, NAME) 
SYITCH(SID, ORGID, TYPE, NAME) 
ROUTING(SID,'RNO, FROMNO, TONO, DATE) 
TRUNK(SI1, 912, TNO, ORGID, TYPE, NAME) 
TRUNKPROG(TI1, i12, TNO, YEAR, PNO, PROGN) 

For a graphical presentation of tables and ownership 
dependencies, see figure 2. Dark columns indicate pri- 
mary key for each table. Circled attributes are used 
for ownership fragmentation. 

4.1 Entire ownership 

A table may be owned completely by some site, i.e. 
the ownership fragment is the entire table contents. 
The owner site can be determined at compilation 
time, or installation time. In our example, the ta- 
ble TABOWNER is owned by a central site called 

2MODIFIED is a table alias name for the deleted aud 
inserted virtual tables ofsybasetriggers. 

3The simplification consists of removing attributes that are 
not relevant to the exampleqand replacing compositekeys by 
single attributes. 

658 



TABEXPORT TABOWNER 

TRUNKPROG TRUNK SWITCH ROUTING 

Figure 2: Sample tables with ownership. 

‘TNP’. This give an ownership predicate of the form: 
0 TABOWNER 5 ‘TNP’ = @site 

TABOWNER is a dictionary table which maps 
table names to owner sites. ORGUNIT is a ta- 
ble which maps organizational units to sites, and 
is owned entirely by a single site: O,.,,,,, E 
rOWNER uTABNAME=‘ORGUNIT’ ( TABOWNER) = 
{@site} 

4.2 Direct ownership 

TABEXPORT is a dictionary table which is used for 
describing distribution of other tables from an owner 
site to recipient sites. The TABEXPORT table is owned 
directly based on the value of the OWNER attribute. 
This value based ownership assures that each owner 
site can determine whether tables should be replicated 
to other sites. This gives an ownership predicate of 
the form: OTABEXPORT E x,,,,,(MODIFIED) = 
{@site} 

4.3 Indirect ownership 

Indirect/via lookup table. Responsibility for 
switches and trunk lines are allocated to organiza- 
tional units within Telenor. This responsibility is 
directly reflected in the tables SWITCH(. . . , ORGID) 
and TRUNK(. . . , ORGID). The ORGID attribute is a 
foreign key on the ORGUNIT table. Ownership for 

- 

SWITCH and TRUNK is based on this foreign key, and 
ORGUNIT.OWNER gives the owner site. Both tables 
have an ownership predicate of the form: C?SWITCH E 
0 TRUNK - ?ro,N,,(ORGUNIT W MODIFIED) = 
{@site} 

The ownership lookup table (ORGUNIT) is owned 
by a central site (see above) in order to ensure global 
ownership consistency. 

Indirect/transitive. The SWITCH and TRUNK ta- 
bles are “top level” tables in two separate hierar- 
chies of foreign key dependencies, with lots of tables 
containing different data about the various parts of 
switches and trunks. TRUNKPROG, which describes 
trunk prognosis, is an example of this. Ownership 
is based on a foreign key, and the fact that owner- 
ship via TRUNK is transitive. The ownership predi- 
cate becomes: C’TaUNKPROG 3 no,N,,(ORGUNIT W 
TRUNK W MODIFIED) = (@site} 

Indirect ownership can be transitive in several levels, 
limited only by the SQL compiler of the target system. 
In practice we have never needed more than two levels. 
The joins generated for transitive ownership predicates 
are compiled and stored in the database as triggers, so 
they make an excellent match for the technique of join 
indices and its generalizations [Va187, KM90], if this is 
supported by the target system. 
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4.4 Arbitrary ownership 

In addition to the ownership types described above, 
we allow arbitrary SQL expressions as ownership pred- 
icates. This works much like an “assembler” directive 
in e.g. a C compiler: any executable,code can be in- 
serted, but the correctness is left to the programmer. 

5 Distribution types 

As for ownership, we identify common distribution 
cases and call them distribution types. Based on 
these types we generate distribution predicates that 
are stored in a dictionary table for use by the data 
distribution application. 

Distribution predicates are used to select data for 
distribution to remote sites. A distribution fragment 
is always a subset of. an ownership fragment. There 
may be several distribution rules for each table, thus 
distribution fragments may overlap. 

An SQL expression for selecting tuples to be dis- 
tributed from an owner site to a recipient site is of the 
form:4 

select * from <for-distribution log> 
where TIMESTAMP > 

( <time of previous distribution> ) 
and ( <ownership predicate> ) 

ad ( (<distribution predicate 1) ) 
or (<distribution predicate D ) 
or . . . ) 

order by TIMESTAMP 

This assumes that the triggers have stored all tuples 
which are to be replicated in for-distribution log tables. 
There is one log table for each replicated table. The 
query will be evaluated at the owner site, and each 
tuple returned is converted to a delete or an insert 
operation at the recipient site. 

The <ownership predicate> can be removed because 
we know that the log contains only tuples which are 
owned locally. Each <distribution predicate> in the fol- 
lowing sections is evaluated against the for-distribution 
log tables, except at system “boot-strap”, where we 
read base tables restricted by ownership predicate AND 
distribution predicate(s). 

5.1 Entire distribution 

Entire to all. Tables ORGUNIT and TABOWNER 
are distributed to all sites. The entire ownership frag- 
ment is distributed. This type of distribution is used 
for tables which are maintained centrally, and should 

4 Actually the query is tramformed and optimized. Replacing 
the disjunction with unions, and precomputing inner queries 
using SQL variables gave a speedup of two orders of magnitude 
for query evaluation at the sender site. 

be replicated to all sites. This gives a trivial distribu- 
tion predicate of TRUE. 

Entire to some. Some tables should be dis- 
tributed in their entirety to some sites. This is 
used e.g. to keep a complete overview of SWITCHes 
and TRUNKS &t a central cite. 2, TR”NK = 
uTABNAME=‘TRUNK’,RBC:IP=greoip,cnt .TABEXPORT 

512 Indirect distribution 

Indirect/via lookup table. Owner sites corre- 
spond to regions within Telenor. Application 
users in each region will need to import infor- 
mation about TRUNK lines crossing region bor- 
ders, and SWITCHes at the end of these lines, i.e. 
regions will export parts of their data to other 
(neighbor) regions. This is implemented &ith an 
“indirect to some sites” rule, and lookup tables 
TRUNK_EXP and SWITCH-EXP which map TRUNKS 
and SWITCHes to recipient sites. The distribution 
predicate for TRUNK becomes: DT,u,, 5 TRUNK W 
(uOWNER=O,its,RECIP=QrsoiplentTRUNK-EXP) 

Referring to the previous section, we see that 
there are two (independent) distribution predicates for 
TRUNK. The complete distribution predicate will be 
the union of the two. 

Ownership of the distribution lookup tables 
(TRUNK-EXP and SWITCH-EXP) should reflect busi- 
ness policy: Entire owhership will centralize the con- 
trol of replication, direct ownerhip based on a SENDER 
attribute will assure that each owner site can deter- 
mine the fragments to be replicated to other sites. 

Indirect/transitive. As with ownership rules, dis- 
tribution rules may also be transitive. If a site exports 
data about one of its trunks to a given recipient site, 
the corresponding trunk prognosis in TRUNKPROG 
should follow. This gives a distribution predi- 
de: ~TRuNKPROG E TRUNKPROG W TRUNK W 
(uOWNER=Q‘ite,RECI~=~~==i*i=~~TRUNK-EXP) 

5.3 Arbitrary distribution 

As with ownership, we also allow arbitrary SQL ex- 
pressions.for distribution predicates. These are “safe” 
in the sense that they are always restricted with the 
ownership predicate, so that we can guarantee that 
only locally owned data is ever exported. j 

5.4 Incremental replication and indi- 
rect distribution 

The data imported to a site may be regarded as a 
union of read-only snapshots from other sites. These 
snapshots are maintained incrementally, even in the 
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case of indirect distribution, where these snapshots 
are joins. Incremental replication is implemented by 
cascading any modifications of distribution lookup ta- 
bles to the for-distribution logs of the dependent ta- 
bles. Given the distribution predicates for TRUNK 
and TRUNKPROG (see above), we extend the trigger 
of TRUNK-EXP to log necessary dependent tuples in 
TRUNK and TRUNKPROG. Similarly the trigger of 
TRUNK is extended to log dependent TRUNKPROG 
tuples. This allows us to always evaluate distrib,ution 
predicates against the for-distribution log tables,,rather 
than the base tables. 

6 Current implementation 

Ownership and distribution rules are defined using our 
SQL extensions, as shown in the examples of sections 
4 and 5, and the appendix. Our compiler takes the 
declarative specifications and generates a collection of 
database triggers to prevent modifications to imported 
data, and log changes. These triggers are installed in 
each of the local databases. We have so far worked on 
Sybase databases, but have plans for an Oracle ver- 
sion. The most significant difference between Oracle 
and Sybase is that Oracle has row triggers, rather than 
the set-oriented triggers of Sybase. 

Performance measurements show an average in- 
crease in response times of about 50% for database 
modification requests which do not violate the owner- 
ship tests.5 This should be acceptable for many classes 
of applications, assuming that only a small fraction of 
the execution time is spent on actual database mod- 
ifications. In our example applications most of the 
time is spent querying the database, and by the users 
browsing data on their screens. 

We have a separate application at each site to per- 
form the incremental update of replicas. It is executed 
periodically and also in response to explicit “import 
data” or “export data” requests. This application uses 
the distribution predicates generated by the compiler 
and the for-distribution logs maintained by the trig- 
gers. Replica update consists of several transactions 
with two-phase commit, each transaction updating one 
table on one recipient site with the modifications from 
one sender site. We do not update all tables in a sin- 
gle transaction because our experiments showed exces- 
sive lock contention with conflicting local user trans- 
actions. Alternatives for data replication are limited 
by the trigger model/interface of Sybase: Triggers are 
evaluated as the transaction .progresses, and have no 
access to either a transaction id or a transaction com- 
mit time. Therefore, in our current system modifica- 

5Single insert, delete, or update operations of tables with 
direct or indirect ownership. The increase in response time for 
transitively owned tables (TRUNKPROG in our examples) is 
about 100%. 

tions done by a transaction are not propagated atom- 
ically to other sites, and fragmentwise serializability is 
not guaranteed (see section 3). Serializability of local 
transactions is enforced by the local Sybase DBMS. 

The performance of the distribution application is 
determined by three factors: Evaluating distribution 
predicates at the sender site, data transfer, and in- 
sertion at the recipient site. We insert data at the 
recipient site using precompiled stored procedures, so 
data transfer and insertion is faster than local insertion 
using SQL INSERT statements. We have optimized 
the distribution predicates (se footnote on page 7) 
and obtained response times of a couple of seconds for 
tables with indirect distribution, and for-distribution ~ 
logs containg’lOO0 tuples (on a SPARCstation 1). 

Analyzing locality of a system (see section 3) reduces 
to the question: Does each site have enough informa- 
tion to determine the tuples it owns and the tuples 
it needs to replicate? Our ownership and distribution 
types facilitate answering these questions by giving ex- 
plicit means to trace data dependencies. For example, 
we know that if a table is owned entirely or directly 
(see section 4), then ownership of tuples can be de- 
cided locally. When the ownership is via other tables, 
the data that affects ownership of any tuple is well 
defined. Consistency is achieved through design, and 
not guaranteed automatically by the use of the special 
types we have defined. But such types simplify the de- 
sign. A situation to watch for is when local decisions 
depend on data owned by other sites. The designer 
must ensure that such data is actually distributed to 
the sites where it is needed. 

Our special ownership and distribution types also 
help in the analysis of distribution, to make sure the 
system converges. in a finite time to an appropriate 
state. Again, .the key property is that data depen- 
dencies are clearly identified, and that consistency is 
achieved through design, thus obviating the need for 
sophisticated rule confluence analysis [vdVS93]. 

DIBAS has been successfully applied to two projects 
within Telenor, both are in the “acceptance test” phase 
at the time of writing. The owner and distribution 
types described, above have been developed as a re- 
sponse to the user and application needs of these two 
projects. A language and a corresponding compiler 
was implemented in order to experiment with differ- 
ent SQL expressions for the ownership and distribu- 
tion predicates. Writing a “distribution schema” in 
this language required close cooperation between the 
designers of the centralized database schema, and the 
DIBAS team. In addition to the compiler, we have 
developed a set of tools for “boot-strapping” the de- 
centralized database. Normal operation of the’ de- 
centralized database requires only ordinary Sybase 
DBA tasks at each individual site. We have how- 
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ever implemented some extra tools for monitoring the 
for-distribution logs. We also provide utilities for dis- 
tinguishing between owned and imported tuples at a 
database site? 

create view table-mine as. 

select table.* from table 
where <ownership predicate> 
create view table-not-mine as 

select table.* from table 
where not <ownership predicate> 

Our fragmentation and de-centralization assumes 
that most applications will only update locally owned 
data. It is however possible to modify imported data. 
One possibility is to update the data at the owner site, 
and perform a re-distribution. In order to update re- 
mote data, the application can either execute a remote 
procedure call (RPC) from the local server,’ or it can 
open connections to (any ‘number of) remote servers 
directly.8- 

6.1 Alternative asynchronous replica- 
tion schemes 

Asynchronous replication seems to be a trend of 
commercial DBMS vendors. Sybase [Syb93], In- 
gres [ASK93], Oracle [Ora93] and others have recently 
introduced replication along the lines used by DIBAS 
- but they do not provide the facilities and degree 
of control offered by our approach. Sybase reads the 
transaction log, and propagates replicated data ac- 
cording to “subscriptions”, which may project/select 
data from individual tables. Subscriptions are man- 
ually coded. Ingres logs changes to base tables in 
“shadow and archive tables” which are similar to our 
for-distribution log tables. Changes are logged by rules 
that are generated based on a menu of table/column 
selections. Ingres allows rules to project/select data 
for replication. In DIBAS the replication is modelled 
in a high-level language, which is translated into SQL 
queries. These queries can replicate entire tables or 
selections of tables, and also use lookup tables (tran- 
sitively) to allow replication of individual tuples based 
on foreign-key dependencies. 

To our knowledge, none of the commercial asyn- 
chronous replication systems have any notion of own- 
ership fragmentation. Preventing conflicting updates 
is usually much cheaper and more effective than de- 
tection and resolution after the fact, especially in 
a peer-to-peer replication environment. Commercial 
DBMS’s typically provide discretionary acces on ta- 
bles and columns. Compared to our ovlnership types, 

6These are read-only views, since Sybase does not allow up- 
dates through views of this complexity. 

7Sybase RPC’s execute as separate transactions. 
8 Sybase supports two-phase commit transaction control for 

applications which open several database connections. 

this means that only tables with “entire” ownership 
can be safely distributed. Triggers and rules to en- 
force read-only access to imported data would have to 
be coded manually. For “direct ownership” this is triv- 
ial, but it would be quite error prone and tedious for 
the “indirect” case, especially for transitive ownership. 

7 Conclusions 

In this paper we presented the problem of database 
de-centralization, which is driven by increasingly com- 
mon restructuring needs of companies. A key issue is 
the flexible, quick reassignment of responsibilities over 
data and cost of equipment. DBMS vendors currently 
provide some components of a solution, but there is 
no comprehensive and user-friendly approach to de- 
centralization. The DIBAS project is delivering con- 
cepts, techniques, and tools to address this problem. 

We proposed an architecture based on commercially 
avaiiable technology, which requires no modifications 
to existing applications or underlying DBMS. We de- 
scribed ownership and distribution types that facilitate 
the design of the distributed system. Such types are 
declaratively specified using SQL extensions, and con- 
verted automatically into appropriate triggers. This 
allows a compact, readable and maintainable notation 
for fragmentation and replication. The DIBAS de- 
centralization approach has been tested in practice at 
a large company that is going through a re-structuring 
phase. 
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A Fragmentation language, and gener- 
ated SQL code 

In this appendix we show ownership fragmentation 
rules, distribution rules, and generated SQL code for 
the examples. Ownership and distribution rules are 
shown on the left hand side, generated SQL code on 
the right hand side. For brevity we show only the gen- 
erated <ownership predicate> and <distn’bution predi- 
cate> not the entire trigger or selection expression. 
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Entire ownership 
A table which is owned entirely by a single site is 
owned via the dictionary table TABOWNER. Alter- 
natively, we can specify the name of the owner site 
directly. 

ownership for TABOWNER 
owned entirely by TNP 

ownership for ORGUNIT 
owned entirely 

‘TNP’ = @site 

exists ( 
select * from TABOWNER 
where TABNAME = ‘ORGUNIT’ 

and OWNER = @site ) 

Direct ownership 

We specify the name of the attribute which determines 
ownership. 

ownership for TABEXPORT 
owned directly 
given by OWNER ’ ’ 

MODIFIED. OWNER = @site 

Indirect/via lookup table 

We specify the attributes of the foreign key, and the 
name of the lookup table. For the lookup table we 
must specify how it determines ownership for other 
tables. In this case,‘ownership of dependent tables is 
different from the defining table. 

indirect ownership via ORGUNIT 
given by OWNER 

ownership for TRUNK, SWITCH 
owned indirectly 

exists ( 
select * from ORGUNIT 
where ORGUNIT.QWNER = @site 

and MODIFIED.ORGID, = ORGUNIT.ORGID > 

given by ORGID via ORGUNIT ’ 

Indirect/transitive 

We specify the attributes,of the foreign key, and the 
name of the lookup table. For the lookup table we 
specify transitive ownership, i.e. ownership of depen- 
dent tables is the same as the defining table. 

indirect ownership via TRUNK 

ownership for TRUNKPROG 
owned indirectly 
given by TIl, T12, TN0 
via TRUNK 

exists ( 
select * from TRUNK 
where exists ( 

select * from ORGUKIT 
where DRGUNIT.OWNER = @site 

and. TRUKK. ORGID = ORGUNIT.ORGID ) 
and XODIFIED.TII = TRUNK.SIl 
and MODIFIED.TIZ = TRUNK.SIZ 
and HODIFIED.TNO = TRUNK.THO ) 
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Entire distribution 
We specify that the table should be replicated to all 
sites, or to a set of selected sites (found in the dictio- 
nary table TABEXPORT). 

distribution for ORGUNIT 
distribute to all 

distribution for TRUNK 
distribute to some 

Indirect/via lookup table 

We specify the attributes of the foreign key, and the 
name of the lookup table. For the lookup table we 
must specify how it determines distribution for other 
tables. In this case, distribution of dependent tables 
is different from the defining table. We have two in- 
dependent distribution rules for TRUNK, which gener- 
ates a disjunction. 

indirect distribution via TRUNK-EXP 
given by RECIP 

distribution for TRUNK 
distribute indirectly 
given by SIl, S12, TN0 
via TRUNK-EXP 

Indirect/transitive 

We specify the attributes of the foreign key, and the 
name of the lodkup table. For the lookup table we 
specify transitive distribution, i.e. distribution of de- 
pendent tables is the same as the defining table. 

indirect distribution via TRUNK 

distribution for TRUNYPROG 
distribute indirectly 
given by TII, T12, TN0 
via TRUHK 

I = 1 

0 < ( select count(i) from TABEXPORT 
where TABEXPORT.TABNAME = ‘TRUNK’ 

and TABEXPORT.RECIP = @recipient 
and TABEXPORT,OWNER = @site ) 

0 < ( select count(*) from TABEXPORT 
where TABEXPORT.TABNAME = ‘TRUNK’ 

and TABEXPORT.RECIP = @recipient 
and TABEXPORT.OWNER = @site > 

or 
exists ( 

select * from TRUNK-EXP 
where TRUNK-EXP.RECIP = @recipient 

and LOGiTRUIK.SII = TRUNK-EXP.SII 
and LOG-TRUNK.SIZ = TRUNK-EXP.SI2 
and LOG-TRUNK.TBO = TRUNK-EXP.TNO > 

0 < ( select count(*) from TABEXPORT 
where TABEXPORT.$ABIAnE = ‘TRUNK’ 

and TABEXPORT.RECIP = @recipient 
and TABEXPORT. OWNER = @site > ’ 

or 
exists ( 

select * from TRUNK,EXP 
where TRUNK-EXP.RECIP = @recipient 

and TRUNK.SII = TRUNK-EXP.SII 
and TRUNK.SI2 = TRUNK-EXP.SI2 
Ad TRUNK. TN0 = TRUNK-EXP.+NO ) 

and LOG-TRUNKPROG.TIl = TRUNK.SII 
and LOG-TRUHKPROG.TI2 = TRUNK.SI2 
and LOG-TRU%KPROG.TIO = TRUNK.TNO > 
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