
Database De-Centralization - A Practical Approach

Tor Didriksen
SINTEF DELAB, Trondheim, Norway

CXsar Galindo-Legaria

Tor. Didriksen@delab.sintef.no
SINTEF DELAB, Trondheim, Norway

cesar@acm.org

Eirik Dahle
Telenor Research, Kjeller, Norway

Eirik. DahZe@tf.tele.no

Abstract

We describe a scheme to fragment and dis-
tribute centralized databases. ’ The problem
is motivated by trends towards down-sizing
and reorganization, reflecting actual, often dis-
tributed responsibilities within companies. A
major practical requirement is that existing
application code must be left unchanged.
We present SQL extensions to specify owner-
ship and data replication information declar-
atively. From this, a compiler generates trig-
gers and view definitions that implement the
distributed scheme, on top of a collection of
local databases. Our strategy has been ap-
plied successfully at Telenor - the Norwegian
telephone comp.any.

1 Introduction

It is known that distributed databases are, often more
cost-effective than their centralized counterparts, re-
flect better the organizational structure of compa-
nies, allow incremental growth, and have the poten-
tial of increasing performance, reliability, and avail-
ability of database systems [CP85, OV91]. The re-
placement of centralized systems by distributed solu-
tions is clearly a trend, driven not by the availability of
new equipment but rather by profound restructuring
changes in the way companies operate. Many compa-
nies however, already have a huge investment in cen-
tralized database systems, and the prohibitive cost of
re-implementing their current, working systems pre-
vents them from adopting distributed solutions that
would fit their needs better. Instead, what they need
is an evolutionary database de-centralization path.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is
by permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission
from the Endowment.
Proceedings of the 2lst VLDB Conference
Zurich, Switzerland, 1995

In a sense, the database de-centralization is the con-
verse of database federation, which aim at presenting
an integrated system on top of independently devel-
oped databases [SL90]. Both re-engineering mech-
anisms rely heavily on concepts and techniques de-
veloped ,for multi-databases [LMRSO] but, although
some concerns are common, each has its particular
needs. Implementable solutions to federation and
de-centralization are likely to be adopted relatively
quickly in practice, as they address the day-to-day COII-

terns of dynamic, evolving companies.
Database de-centralization consists of replacing a

single, central data repository by a collection of inter-
connected local databases, without restricting the ser-
vices formerly provided by the central system. Tech-
nically, the distributed model has the potential of im-
proving performance and data availability, as local
databases are likely to be smaller, locking contention
can be reduced, transaction load can be split over sev-
eral processors, and data can be placed closer to dis-
tributed users. Administratively, it can also shift a
share of the responsibility over both data and hard-
ware to the actual producers/consumers of informa-
tion. In addition to the typical issues of distributed
database design, de-centralization introduces the no-
tion of data ownership.

In many cases, the obvious alternative of replacing
the centralized database by a sophisticated distributed
database (e.g. with two-phase commit, distributed
query processing, voting mechanisms for replica con-
sistency, and so on) is impractical. Some features of
distributed databases ate not always needed for de-
centralization, yet they come at a cost and introduce
extra overhead; and, perhaps more importantly, the in-
terface offered to applications may change for the dis-
tributed database (e.g. we might be forced to change
database vendors), thus making necessary a thorough
revision of all existing applications.

The approach developed in this paper is based on
having a collection of local databases communicating
in a loosely coupled fashion, in the style described in
[GMK88]. The DBMS formerly used for the central-

654

ized system is then used for each local database, with
an additional thin “distribution layer” implemented
with triggers. Our work includes SQL extensions for
the specification of data fragmentation and distribu-
tion, from which a compiler derives the necessary trig-
gers. This approach requires no modifications to ex-
isting applications, the existing database schema, or
underlying DBMS, and can be implemented with off-
the-shelf components. Clearly, giving up mechanisms
such as two-phase commit affects the behavior and
properties of the distributed system. Although our
specific solution is suitable only for applications that
can tolerate slightly out-of-date data from remote ma-
chines, we do point out issues that arise in any data
de-centralization process.

This paper is organized as follows. The remain-
der of this section describes the DIBAS database de-
centralization project. Section 2 presents an overview
of our distributed architecture. Section 3 introduces
our formal model. Section 4 and 5 deal with the spec-
ification of data ownership and distribution, respec-
tively. Section 6 summarizes our proposal and com-
pares it with other alternatives. Section 7 presents
our conclusions. Examples of fragmentation rules, and
generated SQL code are found in the appendix.

1.1 The DIBAS project

DIBAS (Distributed dataBASe) is a joint project of
SINTEF DELAB with the research division of Telenor
(a state-owned Norwegian Telecom company) to im-
prove the efficiency of some of the databases and in-
formation systems of the operational divisions. Like
other providers of telephone services in Europe, Te-
lenor is being pushed to increase competitivity as a
result of governmental liberalization policies. Fdr the
database infrastructure and services, a driving concern
is to have flexibility in the assignment of responsibili-
ties and costs, in a climate of administrative restruc-
turing, with short-term cost-effective solutions.

We present here the principles used to restructure
one of the databases of the operational division of Te-
lenor. The database contains over 150 tables with
information about utilization of telephonelisdn trunk
lines and switches, and changes projected for the fu-
ture. There is a mix of analog and digital equip-
ment, and both historical data, current status, prog-
nosis, and plans are maintained. Applications on the
database include network configuration, traffic mea-
surement and statistics, routing, subscriber usage,
prognosis and planning.

2 Architectural overview

In addition to local autonomy, a prime motivation
for database de-centralization is the potential of im-

proving performance and data availability: Each lo-
cal database will be (much) smaller than a centralized
database, locking contention and network traffic can
be reduced, and the transaction load can be split over
several processors. A major requirement in our case
is that the database must be partially replicated, that
replication is transparent to the users (applications and
programmers), and that data must be replicated in
a peer-to-peer (as opposed to “master-slave”) fashion.
Other requirements to a possible de-centralization of
the database were that no modifications could be done
to existing applications and their databases or to the
underlying DBMS.

Briefly,- the basic idea of DIBAS is to take a central-
ized implementation, determine data ownership, and
store data at each owner site. Data is replicated ac-
cording to user and application needs, so that all data
access can be done locally at each site. Conflicting
updates are avoided by ensuring that data imported
from (owned by) other sites is read-only. Distribu-
tion of replicated data is done incrementally and asyn-
chronously. The scheme of a site with a local database
is shown in Figure 1, whose components are explained
below.

2.1 Fragmentation and data ownership

A key concept for de-centralization is data owner-
ship, which induces a partitioning of the centralized
database. Each table of the database is partitioned
into horizontal non-overlapping fragments, and an
owner is assigned to each fragment. Ownership en-
tails exclusive write access, as well as control over who
else can read specific portions of data.

Although this can be generalized, we assume that
owners are identified with sites and local databases.
The assumption is consistent with common working
environments,in corporations and, frequently this data
fragmentation directly rqflects responsibility for real-
world objects described by the data. This also suggests
a natural starting point for data distribution: Each site
owns a fragment of every table of the original database,
and each fragment is stored in the local database of its
owner. Fragments may be empty, contain some, or all
the tuples of a table.

2.2 Data replication

Users do not issue distributed transactions in our ar-
chitecture. Instead, transactions are submitted to lo-
cal databases. Since only local data is available, to
access data owned by other sites, it must be imporled
beforehand. Data owners specify the&portion of their
data that they are willing to export to other sites. The
process of export/import implements a form of asyn-
chronous data replication, which is maintained by the

655

//.----~

-. .--.
. P ..-.-- ~I-~

/

Trigger layer
/

Local database

Owned data

For-distribution log

Data distribution
)

I
I

/

t
I Remote DBMS

I
Remote distribution application

Figure 1: Site with local database.

system. Imported and owned fragments of a given ta-
ble are stored in the same physical table of the local
database. This allows efficient processing of read-only
transactions, but can lead to inconsistencies for read-
write transactions. Therefore, imported data can be
read only.

[CW90, cw91, CW93].

Restricting imported data to be read-only does not
guarantee global serializability, but there is still a
range of correctness criteria applicable, depending on
the choice of a data propagation policy [GMK@].
Techniques for the asynchronous update of replicated
data include gossip protocols [HHW89], submission of
transactions on persistent queues [CW93], and peii-
odical or on-demand distributed update transactions.
We use the latter approach: A data distribution appli-
cation replicates data using distributed transactions,
and two-phase commit.

2.3 Triggers

To enforce ownership constraints and to support in-
cremental update of replicated data, we rely on the
use of triggers, currently available ‘in most commer-
cial DBMSs [Sto92]. Such triggers are automatically
activated by the DBMS in response to data manipu-
lation requests issued by transactions. The specifics
of when and how triggers are activated differ in vari-
ous systems and theoretical models [MD89, SJGPSO,
WCL91, SybSO]. But they provide an architecturally
sound place to insert a layer ‘of additional services
between applications and the DBMS, as is done in

Like [CW90, CW91, CW93], we take a list of declar-
ative specifications and compile them into a collection
of database triggers, which implement the required
service. In our case, it is ownership and replication
rules that are declaratively specified. The compiler
produces triggers, view definitions, and stored proce-
dures that are installed in the local databases. These
triggers verify ownership and support data replication,
as explained below.

For concreteness, we assume Sybase triggers
[SybSO], which behave as follows. A trigger is a pre-
compiled stored procedure which can contain an arbi-
trary sequence of SQL statements, and is associated
with a pair of the form [lab/e, operation], where op-
eration is either insert, delete, or update. A trigger
on [R, o] is executed automatically after an SQL state-
ment performs operation o on table R on behalf of
some transaction, and before the next SQL statement
of the same transaction. At most one trigger is al-
lowed per pair [R; 01. The SQL statements of the trig-
ger body may refer to any part of the database, and
has special access to the data modified by the trigger-
ing operation: Old values of modified tuples are avail-
able in the deleted virtual table, new tuple values are
available in the inserted virtual table. Sybase trigger
firing and executionis thus set-oriented [HW93]. Trig-
gers fire on simple modification events, but arbitrary
database transition conditions may be specified using
the deleted and inserted tables. A trigger which

656’

modifies the database state, may fire other triggers re-
cursively.

2.4 Incremental update of replicas

Owner sites keep track of the data they have exported
to other sites to update replicated data in an incre-
mental way. Instead of re-sending complete table frag-
ments, they send only the necessary deletions and in-
sertions to be executed at the remote site. To accom-
plish this, triggers automatically store modifications
to locally owned data, with timestamp and operation,
in for-distribution log tables. We maintain one for-
distribution log table for each replicated base table.

A separate data-distribution application performs
asynchronous propagation of replicated-data from the
for-distribution log tables, taking into account the
timestamp of updates previously sent to each site. Lo-
cal timestamps are adequate for this incremental repli-
cation scheme. To ensure the consistency of incremen-
tal updates, we need the guarantee that data propa-
gation commands are committed at the remote sites.

3 Formal model
c

In this section we describe a formal model behind our
approach, and discuss correctness guarantees that can
be given by the system.

3.1 Ownership and distribution predi-
cates

An important property of our system is ‘that ‘tuple
ownership is not always defined solely on the content of
an individual tuple (e. g. attribute value in some spe-
cific range), but may also depend on the the database
state. For example, ownership of a,tuple with an ex-
ternal key may be defined to be the same as that .of the
tuple referenced. Ownership is specified on a table-by-
table basis, using a predicate with three ‘arguments:
C?R(~, 27f3, S); such predicate returns TRUE if tuple t,
consistent with the schema of A, is owned by site S,
given database contents DB. It corresponds, in prac-
tice, to an SQL subquery with free variables t, S, re-
turning an empty/non-empty result.. For correctness,
ownership predicates must assign a unique owner to
each tuple. That is, the ownership must partition the
database.

Distribution is handled similarly. However, to
allow selective export of data to different sites;
the predicate uses both source and destination site:
VR(t, Va, S,, Sd). We allow multiple, independent
distribution predicates for each table. In practice,
the distribution predicate for a table corresponds to
a union of SQL queries, returning the set of tuples to
be replicated from a sender site to a recipient site.

3.2 Database fragmentation and local-
ity

The central database is fragmented into a collection
of databases, based on the predicates defined above.
Given an ownership predicate OR for relation R, the
fragment F(OR, VB, S) c R consists of those tuples
in R owned by site S. For a collection of ownership
predicates 0 = OR,, . . . , OR,, the database fragment
owned by S is F(0, VB, S). Fragments based on dis-
tribution predicates are denoted similarly.

In our architecture, the central database DB
is replaced by a collection of local databases
VBs,, . . . ,VBs,. Given a collection of ownership and
distribution,predicates, (?,D, each local database con-
sists of the data it owns, plus the data it imports from
other sites:

FLOSS, = F(C’,VB, Si) U U F(T’, VB, Sj, Si).

j#i

The above expression amounts to the initial dis-
tribution of the centralized data to the different
local databases. After distribution, locality is a
basic assumption of our .approach. In particular,
each site must be able to determine, based only
on its local data, what it owns and what it must
export. Formally, this becomes: For every Si,
qo, W&) = F.(U, VBs,, 5); and for every Sj #
Si, F(V,VB,Si,~Sj) = F(V,VBS~,S~,S~).

A way to guarantee locality is to make sure data de-
pendencies “do not cross ownership boundaries.” That
is, if ownership of tuple tl depends on that of t2, then
their owner is the same. In this case, we have a fixed-
boint

F(O,VB, Si) = F’(O) F(O~VB~ Si), S’i).

There is a similar property for distribution pred-
icates. Sometimes, it is necessary for dependencies
to cross ownership boundaries. However, our current
experience indicates that this kind of dependency is
rare, and can be handled as follows. Extra data VBo
needed to determine ownership should be distributed
to all sites, and VBo itself should never be modified
during normal operation. Modifying VBo would be
handled as database reconfigurations, by special pro-
tocols. Relations in VBo can be regarded as dictionary
tables,, are owned,by a central site, and are replicated
in their entirety to all other sites.

Locality is also critical to continue running formerly
centralized applications. An application can be exe-
cuted correctly at site Si, if all the data it requires
is contained in VBsi, and every tuple t it deletes or
inserts (modeling updates as deletion followed by in-
sertion) is owned by Si.

657'

3.3 Convergence of triggers

Since our architecture relies on the use of triggers, we
need to address the issue of convergence of those trig-
gers [ZH90, AWH92].

With respect to ownership, triggers must ensure
that read-only fragments imported from other sites are
not modified by local transactions. If data ownership
can be tested locally, then triggers can verify appro-
priate ownership of every modified tuple and abort
transactions that attempt to violate this constraint.

When, as a result of a local transaction in Si, a
distribution fragment 3(@, DBsi, Si, Sj) changes, the
modifications must be sent to and installed in the
database of Sj. We say that the data propagation is
pending until the modifications are actually sent and
installed at the remote site. Locality can be used to
guarantee that if local transactions stop being sub-
mitted, then in finite time trigger activation will also
stop, and data will be replicated correctly. Assume
that distribution can be determined locally, by owned
data; that is, for every Si # Sj,

Data distributed to some site Sj cannot affect the data
owned by S’, and therefore no further data distribu-
tion is initiated.

3.4 Serializability of transactions

Asynchronous propagation of replicated data gives up
global serializability of transactions in favor of greater
availability and performance. Local transactions have
no guarantee that their imported data is up to date
(although users should be able to request the system
for a “data re-fresh”).

The notion of fragmentwise seri,alizability defined in
[CMK88] applies to our architecture as follows: (1)
Schedules consisting solely of transactions issued on a
given site ,Si are serializable; and (2) data distribution
can be done so replicated data is atomically updated,
and reflects no partial effects of transactions commit-
ted at other sites.

4 Ownership types

We distinguish several cases occurring in practice
where the specification of ownership can be made in a
simple fashion, and appropriate ownership tests can be
generated automatically. These special cases are iden-
tified as ownership types. Based on these ownership
types we generate triggers which reject transactions
that attempt to modify data not owned by the site,
and log valid changes in a for-distribution log table.
The generated triggers have the following form:’

‘This general form can in many cases be (and is actually)
optimized.

if exists (
select * from deleted MODIFIED2
where not (<ownership predicate> 1

or exists (
select * from inserted MODIFIED
where not (<ownership predicate>)

then begin
rollback transaction
return

end
else begin /* log changes */

insert into <for-distribution log>
select getdate0, 'd' , * from deleted
insert into <for-distribution log>
select getdateo, 'i' , * from inserted

end

The <ownership predicate> is generated based on the
ownership type of each table, and will usually reference
the name of the current site. We assume that this is
available in the SQL variable @site.

We illustrate next the different ownership types with
simplified examples from an application for planning
extensions and changes to the telephone network.3 Te-
lenor is divided into regions, each responsible for its
own part of the network. Apart from data describing
equipment within their region, planners need only lim-
ited, read-only access to other relevant data, usually
from neighbor regions. This partitioning of responsi-
bility is directly reflected in the ownership and distri-
bution rules.

We use the following tables in the examples. Key
columns are underlined.

TABEXPORT(TABNAME, OWNER, RECIP >
TABOWNER(TABNAME, OWNER)
ORGUNIT(ORGID, OWNER, NAME)
SYITCH(SID, ORGID, TYPE, NAME)
ROUTING(SID,'RNO, FROMNO, TONO, DATE)
TRUNK(SI1, 912, TNO, ORGID, TYPE, NAME)
TRUNKPROG(TI1, i12, TNO, YEAR, PNO, PROGN)

For a graphical presentation of tables and ownership
dependencies, see figure 2. Dark columns indicate pri-
mary key for each table. Circled attributes are used
for ownership fragmentation.

4.1 Entire ownership

A table may be owned completely by some site, i.e.
the ownership fragment is the entire table contents.
The owner site can be determined at compilation
time, or installation time. In our example, the ta-
ble TABOWNER is owned by a central site called

2MODIFIED is a table alias name for the deleted aud
inserted virtual tables ofsybasetriggers.

3The simplification consists of removing attributes that are
not relevant to the exampleqand replacing compositekeys by
single attributes.

658

TABEXPORT TABOWNER

TRUNKPROG TRUNK SWITCH ROUTING

Figure 2: Sample tables with ownership.

‘TNP’. This give an ownership predicate of the form:
0 TABOWNER 5 ‘TNP’ = @site

TABOWNER is a dictionary table which maps
table names to owner sites. ORGUNIT is a ta-
ble which maps organizational units to sites, and
is owned entirely by a single site: O,.,,,,, E
rOWNER uTABNAME=‘ORGUNIT’ (TABOWNER) =
{@site}

4.2 Direct ownership

TABEXPORT is a dictionary table which is used for
describing distribution of other tables from an owner
site to recipient sites. The TABEXPORT table is owned
directly based on the value of the OWNER attribute.
This value based ownership assures that each owner
site can determine whether tables should be replicated
to other sites. This gives an ownership predicate of
the form: OTABEXPORT E x,,,,,(MODIFIED) =
{@site}

4.3 Indirect ownership

Indirect/via lookup table. Responsibility for
switches and trunk lines are allocated to organiza-
tional units within Telenor. This responsibility is
directly reflected in the tables SWITCH(. . . , ORGID)
and TRUNK(. . . , ORGID). The ORGID attribute is a
foreign key on the ORGUNIT table. Ownership for

-

SWITCH and TRUNK is based on this foreign key, and
ORGUNIT.OWNER gives the owner site. Both tables
have an ownership predicate of the form: C?SWITCH E
0 TRUNK - ?ro,N,,(ORGUNIT W MODIFIED) =
{@site}

The ownership lookup table (ORGUNIT) is owned
by a central site (see above) in order to ensure global
ownership consistency.

Indirect/transitive. The SWITCH and TRUNK ta-
bles are “top level” tables in two separate hierar-
chies of foreign key dependencies, with lots of tables
containing different data about the various parts of
switches and trunks. TRUNKPROG, which describes
trunk prognosis, is an example of this. Ownership
is based on a foreign key, and the fact that owner-
ship via TRUNK is transitive. The ownership predi-
cate becomes: C’TaUNKPROG 3 no,N,,(ORGUNIT W
TRUNK W MODIFIED) = (@site}

Indirect ownership can be transitive in several levels,
limited only by the SQL compiler of the target system.
In practice we have never needed more than two levels.
The joins generated for transitive ownership predicates
are compiled and stored in the database as triggers, so
they make an excellent match for the technique of join
indices and its generalizations [Va187, KM90], if this is
supported by the target system.

659

4.4 Arbitrary ownership

In addition to the ownership types described above,
we allow arbitrary SQL expressions as ownership pred-
icates. This works much like an “assembler” directive
in e.g. a C compiler: any executable,code can be in-
serted, but the correctness is left to the programmer.

5 Distribution types

As for ownership, we identify common distribution
cases and call them distribution types. Based on
these types we generate distribution predicates that
are stored in a dictionary table for use by the data
distribution application.

Distribution predicates are used to select data for
distribution to remote sites. A distribution fragment
is always a subset of. an ownership fragment. There
may be several distribution rules for each table, thus
distribution fragments may overlap.

An SQL expression for selecting tuples to be dis-
tributed from an owner site to a recipient site is of the
form:4

select * from <for-distribution log>
where TIMESTAMP >

(<time of previous distribution>)
and (<ownership predicate>)

ad ((<distribution predicate 1))
or (<distribution predicate D)
or . . .)

order by TIMESTAMP

This assumes that the triggers have stored all tuples
which are to be replicated in for-distribution log tables.
There is one log table for each replicated table. The
query will be evaluated at the owner site, and each
tuple returned is converted to a delete or an insert
operation at the recipient site.

The <ownership predicate> can be removed because
we know that the log contains only tuples which are
owned locally. Each <distribution predicate> in the fol-
lowing sections is evaluated against the for-distribution
log tables, except at system “boot-strap”, where we
read base tables restricted by ownership predicate AND
distribution predicate(s).

5.1 Entire distribution

Entire to all. Tables ORGUNIT and TABOWNER
are distributed to all sites. The entire ownership frag-
ment is distributed. This type of distribution is used
for tables which are maintained centrally, and should

4 Actually the query is tramformed and optimized. Replacing
the disjunction with unions, and precomputing inner queries
using SQL variables gave a speedup of two orders of magnitude
for query evaluation at the sender site.

be replicated to all sites. This gives a trivial distribu-
tion predicate of TRUE.

Entire to some. Some tables should be dis-
tributed in their entirety to some sites. This is
used e.g. to keep a complete overview of SWITCHes
and TRUNKS &t a central cite. 2, TR”NK =
uTABNAME=‘TRUNK’,RBC:IP=greoip,cnt .TABEXPORT

512 Indirect distribution

Indirect/via lookup table. Owner sites corre-
spond to regions within Telenor. Application
users in each region will need to import infor-
mation about TRUNK lines crossing region bor-
ders, and SWITCHes at the end of these lines, i.e.
regions will export parts of their data to other
(neighbor) regions. This is implemented &ith an
“indirect to some sites” rule, and lookup tables
TRUNK_EXP and SWITCH-EXP which map TRUNKS
and SWITCHes to recipient sites. The distribution
predicate for TRUNK becomes: DT,u,, 5 TRUNK W
(uOWNER=O,its,RECIP=QrsoiplentTRUNK-EXP)

Referring to the previous section, we see that
there are two (independent) distribution predicates for
TRUNK. The complete distribution predicate will be
the union of the two.

Ownership of the distribution lookup tables
(TRUNK-EXP and SWITCH-EXP) should reflect busi-
ness policy: Entire owhership will centralize the con-
trol of replication, direct ownerhip based on a SENDER
attribute will assure that each owner site can deter-
mine the fragments to be replicated to other sites.

Indirect/transitive. As with ownership rules, dis-
tribution rules may also be transitive. If a site exports
data about one of its trunks to a given recipient site,
the corresponding trunk prognosis in TRUNKPROG
should follow. This gives a distribution predi-
de: ~TRuNKPROG E TRUNKPROG W TRUNK W
(uOWNER=Q‘ite,RECI~=~~==i*i=~~TRUNK-EXP)

5.3 Arbitrary distribution

As with ownership, we also allow arbitrary SQL ex-
pressions.for distribution predicates. These are “safe”
in the sense that they are always restricted with the
ownership predicate, so that we can guarantee that
only locally owned data is ever exported. j

5.4 Incremental replication and indi-
rect distribution

The data imported to a site may be regarded as a
union of read-only snapshots from other sites. These
snapshots are maintained incrementally, even in the

660

case of indirect distribution, where these snapshots
are joins. Incremental replication is implemented by
cascading any modifications of distribution lookup ta-
bles to the for-distribution logs of the dependent ta-
bles. Given the distribution predicates for TRUNK
and TRUNKPROG (see above), we extend the trigger
of TRUNK-EXP to log necessary dependent tuples in
TRUNK and TRUNKPROG. Similarly the trigger of
TRUNK is extended to log dependent TRUNKPROG
tuples. This allows us to always evaluate distrib,ution
predicates against the for-distribution log tables,,rather
than the base tables.

6 Current implementation

Ownership and distribution rules are defined using our
SQL extensions, as shown in the examples of sections
4 and 5, and the appendix. Our compiler takes the
declarative specifications and generates a collection of
database triggers to prevent modifications to imported
data, and log changes. These triggers are installed in
each of the local databases. We have so far worked on
Sybase databases, but have plans for an Oracle ver-
sion. The most significant difference between Oracle
and Sybase is that Oracle has row triggers, rather than
the set-oriented triggers of Sybase.

Performance measurements show an average in-
crease in response times of about 50% for database
modification requests which do not violate the owner-
ship tests.5 This should be acceptable for many classes
of applications, assuming that only a small fraction of
the execution time is spent on actual database mod-
ifications. In our example applications most of the
time is spent querying the database, and by the users
browsing data on their screens.

We have a separate application at each site to per-
form the incremental update of replicas. It is executed
periodically and also in response to explicit “import
data” or “export data” requests. This application uses
the distribution predicates generated by the compiler
and the for-distribution logs maintained by the trig-
gers. Replica update consists of several transactions
with two-phase commit, each transaction updating one
table on one recipient site with the modifications from
one sender site. We do not update all tables in a sin-
gle transaction because our experiments showed exces-
sive lock contention with conflicting local user trans-
actions. Alternatives for data replication are limited
by the trigger model/interface of Sybase: Triggers are
evaluated as the transaction .progresses, and have no
access to either a transaction id or a transaction com-
mit time. Therefore, in our current system modifica-

5Single insert, delete, or update operations of tables with
direct or indirect ownership. The increase in response time for
transitively owned tables (TRUNKPROG in our examples) is
about 100%.

tions done by a transaction are not propagated atom-
ically to other sites, and fragmentwise serializability is
not guaranteed (see section 3). Serializability of local
transactions is enforced by the local Sybase DBMS.

The performance of the distribution application is
determined by three factors: Evaluating distribution
predicates at the sender site, data transfer, and in-
sertion at the recipient site. We insert data at the
recipient site using precompiled stored procedures, so
data transfer and insertion is faster than local insertion
using SQL INSERT statements. We have optimized
the distribution predicates (se footnote on page 7)
and obtained response times of a couple of seconds for
tables with indirect distribution, and for-distribution ~
logs containg’lOO0 tuples (on a SPARCstation 1).

Analyzing locality of a system (see section 3) reduces
to the question: Does each site have enough informa-
tion to determine the tuples it owns and the tuples
it needs to replicate? Our ownership and distribution
types facilitate answering these questions by giving ex-
plicit means to trace data dependencies. For example,
we know that if a table is owned entirely or directly
(see section 4), then ownership of tuples can be de-
cided locally. When the ownership is via other tables,
the data that affects ownership of any tuple is well
defined. Consistency is achieved through design, and
not guaranteed automatically by the use of the special
types we have defined. But such types simplify the de-
sign. A situation to watch for is when local decisions
depend on data owned by other sites. The designer
must ensure that such data is actually distributed to
the sites where it is needed.

Our special ownership and distribution types also
help in the analysis of distribution, to make sure the
system converges. in a finite time to an appropriate
state. Again, .the key property is that data depen-
dencies are clearly identified, and that consistency is
achieved through design, thus obviating the need for
sophisticated rule confluence analysis [vdVS93].

DIBAS has been successfully applied to two projects
within Telenor, both are in the “acceptance test” phase
at the time of writing. The owner and distribution
types described, above have been developed as a re-
sponse to the user and application needs of these two
projects. A language and a corresponding compiler
was implemented in order to experiment with differ-
ent SQL expressions for the ownership and distribu-
tion predicates. Writing a “distribution schema” in
this language required close cooperation between the
designers of the centralized database schema, and the
DIBAS team. In addition to the compiler, we have
developed a set of tools for “boot-strapping” the de-
centralized database. Normal operation of the’ de-
centralized database requires only ordinary Sybase
DBA tasks at each individual site. We have how-

661

ever implemented some extra tools for monitoring the
for-distribution logs. We also provide utilities for dis-
tinguishing between owned and imported tuples at a
database site?

create view table-mine as.

select table.* from table
where <ownership predicate>
create view table-not-mine as

select table.* from table
where not <ownership predicate>

Our fragmentation and de-centralization assumes
that most applications will only update locally owned
data. It is however possible to modify imported data.
One possibility is to update the data at the owner site,
and perform a re-distribution. In order to update re-
mote data, the application can either execute a remote
procedure call (RPC) from the local server,’ or it can
open connections to (any ‘number of) remote servers
directly.8-

6.1 Alternative asynchronous replica-
tion schemes

Asynchronous replication seems to be a trend of
commercial DBMS vendors. Sybase [Syb93], In-
gres [ASK93], Oracle [Ora93] and others have recently
introduced replication along the lines used by DIBAS
- but they do not provide the facilities and degree
of control offered by our approach. Sybase reads the
transaction log, and propagates replicated data ac-
cording to “subscriptions”, which may project/select
data from individual tables. Subscriptions are man-
ually coded. Ingres logs changes to base tables in
“shadow and archive tables” which are similar to our
for-distribution log tables. Changes are logged by rules
that are generated based on a menu of table/column
selections. Ingres allows rules to project/select data
for replication. In DIBAS the replication is modelled
in a high-level language, which is translated into SQL
queries. These queries can replicate entire tables or
selections of tables, and also use lookup tables (tran-
sitively) to allow replication of individual tuples based
on foreign-key dependencies.

To our knowledge, none of the commercial asyn-
chronous replication systems have any notion of own-
ership fragmentation. Preventing conflicting updates
is usually much cheaper and more effective than de-
tection and resolution after the fact, especially in
a peer-to-peer replication environment. Commercial
DBMS’s typically provide discretionary acces on ta-
bles and columns. Compared to our ovlnership types,

6These are read-only views, since Sybase does not allow up-
dates through views of this complexity.

7Sybase RPC’s execute as separate transactions.
8 Sybase supports two-phase commit transaction control for

applications which open several database connections.

this means that only tables with “entire” ownership
can be safely distributed. Triggers and rules to en-
force read-only access to imported data would have to
be coded manually. For “direct ownership” this is triv-
ial, but it would be quite error prone and tedious for
the “indirect” case, especially for transitive ownership.

7 Conclusions

In this paper we presented the problem of database
de-centralization, which is driven by increasingly com-
mon restructuring needs of companies. A key issue is
the flexible, quick reassignment of responsibilities over
data and cost of equipment. DBMS vendors currently
provide some components of a solution, but there is
no comprehensive and user-friendly approach to de-
centralization. The DIBAS project is delivering con-
cepts, techniques, and tools to address this problem.

We proposed an architecture based on commercially
avaiiable technology, which requires no modifications
to existing applications or underlying DBMS. We de-
scribed ownership and distribution types that facilitate
the design of the distributed system. Such types are
declaratively specified using SQL extensions, and con-
verted automatically into appropriate triggers. This
allows a compact, readable and maintainable notation
for fragmentation and replication. The DIBAS de-
centralization approach has been tested in practice at
a large company that is going through a re-structuring
phase.

References

[ASK931

[AWHSS]

[CP85]

[CW90]

[CW91]

ASK Group, Alameda, CA. ASK Open-
INGRES Replicator User’s Guide, Decem-
ber 1993.

A. Aiken, J. Widom, and J. M. Hellerstein.
Behavior of database production rules: Ter-
mination, confluence, and observable deter-
minism. In Proceedings of ACM-SIGMOD
199% International Conference on Manage-
ment of Data, San Diego, California, pages
59-68, 1992.

S. Ceri and G. Pelagatti. Dis-
tributed Databases: Principles and Systems.
McGraw-Hill, New York, 1985.

S. Ceri and J. Widom. Deriving production
rules for constraint maintenance. In Pro-
ceedings of the Sixteenth International Con-
ference on Very Large Databases, Brisbane,
pages 566-577, 1990.

S. Ceri and J. Widom. Deriving production
rules for incremental view maintenance.

662

[CW93]

[G.MK88]

[HHW89]

[HW93]

[KM901

[LMRSO]

[MD891

[Ora93]

[OV91]

[SJGPSO]

In Proceedings of the Seventeenth Interna-
tional Conference on Very Large Databases,
Barcelona, pages 577-589, 1991.

S. Ceri and J. Widom. Managing se-
mantic heterogeneity with production rules
and persistent queues. In Proceedings of
the Nineteenth International Conference on
Very Large Databases, Dublin, pages 10%
119, 1993.

H. Garcia-Molina and B. Kogan. Achieving
high availability in distributed databases.
IEEE Transactions on Software Engineer-
ing, 14(7):886-896, July 1988.

A. A. Heddaya, M. Hsu, and W.E. Weihl.
Two phase gossip: Managing distributed
event histories. Information Sciences,
49(1,2,3):35-57,Oct./Nov./Dec. 1989. Spe-
cial issue on databqes.

E. N. Hanson and J. Widom. An overview of
production rules in database systems. The
Knowledge Engineering Review, 8(2):121-
143, June 1993.

A. Kemper and G. Moerkotte. Access
support in object bases. In Proceedings
of ACM-SIGMOD 1990 International Con-
ference on Management of Data, Atlantic
City, New Jersey, pages 364-374, 1990.

W. Litwin, L. Mark, and N. Roussopou-
10s. Interoperability of multiple autonomous
databases. ACM Computing Surveys,
22(3):267-293, September 1990.

D. R. McCarthy and U. Dayal. The archi-
tecture of an active database management
system. In Proceedings of ACM-SIGMOD
1989 International Conference on Manage-
ment of Data, Portland, Oregon, pages 215-
224, 1989.

Oracle Corporation. Oracle7 Symmetric
Replication, September 1993. White paper.

M. T. Ozsu and P.’ Valduriez. Principles
of Distributed Database Systems. Prentice
Hall, Englewood Cliffs, New Jersey, 1991.

M. Stonebraker, A. Jhingran, J.. Goh, and
S. Potamianos. On rules, procedures,
caching, and views in database systems.
In Proceedings of ACM-SIGMOD 1990 In-
ternational Conference on Management of
Data, Atlantic City, New Jersey, pages 281-
290, 1990.

[SL90]

[St0921

[WW

[Syb93]

[Va187]

[vdVS93]

[WCLSl]

[ZH90]

A. P. Sheth and J. A. Larson. Federated
database systems for managing distributed,
heterogeneous, and autonomous databases.
ACM Computing Surveys, 22(3):183-236,
September 1990.

M. Stonebraker. The integration of rule sys-
tems and database systems. IEEE Transac-
tions on Knowledge and Data Engineering,
4(5):415-423, October 1992.

Sybase, Inc., Emeryville, CA. Sybase Com-
mands Reference, Release 4.2, May 1990.

Sybase, Inc., Emeryville, CA. Sybase Repli-
cation Server, release 10.0, August 1993.

P. Valduriez. Join indices. ACM Transac-
tions on Database Systems, 12(2):218-246,
June 1987. ‘.

Leonie van der Voort and Arno Siebes. En-
forcing confluence of rule execution. In Pro-
ceedings of the 1st International Workshop
on Rules in Database Systems, Edinburgh,
pages 194-207, 1993.

J. Widom, R. J. Cochrane, and B. G.
Lindsay. Implementing set-oriented pro-
duction rules as an extension to Starburst.
In Proceedings of the Seventeenth Interna-
tional Conference on Very Large Databases,
Barcelona, pages 275-285, 1991.

Y. Zhou and M. Hsu. A theory for rule trig-
gering systems. In Advances of Database
Technology -EDBT’SO, LNCS 416, pages
207-421, Berlin, March 1990. Springer-
Verlag.

A Fragmentation language, and gener-
ated SQL code

In this appendix we show ownership fragmentation
rules, distribution rules, and generated SQL code for
the examples. Ownership and distribution rules are
shown on the left hand side, generated SQL code on
the right hand side. For brevity we show only the gen-
erated <ownership predicate> and <distn’bution predi-
cate> not the entire trigger or selection expression.

663

Entire ownership
A table which is owned entirely by a single site is
owned via the dictionary table TABOWNER. Alter-
natively, we can specify the name of the owner site
directly.

ownership for TABOWNER
owned entirely by TNP

ownership for ORGUNIT
owned entirely

‘TNP’ = @site

exists (
select * from TABOWNER
where TABNAME = ‘ORGUNIT’

and OWNER = @site)

Direct ownership

We specify the name of the attribute which determines
ownership.

ownership for TABEXPORT
owned directly
given by OWNER ’ ’

MODIFIED. OWNER = @site

Indirect/via lookup table

We specify the attributes of the foreign key, and the
name of the lookup table. For the lookup table we
must specify how it determines ownership for other
tables. In this case,‘ownership of dependent tables is
different from the defining table.

indirect ownership via ORGUNIT
given by OWNER

ownership for TRUNK, SWITCH
owned indirectly

exists (
select * from ORGUNIT
where ORGUNIT.QWNER = @site

and MODIFIED.ORGID, = ORGUNIT.ORGID >

given by ORGID via ORGUNIT ’

Indirect/transitive

We specify the attributes,of the foreign key, and the
name of the lookup table. For the lookup table we
specify transitive ownership, i.e. ownership of depen-
dent tables is the same as the defining table.

indirect ownership via TRUNK

ownership for TRUNKPROG
owned indirectly
given by TIl, T12, TN0
via TRUNK

exists (
select * from TRUNK
where exists (

select * from ORGUKIT
where DRGUNIT.OWNER = @site

and. TRUKK. ORGID = ORGUNIT.ORGID)
and XODIFIED.TII = TRUNK.SIl
and MODIFIED.TIZ = TRUNK.SIZ
and HODIFIED.TNO = TRUNK.THO)

664 I

Entire distribution
We specify that the table should be replicated to all
sites, or to a set of selected sites (found in the dictio-
nary table TABEXPORT).

distribution for ORGUNIT
distribute to all

distribution for TRUNK
distribute to some

Indirect/via lookup table

We specify the attributes of the foreign key, and the
name of the lookup table. For the lookup table we
must specify how it determines distribution for other
tables. In this case, distribution of dependent tables
is different from the defining table. We have two in-
dependent distribution rules for TRUNK, which gener-
ates a disjunction.

indirect distribution via TRUNK-EXP
given by RECIP

distribution for TRUNK
distribute indirectly
given by SIl, S12, TN0
via TRUNK-EXP

Indirect/transitive

We specify the attributes of the foreign key, and the
name of the lodkup table. For the lookup table we
specify transitive distribution, i.e. distribution of de-
pendent tables is the same as the defining table.

indirect distribution via TRUNK

distribution for TRUNYPROG
distribute indirectly
given by TII, T12, TN0
via TRUHK

I = 1

0 < (select count(i) from TABEXPORT
where TABEXPORT.TABNAME = ‘TRUNK’

and TABEXPORT.RECIP = @recipient
and TABEXPORT,OWNER = @site)

0 < (select count(*) from TABEXPORT
where TABEXPORT.TABNAME = ‘TRUNK’

and TABEXPORT.RECIP = @recipient
and TABEXPORT.OWNER = @site >

or
exists (

select * from TRUNK-EXP
where TRUNK-EXP.RECIP = @recipient

and LOGiTRUIK.SII = TRUNK-EXP.SII
and LOG-TRUNK.SIZ = TRUNK-EXP.SI2
and LOG-TRUNK.TBO = TRUNK-EXP.TNO >

0 < (select count(*) from TABEXPORT
where TABEXPORT.$ABIAnE = ‘TRUNK’

and TABEXPORT.RECIP = @recipient
and TABEXPORT. OWNER = @site > ’

or
exists (

select * from TRUNK,EXP
where TRUNK-EXP.RECIP = @recipient

and TRUNK.SII = TRUNK-EXP.SII
and TRUNK.SI2 = TRUNK-EXP.SI2
Ad TRUNK. TN0 = TRUNK-EXP.+NO)

and LOG-TRUNKPROG.TIl = TRUNK.SII
and LOG-TRUHKPROG.TI2 = TRUNK.SI2
and LOG-TRU%KPROG.TIO = TRUNK.TNO >

665

