
Applying Database Technology in the ADSM
Mass Storage System

Luis-Felipe Cabrera, Robert Rees and Wayne Hineman
IBM Almaden Research Center

650 Haq Road, San Jose, California 95 124099
e-mail: { cabfera, rees. hiney)@nlmaden.ibmxom

Abstmct - Our success in deploying the illusion
of infinite stomge to applications rests in the use
of database tebhnology. Tht3 paper presents the
support for transactions in the ADSTAR
Dhtributed Stomge Manager, (A DSiU) system.
For a user, ADSM offers a backup and archive
service in a heterogeneous cliint-server
environment. It also operates as a file migratton
mposito~ in some Unix environments. As a
stomge manager, the ADSM server is a Mass
Stomge System (MSS) that administers stomge
hiemrchies of arbitrary depth in which all
activities are done on behatf of transactions. Its
systems goals include to epemte in many
computing phz#omts, to pmvidG h@ly-
avaihtble metadata, to administer effective& a
huge amount,of entities, to support continuous
and unattended opemtion, and-to support a high
degree of concutrent requests.

The workload includes requests that only read
system data at the server, requests that store
gigabytes of user data and requests that u@ate
thousands of system data entries at the server
but reqube no access to user &I&. To ensute
availability of the system data we replicate it
with up to three copies and also support fuyv
dumps. As the ADSM sewer administers from
low-latency high-performance magnetic disks to
optical or tupe jukeboxes, for high coacurrency
we adopted optimistic approaches to locking,
special locks for devices called leases and we do
not always enforce repeatable reads.

Permission to COPY without fee all or part of this material is granted
provided that the copiae are not made ot distributed for direct:com-
mercid advantage, the VLDB copyright notice and the title of the
publication ad itr date appear, and nbtice is given that copying ie
by permission of the Very Large Data Bare Endowment. To cow
otherwise, or to republish, requires a fee and/or rpe@ permieeion
from the Endowment.
Proceedinge of the Ilet VLDB Conference
Zurich, Switzerland, 199U

Keywords: client-server transaction system, ADSM,
hierarchical storage system, mass storage system, storage
hierarchies, network backup service, storage management,
atomic actions, optimistic concurrency control, bitfiles,
client-server backup, file backup, file archive, file
migration.

1. Ilitfoductioa

ADSM is a client-server backup and archive IBM
product since July of ‘1993 Il’l. It is also an announced
repository of migrated files in some Unix environments
since June of 1995. Users, humans, access the system
through the ADSM data capture clients, henceforth called
clients, that operate in the node where the user is located.
The’system stores the data of users in the ADSM storage
servers, henceforth called rqvers. Data is transmitted
between, the clients and the servers using a special transfer
protocol.

Users can backup and restore files without operator
intervention in ADSM. They can do incremental or full
backups at, will. The granularity of a request can range
from a single file to a complete file system. Backup and
archive sessions can also be centrally initiated by the
system. Clients operate on PC-DOS, Windows, MAC,
Novell, Sequent, Windows NT, OS/2 and different UNIX
versions. Communication between a client and a server
can be through lCP/IP, APPC, NetBios, Novell IPX,
named pipes, PWSCS and 3270 data streams. Servers
currently run on MVS, VM, AIX, OS/z, HP/UX, SUN/
Stilarls, AS/400 and VSE. Approximately 80% of the
server source code and 75% of the client source code are
platform independent.

The facilities present in. the system include
administration of one or more storage hierarchies of
arbitrary depth. support for an open ended collection of
storage devices, policy-driven data and storage
administration, registration of clients and of users, remote
server administration, central and distributed scheduling
of activities, and non-stop operation of the’service when
adding or deleting physical or logical storage unit.sD1.

The following principles guided the design and

597

development of ADSM:

Enable the server to preserve the physical
locality that data has at its source even when
clients deliver this data over long periods of
time.

Estimate the target workload and develop the
system to accommodate them.

Deploy the system in many computing
platforms.

Provide lights-out, unattended, operation with
unattended recovery from failures.

Provide continuous operation.

Accommodate the peculiarities of a wide
variety of storage devices.

Manage the storage system through user-
controlled policies.

Minimize the periods of time in which an entity
in the system cannot bc retrieved.

Use additional temporary storage space to gain
concurrency and to increase the availability of
user data.

The rest of this paper is organized as follows. In
section 2 we describe the user view of the system and in
section 3 we present the transaction technology. Section 4
has the software architecture of’ the server, section 5
provides the workload characteristics of the environment,
section 6 discusses index management while section 7
discusses the atomicity in the server. Section 8 presents
related work and section 9 contains our conclusions.

In13] we presented how the’ system supports
heterogeneity, policy management and unbounded storage
including continuous co-location of user data.

2. The External View of ADAM Storage

Space to store user data is represented by storage,
pools in the server. Storage pools have names that are
unique among all storage ,pools. A storage pool can be
chained to another storage pool and form arbitrary
directed acyclic graphs. Storage pools have high and low
occupancy thresholds. set by administrators, that trigger
data migration to their chained storage pools. Data
migration may also be on demand. Storage pools may be
mapped to any type of physical storage. All the devices on
which a specific storage pool is mapped must have the
same storage characteristics.

A birfle is an uninterpreted sequence of bytes of
arbitrary lengthl”1. When a client stores a user file as part
of a backup session or a file migration. the server creates a
bittile for the data of the user file and stores, in appropriate
server catalogues, some 400 bytes of system data,

henceforth called metaduta, to describe all the necessary
attributes of the user file. The server has approximately 60
catalogucs for its metadata. Bitfiles are never modified in
the server. They are migrated complete between different
levels of the storage hierarchy and may be retrieved even
when bein migrated The maximum size a bittile may
have is 2 cs bytes. The server strives to minimize the
number of hardware repositioning operations required to
read all the data in a bitfile.

Data and storage administration policies are
expressed by users and administrators using management
classes. Management classes are stored at the server. Each
user file is associated with a unique management class.
Storage policies of the management class determine the
storage pool a file is tirst stored in, the retention period of a
copy of a user file, the number’of copies of a user file that
should be kept and the period of time that the last copy of
a deleted user file is to be retained These policy-
controlled properties are associated to biffiles using server
catalogues.

To support the backup of the ever growing amount of
data stored in computers, we adopted the strategy of not
requiring full backups,.-or full dumps, of the user data.
Only a continuous series of incremental backups is
necessary131: The performance of restore operations is
maintained using on-line catalogues. Thus, restoring a
user tile takes time that is proportional to tire time to
access the on-line metadata about the file plus the time
taken to retrieve the bitfile from the. appropriate storage
pool. $n .the server it takes the same time to retrieve the
metadata about a file in servers with 40 million bittiles to 1
billion bitfiles.

To enable third ’ parties to exploit the data
administration function an external Application
Programming Interface ‘(API) is available. This API was
standardized through X/Opet@. It is currently deployed
in platforms in which clients operates including Windows,
Novell, UNIX and OS/2.

2. Transaction Technology in ADSM
All client-server activities are accomplished by

transactionsl**‘l. The transactional capability eases system
administration as software or hardware failures always
leave consistent the internal state of the system. Users are
unaware of transaction boundaries yet the system exploits
them in the case of crash recovery.

The clients control the transaction boundaries for
user-initiated reqyests. A backup session, for example, is
done as a series of transactions that store sets of files from
the client in the server. The client commits transactions
and begins new ones transparently to the user during a
backup session. Through system parameters a commit
happens after a given number of user files have been
transmitted or after a given volume of user data is

598

transmitted. Large user files arc always stored within one
transaction.

The server also uses transactions IO perform its own
internal activities. The server implements recovery
mechanisms that arc ncccssary to prcscrve failure
atomicily and durability, which arc IWO of the four
properties defined for ACID transactions12*61. Consistency,
the third properly of ACID transactions, is guaranteed by
the server software. The server does not always guarantee
isolation, also called serializability. Isolation is commonly
guaranteed by traditional database management systems,
but it is not semantically appropriate for our backup and
archive service. The enumeration of bitfiles in a storage
pool, for example. is not guaranteed to remain unchanged
for the duration of a transaction.

The availability of scrvcr mctadata is enhanced using
replicurion. The server can maintain up to three copies of
the metadata. A replicated write returns when all copies
have been written. A rcplicatcd read returns when the
closest copy has been read. As there are more reads than
writes directed to the mctadata the run-time of the system
improves when replication is being used. System
administrators can enable. disable. or change the
replication factor on-demand. without bringing &he system
down or stopping its normal operation.

The speed IO bring on-line a stale copy of replicated
metadata depends on the underlying input-output
configuration. .Thc worst-cast “scenario is to bring up a
replica on the.same disk arm as the data. We measured this
in an otherwise idle RS/6000 model 370 with a 2 gigabyte
SCSI attached disk. The data rates varied from 1.941
megabytes/second to 2.091 megabytes/second with the
75th percentile being 2.054 mcgabytcs/second.

4. Software Architecture of the ADSM Server

For backup. archive and migration the server is in
charge of receiving and storing sets of user files from
different clients. For restore and recall it needs to retrieve
sets of bitfiles stored in its storage pools and transmit them
to the appropriate clients. To suppon- concurrent activity
the server was developed as a multi-threaded, memory-
sharing system. Threads are provided by a platform-
independent module whose implementation is platform
dependent. Figure 1 shows the principal functional
softwate components of the server.

Activities in the system are triggered by external
requests and by internal events. Registering a client,
registering a system administrator, registering a user,
specifying a management class, updating the specification
of a management class, establishing a connection from a
registered client, closing such a connection, backing up a

SCI of user files, restoring a set of files, archiving a set of
files, adding a new set of storage devices, specifying a
sloragc pool, are examples of external requests. Two
internal events are the detection (at the end of a
transaction) of a storage pool that has exceeded its high
occupancy watermark and scheduling a data migration
operation for it, and determining that an instance of
removable storage media is below its occupancy threshold
and scheduling a data reclamation operation.

To understand how the components of Figure 1 fit
together, let us walk through an example of backing up a
set of files. The request begins with the client establishing
a connection to the server. All connections are monitored
by the Session Manager. The client then begins a client-
server transaction that registers in the Transaction
Manager (TM). Every component in the server that
performs work on behalf of a transaction registers with the
Th4 and obeys a two-phase commit protocol. The TM uses
the LOG to write all the necessary Iog records. The Index
Manager uses two kinds of BC-Tree indices to store system
data. The Logical Volume Manager (LVM) is used by the
LOG and the Index Manager to access all the server
system data, including log and catalbgue data. Partial
write detection and metadata replication are done by the
LVM. The Session Manager can determine when the client
end-point of a connection has failed and issue the
corresponding abort action.

Figure 1. ADSM Server: Principal Software
Components

For incremental backup, the session begins by the
client req&sting fi-om the server the corresponding
policies from the Policy Manager. Policies are stored in
system catalogues administered by the Index Manager.
The client then builds the candidate list of liles for backup
and. requests the server to send, from the Inventory
Manager, the latest information for each of the candidate
files. The Inventory Manager stores all its information in
catalogues administered by the Index Manager. The client

I

599 _ I

then sends to the server, optionally compressing them,
only those user files that have changed or have been
created since the last incrcmcntal backup. The server
constructs appropriate entries in the Inventory Manager
and appropriate bitfilcs using the Bittile Storage
component. Bitfiles are stored using the Storage Segment
manager.

At the end of sending all the user files the client also
sends the server the list of user files that have been deleted
since the last incremental backup allowing the server to
mark them and, eventually, to expire them from the
system. The client then commits the transaction and
disconnects from the server.

The Export Import manager is used to bulk transfer
entities between servers.

The server supports a wide variety of storage devices
such as disk, optical libraries, disk arrays, stand-alone tape
devices or tape libraries. The server uses a common device
driver model to ease incomrating new devices
implemented by the Block Disk Driver. The driver model
captures properties like sequential or random access and
being read-write or write-once.

5. Workload Characteristics in the ADSM
Environmeht

The workload in the network-based backup and
archive system is unconventional. Transactions seldom
abort yet may require half an hour to complete. Some
modify minimum amounts of mctadata yet store large
amounts of data. Others modify large amounts of metadata
and access no data. Many are read-only.

The most common initial USC of the system was
backup and archive. The system is evolving to also
administer migrated primary data from remote file
systems. When a client queries the server for the attributes
of a set of user files the server processes this read-only
query against its catalogues. For clients that are large file
servers this query returns thousands of entries to the client.

Requests may require substantial processing. The
transaction that stores a gigabyte user file being
transmitted over a standard network will take a good
fraction of an hour. The server must transfer all client data
to the first appropriate storage pool. In addition,
substantial amounts of data may be migrated within the
storage hierarchy requiring corresponding amounts of
processing. An MVS server with 3090 disksand 3480 tape
drives being fed data from an RS/6000 model 530H client
through a 16 megabit/second token ring and 3172
controller achieved backup throughput of 394 kilobytes/
second and disk to tape migration throughput of 727
kilobytes/second. This migration throughput was
unaffected when two clients were concurrently backing up
data. The AIX server has been measured to receive data
from an Ethernet at 9.5 megabits/second and from a 16

megabit/second token ring at 15.4 megabits/second.

The system also receives sporadic requests for single
retrievals. In our Research Center, where some 450
workstations use one server for backup, there are some 20
requests per day to restore individual files. We have also
confirmed that the probability of retrieving a bitile
decreases very rapidly with time. If a bitfile is not recalled
within 15 days of being placed in stora e itsprobability of
being recalled individually is very low B 91. To increase the
probability of fast restores we cache copies on disk when
migrating down in the storage hier&chy. We then reclaim
the space of cached bitfiles on-demand, nbt eagerly.
Reclaiming the space of bitfiles on any media only
requires updates to the on-line metadata.

In the system individual deletion of bitiles is
infrequent. However, as bitfiles corresponding to user files
that have been deleted have expiration dates, there is the
potential for expiring simultaneously large numbers of
bit&s. This happens, for example, when at a’client a user
deletes a complete directory and the expiration time at the
server is tiached. Expiration processing only requires
updating the ‘metadata of ‘the Server like deleting entries
from catalogues, updating space accounting in storage
pools and updating the metadata for The underlying storage
media instances. Expiration processing may involve
voluminous amounts of server metadata

The backup and &live of several files is the norm.
Clients seldom send individual files. Ttie system expIoits
this by using transaction boundaries as units of data
streaming over network connection&. This approach is
particularly helpful to “turn around” (without special
messages) the semi-duplex connections between a client
and a server.

Retrieving a large collection,of related biffiles, like
the bitfiles that correspond to all files originally stored in a
specific device at a client ins&&on, poses interesting
data management constraints. This infrequent user request
is worth supporting efficiently as its completion time
directly impacts users. The common user scenarios for this
request are that a disk fails, or that a user wants to retrieve
a complete file’system, probably into a new environment
for the data.’

To minimize the elapsed time of restore the system
offers the option of co-locatjng logically-related fi@ in a
minimum number of storage media instancesr3]. When co-
location is enabled, user files &e .tagged by thi: ser&r with
co-location keys. At the server, bit&s with common co-
l&ation keys are stored in close proximity in the
corresponding storage pools. Co-location is preserved

1. In a large customer installation the IS organi-
zation reported one PC hard disk failure every 29
hours. Low-end disks may fail once in 30,000
hours.

600

when the server migrates bitfiles between storage pools
and when it reclaims a storage device.

6. Index Management and Management of System
Data

As the page size used by the recoverable data
structures in the server may not coincide with the
underlying block size of the device used to store such a
structure, we implemented partial- write detection. The
underlying substitution of bits occurs after the page has
been isolated in the buffer pool to be passed on to the I/O
subsystem. For the log, the low-level l/O recovery
routines need to be privy to this data transfotination so as
to restore the appropriate valueswhen returning a page to
the higher levels of the system, The partial-write recovery
routines were used 20% of the time we forcefully crashed
a heavily loaded server.

To minimize catalogue space utilization we adopted
two compression schemes, record compression and
partitioned indexes. Index manager records. are logically
thought of as rows in tables uniquely identified by keys
where each field has an internal data type. Records are
compressed in a left-to-right type-dependent encoding
separating the key part of the record and the data part of
the record. Each encoding keeps the individual length of
the encoded field. Decoding proceeds from left-to-right as
individual encoded fields cannot be accessed directly.
Savings in storage due to record encoding come with a
run-time performance penalty as key comparisons require
to decode the keys. In 1988 when this encoding strategy
was established, the benefits of saving space were greater
than they are today. Today we would adopt a scheme that
guarantees constant access time to each field in the key
and word-aligned compressed fields. ,

When defining an index one can specify that p of the
k fields that make the key. with p < k, ‘is the @r&ion
prefix. The so-called partitioned indices enforce that all
records stored in a leaf node share the same prefix of p
fields. The prefix is stored once in the node saving space at
negligible processing cost. The structural modification
logic of partitioned indices is of the same complexity as
that of the standard BCTree indicts. lntsl we justify why it,
is not necessary for our indices to support duplicate keys
and how we achieve compact indices in selected cases by
encoding record ranges with one record.

In the server we optimized several database-related
operations. The small number of data types required in the
index schemas requires only a rudimentary type system.
This simplifies the interface and processing of index-level
operations. A second simplification made was record
management. We imposed a left-to-right access to the

fields in each of the two logical parts of records. This is in
contrast with database management systems like
8tarburst[131 that require constant access time to any field.
Our encoding avoids storing an offset per field, a
substantial space savings for records with a handful of
short fields.

7. Atomic@ in the ADSM Server

To support transactions the system has its own log
manager, lock manager and transaction manager. The lock
managersupports all the modes found in database
management systems including intention locks. The server
requires that all components in the system that administer
permanent storage register as participants of tmnsactional
activities and follow the presumed abort two-phase
commit protocoP1. When a transaction needs to commit,
or abort, the transaction manager contacts each of the
participant components to do the appropriate presumed
abort protocol actions. This processing follows the same
steps that an external network transaction would followt9t.
The underlying recovery algorithm is WAL AR.IE!Jtl*].

The two recoverable data structures used for
metadata are a bit vector and a B+-Tree. The preferred
mode of use of storage devices is “raw” mode. However,
the system can be configured to use a file system when
synchronous file I/O is supported.

7.1 Logging

The structural modiliktions df indices, B+-Tree node
splits and node merges, are preserved irrespective of the
fate of the transaction that caused the structural change
using the compensation log re~ordt~*‘~~ technique. A
special log record is written that encircles all the log
records pertaining the complete structural modification.

The recoverable bit vector uses value logging
achieving a granularity -of single block allocation and
deallocation. To sup$ort isolation efficiently an extent-
oriented mtimory data structure tracks allocations as seen
by inflight transactions. Allocation and deallocation
requests keep, per transaCtion, intentions lists of all blocks
allocated and deallocated’thus far. At the prepare stage, the
intentions list is flushed in the log and at commit the disk
bit vector is updatedi During the analysis pass of recovery
intentions “lists are built for the inflight u-a&actions.
Allocations and deallocations may occur during recovery
as indices may split and merge.

The server makes a checkpoint whenever 250
kilobytes of log space have been consumed. Using the
same RS/6000 model 370 as before and running a ‘heavy
backup workload’ we observed that the distribution of
force,times, in milliseconds, of a batch of log records had

601

a mean of 32 (a minimum of 22, a maximum of 500 and a
standard deviation of 44.71). that the distribution of log
batch sizes between forces, in bytes, had a mean of 16270
(a minimum of 0, a maximum of 94643 and a standard
deviation of 17609). that the distribution of log write
batches. in pages, had a mean of 6 (a minimum of 1, a
maximum of 14 and a standard deviation of 4.43) and that
most times the system appended a log record in less than
0.02 milliseconds.

Non-intrusive fuzzy dumps of the metadata were
implemented following the design oft”]. The server
continues its normal operation during fuzzy dumps. Our
implementation provides point-in-time and forward
recovery, based on full and incremental fuzzy dumps. A
consistent image of the systent can be built beginning
from any full fuzzy dump and restoring it to the niost
recent point in time using the incremental fuzzy dumps
and the on-line log. Using the s&me RS/6000 model 370 as
before, we measured two runs of the full fuzzy dump of a
database of 25.88 megabytes, obtaining read rates of .7%
and .785 megabytes/second and write rates of 1.572 and
1.556 megabytes/second respectively.

7.2 Locking

Repeatable reads is enforced by transactions only
when needed. As the server initiates transactions for its
internal activities. such as migration of bitfiles between
storage pools and space reclamation of storage media
instances, enforcing repeatable reads for all transactions is
inappropriate. Common client-induced query operations,
for example, would be unduly delayed by bithle migration
and space reclamation.

Lock management was another area of
simplification. In the server, locks are requested by the
callers of components. As the caller of a lower level
component has complete knowledge of the intended
operation, like the migration of all bitfiles in a given co-
location cluster to a lower level of the hierarchy, or the
expiration of all bitfiles with a given storage date in a
management class, it requests locks at a high logical level
such as on predicates or on the most significant (sub)parts
of a key. This allows the low-level components; like the
index manager, to not acquire locks on behalf of its callers
and thus to not have to deal with the notion of lock
escalation.

To support a high degree of concurrency and
accessibility to the user data we adopted optimistic
concurrency control policies. Exclusive locks are held for
a minimum amount of time. When migrating sets of
biffiles within the storage hierarchy. for example, we
retrieve the required metadata. WC release locks on it, we
optimistically copy the data, and only then reacquire the
locks on the metadata to rcflcct the current changes. This
maximizes the time that data is available for users at the
cost of temporarily retaining more topics than required.

We found that by locking logical entities within the server
lock escalation was unnecessary.

To fully utilize the devices with large latency times
we provide mutual exclusion with a reservation
mechanism that can be used by more than one transaction.
This capability allows the system to exploit the devices for
other transactions that require it even if they have not
committed. maximizing the use of these devices without
performing unnecessary work.

7.3 Locking optimizations

Our workload is a challenge for concurrency.
Maximizing the user access to their data drove us in
minimizing the’ time transactions held exclusive locks on
bitfiles and on metadata. We adopted the optimistic policy
of not holding metadata locks while a data transfer or a
data copy was in progress. The traditional two-phase
locking strategy would be an unacceptable inhibitor of
access to the user data. We use additional space to always
‘copy ahead’ the data. For example, when migrating data
between storage pools, we lock the metadata in shared
mode, retrieve it, unlock it, do all the necessary data
copying between storage pools, lock the metadata in
exclusive mode again to verify that the world has not
changed under us, and only then proceed to change all the
metadata to reflect the data movement that has already
occurred. As our bittiles are immutable the worst scenario
is that a bitfile that is being migrated down the hierarchy is
concurrently deleted by an expiration process. As
deletions are rare, this event does not concern us.

Because devices like tape jukeboxes have
enormous latency times, holding locks on them on a per-
transaction basis is not appropriate. As the time to
acquiring use of such a deviceis so long once it is put to
work on behalf of one transaction it should be exploited on
behalf of other: transactions that require it, irrespective of
the fate of eachMividual transaction. Optimistically, if
none aborts thenno work is lost. To serialize activities on
long latency devices we introduced the notion of leases. A
lease is a mutual exclusion handle to access.a device.
Different transactions access the device using a lease. This
technique is exploited when migrating a cluster of bitfdes
to a given storage media instance like a tape or an optical
disk in a jukebox. Once the processing is done on behalf of
the transaction that triggered the use of the media then the
system inspects its metadata and schedules the transfer of
data of all clusters that need to migrate bitfiles into that
media. Leases expire when no outstanding transactions
require the resource.

Deadlock management was reimplemented when
we found a computing platform where it was impossible to
roll-back once a resource had been allocated. We adopted
a deadlock avoidance approach. The server tags requests
with the externally mountable resources they need. For
example, the data import activity requires at most one tape

602

mount point while the tape reclamation activity requires
two mount points. Resource allocators use this
information to allocate resources as aggressively as
possible.

8. Related Work

Database technology has been ap
P
lied before to

distributed systems19*’ ‘1. to tile systems’ *4*7*81, to
operating systems191 . to message queucing systems and to
network I/O subsystemsl’41. To our knowledge we are the
fust ones to apply transactions to a mass storage system
that administers a storage hierarchy. The fundamental
difference with all other systems is the need to support
high degrees of concurrency for a variety of transactions
in the presence of devices with enormous latency times.

A second difference is that our server can replicate
its metadata with up to three copies. No other backup
system or file system WC know of has this function. This
and the fuzzy dumps are the important differences with the
recovery work done at IBM Almaden in the Quicksilver
distributed system191, in which the distributed file system
and all other system services were transactional.

The pioneering work at Xerox Pan?l led the
formalization multi-node atomic actions. We differ with
the file system work done at Xerox Pam by Brown[‘] and
Hagmann171 in that our logged actions can be undone. The
redo-only logging techniques used in the above two
systems pose memory constraints inappropriate for
ADSM. We differ with the Joumaled File System (JFS)
present in AIX14] in that our recoverable data structures
have granularity of updates down to one bit of
information. Our demands for concurrency do not allow us
to even use the rather small I28 byte lines of recoverable
units exploited in the hardware-assisted implementation of
JFS. Network file systems like Swift/RAIDI’4l and
Zebra181, that stripe data over a set of file servers used as
storage servers, use atomic network I/O operations in the
context of striped lilt systems but none of them supports a
storage hierarchy.

The server ability to do co-location of bitliles over
time allows it to never rcquirc full dumps to achieve data
clustering13J. ‘This differentiates ADSM as a backup and
archive service from the offerin s of Legent12el, Legato,
Cheyenne, Harborr2’l. Epochl22 and Palidrome. The 7
server storage management at the bitfile level
differentiates it from backup services like Harbor that use
the hierarchical storage management services present in
mainframes. These backup services cluster sets of user
files into backup tiles and migrate them. We differ with the
traditional work on storage hierarchiesl241 in that we
provide the atomicity property of transactions.

9. Conclusions

We built and deployed ADSM, a mass storage
system providing the abstraction of unbounded storage.
The system may administer several storage hierarchies. In
it alI operations are done on behalf of transactions. Using
database technology simplified handling failures and
providing continuous, unattended, lights-out operation.
Transaction boundaries arc also exploited to stream data
over communication connections. To enhance the
reliability of the server data the system can replicate it
keeping up to three copies constantly synchronized and
supports non-intrusive fuzzy dumps.

The workload in the network-based backup and
archive system is unconventional. Transactions seldom
abort yet may require half an hour to complete. Some
modify minimum amounts of metadata yet store large
amounts of data. Others modify large amounts of metadata
and access no data, Many are read-only. The common
activity in the system is storing CoIlections of related files,
seldom retrieving them and sporadically deleting them. A
single retrieval may involve thousands of files.

To support a high degree‘of concurrency we
adopted optimistic concurrency control policies. When
migrating sets of bitfiles within the storage hierarchy, for
example, ,we retrieve the required metadata, we release
locks on it, we optimistically copy the data, and only then
reacquire the locks on the metadata to reflect the current
changes.

To fully utilize the devices with large latency times
we provide mutual exclusion with a reservation
mechanism that can be used by more than one transaction.
This, allows the system to expIoit the devices for other
transactions that require it even if they have not
committed.

ADSM put IBM on the map of client-server
hierarchical storage management. The Gartner Group1161,
placed ADSM (and IBM) at the top in leaders and
visionaries. PC Week named ADSM for OS/2 product of
the week in July of 1994.

Acknowledgments. Many thanks to our partners in
building and deploying, ADSM. In particular, thanks to
Paul Bradshaw and Nick Tabellion, as well as to those
who currently evolve ADSM and service it. Thanks to
Mike Penner for developing the low-level I/O subsystem,
to Chip Coy for his server work, to Michael Kaczmarski
and his team for their contributions to the server, to C.
Mohan and Inderpal Narang for teaching us their
inventions, to Norm Pass for being the mentor and
manager at Almaden and to Jim Carlson for being the
patriarch and project director at SSD software in San Jose.

603

Special thanks to Phil Bernstein for his many positive Technical Report, XEROX Palo Alto Research
suggestions on how to improve the presentation of this Center, Computer Science Laboratory, 3333
work. Coyote Hill Road, Palo Alto, CA 94304,1976.

10. References 13. Tobin J. Lehman, Eugene J. Shekita and Luis-
Felipe Cabrera, “An Evaluation of Starburst’s
Memory-Resident Storage Component.” IEEE
Transactions on Knowledge and Data Engineering,
Vol. 4, No. 6, December 1992, pp. 555-566.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

Mark R. Brown. Karen N. Kolling and Edward A.
Taft, “The Alpine File System.** ACM Transactions
on Computers, Vol. 3. No. 4, November 1985, pp.
261-293.

Luis-Felipe Cabrera, John A. McPherson, Peter M.
Schwatz and James C. Wyllie. “Implementing
Atomicity in Two Systems: Techniques, Tradeoffs,
ana Experience.” IEEE Transactions on Software
Engineering, Vol. 19, No. 10, October 1993, pp.
950-961.

Luis-Felipe Cabrcra. Robert Rces, Stcfan Steiner,
Wayne Hineman and Michael Penner, “ADSM: A
Multi-Platform. Scalable, Backup and Archive
Mass Storage System.” Proceedings ofIEEE
COMPCON 95, San Francisco, March 1995. Also
IBM Research Report RJ 9936, February 1,1995.

Albert Chang and Mark F, Mergen, “801 Storage
Architecture and Programming.” ACM
Transactions on Computers, Vol. 6, No. 1,
February 1988, pp. 28-50.

David M. Choy and Ashok Saxena “A Model for
Backup, Archive and Restore - A Proposal to X/
@est.” IBM Almaden Research Report, RJ 9620,
November 24.1993.

Jim Gray and Andreas Reuter, Transacfion
Processing: Concepts and Techniques. Los Altos,
CA: Morgan Kaufmann. 1992.’

Robert Hagmann, “Reimplcmenting the Cedar File
System Using Logging and Group Commit.”
Proceedings of the 11 th ACM.SQSP, Operating
Systems Review, Vol. 25, No. 5, December 1987,
pp. 155-162.

John H. Hartman and John K. Ousterhout, “The
Zebra Striped Network File System.” Proceedings
of the 14th ACM SOSP, Operaring Systems
Review, Vol. 27, No. 5, Dcccmbcr 1993, pp. 29-43.

Roger Haskin, Yoni Malachi, Wayne Sawdon and
Gregory Chan. “Recovery Management in
QuickSilver.” ACM Transactions on Computers,
Vol. 6, No. 1, February 1988, pp. 82-108.

IBM ADSTAR Distributed Storage Manager,
publication G520-6928-02.

William F. Katz, PC WeeklNetweek, July 25,k994,
pp. Nil-N/j.

Butler W. Lampson and Howard E. Sturgis, “Crash
Recovery in a Distributed Data Storage System.”

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Darrell D. E. Long, Bruce R. Montague and Luis-
Felipe Cabrera, “Swift/RAID: A Distributed RAID
System.” Computing Systems, Vol. 7, No.3,
Summer, 1994, pp. 333-359.
IEEE Mass Storage System Reference Model:
Version 4 (May, 1990). Reference Model for Open
Storage System Interconnection (draft, April 20,
1993).

G. McDermed, Gartner Group 1993 Data Center
Conference. Large Computer Strategies Products,
P-806-‘1479. LCS Research Note, November 8,
1993, pp. 1-15.

C. Mohan and Inderpal Narang, “An Efficient and
Flexible Method for Archiving a Data Base”
Proceedings of I993 SIGMOD, Washington, May
1993,corrected version of August 4,1993.

C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh and
P. M. Schwarz, “ARIES: A Transaction Recovery
Method Supporting Fine-Granularity Locking and
Partial Roll-backs Using Write-ahead Logging.”
ACM Transactions on Database Systems, Vol. 2,
No. 1, March 1977, pp. 91-104.
Alan J. Smith, “Disk Cache - Miss Ratio Analysis
and Design Considerations.” ACM Transactions
on Computer Systems, Vo13, No, 3, August 1985,
pp. 161-203.

Mark Friedman, “Storage Management.” Demand
Technology Inc., November 1993.

Harbor, “General Illformation Manual.” New Era
Systems Inc.

Robert K. Israel, “The Growing Challenges in
Client/Server Backup and Recovery.‘* Epoch
Systems Inc. white paper, August 1993.
C. Mohan and Dick Dievendorff, “Recent Work on
Distributed Commit Protocols and Recoverable
Messaging and Queueing.?’ IEEE Data
Engineering, Vol. 17, No. 1; March 1994.

P. A. Franaszek and B. T. Bennet, “Adaptive
Variation of the Transfer Unit in a Storage
Hierarchy.‘* IBM Journal of Research and
Development, Vol. 22, No. 4, 1978.

604

‘bademarks: ADSM, MVS, VM, VSE, AIX, OS& AS/
400 are trademakrs of IBM Corporation. MAC is a trade-
mark of Apple Corporation. PC-DOS and Windows are a
trademark of Microsoft Corporation. HP/UX is a trade-
mark of Hewlett Packard Corporation. UNIX and Novell
JPX are trademarks of Novell Corporation. SUN and
SUN~ohris are trademarks of SUN Microsystems corpo-
ration.

605

