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Abstmct - Our success in deploying the illusion 
of infinite stomge to applications rests in the use 
of database tebhnology. Tht3 paper presents the 
support for transactions in the ADSTAR 
Dhtributed Stomge Manager, (A DSiU) system. 
For a user, ADSM offers a backup and archive 
service in a heterogeneous cliint-server 
environment. It also operates as a file migratton 
mposito~ in some Unix environments. As a 
stomge manager, the ADSM server is a Mass 
Stomge System (MSS) that administers stomge 
hiemrchies of arbitrary depth in which all 
activities are done on behatf of transactions. Its 
systems goals include to epemte in many 
computing phz#omts, to pmvidG h@ly- 
avaihtble metadata, to administer effective& a 
huge amount,of entities, to support continuous 
and unattended opemtion, and-to support a high 
degree of concutrent requests. 

The workload includes requests that only read 
system data at the server, requests that store 
gigabytes of user data and requests that u@ate 
thousands of system data entries at the server 
but reqube no access to user &I&. To ensute 
availability of the system data we replicate it 
with up to three copies and also support fuyv 
dumps. As the ADSM sewer administers from 
low-latency high-performance magnetic disks to 
optical or tupe jukeboxes, for high coacurrency 
we adopted optimistic approaches to locking, 
special locks for devices called leases and we do 
not always enforce repeatable reads. 
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1. Ilitfoductioa 

ADSM is a client-server backup and archive IBM 
product since July of ‘1993 Il’l. It is also an announced 
repository of migrated files in some Unix environments 
since June of 1995. Users, humans, access the system 
through the ADSM data capture clients, henceforth called 
clients, that operate in the node where the user is located. 
The’system stores the data of users in the ADSM storage 
servers, henceforth called rqvers. Data is transmitted 
between, the clients and the servers using a special transfer 
protocol. 

Users can backup and restore files without operator 
intervention in ADSM. They can do incremental or full 
backups at, will. The granularity of a request can range 
from a single file to a complete file system. Backup and 
archive sessions can also be centrally initiated by the 
system. Clients operate on PC-DOS, Windows, MAC, 
Novell, Sequent, Windows NT, OS/2 and different UNIX 
versions. Communication between a client and a server 
can be through lCP/IP, APPC, NetBios, Novell IPX, 
named pipes, PWSCS and 3270 data streams. Servers 
currently run on MVS, VM, AIX, OS/z, HP/UX, SUN/ 
Stilarls, AS/400 and VSE. Approximately 80% of the 
server source code and 75% of the client source code are 
platform independent. 

The facilities present in. the system include 
administration of one or more storage hierarchies of 
arbitrary depth. support for an open ended collection of 
storage devices, policy-driven data and storage 
administration, registration of clients and of users, remote 
server administration, central and distributed scheduling 
of activities, and non-stop operation of the’service when 
adding or deleting physical or logical storage unit.sD1. 

The following principles guided the design and 
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development of ADSM: 

Enable the server to preserve the physical 
locality that data has at its source even when 
clients deliver this data over long periods of 
time. 

Estimate the target workload and develop the 
system to accommodate them. 

Deploy the system in many computing 
platforms. 

Provide lights-out, unattended, operation with 
unattended recovery from failures. 

Provide continuous operation. 

Accommodate the peculiarities of a wide 
variety of storage devices. 

Manage the storage system through user- 
controlled policies. 

Minimize the periods of time in which an entity 
in the system cannot bc retrieved. 

Use additional temporary storage space to gain 
concurrency and to increase the availability of 
user data. 

The rest of this paper is organized as follows. In 
section 2 we describe the user view of the system and in 
section 3 we present the transaction technology. Section 4 
has the software architecture of’ the server, section 5 
provides the workload characteristics of the environment, 
section 6 discusses index management while section 7 
discusses the atomicity in the server. Section 8 presents 
related work and section 9 contains our conclusions. 

In13] we presented how the’ system supports 
heterogeneity, policy management and unbounded storage 
including continuous co-location of user data. 

2. The External View of ADAM Storage 

Space to store user data is represented by storage, 
pools in the server. Storage pools have names that are 
unique among all storage ,pools. A storage pool can be 
chained to another storage pool and form arbitrary 
directed acyclic graphs. Storage pools have high and low 
occupancy thresholds. set by administrators, that trigger 
data migration to their chained storage pools. Data 
migration may also be on demand. Storage pools may be 
mapped to any type of physical storage. All the devices on 
which a specific storage pool is mapped must have the 
same storage characteristics. 

A birfle is an uninterpreted sequence of bytes of 
arbitrary lengthl”1. When a client stores a user file as part 
of a backup session or a file migration. the server creates a 
bittile for the data of the user file and stores, in appropriate 
server catalogues, some 400 bytes of system data, 

henceforth called metaduta, to describe all the necessary 
attributes of the user file. The server has approximately 60 
catalogucs for its metadata. Bitfiles are never modified in 
the server. They are migrated complete between different 
levels of the storage hierarchy and may be retrieved even 
when bein migrated The maximum size a bittile may 
have is 2 cs bytes. The server strives to minimize the 
number of hardware repositioning operations required to 
read all the data in a bitfile. 

Data and storage administration policies are 
expressed by users and administrators using management 
classes. Management classes are stored at the server. Each 
user file is associated with a unique management class. 
Storage policies of the management class determine the 
storage pool a file is tirst stored in, the retention period of a 
copy of a user file, the number’of copies of a user file that 
should be kept and the period of time that the last copy of 
a deleted user file is to be retained These policy- 
controlled properties are associated to biffiles using server 
catalogues. 

To support the backup of the ever growing amount of 
data stored in computers, we adopted the strategy of not 
requiring full backups,.-or full dumps, of the user data. 
Only a continuous series of incremental backups is 
necessary131: The performance of restore operations is 
maintained using on-line catalogues. Thus, restoring a 
user tile takes time that is proportional to tire time to 
access the on-line metadata about the file plus the time 
taken to retrieve the bitfile from the. appropriate storage 
pool. $n .the server it takes the same time to retrieve the 
metadata about a file in servers with 40 million bittiles to 1 
billion bitfiles. 

To enable third ’ parties to exploit the data 
administration function an external Application 
Programming Interface ‘(API) is available. This API was 
standardized through X/Opet@. It is currently deployed 
in platforms in which clients operates including Windows, 
Novell, UNIX and OS/2. 

2. Transaction Technology in ADSM 
All client-server activities are accomplished by 

transactionsl**‘l. The transactional capability eases system 
administration as software or hardware failures always 
leave consistent the internal state of the system. Users are 
unaware of transaction boundaries yet the system exploits 
them in the case of crash recovery. 

The clients control the transaction boundaries for 
user-initiated reqyests. A backup session, for example, is 
done as a series of transactions that store sets of files from 
the client in the server. The client commits transactions 
and begins new ones transparently to the user during a 
backup session. Through system parameters a commit 
happens after a given number of user files have been 
transmitted or after a given volume of user data is 
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transmitted. Large user files arc always stored within one 
transaction. 

The server also uses transactions IO perform its own 
internal activities. The server implements recovery 
mechanisms that arc ncccssary to prcscrve failure 
atomicily and durability, which arc IWO of the four 
properties defined for ACID transactions12*61. Consistency, 
the third properly of ACID transactions, is guaranteed by 
the server software. The server does not always guarantee 
isolation, also called serializability. Isolation is commonly 
guaranteed by traditional database management systems, 
but it is not semantically appropriate for our backup and 
archive service. The enumeration of bitfiles in a storage 
pool, for example. is not guaranteed to remain unchanged 
for the duration of a transaction. 

The availability of scrvcr mctadata is enhanced using 
replicurion. The server can maintain up to three copies of 
the metadata. A replicated write returns when all copies 
have been written. A rcplicatcd read returns when the 
closest copy has been read. As there are more reads than 
writes directed to the mctadata the run-time of the system 
improves when replication is being used. System 
administrators can enable. disable. or change the 
replication factor on-demand. without bringing &he system 
down or stopping its normal operation. 

The speed IO bring on-line a stale copy of replicated 
metadata depends on the underlying input-output 
configuration. .Thc worst-cast “scenario is to bring up a 
replica on the.same disk arm as the data. We measured this 
in an otherwise idle RS/6000 model 370 with a 2 gigabyte 
SCSI attached disk. The data rates varied from 1.941 
megabytes/second to 2.091 megabytes/second with the 
75th percentile being 2.054 mcgabytcs/second. 

4. Software Architecture of the ADSM Server 

For backup. archive and migration the server is in 
charge of receiving and storing sets of user files from 
different clients. For restore and recall it needs to retrieve 
sets of bitfiles stored in its storage pools and transmit them 
to the appropriate clients. To suppon- concurrent activity 
the server was developed as a multi-threaded, memory- 
sharing system. Threads are provided by a platform- 
independent module whose implementation is platform 
dependent. Figure 1 shows the principal functional 
softwate components of the server. 

Activities in the system are triggered by external 
requests and by internal events. Registering a client, 
registering a system administrator, registering a user, 
specifying a management class, updating the specification 
of a management class, establishing a connection from a 
registered client, closing such a connection, backing up a 

SCI of user files, restoring a set of files, archiving a set of 
files, adding a new set of storage devices, specifying a 
sloragc pool, are examples of external requests. Two 
internal events are the detection (at the end of a 
transaction) of a storage pool that has exceeded its high 
occupancy watermark and scheduling a data migration 
operation for it, and determining that an instance of 
removable storage media is below its occupancy threshold 
and scheduling a data reclamation operation. 

To understand how the components of Figure 1 fit 
together, let us walk through an example of backing up a 
set of files. The request begins with the client establishing 
a connection to the server. All connections are monitored 
by the Session Manager. The client then begins a client- 
server transaction that registers in the Transaction 
Manager (TM). Every component in the server that 
performs work on behalf of a transaction registers with the 
Th4 and obeys a two-phase commit protocol. The TM uses 
the LOG to write all the necessary Iog records. The Index 
Manager uses two kinds of BC-Tree indices to store system 
data. The Logical Volume Manager (LVM) is used by the 
LOG and the Index Manager to access all the server 
system data, including log and catalbgue data. Partial 
write detection and metadata replication are done by the 
LVM. The Session Manager can determine when the client 
end-point of a connection has failed and issue the 
corresponding abort action. 

Figure 1. ADSM Server: Principal Software 
Components 

For incremental backup, the session begins by the 
client req&sting fi-om the server the corresponding 
policies from the Policy Manager. Policies are stored in 
system catalogues administered by the Index Manager. 
The client then builds the candidate list of liles for backup 
and. requests the server to send, from the Inventory 
Manager, the latest information for each of the candidate 
files. The Inventory Manager stores all its information in 
catalogues administered by the Index Manager. The client 
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then sends to the server, optionally compressing them, 
only those user files that have changed or have been 
created since the last incrcmcntal backup. The server 
constructs appropriate entries in the Inventory Manager 
and appropriate bitfilcs using the Bittile Storage 
component. Bitfiles are stored using the Storage Segment 
manager. 

At the end of sending all the user files the client also 
sends the server the list of user files that have been deleted 
since the last incremental backup allowing the server to 
mark them and, eventually, to expire them from the 
system. The client then commits the transaction and 
disconnects from the server. 

The Export Import manager is used to bulk transfer 
entities between servers. 

The server supports a wide variety of storage devices 
such as disk, optical libraries, disk arrays, stand-alone tape 
devices or tape libraries. The server uses a common device 
driver model to ease incomrating new devices 
implemented by the Block Disk Driver. The driver model 
captures properties like sequential or random access and 
being read-write or write-once. 

5. Workload Characteristics in the ADSM 
Environmeht 

The workload in the network-based backup and 
archive system is unconventional. Transactions seldom 
abort yet may require half an hour to complete. Some 
modify minimum amounts of mctadata yet store large 
amounts of data. Others modify large amounts of metadata 
and access no data. Many are read-only. 

The most common initial USC of the system was 
backup and archive. The system is evolving to also 
administer migrated primary data from remote file 
systems. When a client queries the server for the attributes 
of a set of user files the server processes this read-only 
query against its catalogues. For clients that are large file 
servers this query returns thousands of entries to the client. 

Requests may require substantial processing. The 
transaction that stores a gigabyte user file being 
transmitted over a standard network will take a good 
fraction of an hour. The server must transfer all client data 
to the first appropriate storage pool. In addition, 
substantial amounts of data may be migrated within the 
storage hierarchy requiring corresponding amounts of 
processing. An MVS server with 3090 disksand 3480 tape 
drives being fed data from an RS/6000 model 530H client 
through a 16 megabit/second token ring and 3172 
controller achieved backup throughput of 394 kilobytes/ 
second and disk to tape migration throughput of 727 
kilobytes/second. This migration throughput was 
unaffected when two clients were concurrently backing up 
data. The AIX server has been measured to receive data 
from an Ethernet at 9.5 megabits/second and from a 16 

megabit/second token ring at 15.4 megabits/second. 

The system also receives sporadic requests for single 
retrievals. In our Research Center, where some 450 
workstations use one server for backup, there are some 20 
requests per day to restore individual files. We have also 
confirmed that the probability of retrieving a bitile 
decreases very rapidly with time. If a bitfile is not recalled 
within 15 days of being placed in stora e itsprobability of 
being recalled individually is very low B 91. To increase the 
probability of fast restores we cache copies on disk when 
migrating down in the storage hier&chy. We then reclaim 
the space of cached bitfiles on-demand, nbt eagerly. 
Reclaiming the space of bitfiles on any media only 
requires updates to the on-line metadata. 

In the system individual deletion of bitiles is 
infrequent. However, as bitfiles corresponding to user files 
that have been deleted have expiration dates, there is the 
potential for expiring simultaneously large numbers of 
bit&s. This happens, for example, when at a’client a user 
deletes a complete directory and the expiration time at the 
server is tiached. Expiration processing only requires 
updating the ‘metadata of ‘the Server like deleting entries 
from catalogues, updating space accounting in storage 
pools and updating the metadata for The underlying storage 
media instances. Expiration processing may involve 
voluminous amounts of server metadata 

The backup and &live of several files is the norm. 
Clients seldom send individual files. Ttie system expIoits 
this by using transaction boundaries as units of data 
streaming over network connection&. This approach is 
particularly helpful to “turn around” (without special 
messages) the semi-duplex connections between a client 
and a server. 

Retrieving a large collection,of related biffiles, like 
the bitfiles that correspond to all files originally stored in a 
specific device at a client ins&&on, poses interesting 
data management constraints. This infrequent user request 
is worth supporting efficiently as its completion time 
directly impacts users. The common user scenarios for this 
request are that a disk fails, or that a user wants to retrieve 
a complete file’system, probably into a new environment 
for the data.’ 

To minimize the elapsed time of restore the system 
offers the option of co-locatjng logically-related fi@ in a 
minimum number of storage media instancesr3]. When co- 
location is enabled, user files &e .tagged by thi: ser&r with 
co-location keys. At the server, bit&s with common co- 
l&ation keys are stored in close proximity in the 
corresponding storage pools. Co-location is preserved 

1. In a large customer installation the IS organi- 
zation reported one PC hard disk failure every 29 
hours. Low-end disks may fail once in 30,000 
hours. 
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when the server migrates bitfiles between storage pools 
and when it reclaims a storage device. 

6. Index Management and Management of System 
Data 

As the page size used by the recoverable data 
structures in the server may not coincide with the 
underlying block size of the device used to store such a 
structure, we implemented partial- write detection. The 
underlying substitution of bits occurs after the page has 
been isolated in the buffer pool to be passed on to the I/O 
subsystem. For the log, the low-level l/O recovery 
routines need to be privy to this data transfotination so as 
to restore the appropriate valueswhen returning a page to 
the higher levels of the system, The partial-write recovery 
routines were used 20% of the time we forcefully crashed 
a heavily loaded server. 

To minimize catalogue space utilization we adopted 
two compression schemes, record compression and 
partitioned indexes. Index manager records. are logically 
thought of as rows in tables uniquely identified by keys 
where each field has an internal data type. Records are 
compressed in a left-to-right type-dependent encoding 
separating the key part of the record and the data part of 
the record. Each encoding keeps the individual length of 
the encoded field. Decoding proceeds from left-to-right as 
individual encoded fields cannot be accessed directly. 
Savings in storage due to record encoding come with a 
run-time performance penalty as key comparisons require 
to decode the keys. In 1988 when this encoding strategy 
was established, the benefits of saving space were greater 
than they are today. Today we would adopt a scheme that 
guarantees constant access time to each field in the key 
and word-aligned compressed fields. , 

When defining an index one can specify that p of the 
k fields that make the key. with p < k, ‘is the @r&ion 
prefix. The so-called partitioned indices enforce that all 
records stored in a leaf node share the same prefix of p 
fields. The prefix is stored once in the node saving space at 
negligible processing cost. The structural modification 
logic of partitioned indices is of the same complexity as 
that of the standard BCTree indicts. lntsl we justify why it, 
is not necessary for our indices to support duplicate keys 
and how we achieve compact indices in selected cases by 
encoding record ranges with one record. 

In the server we optimized several database-related 
operations. The small number of data types required in the 
index schemas requires only a rudimentary type system. 
This simplifies the interface and processing of index-level 
operations. A second simplification made was record 
management. We imposed a left-to-right access to the 

fields in each of the two logical parts of records. This is in 
contrast with database management systems like 
8tarburst[131 that require constant access time to any field. 
Our encoding avoids storing an offset per field, a 
substantial space savings for records with a handful of 
short fields. 

7. Atomic@ in the ADSM Server 

To support transactions the system has its own log 
manager, lock manager and transaction manager. The lock 
managersupports all the modes found in database 
management systems including intention locks. The server 
requires that all components in the system that administer 
permanent storage register as participants of tmnsactional 
activities and follow the presumed abort two-phase 
commit protocoP1. When a transaction needs to commit, 
or abort, the transaction manager contacts each of the 
participant components to do the appropriate presumed 
abort protocol actions. This processing follows the same 
steps that an external network transaction would followt9t. 
The underlying recovery algorithm is WAL AR.IE!Jtl*]. 

The two recoverable data structures used for 
metadata are a bit vector and a B+-Tree. The preferred 
mode of use of storage devices is “raw” mode. However, 
the system can be configured to use a file system when 
synchronous file I/O is supported. 

7.1 Logging 

The structural modiliktions df indices, B+-Tree node 
splits and node merges, are preserved irrespective of the 
fate of the transaction that caused the structural change 
using the compensation log re~ordt~*‘~~ technique. A 
special log record is written that encircles all the log 
records pertaining the complete structural modification. 

The recoverable bit vector uses value logging 
achieving a granularity -of single block allocation and 
deallocation. To sup$ort isolation efficiently an extent- 
oriented mtimory data structure tracks allocations as seen 
by inflight transactions. Allocation and deallocation 
requests keep, per transaCtion, intentions lists of all blocks 
allocated and deallocated’thus far. At the prepare stage, the 
intentions list is flushed in the log and at commit the disk 
bit vector is updatedi During the analysis pass of recovery 
intentions “lists are built for the inflight u-a&actions. 
Allocations and deallocations may occur during recovery 
as indices may split and merge. 

The server makes a checkpoint whenever 250 
kilobytes of log space have been consumed. Using the 
same RS/6000 model 370 as before and running a ‘heavy 
backup workload’ we observed that the distribution of 
force,times, in milliseconds, of a batch of log records had 
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a mean of 32 (a minimum of 22, a maximum of 500 and a 
standard deviation of 44.71). that the distribution of log 
batch sizes between forces, in bytes, had a mean of 16270 
(a minimum of 0, a maximum of 94643 and a standard 
deviation of 17609). that the distribution of log write 
batches. in pages, had a mean of 6 (a minimum of 1, a 
maximum of 14 and a standard deviation of 4.43) and that 
most times the system appended a log record in less than 
0.02 milliseconds. 

Non-intrusive fuzzy dumps of the metadata were 
implemented following the design oft”]. The server 
continues its normal operation during fuzzy dumps. Our 
implementation provides point-in-time and forward 
recovery, based on full and incremental fuzzy dumps. A 
consistent image of the systent can be built beginning 
from any full fuzzy dump and restoring it to the niost 
recent point in time using the incremental fuzzy dumps 
and the on-line log. Using the s&me RS/6000 model 370 as 
before, we measured two runs of the full fuzzy dump of a 
database of 25.88 megabytes, obtaining read rates of .7% 
and .785 megabytes/second and write rates of 1.572 and 
1.556 megabytes/second respectively. 

7.2 Locking 

Repeatable reads is enforced by transactions only 
when needed. As the server initiates transactions for its 
internal activities. such as migration of bitfiles between 
storage pools and space reclamation of storage media 
instances, enforcing repeatable reads for all transactions is 
inappropriate. Common client-induced query operations, 
for example, would be unduly delayed by bithle migration 
and space reclamation. 

Lock management was another area of 
simplification. In the server, locks are requested by the 
callers of components. As the caller of a lower level 
component has complete knowledge of the intended 
operation, like the migration of all bitfiles in a given co- 
location cluster to a lower level of the hierarchy, or the 
expiration of all bitfiles with a given storage date in a 
management class, it requests locks at a high logical level 
such as on predicates or on the most significant (sub)parts 
of a key. This allows the low-level components; like the 
index manager, to not acquire locks on behalf of its callers 
and thus to not have to deal with the notion of lock 
escalation. 

To support a high degree of concurrency and 
accessibility to the user data we adopted optimistic 
concurrency control policies. Exclusive locks are held for 
a minimum amount of time. When migrating sets of 
biffiles within the storage hierarchy. for example, we 
retrieve the required metadata. WC release locks on it, we 
optimistically copy the data, and only then reacquire the 
locks on the metadata to rcflcct the current changes. This 
maximizes the time that data is available for users at the 
cost of temporarily retaining more topics than required. 

We found that by locking logical entities within the server 
lock escalation was unnecessary. 

To fully utilize the devices with large latency times 
we provide mutual exclusion with a reservation 
mechanism that can be used by more than one transaction. 
This capability allows the system to exploit the devices for 
other transactions that require it even if they have not 
committed. maximizing the use of these devices without 
performing unnecessary work. 

7.3 Locking optimizations 

Our workload is a challenge for concurrency. 
Maximizing the user access to their data drove us in 
minimizing the’ time transactions held exclusive locks on 
bitfiles and on metadata. We adopted the optimistic policy 
of not holding metadata locks while a data transfer or a 
data copy was in progress. The traditional two-phase 
locking strategy would be an unacceptable inhibitor of 
access to the user data. We use additional space to always 
‘copy ahead’ the data. For example, when migrating data 
between storage pools, we lock the metadata in shared 
mode, retrieve it, unlock it, do all the necessary data 
copying between storage pools, lock the metadata in 
exclusive mode again to verify that the world has not 
changed under us, and only then proceed to change all the 
metadata to reflect the data movement that has already 
occurred. As our bittiles are immutable the worst scenario 
is that a bitfile that is being migrated down the hierarchy is 
concurrently deleted by an expiration process. As 
deletions are rare, this event does not concern us. 

Because devices like tape jukeboxes have 
enormous latency times, holding locks on them on a per- 
transaction basis is not appropriate. As the time to 
acquiring use of such a deviceis so long once it is put to 
work on behalf of one transaction it should be exploited on 
behalf of other: transactions that require it, irrespective of 
the fate of eachMividual transaction. Optimistically, if 
none aborts thenno work is lost. To serialize activities on 
long latency devices we introduced the notion of leases. A 
lease is a mutual exclusion handle to access.a device. 
Different transactions access the device using a lease. This 
technique is exploited when migrating a cluster of bitfdes 
to a given storage media instance like a tape or an optical 
disk in a jukebox. Once the processing is done on behalf of 
the transaction that triggered the use of the media then the 
system inspects its metadata and schedules the transfer of 
data of all clusters that need to migrate bitfiles into that 
media. Leases expire when no outstanding transactions 
require the resource. 

Deadlock management was reimplemented when 
we found a computing platform where it was impossible to 
roll-back once a resource had been allocated. We adopted 
a deadlock avoidance approach. The server tags requests 
with the externally mountable resources they need. For 
example, the data import activity requires at most one tape 
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mount point while the tape reclamation activity requires 
two mount points. Resource allocators use this 
information to allocate resources as aggressively as 
possible. 

8. Related Work 

Database technology has been ap 
P 
lied before to 

distributed systems19*’ ‘1. to tile systems’ *4*7*81, to 
operating systems191 . to message queucing systems and to 
network I/O subsystemsl’41. To our knowledge we are the 
fust ones to apply transactions to a mass storage system 
that administers a storage hierarchy. The fundamental 
difference with all other systems is the need to support 
high degrees of concurrency for a variety of transactions 
in the presence of devices with enormous latency times. 

A second difference is that our server can replicate 
its metadata with up to three copies. No other backup 
system or file system WC know of has this function. This 
and the fuzzy dumps are the important differences with the 
recovery work done at IBM Almaden in the Quicksilver 
distributed system191, in which the distributed file system 
and all other system services were transactional. 

The pioneering work at Xerox Pan?l led the 
formalization multi-node atomic actions. We differ with 
the file system work done at Xerox Pam by Brown[‘] and 
Hagmann171 in that our logged actions can be undone. The 
redo-only logging techniques used in the above two 
systems pose memory constraints inappropriate for 
ADSM. We differ with the Joumaled File System (JFS) 
present in AIX14] in that our recoverable data structures 
have granularity of updates down to one bit of 
information. Our demands for concurrency do not allow us 
to even use the rather small I28 byte lines of recoverable 
units exploited in the hardware-assisted implementation of 
JFS. Network file systems like Swift/RAIDI’4l and 
Zebra181, that stripe data over a set of file servers used as 
storage servers, use atomic network I/O operations in the 
context of striped lilt systems but none of them supports a 
storage hierarchy. 

The server ability to do co-location of bitliles over 
time allows it to never rcquirc full dumps to achieve data 
clustering13J. ‘This differentiates ADSM as a backup and 
archive service from the offerin s of Legent12el, Legato, 
Cheyenne, Harborr2’l. Epochl22 and Palidrome. The 7 
server storage management at the bitfile level 
differentiates it from backup services like Harbor that use 
the hierarchical storage management services present in 
mainframes. These backup services cluster sets of user 
files into backup tiles and migrate them. We differ with the 
traditional work on storage hierarchiesl241 in that we 
provide the atomicity property of transactions. 

9. Conclusions 

We built and deployed ADSM, a mass storage 
system providing the abstraction of unbounded storage. 
The system may administer several storage hierarchies. In 
it alI operations are done on behalf of transactions. Using 
database technology simplified handling failures and 
providing continuous, unattended, lights-out operation. 
Transaction boundaries arc also exploited to stream data 
over communication connections. To enhance the 
reliability of the server data the system can replicate it 
keeping up to three copies constantly synchronized and 
supports non-intrusive fuzzy dumps. 

The workload in the network-based backup and 
archive system is unconventional. Transactions seldom 
abort yet may require half an hour to complete. Some 
modify minimum amounts of metadata yet store large 
amounts of data. Others modify large amounts of metadata 
and access no data, Many are read-only. The common 
activity in the system is storing CoIlections of related files, 
seldom retrieving them and sporadically deleting them. A 
single retrieval may involve thousands of files. 

To support a high degree‘of concurrency we 
adopted optimistic concurrency control policies. When 
migrating sets of bitfiles within the storage hierarchy, for 
example, ,we retrieve the required metadata, we release 
locks on it, we optimistically copy the data, and only then 
reacquire the locks on the metadata to reflect the current 
changes. 

To fully utilize the devices with large latency times 
we provide mutual exclusion with a reservation 
mechanism that can be used by more than one transaction. 
This, allows the system to expIoit the devices for other 
transactions that require it even if they have not 
committed. 

ADSM put IBM on the map of client-server 
hierarchical storage management. The Gartner Group1161, 
placed ADSM (and IBM) at the top in leaders and 
visionaries. PC Week named ADSM for OS/2 product of 
the week in July of 1994. 
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