
Promises and Realities of Active Qatabase Systems

Eric Simon Angel&a Kotz-Dittrich
INRIA Rocquencourt Union Bank of Switzerland,

France Switzerland
email: eric.simon@inria.fr email: dittrich@ubilab.ubs.ch

Abstract

We confront the promises of active database sys-
tems with the result of their use by application de-
velopers. The main problems encountered are iu-
sufficient methodological support in analysis and
design, the lack of standardization, missing de-
velopment and administration tools for triggers,
and weak performance. We concentrate on per-
formance because we discovered it is one the maiu
reasons that makes users reluctant to use active
rules iu the development of large applications. We
show, using simple concrete examples, that opti-
mizing large applications is rendered difficult by
the separation of transactions and triggers and the
misunderstanding of their subtle interactions. We
argue that tools, which provide assistance to pro-
grammers, database administrators, and database
designers to optimize their applications and mas-
ter application evolution is strongly needed.

1 Introduction

The field of active database systems that originated
in the mid-70 [Esw76] has for the last ten years re-
ceived an increasing interest from both database ven-
dors and database researchers. A large number of re-
search projects are ongoing to design and implement
relational or object-oriented active database systems
(see [WCD95] f or an overview). Many relational prod-
ucts already incorporate some limited form of active

Permission to copy without fee all OT past of this material is
JTa?hd provided that the copier are not mude OT distributed for
diTeCt commercial advantage, the VLDB copyright notice and
the title of the publication and its date appeal; and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, OT to re$ublish, requizea a fee
and/OT special pesmission from the Endowment.

Proceedings of the 21st VLDB Conference
Ziirich, Switzerland, 1995

rule processing, and promote the active rule function-
ality as a key value of their system. Rules are also a
prominent feature of the SQL3 standard [ISO94], cur-
rently under development. Finally, users have started
using active rules in the development of real-life appli-
cations.

Active database systems have been presented as
a very promising technology [Day%], [Sto92], and
[WCD95]. They are expected to facilitate the design
and maintenance of business rules, improve the reli-
ability of applications regarding the enforcement of
business rules, and enhance their performance. In this
paper, we analyze the gap that exists between the po-
tential benefits of active database systems and the ac-
tual capabilities of existing systems in the light of their
use in the development of real-life applications. Our
goal is to derive challenging research topics that we
think should contribute to better establish the tech-
nology and encourage its dissemination.

We view an active database system as a black box
and consider users that are either database design-
ers, database administrators, or application program-
mers. Therefore, we study the problems that arise
when users want to design a database schema includ-
ing triggers, program transactions that automatically
invoke triggers, verify the correctness of applications,
optimize the performance of applications, and main-
tain applications, e.g., when transactions or triggers
are changed. From this, we derive requirements for
trigger languages, analysis and design methodologies,
and development and administration tools.

Along this paper, we consider a relational active
database framework and most of our observations take
their roots in the study of application development
projects in the banking environment. Consequently
our concrete examples are mainly inspired from bank-
ing applications. However, we believe that most of the
problems listed in this paper have their counterpart in
object-oriented active database systems, and in other
application domains

The paper is organized as follows. Section 2 states

642

the expected benefits of active database systems, and
describes several potential application domains. Sec-
tion 3 presents the difficulties encountered by applica-
tion developers using existing active database systems.
Section 4 focuses on the need for administration tools
that enable to optimize and maintain large active ap-
plications. Finally, section 5 concludes.

2 Promises of Active DBMS’s

2.1 Passive vs Active Database Applications

Though most database management systems today
have started to offer limited active functionality in the
form of triggers, rules or similar, most database appli-
cations are still passive. By a passive database applica-
tion we understand an application that does not make
use of any active features even though the underlying
DBMS may offer them. In contrast, an active appli-
cation in our sense is not only based on a DBMS with
active capabilities, but actually makes use of these ca-
pablities.

Passive DB applications use the DBMS only to cre-
ate, retrieve, modify, and delete data by issuing cor-
responding operations. In particular, a considerable
part of the business rules1 essential to guarantee data
quality and correct behaviour are embedded into the
application programs. It can be observed that appli-
cations that ignore the availability of active features
also tend not to make full use of other features like
referential integrity.

There are two commonly used approaches followed
in passive applications. The most frequent approach
is to encode business rules using database procedures
explicitly invoked from within a transaction. For in-
stance, a procedure can be called before or after ev-
ery modificationto the database, or before committing
the transaction. Appropriate actions (e.g., an abort of
the transaction) will - again explicitly - be taken in
response to the execution of a procedure that checks
some condition.

A second approach is to periodically poll the
database in order to check and apply business rules.
For instance, companies send monthly retirement pay-
ments for their employees to a life insurance company.
Sometimes the data sent are incomplete or incorrect.
The strategy followed by some companies is to regis-
ter all data into the database, and then run a separate
application process that mines the database in order
to discover anomalies which are subsequently handled
either by dedicated “repairing” software (e.g., expert
systems) or by humans. The rationale for this ap-
proach is to afford a high transaction throughput for

‘In this paper, the term hsinesr rules cover semantic in-
tegrity constraints as well as statements about how the business
is performed.

a very large on-line database, given that the percent-
age of anomalies found in the database is reported to
be below 1%. In contrast, incorporating controls in
transactions would make transactions longer, thereby
degrading the performance of applications. The prob-
lem with the “polling” approach is the difficulty to
tune it: inconsistencies are introduced in the database
and one has to carefuly control the consequences of
that for all transactions.

It is worthwhile noticing that with passive database
applications, programmers have the full control and re-
sponsibility of the application semantics, including the
quality of stored data. Programmers also master how
the processing of business rules is optimized within the
application program.

In contrast, active database applications external-
ize part of their semantics and control structure del-
egating it to the database system. They rely on the
definition and monitoring of triggers, also called event-
condition-action rules, which are rules with an event
that causes the rule to be triggered, a condition that is
checked when the rule is triggered, and an action that
is executed when the rule is triggered and its condi-
tion is true. When the event part is omitted, the rule
is called a condition-action rule, whereas when the con-
dition part ,is omitted, it is called an event-action rule.
Typical actions are database modifications, procedures
or a rollback statement that aborts the transaction.
Events are issued by transactions and generally con-
sist of database statements such as data modifications,
data retrievals, or transactional commands. At spe-
cific points in a transaction’s execution the database
system takes a set of events issued by the transac-
tion, automatically retrieves the triggered rules, and
processes them. There are two kinds of rule process-
ing points: rules can be triggered immediately after
(or before) each occurrence of an event in the transac-
tion (immediate execution mode), or at the end of the
transaction (deferred execution mode). Triggers are
defined as immediate or deferred and this determines
subsequently their execution mode in a transaction.
In most active database systems (and at least, in all
commercial active database systems), the execution of
triggers is done within the triggering transaction. We
refer the interested reader to [WCD95] for a compre-
hensive view of triggers and active database systems.

2.2 Advantages of Active Database Systems

In this section, we discuss the benefits that active
database systems can bring to applications. In the rest
of the paper, we will elaborate on the many difficul-
ties encountered with actual active database systems
as well as that complex optimization problems still to
be solved. However, in the opinion of the authors, the

643

advantages described below justify the efforts neces-
sary to solve the subsequently mentioned design and
optimization problems.

As a first benefit, triggers enable a uniform and
centralized description of the business rules relevant
to the information system. In fact, several conceptual
modelling and information systems methodologies are
being extended to handle restricted forms of triggers
[TKLSO, HKMS94]. Triggers rely on the use of query
constructs for expressing condition and action parts of
rules. Their regular format can be exploited to under-
stand how rules relate to events, or how rules interact
with each other, for instance by analyzing the relation-
ships that a rule action has with the event or condition
parts of other rules. This knowledge is useful for check-
ing the correctness of rules, and tuning performance.
In contrast, when business rules are embedded into
application programs, they can be specified and im-
plemented in a different way in several applications.
It is therefore difficult to get the specification of rules
validated by users, verify that they are consistently
implemented, and optimize their global behaviour.

As a second benefit, the use of triggers facilitates
the maintenance of business rules. Since triggers are
modular, adding a business rule amounts to defining
new triggers that will automatically be invoked by ap-
plication programs when necessary. On the contrary,
adding (changing, or removing) a constraint in a pas-
sive application requires to change application pro-
grams. Early studies have reported that a substan-
tial maintenance effort in passive OLTP applications
is spent in the maintenance of integrity controls.

For a further advantage, triggers are reliable since
they are automatically invoked whenever an appropri-
ate event is issued by a transaction. This provides a
safe way to ensure that every application obeys spe-
cific rules, regardless of the method used to access
the database. Declarative integrity constraints (also
called assertions) also do this but are limited in what
they can control. On the contrary, with passive ap-
plications, the correct enforcement of business rules is
guaranteed only if every single transaction implements
it correctly. This makes data quality dependent on the
reliability of programmers and programming method-
ologies and may be the reason of severe inconsistencies
as to the enforced policies.

Finally, triggers are expected to improve the perfor-
mance of applications. There are two main reasons for
that. The first reason is rooted in the centralization
of application semantics by means of triggers. Due
to centralization, more and better optimization tech-
niques can be applied, redundancy of checking and re-
pair operations can be avoided, and changes in the
environment (like the fact that a checking operation is
no longer necessary) can more easily be incorporated.

Audits conducted on very large passive database ap-
plications have shown that transactions often perform
more controls than necessary. In fact, the number of
database procedures invoked from succeeding releases
of these applications uses to increase monotonically.
Calls to database procedures are rarely removed from
transactions, though it turns out that changes in the
data acquisition process have made some controls ob-
solete. Discovering such situations requires a lot of
effort usually not considered as deserving in individ-
ual application programs2.

As a second argument, one use of triggers is as an
effective tuning instrument to make the application
run faster [Sha92]. A typical example is to replace
a polling transaction that impedes the transactional
traffic by triggers. Suppose to have an application
that wants to display the latest data inserted into a
table SELLS (insert-time , . . .). A polling transaction
would select data from SELLS since the last time
it looked at the table. This transaction will conflict
with inserters and create inter-transaction blockings.
Furthermore, if polling is done too rarely, recently in-
serted records may be deleted by some transaction be-
fore they have been displayed. An alternative is to use
a trigger that displays inserted data whenever an in-
sert occurs to SELLS. The trigger avoids concurrency
conflicts since it executes within the same transaction
that inserts into SELLS.

Another familiar example [Sha92] is to create mate-
rialized views and maintain them with triggers. Sup-
pose we have two relations ORDER (ordernum, item-
num, qty, vendor), and ITEM (itemnum, price), and
we frequently ask “the total dollar amount on order
from a particular vendor”. This query can be very ex-
pensive on the above schema. An alternative is to cre-
ate a relation TOTAL-&VENDOR (vendor, amount)
where amount is the dollar value of goods on order to
the vendor. Each update to ORDER causes an up-
date to this redundant relation, which can easily be
maintained with a trigger.

2.3 Application Domains for Active DBMS’s

From our experiences which mainly come from the
banking environment, we can report about a number of
existing and potential applications for active DB tech-
nology. Typical implementations we currently know
about use sets in the order of some hundred triggers
(in three different banks, we came across applications
using, e.g., 150, 200 and 220 triggers, respectively).
Besides dedicated financial applications such as ac-
count management or the management of guarantees

2The hidden rule is often that it is preferable to pay extra
processing cost for superfluous checks rather than endangering
the correctness of data by missing any useful controls.

644

in international markets, these implementations also
include more technical domains like the management
of a bank’s inhouse communication network.

We observed that the major usage of triggers in run-
ning applications is integrity constraint checking3 and
mostly referential integrity, alerting (i.e., rules whose
action part only consist of messages), maintenance of
statistical data and materialized views (mostly using
event-action rules), as well as pre- and postprocessing
of database updates.

Compared to the still small number of projects
where triggers are already in use, we encountered a
much larger numb.er where active rules are now under
consideration and first experiments have been started.
In the sequel, <we .will examine a few of these poten-
tial application domains. Each time, we point out the
benefits that can be expected from the use of an active
DBMS. For more examples illustrating the application
of active DBMS’s in financial applications see [CS94].

Note that we decided to illustrate the applications
by simple examples to give a flavor of the problems in
principle. Be aware that the triggers encountered in
practice are of a much higher degree of complexity than
those examples and, even more essentially, that the
large number of such triggers. adds to the complexity.

The first application scenario (henceforth called
“market watcher”) is the electronic stock exchange or
any financial trading environment with stock prices
provided by a ticker service. The decision to buy or
sell stocks must be based on the data representing the
recent market .trends. The traditional solution relies
on human supervision, i.e., traders constantly watch
data on the screen or poll the database by regularly
submitting queries. More recent solutions try to au-
tomate this by installing processes that automatically
poll the database. Clearly, triggers can be helpful to
supervise the market trends by either notifying the
human trader, or (to a certain extent) automatically
kicking off the deals. We give a simple example of a
trigger “watching” a PRICES relation. In our exam-
ples, rules have the form: on event if condifion then
action. We use a natura.l,English language syntax for
events, conditions, and actions in order to be indepen-
dent from any system-specific trigger language. In a
realistic environment, the number of triggers will de-
pend on the number of financial instruments and the
number of traders’ strategies and can easily reach some
ten thousands.

on insert to PRICES
if the price for Microsoft stocks is larger

than the price for IBM stocks for the
last 10 ticks

then notify trader A

31n oneapplicationthis amounts to 77%.

The advantage of using triggers is that the condi-
tions for trading decisions can be made explicit and
can easily be inspected. An active DBMS can guar-
antee that interesting data constellations are never
missed by the trader (provided that appropriate per-
formance is guaranteed under real-time utilization).

A second example is portfolio management. Fol-
lowing a specific investment strategy (degree of risk,
customer preferences, etc.) each portfolio is super-
vised and modified according to market opportuni-
ties. The investment strategy can be expressed (at
least partly) as a constraint system on the mini-
mum/o@imum/maximum volume of different finan-
cial instruments in the portfolio (for example, the vol-
ume of bonds has to be between 10% and 15%, the
volume of options less than 5%, the volume of gold
preferably around lo%, etc.). In practice, such con-
straint systems tend to get rather large, involving an
ever growing number of financial derivatives, foreign
currencies, etc. Triggers can help to automatically su-
pervise the constraint set, notify the portfolio man-
ager when constraints are .about to be violated, sug-
gest modifications of the portfolio to approach the op-
timum, or prevent violating transactions. We give two
examples of rules below. Again note that the num-
ber of triggers will grow rapidly with the number of
investment stategies and the variety of new financial
instruments and derivatives.

on update to PORTFOLIO.bonds
if bonds < 10% or bonds > 15X
then rollback

on update to PRICE.gold
if gold < threshold and

PORTFOLIO.gold < optimum - 5%
then notify

In many financial applications, the notion of time
plays an important role, either for timely reactions,
or reactions based on historical data. We give be-
low an example of triggers that handle time-related
events and conditions over the database. In large fi-
nancial institutes, there are a large number of dead-
lines and time limits to supervise, especially accumu-
lating around specific points like end of business hours
or end of month processing.

on end-of-month .+ 2 vorkdays
if balance is not available from branch Z
then notify.

on update to CUSTOMER.address + 1 day
then send nev forms to customer

As to historical data, time series analysis provides
another attractive application domain for triggers.
Time series on stock prices or macroeconomic data
are analysed to produce forecasts and to base deci-
sions on interesting historical developments. Triggers

645

can be used to automatically notify the analyst on his-
torical trends based for instance on moving averages,
as shown below.

on insert to TIMESERIES
if moving average over last 30 days equals

moving average over last 120 days and mo-
ving average over last 30 days is rising

then suggest to sell

For this area, good performance is again important
as the conditions are usually quite complex and ex-
tend over a possibly large time window in the historical
database. The competitive advantage resulting from
timely notification as provided by the triggers can be
tremendous in today’s highly volatile markets.

As a last application domain not particularly re-
lated to financial services but nevertheless of high rele-
vance to financial institutions we would like to mention
workflow management. The execution and monitoring
of business processes in large enterprises is currently
what you would call a “hot topic”. An essential capa-
bility of workflow management systems is to kick off
processes when certain events have happened (like the
event that previous processes have terminated) and
certain conditions are satisfied. With workflow speci-
fications stored in an active database the control struc-
ture between processes can be guaranteed by triggers
like the one shown below. An operational workflow
system with hundreds of workflow specifications and
intricate dependencies between processes will yield a
large complex trigger set.

on PROCESS-A.terminate and PROCESS-B.terminate
if Process-A.sucessful and

input-data-is-available
then start PROCESS-C

Numerous other applications can be found in envL
ronments like insurances (e.g., entry and administra-
tion of damage claims), healthcare (e.g., management
of file’s patients in an hospital), etc.

Though the potential benefits of specifying busi-
ness rules using triggers seem obvious, developers keep
asking us questions like “how should business rules
be implemented?“, “should we use the trigger mecha-
nisms offered by database systems?“. We have come
across strategic guidelines in companies that categori-
cally recommend not to code business rules into trig-
gers at all though the reasons for that decision remain
more or less fuzzy. Sometimes, in the same compa-
nies, designers are advised to describe business rules
(e.g., on paper) using the concept of trigger. At this
stage, our answer is to “code an application with trig-
gers when the benefits mentioned earlier (uniform and
centralized definition, maintenance, guaranteed invo-
cation, effective tuning) are of importance”. The cru-
cial point here,is to know whether the practical reality
of active database systems match the expected benefits
of triggers, which is the topic of the next section.

3 Realities of Active Database Systems

In this section, we examine the realities of active
database systems in the light of their use in the devel-
opment of applications. We decompose the problems
found with active DBMSs into three categories. One is
concerned with the design of active applications. The
next one deals with the problems of security, relia-
bility, and unpredictability. Finally, we address the
performance problems.

3.1 Designing Applications

A first problem is the lack of expressiveness of the
trigger languages provided by existing DBMS%. First,
condition-action rules are usually not directly express-
ible. This problem is emphasized by restrictions of the
trigger language, e.g., the event part of a rule must be
associated with a single relation, or a disjunction of
elementary events (even for the same relation) is not
allowed. Coding a simple business rule, such as “if an
employee earns more than his manager then notify”,
may entail the definition of many triggers because one
trigger is needed for every data modification event ca-
pable of violating the constraint. The proliferation
of rules renders more difficult the verification of their
correctness. Consequently, most development guides
recommend not to use triggers for coding integrity con-
straints that can be expressed by means of assertions
in the data definition language. Some authors (e.g.,
[CW90]) have proposed to automate the generation of
triggers from the specification of declarative assertions.
E.g., for the portfolio management application men-
tioned earlier, the (semi-)automatic mapping from a
constraint set specification to actual trigger definitions
might be very useful. Some degree of automatic gener-
ation (e.g., for referential integrity) is already available
in several commercial database design tools. In sev-
eral applications, we found business rules that could
not be implemented in the trigger language because
of the restrictions imposed to the event part (e.g., no
conjunction of events, no time-related events).

Furthermore, in some systems, for every relation,
the possible number of associated triggers is limited.
The number of rules which can be triggered by any
specific event is also limited (in many cases to one).
We found this is a severe restriction in applications
managing history relations (e.g., a Withdraw relation)
or central data (e.g, insurance claims), where a sin-
gle change to a relation can trigger a large number of
actions. In the SQL3 proposal, there are eighteen dis-
tinct types of triggers available for each relation, plus
additional “update” triggers for the’different columns
of a relation. However, multiple triggers for the same
event are possible and their order of execution can be
specified using priorities.

646

Finally, many systems only offer immediate trig-
gers. One reason for that is the uncertainty
about the implementation of deferred triggers in dis-
tributed transactions (triggering point wrt prepare-to-
commit?). However, immediate triggers are sometimes
considered to be inadequate and keep people from us-
ing triggers.

A second problem is the lack of a simple, clear and
standardized semantics for trigger languages. Trig-
ger languages vary considerably in their syntax and
semantics4 which make applications developed with
triggers not portable from one system to another.
However, developers can expect the upcoming SQL3
standard to aileviate these problems. An important
difference is the level of granularity (tuple-level or
statement-level) of triggering. For languages that have
both, conflicts may occur yielding an incorrect or non-
deterministic behavior as shown in [Hor94]. Languages
also differ from the restrictions (usually not clearly jus-
tified) placed on triggers. Although these differences
strongly determine the behavior and ‘the possible us-
age of triggers, there is no clear indication on which
style of design is appropriate for some given rule se-
mantics. Finally, in systems that support both triggers
and integrity assertions, the exact execution behavior
of both is not clearly defined.

Many developers we talked to, e.g. concerning the
applications in Section 2.3, like the “market watcher”
or the portfolio management system, are asking for
design guidelines and reference applications to find out
how to use triggers even in the simple form currently
available from commercial relational systems.

Below, we mention the most frequently asked ques-
tions:

a What kind and amount of semantics has to be
externalized into triggers as compared with se-
mantics that has to stay in the application? E.g.
should all the stock prices be polled within the
application or should each check be encoded into
a separate trigger?

l Which are the criteria for deciding when to choose
stored procedures and when to choose triggers?
E.g., even if the basic decision is to store the code
for price checking in the database, this code could
either be invoked explicitly or triggered automat-
ically.

l What conditions have to be observed for the de-
sign of correct and terminating trigger sets? E.g.,
in the portfolio example, contradicting conditions
like bonds < 10% and bonds >= 10% should not
both trigger a rollback action.

~ *Even when they h ave a close syntax, their semantics can be
quite different.

l Is there a classification of constraints that require
different treatment? E.g., should simple integrity
constraints like deriving an account balance be
treated differently from complex business rules
like reacting to specific customer patterns?

l Which criteria are there for the complexity of trig-
gers? Should expressions in constraints and/or
actions be limited, should a trigger refer to no
more than one relation, should the action touch
no other data than the triggering transaction etc.?
E.g., with the market watcher example, should
the action be limited to notification (no automatic
buying and selling), should each trigger be limited
to touch only one financial instrument?

l Is it more advantageous to design transactions
and triggers in close connection or to develop
them in isolation from each other? E.g., can
the transactions modifying a portfolio be coded
and/or modified independently of the investment
constraints?

l Are there quantitative design rules like optimal
size of a trigger set (absolute size, number of trig-
gers per relation etc.) ? E.g., is a set of triggers
corresponding to 1000 financial instruments mul-
tiplied by 100 traders with individual strategies
feasible?

In our view, a design and maintenance environment
for active databses must support a methodology that
ailows for the initial design and subsequent modifica-
tion of triggers in close connection with the database
schema and the transactions. Furthermore, formal ver-
ification techniques, simulators and optional enforce-
ment of complexity limitations have to be provided.
These requirements will be backed up by the following
section.

3.2 Security, Reliability, and Unpredictability

Real life experiences show that both project managers
and senior developers are often reluctant to use active
DBMS facilities because they consider triggers as in-
secure, unreliable and unpredictable. In this respect,
their reaction is the same as with. deductive rules in ex-
pert systems or knowledge base systems because they
wonder how a set of individual, isolated rules will in-
teract with each other and with application programs
in concrete situations. With active rules, this suspi-
cion is even greater because these rules “act on their
own” and may directly affect the real world.

For mission-critical financial applications like the
ones mentioned in Section 2.3 where triggers may au-
tomatically execute stock deals, influence the struc-
ture of large portfolios or rate customers as non-credit-

647

worthy, this attitude is well founded. The same is true
for applications in plant control, patient care or avi-
ation systems. Without guarantee (or at least very
high probability) of correctness and predictable, un-
ambiguous behavior, triggers will not be used in these
fields.

There are less critical ways of using triggers, e.g.,
triggers which react just by notifying a human user.
Nevertheless, the impression that less security is
needed may be misleading. To argue about it, we
consider a trade support system similar to the mar-
ket watcher from Section 2.3 which has recently been
introduced at a bank for the New York stock exchange.
In the beginning, for about the first three months,
traders resented the new system. After that, they got
accustomed to it to such an extent that they now con-
sider it a major problem if the software goes down for
a single day. Traders are now reported to completely
rely on the information delivered by the system and to
no longer cross-check the automatically generated buy
and sell suggestions. As a result, generating incorrect
notifications will have the same desastrous effect as er-
roneous automatically triggered deals. It is therefore
crucial for an active DBMS to offer all kinds of support
to make triggers reliable and predictable.

A first impediment to this requirement is the diffi-
culty to validate a large number of rules. As an ex-
ample, think of the portfolio management application
with the modification that the triggered actions do not
only notify or rollback, but automatically adjust the
portfolio to the various constraints. In this case, con-
tradicting constraints will cause the triggers to bounce,
e.g. one trigger’s action will violate the condition of
another trigger and vice versa, causing the restructur-
ing to continue indefinitely.

We will now mention a number of concrete prob-
lems that have to be solved in order to support the
design of more reliable and predictable active appli-
cations. First, most active database languages pro-
vide few or no facilities for imposing a structure on
the rules in the database schema. Rules can be struc-
tured according to their triggering operations (e.g., all
rules triggered by an insert to a particular relation are
grouped together). But this will be undesirable when
a set of rules with different events correspond to the
same integrity constraint. For example, when an in-
vestment strategy is changed, all triggers defined to
impose this strategy must be identified and updated,
or when a financial instrument is no longer traded, all
corresponding triggers have to; be removed. ‘.

Second, existing active DBMSs do not provide rule
analysis tools that enable to predict how rules will be-
have in realistic scenarios. For instance, the authors in
[BCMP94] report that in most of their examples, the
first set of rules produced by the design was indeed

looping’. Some papers propose techniques to predict
if a set of rules is guaranteed to terminate or to be-
have deterministically. As noted in [WCD95], these
techniques still have deficiencies and several improve-
ments are needed.

The definition of isolated triggers tends to rely on
implicit assumptions about constraints that are ob-
served in the application environment at the time of
trigger design. E.g., the termination of triggers re-
lated to two financial instruments may rely on the fact
that the two instruments are never traded at the same
stock exchange. However, a change of such real-world
assumptions may easily occur at some later point in
time invalidating the original trigger design. There-
fore, design and monitoring tools must support the
explicit extraction of constraints from a trigger set,
the addition of user-supplied constraints as well as the
supervision of constraint modifications and violations
during the whole lifetime of the triggers.

A further point revealed by our study of real appli-
cations is the di+ulty of understanding the behaviour
of transactions in presence of triggers. Adding a rule
may alter the correctness of an existing transaction if
the rule is triggered by the transaction and modifies
the database in a way that is not expected by the rest
of the transaction. Thus, analysis tools are also needed
to understand how rules interalt with transactions.

It cannot be expec(ted that formal verification tools
will guarantee a correct behavior of triggers in all
cases. Therefore, further components will be needed
in an active DBMS to support simulation and testing
of triggers together with their triggering transactions.
The tracing of triggered executions at run time can
help to discover dysfunctions. For instance, in a trad-
ing system, the conditions under which deals have been
executed must be logged to be investigated and cross-
checked regularly. Accumulation ofiincorrect reactions
can easily be imagined (compare this to recent cases
where the ruin of a bank was brought about by the
decision of one trader - though definitely not with the
help of an active DBMS).

Two further methods to make active rules more se-
cure and reliable in &tidal csses are generated triggers
and explicit limitations. The idea to generate lower
level trigger definitions from higher level specifications
has been mentioned before. At this higher level, more
comprehensive verifications are possible. The portfolio
scenario is a typical example for this approach.

Limitations to what a trigger may execute or access
should not be imposed by the DBMS but be individ-
ually definable for each trigger or :subset of triggers,

sin current systems, the maximum number of cascading trig-
gers is bound, thus infinite triggering does not actually occur

even if there is a loop.

648

depending on the application. Limitations may re-
late to the maximal number of cascading triggering of
rules, the database elements that may be accessed by
the trigger, operations that may be included in the ac-
tion part, etc. For example, one might demand that
all triggers on modifications of sensitive relations are
neither allowed to write these relations in their action
part nor to perform operations that are capable of trig-
gering other rules. Or a trigger on modifications of a
customer account may in its action part modify data
of the same customer and specific global balance data.
In certain ,applications one even wants to impose the
restriction that all actions are either rollback or no-
tify (think of triggers that check for inconsistencies in
an accounting system where all irregular transactions
must either be prevented or checked by a human su-
pervisor).

Last, regarding security, triggers in general need to
be protected from unauthorized accesses. In fact, most
systems having triggers offer the possibility to asso-
ciate privileges with users to define, modify, or consult
triggers (e.g., using a “grant” command). This can
be problematic. First, programmers may need to see
which rules can be triggered by the transaction they
write, in particular with immediate rules whose action
consists of changing the database. Now, the program-
mer may have the privileges for executing a trigger but
not for reading it. Second, if a transaction (or a state-
ment) is rolled back by a trigger, the associated error
message must take into account the level of confiden-
tiality associated with that trigger. As an example of
the latter, think of an employee in a bank executing
a transaction on a collegue’s account. In this case,
the bank’s strategy is not to reveal the total assets of
the fellow employee (as would be the case with usual
customers). However, a trigger which checks the avail-
able total assets and rolls back the transaction in case
a limit is violated may implicitly reveal this informa-
tion. Much remains to be done in that area.

3.3 Performance

One of the main reasons that makes users reluctant
to use triggers in the development of large applica-
tions is their anxiety about performance. This feeling
is consolidated by recent experiences conducted with
the development of applications, that involve several
hundreds of triggers on various DBMS platforms (e.g.,
application of account management for large commer-
cial customers), When developers compare the perfor-
mance of the same application coded with and without
triggers (i.e., all the checks and reactions to updates
are programmed linearly in the application programs),
they observe that the trigger-based version runs two
to four times slower. As a consequence, many con-

sultants recommend not to use triggers intensively al-
though they are convinced by the functionality.

This disquiet deserves some analysis. A natural
question is to wonder if the immaturity of the imple-
mentations of triggers suffices to explain such a gap
of performance. In fact, the overhead taken by the
binding between events and rules, and the retrieval of
rules remains quite smalls. Another possible track of
investigation is the lack of experience of developers in
the programming of triggers.

With respect to performance, we have to distinguish
between two kinds of trigger-based, applications. The
first category is generaily obtained when only a few
triggers are selectively added to an existing passive ap-
plication. With available active database technology,
such applications do not encounter any performance
problems and run satisfactorily without sophisticated
optimization techniques.

However, the relevant active applications now com-
ing into existence are one or more orders of magnitude
larger in terms of defined triggers, ranging from hun-
dreds to thousands of triggers. Some examples and
reasons for this fact have been given in Section 2.3.
In these applications, triggers are used for all kinds of
tasks like coding integrity constraints, alerters, busi-
ness rules, time constraints etc. With applications
of this kind which actually intend to exploit active
databases to full degree, we have observed that per-
formance problems represent a severe obstacle. In the
following, we will try to reason what is behind this per-
formance deficiency and what needs to be done about
it. In fact, our thesis is the following:

Thesis : the separation between transac-
tions and triggers renders difficult ‘the global
opti&zation of the application

In practice, designers define triggers from applica-
tion semantics specification, and programmers code
transactions knowing that some properties over data
are guaranteed. Thus, design phases are separate, and
the levels of abstraction provided by the language used
for transactions and triggers are different. This sep-
aration complicates the tuning of active applications,
i.e., the activity of reconsidering the design of data
structures, triggers, and transactions to make the ap-
plication run more quickly. In particular, it is hard,
and sometimes impossible, to reproduce optimizations
that programmers used to do in passive applications.
Finally, there is no design methodology that guides
application developers in the design of efficient active
applications.

6Note however that the only measurements available to us
actually concern a small -her of rules.

649

4 Optimizing Active Applications tions can be accepted for purchases but not for ATM

Tuning is a well known difficult activity that requires
to have a comprehensive understanding of the compo-
nents of a DBMS [Sha92]. We argue that triggers fur-
ther complicate the picture. In this section, we show
that most difficulties for optimizing applications come
from the misunderstanding of the interactions that ex-
ist between triggers and transactions. We review ef-
fective tuning techniques, show how to apply them in
active applications, and explain the precautions that
must be taken. From that, we derive various require-
ments, e.g., for administration tools.

4.1 Relaxing of Constraints

Suppose we have a purchase transaction that with-
draws an amount X from a given bank account,
and a business rule saying that “the balance of a
bank account must never become negative”. Sup-
pose the rule is implemented by a trigger that checks
the balance whenever an insert occurs in relation
WITHDRAW. Every time the transaction inserts
a tuple into WITHDRAW, relation ACCOUNT is
read by the trigger. Therefore, the purchase trans-
action conflicts with transactions that update rela-
tion ACCOUNT .periodically, which entails transac-
tion blockings. A good optimization is to relax the
constraint in a controlled way, e.g., for small with-
drawals. This approach requires the computation of a
function that gives the proportion of transactions run
in relation to the amount withdrawn (X, in OUF ex-
ample). Then, depending on the degree of consistency
desired for the application, designers may decide to
add an extra condition on the withdrawal amount to
the condition of the trigger. In our example, the bal-
ance might be checked only for withdrawals above 30s.
If the remainder represents 45% of the withdrawals,
the optimization will certainly improve the transac-
tion throughput of the application.

However, two precautions must be taken with this
approach. First, changing the definition of the trig-
ger may impact the correctness of existing transac-
tions that rely on the strict satisfaction of the integrity
constraint. Thus, the change to the trigger must be
notified to programmers who can then check that no
incorrect behaviour is introduced in the application.
This is also true with passive applications but there
programmers have the full control on the implemen-
tation of the constraint relaxation. Second, imagine
that withdrawals originate from different transactions.
For instance, a withdrawal is issued either by a pur-
chase transaction (using a credit card), or by an au-
tomatic teller machine. Both transactions perform in-
serts to WITHDRAW but their policies can be dif-
ferent regarding the above integrity constraint: viola-

transactions. If the condition of the trigger defined
for inserts to WITHDRAW is changed then the ef-
fect will be effective for all transactions that perform
inserts to WITHDRAW. In our example, this will
prevent the constraint from being relaxed. Dirty solu-
tions may circumvent the problem by duplicating the
WITHDRAW table but such a decision may have im-
portant secondary effects on the design of the trans-
actions. Thus, it would be useful to enable the speci-
fication of the context of invocation within the event
part of triggers. Note that this problem does not
occur with passive applications because programmers
directly control when and how checks are performed
within transactions.

4.2 Optimizing a Relational Schema

Another tuning technique is to create redundant data
in order to speed up the evaluation of queries that
involve costly operations.

Creating redundant data can also improve the eval-
uation of trigger conditions. Suppose we have a
relation SEC-PRICES (securityNo, stockExchange,
date, price), and a trigger that implements a “Lon-
don-better-than-NY-rule”:

on insert to SEC-PRICES
if a new price from London is inserted and it is
higher than the average price for the same secu-
rity in WY for the past 10 days
then notify

The evaluation of the trigger’s condition involves
several costly operations: a join on securityNo between
the set of inserted tuples and SEC-PRICES, a selec-
tion on stockExchange and an aggregate. Creating
a new relation, say NYAVERAGES (derived from
SEC-PRICES), which contains the average prices
from NY stock exchange over the last 10 days, facili-
tates the evaluation of the trigger when new prices for
London are inserted. One must check that the new
price is higher than the value in NYAVERAGES.
This involves only a join between two relations one
of which is rather small. Thus, a different trigger
can be defined when London prices are inserted into
SEC-PRICES.

Additional triggers are however needed to maintain
NY AVERAGES up-to-date when SEC-PRICES
is updated. A primary effect of this maintenance is
that transactions that do not need to check the Lon-
don-better-than-NY-rule (e.g., those inserting prices
from NY) now have to maintain the redundant rela-
tion. Thus, the value of the decision depends on the
proportion of transactions that benefit from the op-
timization with respect to transactions that have to
maintain the redundant relation.

650

However, understanding the implications of this de- At the end of the execution, the balance for account
cision is delicate in an active application. In fact, X is negative. The reason is that when Tl executes its
insertions to SEC-PRICES can be caused directly trigger immediately after the insert, it reads account X
by transactions that update this relation but also by (value is 1000) and then releases its lock on X because
transactions that update another relation which trig- the transaction runs in degree 2. When T2 executes
gers the execution of a trigger that inserts tuples into its trigger, X is not locked and can be read (its value
SEC-PRICES. Thus: it is useful to know which is lOOO), thus T2 continues its execution. When Tl
transactions may directly or indirectly cause some updates the balance, the value becomes 300 and when
changes to any relation. T2 does its update, the value of balance is -200.

4.3 Select Lower Isolation Modes

Previous tuning techniques concern the rewriting of
triggers or the redesign of the relational schema. We
now look at techniques concerning the writing of trans-
actions.

When transactions follow the strict two phase lock-
ing protocol, they run in total isolation (SQL isola-
tion degree 3) [GR93]. This protocol implies that be-
fore reading or writing a database item, the transac-
tion must acquire a lock on the item and hold it until
a particular ‘lock point after which no new lock will
be acquired. The performance effect of this proto-
col is to create inter-transaction blockings and dead-
locks. Most database systems offer the possibility to
run transactions with a lower degree of isolation. For
instance, if a transaction run in degree 2 then its read
locks are released just after the read operation. This
diminishes the waiting time for transactions that want
to write the same database item. So, when consistency
is not sacrificed, selecting a lower degree of isolation is
an effective tuning technique [Sha92], [GR93].

We analyze the implications of this technique on
active database transactions. Suppose we have two re-
lations WITHDRAW and ACCOUNT. A purchase
transaction inserts a tuple into WITHDRAW and
then updates the balance of the corresponding bank
account. This transaction can be run in isolation de-
gree 2 since it does not issue any read operation.

Now, suppose we add an immediate trigger:

on insert to WITHDRAW
if ACCOUNT.balance is less than the amount of the

vithdraval
then rollback

Suppose the balance for an account X is 1000 when
two occurences of the purchase transactions, called Tl
and T2, start to run concurrently with the following
history:

Tl - insert 500 into WITHDRAW for account X
Tl - execute immediate trigger
T2 - insert 700 into WITHDRAW for account X
Tl - execute immediate trigger
Ti - update balance in ACCOUNT
T2 - update balance in ACCOUNT

First, observe that if the trigger was declared as
deferred, i.e., it executes at the end of the transaction,
the problem would not exist. Second, suppose that the
transaction only does an insert to WITHDRAW and
we define two immediate triggers:

triggerl: on insert to WITHDRAW
then update to ACCOUNT.balance

triggera: on update to ACCOUNT.balance,
if ACCClUNT.bal+nce is less than the amount of

the update
then rollback

This implementation is correct even if the trans-
action runs in degree 2. The lesson learned from this
example is that: selecting lower isolation modes for ac-
tive database transactions requires to understand the
invocation relationships that exist between the trans-
action and the triggers. In particular, note that op-
timizations that turn out to be correct at some point
may become incorrect if the set of triggers is changed.

This problem is already acknowledged by many de-
velopment guides as a source of unreliability when ref-
erential integrity is enforced by means of triggers. It
is necessary for the programmer writing the trigger
procedure to explicitly lock (degree 3 isolation) the
appropriate data for the duration of the transaction,
and this must be done in triggers for all related tables.

Note that this problem does not occur with passive
applications since adding a trigger requires to redefine
the transaction.

4.4 Chopping Transactions

Transaction length has some effect on performance:
the more locks a transaction requires the more it will
have to wait, and the Ionger it executes the more it
will cause other transactions to wait. Making transac-
tions shorter may improve the performance of concur-
rent transactions when blocking situations occur and
is thus an effective tuning technique [Sha92]. However,
chopping.atransactionintoseparate transactions must
be done cautiously and requires to have a clear under-
standing of what are the possible concurrent transac-
tions. Otherwise, inconsistencies can be introduced
in the database. When all transaction programs are

.

651

known in advance, it is possible to automatically chop
transactions into smaller transactions without sacrific-
ing isolation guarantees [SLSV95].

In an active application, chopping is more compli-
cated. Suppose a purchase transaction T first updates
the balance of some bank account and then inserts a
tuple into WITHDRAW. If, the only possible con-
current executions are instances of T then it is safe
to chop the transaction into an update transaction,
Tl, and an insert transaction, Ts, since the relations
involved in each statement are distinct. Suppose the
following deferred trigger is added later:

on update to ACCOUNT.balance
if the balance becomes negative or if the total
amount of the vithdravals this veek exceeds lOOO$
then rollback

This trigger will be executed within Tl. However,
the chopping of T into Tl and T2 is no longer correct.
Suppose the total amount of withdrawals for account
X is 800 $, and the balance is 400 $ when two instances
of the (chopped) purchase transactions (noted Tl, T2,
Ti, and Ti) execute concurrently with the following
history:

Tl - decrement balance of 200s
Ti - execute trigger
T’l - decrement balance of lOO$
T’l - execute trigger
T2 - insert 200$ into WITHDRAW
T’2 - insert lOO$ into WITHDRAW

At the end of the execution, the balance for account
X is positive but the total amount of withdrawals is
1100 $, which exceeds the authorized threshold value.
Thus: chopping needs to ‘take into account the rules
that are capable of being triggered by the transaction.

Suppose now that every instance of a chopped pur-
chase transaction for an account X can either execute
concurrently with other instances of purchase that con-
cern accounts different from X, or with debit transac-
tions that simply increment the balance of some bank
account. The above inconsistency problem cannot oc-
cur any longer, and isolation is guaranteed. However,
the problem is that if we execute the trigger in Tl then
its condition is evaluated on a state of WITHDRAW
which does not take into account the new withdrawal
(only visible after Tz executes). Thus, chopping T vi-
olates the internal consistency of the transaction with
regard to the condition of the trigger. Thus: assuring
the correctness of a chopping requires understanding
the data dependencies between the conditions of trig-

gers and the statements of the transaction.

4.5 Immediate Processing of Rules

Defining a trigger as immediate may be a good opti-
mization technique if the trigger rolls back the transac-
tion when a particular condition is violated. Immedi-
ate processing enables the trigger to execute as soon as
possible in the transaction which avoids waiting until
the end of the transaction if the transaction must be
rolled back. However, defining triggers as immediate
may introduce inconsistencies.

Suppose we have a transaction that does the follow-
ing operations:

x = select balance from ACCOUNT vhere
insert into WITHDRAW . . . ;
if x < 1000 then . . . else

Suppose trigger1 in .Section 4.3 was defined as de-
ferred and one changes its definition into an immediate
trigger. This change clearly alters the correctness of
the transaction because variable z may not be anymore
up-to-date after executing the trigger that reacts on
insert to WITHDRAW. Thus: immediate triggers
may introduce side-effects into transacti,ons that are
difficult. to control manually.

Another problem with immediate rules is that the
programmer must be aware of which rules can be trig-
gered and what their effect is. In some sense, this
subverts the original idea that the programmer should
concentrate on the logic of the transaction without
worrying about business rules that have been exter-
nalized in the database schema. This yields security
problems because some business rules need to be pro-
tected against unauthorized accesses. For instance, the
writer of a transaction that inserts employees may not
be allowed to see which (immediate) rules are triggered
by updates to employee’s salaries (e.g., bonus rules).
This requires: a mechanism that enables programmers
to see both authorized ruies and rules needed to pro-

gram correct transactions.

Some systems (e.g., Oracle version 7), provide a re-
striction to what a trigger can change. ‘E.g., a before-
row trigger cannot change any values provided by the
triggering statement, and an after-row trigger cannot
change a new column value. Under these restrictions,
the above “subvertion” problems cannot occur. How-
ever, this prevents from the definition of rules that
repair constraint violations. Repairing actions must
be handled either by the application program, or by
the use of multiple triggers and extra “book-keeping”
data.

5 Conclusions

We analyzed the problems encountered in practice
with the development of active applications. We first

652

showed that applications are difficult to design due
to the lack of expressiveness and clear semantics of
existing trigger languages, and the absence of design
methodologies. Users call for extensions of existing
methodologies that enables the specification of busi-
ness rules and give at least guidelines regarding their
implementation.

Another problem is the insufficient security, reliabil-
ity, and predictability oftriggers. There is a clear need
for analysis tools that enable to predict how rules will
behave in realistic scenarios. The static rule analysis
techniques already proposed by the research commu-
nity represent a step forward but are clearly insuffi-
cient in practice. Simulation, testing, and debugging
tools are also needed. Furthermore, the security prob-
lems have received very little attention until now.

The last problem is performance, which is a major
component of understanding why the usage of triggers
remains limited to “niche” areas. Thus, solving this
problem is a major challenge for the database commu-
nity. We analyzed the‘difficulties of the optimization
of active applications. In fact, the separation between
transactions and triggers leads to what we call the Ice-
berg Problem in active DB programming. F’rom the
database designer perspective, the visible part of the
application is the DB schema including triggers, and
the immersed part is transactions. From the program-
mer perspective, the situation is reversed. In order to
tune triggers, the designer needs to know which trans-
actions invoke which triggers, and in what proportion.
Providing the designer with the code for transactions
is certainly not appropriate. Similarly, information
about triggers, in particular immediate triggers, is nec-
essary to program efficient and correct transactions.
Providing the programmer with the code for triggers
is again not appropriate. There is a need for tuning
tools that assist both designers and programmers in
the building and maintenance of optimized active ap-
plications.

Finally, efficient implementations of triggers in
DBMS’s are needed. New research perspectives re-
garding this problem are discussed in [LS95].

Acknowledgements: We wish to thank Mokrane
Bouzeghoub, Eric Dujardin, Francoise Fabret, Irene Kunz,
Francois Llirbat, and Dimitri Tombroff for the many con-
structive discussions we had on the topic of this pap&. We
also want to thank Phil Bernstein for his helpful pointer
towards French banking organizations.

References

[BCMP94] E. BaraIis, S. Ceri, G. Monteleone, and S. Para-
boschi. An Intelligent Database System Application: the
Design of EMS. In T. Risch and W. Litwin, editors, Ap-
plications of Databases. LNCS, Springer-Verlag, 1994.

[CS94] R. Chandra and A. Seguev. Active Databases for
Financial Applications. In Proc. of the 4th Interna-
tional Workshop on Research Issues in Data Engineer-
ing, Houston, Texas, Feb. 1994.

[CW90] S. Ceri and J. Widom. Deriving Production Rules
for Constraint Maintenance. In Proc. of the 6th Int.
Conf. on VLDB, Brisbane, Australia, Aug. 1990.

[Day881 U. Dayal. Active Database Management Systems.
In Proc. of the 9th Int. Conf. on Data and Knowledge
Bases, p. 150-169, Jerusalem, Israel, Jun 1988.

[DHLSO] U. Dayal, M. Hsu, and R. Ladin. Organizing
Long-running Activities with Triggers and Transactions.
In Proc. of the ACM SIGMOD Int. Conf., p. 204-214,
Atlantic City, New Jersky, May 1990.

[Esw76] K.P. @wara+ Specifications, Implementations
and Interactions of a Trigger Subsystem in an Integrated
Database System. IBM Research Report RJ 1820, San
Jose, California, Aug. 1976.

[GR93] J. Gray and Ai Reuter. Transaction Processing.
Morgan Kaufman, 1993.

[HKMS94] H, Herbst and G. Knolmayer and T. Myrach
and M. Schlesinger. The Specification of Business Rules:
A Comparison of Selected Methodologies. In A. Verrijn-
Stuart and T. Olle, editors Methods and Associated
Tools for the Information System Life Cycle, Amster-
dam, 1994.

[Hor94] B. Horowitz. Intermediate States as a Source of
non-Deterministic Behavior in Triggers. In Proc. of Int.
IEEE RIDE Workshop, Houston, Feb. 1994.

[IS0941 ISO-ANSI working draft: Database Language
SQL3, 1994. X3H2/94/080; SOU/OO3.

[LS95] F. Llirbat and E. Simon. Optimizing Active
Database Transactions: A New Perspective. In Proc. of
Int. Workshop on Active and Real-Time Database Sys-
tems, $k?vde, Sweden, June 1995.

[Sha92] D. Shasha. Database Tuning: a Principled Ap-
proach. Prentice .Hall, 1992.

[SLSV95] D. Shasha and F. Llirbat and E. Simon and
P. Valduriiz. Transaction Chopping: Algorithms
and Performances Studies. In ACM Tmnaactions on
Database Systems, 20(3), Sep 95.

[Sto92] M. Stonebraker. The Integration of Rule Systems
and Database Systems. IEEE Tmnsactions on Knowl-
edge and Data Engineering, 4(5):415-423, Ott 1992.

[TKLSO] A. Tsalgatidon and V. Karakostas
and P. Loucopoulos. Rule-based requirements specs-
cation and validation. In Proc. of the 2nd Nordic Conf.
on Advanced Information Systems Engineering, Springer
Verlag, LNCS N. 436, May 1990.

[WCD95] J. Widom and S. Ceri. Active Database Systems.
Morgan-Kaufmann, San Francisco, 1995.

