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Abstract 

Wit,11 rapid increase in the number of applica- 
tions thal, require access to large amounts of 
da,ta., it is becoming increasingly important for 
tla.ta.l~aac syst,ems t,o ha.ndle tert,ia.ry storage 
dcviccs. The cha.ra.ctcristics of tertia.ry mem- 
ory devices a.re very differ& from secondary 
storag;c devices that, conventional database 
sysletr~ a.re designed for. This requires new 
approa.ches to ma.naging data, loca.tion and 
movcmcnt, together with query execution in 
a unilied framework. In this paper WC present 
methods of scheduling queries, caching and 
controlling the order of da.ta, rct,rieva.l for eff~- 
c&1. operation in a tertia.ry rncniory cnviron- 
nienl. Wc show how careful interspersing of 
queries and informed cache management can 
achieve rema.rkable reductions in access time 
compared 1x1 conventional methods. Our al- 
goril(hms use a few model pa.rameters for each 
tertiary memory device and are thus designed 
to be portable across a wide variety of tert,ia.ry 
memory devices and da,tnhase t,ypes. We arc 

extending the PoS’TGR.ES database system to 
implements t,he new query processing strate- 
gics. Jnit,ial mea.surements on the prototype 
yield impressive results. 
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1 Introduction 

Applications manipulating large volumes of data are 
growing in number: earth observation systems, his- 
torical data base systems, statistical data collections 
a.nd image and video stora.ge systems are a few exam- 
ples. There is increa.sing consensus amongst database 
researchers [St0911 [CHL93] [Se1931 [Moh93] regarding 
tIhe need of a, database controlled tertiary memory for 
storing massive a.ruounts of data. 

A major limit,ation of traditional DBMSs is the as- 
sumption tha.t all data resides on magnetic disk or 
main memory. Therefore all optimization decisions 
are oriented towa.rds this technology. Tertiary mem- 
ory, if used at all, functions only as an archival stor- 
age system to be written once and rarely read. Some 
da.tabase syst,ems [Isa931 a.llow data to be stored on 
tertiary memory, but they do so by using a file system 
to get transparent access to data and store only meta- 
data information in the database system. This means 
that the tertiary memory is not under direct control 
of the database system. One important exception is 
POSTGR.ES [Ols92]. POSTGRES includes a Sony opti- 
cal jukebox [Son891 as an additional level of the stor- 
age hierarchy. The POS’T’GRF,S storage manager can 
move data. transparent,ly between a disk cache and the 
jukebox using a. LRU replacement strategy. While this 
prototype implements the storage manager for tertiary 
memory, a lot of issues related to tertia.ry memory spe- 
cific performance optimization still remain unexplored. 

Tertiary memory devices pose a challenge to 
database designers because their performance cha.rac- 
tedstics are very different from those of magnetic disks. 
A typical device consists of a large number of storage 
units, a few read-writ,e drives and even fewer robot 
arms to switch the stora.ge units between the shelves 
and the drives. A storage unit, which we generically 
call a platter, is either a ta.pe cartridge or an optical 
disk. In Table I we compare several tertiary mem- 
ory devices with a magnetic disk. The characteristics 
shown a,rc exchange time (time to unload one stor- 
age unit from the drive and then load a uew unit and 
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Stora.gc Exchauge l?ull seek Da.1.a tra.nsfer Transfer time Worst/best 
device time (set) time (set) rate (KB/sec) for 128 KB access (set) 
Opf,ical disk 8 0.3 500 0.256 32.4 
Helical scan t,a.l>c 6 135 4000 0.032 4406 
Optic-al tape >GO 90 3000 0.043 3488 
Magntdic disk .06 4250 0.03 3 

T&le 1: Conlparativc study of the chara,cteristics of different storage devices. 

get ii rca.dy for reading), maximum seek time, data 
transfr~ ra.l.c, tra.nsfcr time for 128 KB of data and the 
ratio btbween the worst case nnd best, ca.sc t.imes to 
access a.ntl rca.d 128 K13 of data from tertiary memory. 
From i,he last column we not,c that magnetic disks arc 
a. ralatively uniform si#ora.ge medium, compared with 
tertiary memory. Worst case access times are only 
a fa.ctor of three larger than best, ca.se times whereas 
some tape oriented devices have three orders of mag- 
nitudc more variat,ion ma.king it crucia.1 to carefully 
optimize the order in which data blocks are accessed 
on these devices. 

R.f?scarch issues 

In t,his pa.pcr WC a,dtlrrss thr issurs raised by this wide 
pc‘rforlna.ncc gap I&ween secondary nnd tprt,iary de- 
vices. First., it becomes very importa.nt to twoid small 
random I/OS. Unclusteretl index scans and joins in 
linlitcd buffer space can lead to disa.strous performance 
if prowssctl in the tra.ditionaI wa.y on terlia.ry mem- 
ory. Consider a. t,wo-way join q~rc>ry between relal,ion 
1~ stored on platters 1 a,ntl 2 and rela.tion S divided 
bc%t,wce,n pla,tt,ers 2, 3 a.nd 4 such t,hat each relat,ion 
is 1nuc11 larger (,ha.rr the ca.c:ht:. Any join processing 
111cthot1 that is oblivious of such a. layout ca,nnot do 
dicirntI batching of a.ccesses to one platter and ma.y 
R.CCCSS tla,ta. ra.ndomly a.cross the four pla.tters, leading 
to many pla.tter switches. 

Second, careful query scheduling can be cm- 
ploycd to optimize accesses t#o tcrt(ia.ry memory. For 
iust,nnce, consitlr>r the ra.se where we ha.vc two select, 
queries on rela.tions II and S respectively both of which 
a.rC spud over three platters and there is only one 
read-write drive. If we inbersperse t#hc execution of 
these select queries so that every time we load a plat- 
tcr we schedule the two select queries on the fra.gment 
of the rrlai,ions stored on that platter, then each plat- 
ter will be loaded only once. 

Third, we need unconventional caching strate- 
gies for managing the ma.gnetic disk cache. A reMion 
ca.rr be ca.ched when its plat,ter is just about, t,o be un- 
lontlcd rvcn if we do not, intend to execute queries on 
it immedia~tely. For inst#ance, if we have a. join query 
I~ctwccn relation h’ on pla.tter 1 and S OII platter 2 and 

another join query bet,ween T on platter 1 and U on 
platter 2, it might help to cache both R and T when 
platter 1 is loaded even if we are scheduling the join 
between II and S first. Contrast this with the caching 
on demand stra.tegies. 

There a,re two additiona. challenges to solving t,he 
above problems. First, tert.iary memory devices differ 
widely not only from typical secondary memory de- 
vices, but also among themselves. For some devices 
the platter switch cost is high making it important to 
reduce the number of I/O requests and for others the 
data transfer bandwidth is low making it important 
to reduce the amount of data transferred. Tape de- 
vices have significant, seek overhead whereas disk de- 
vices allow random access. Second, we expect a lot 
of va.riation in the applicat#ions that use tertiary stor- 
a.ge devices. Sorrre involve a large number of relatively 
small objects whereas others require a small number of 
very large object,s. It is essent,ial for query processing 
methods to be aware of these differences and optimize 
accordingly. 

Design approach 

We present a two-phase query execution model. The 
first part is a query optimizer and the second part is a 
scheduler that controls the execution order of queries, 
the movement of data. frorn the disk cache to tertia.ry 
memory a.nd the combining of different, queries that 
sha.re data Access or computation. We use the notion 
of a fragment for exposing the layout of a relation 
on tertiary memory to the query optimizer. A frag- 
ment is the part, of a relation that lies contiguously 
on one platter (a fragment lying contiguously on one 
platter can be broken into sma.llcr fragments as ex- 
plained later). By executing queries and moving data 
in units of fragments we first eliminate small random 
I/OS. We then design policies for fetching and evict- 
ing fra.gments to further reduce the number of platter 
switches and seeks on tertiary memory. By identifying 
a few crucial device and workload parameters that are 
used to drive our optimization process, we make our 
system robust. For the initial version, we restrict to 
single relatiohal queries and two-way-joins. We plan to 
extend our design to handle multi-wa.y joins in future. 
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asynchronous i 
data movement 

Execution Unit :1/1 

Optical disk or tape : 
tertiary memory ------------ _______I 

Figure 1: The Physical Configuration. 

Paper organization 

In Section 2 we present our query processing architec- 
ture and describe in detail the working of the query 
optimizer and the scheduler. The proposed fra,mework 
raises issaf~ qartling query reordering and fragment 
acc(‘ss. Since exact, optimiza.t,ion is intractable, we de- 
velop heuristics. In the pa,per, WC present. only the final 
policies selectred by experimentBid eva.lua.tion (Section 
3). III Section 4 we present irllpl(:lucntat,ion deMs of 
lhe query processing a,rchit,fcture and present results 
of ruuning the Sequoia. benchma.rk queries on an initial 
version of i,lw sy&em. ScctAon 5 cont,ains r&ted work 
a.nd SecGon 0 gives concluding remarks. 

2 The query processing architecture 

We assu~ne an extcndcd re:lalional architecture with 
a. l,hree level memory hierarchy: tertiary memory at- 
t~~.chcd to a disk cache at,ta.chctl t,o main memory as 
shown in Figure 1. We do not impose any resbrict(ions 
on the layoul~ of a, relation on terbiary inelnory. A re- 
Iation can hc larger than the disk cache, ca.n lie over 
rnore t,han one platter, and can be spread arbitrarily 
across a. pla.tter. 

‘1’0 itlcn18ify the part of the reMion that lies con- 
t.iguously on one platter we divide a relation into frag- 
ments of appropriate size. A fra.gment can be fetched 
as a whole without. incurring pla.tter switches and seeks 
during its transfer. The proper choice of fragment size 
is crucial i,o performa.nce. ‘I’hc best fra,gment size is 
a firnctioii of the request, size dist,ribution, the pla.tAer 
swibch cost, the f,ransfer cost and the seek cost. If f(ho 
fragmc>nt. sixc is sma.l1, we make nlore l/O requests and 
L~IC lal,c>ncy of first access is incurred too ma,ny times. 
If the fra.gmcnt8 size is Ia.rge, t,hc trsnsfer 0verhea.d is 

higher because we might, be t,ra,nsferring extraneous 
data. In Section 3.3.1 we show how we can capture 
this bra.deoff in an analytical formula tha.t can yield 
rcasonablc values for the fragment size in a particular 

setup. 
We will next, describe our two-phase query process- 

ing engine. In the first phase ($2.1) queries are decom- 
posed into basic executa.ble units. In the second phase 
($2.2) these are scheduled. 

2.1 Optimizing queries 

During the query optimization phase, each query is 
broken down into a number of subqueries on the frag- 
ments. E.g., a join query between relation R consisting 
of m fragments and relation S consisting of n frag- 
ments is broken down into mn join queries between 
the individual fragments. Each subquery is then op- 
timized separately. We fix t,he maximum size of a 
fragment such tha.t all data required by a subquery 
can be held totally in the cache. This means that the 
optimizer can view the subquery like a regular query 
on secondary memory and optimize accordingly. Al- 
though such fragmentation may give rise to a large 
number of subqueries to be optimized, it is often pos- 
sible to generate one optimized template and reuse it 
for each subquery. Our prelimina.ry model has some 
simplifications. We discuss extensions in $2.3. 

2.2 Scheduling queries 

The subqueries generated above are submitted to the 
scheduler. The scheduler fetches the fragments that 
are required by the subquery from the tertiary mem- 
ory, puts them in the disk cache, and then sched- 
ules the subquery for execution. The scheduler knows 
a.bout the state of the tertiary memory (the storage 
media currently loa.ded, the current head position etc), 
has knowledge of the semantic contents of the cache 
(not, just, physical page addresses) and knows about 
the data requirements of each subquery. It uses this 
g1oba.l knowledge to decide on the order in which frag- 
rnent,s arc moved from the tertiary memory to the disk 
ca,che and the order in which subqueries are scheduled. 
The responsibilities of the scheduler can be listed as 
follows: 

l which fragment to fetch next from the tertiary 
memory when t#he I/O unit becomes free, 

l which fragment(s) to evict from the cache to make 
spa.ce for the fmgment chosen above and 

l which subquery ou the cached fragments to be 
processed next. 

WC will describe how the scheduler handles its respon- 
sibilities of fetching and evicting fragments in $3.1 and 
$3.2. In the current version of the system, the sched- 
uler submits a subquery for processing as soon as all 
its fragments are ca,ched. We plan to optimize this 
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part of the scheduler to do multiple query optimiza- 
tion betwtcn the subqucries. 

2.3 Extensions to the model 

A number of extensions were mado i,o this mode1 of 
quc\ry processing to ha.ndlc relations wit,h large object,s, 
t#o ,410~ more efficient use of indexing and to avoid 
redundant processing. The important ones are listed 
hclow: 

l Da,tabases often have images and video clips 
which are stored as large objects. In our model, 
we a.ssume tShat ea.& large object is stored as a 
spparatc fragment and a select query on a rela- 
tion wii.11 one of the a.ttributes a large object, is 
c\xccut~rtl in two phasrs. In the first stage, we do 
a select on the basf~ relation, get, a list of la.rgc 
ol)jccts to bc fetched and fetch (#hem in any order 
in t#he second pha.se. 

l We a.ssnme 1.ha.t ra,ch fra.gment has it,s own index. 
Depending on the size of the index, the DRA can 
choose bo store it, either on ma.gnetic disk or tar- 
tia.ry memory. When doing an index scan ou a re- 
la.tion, it might help to scan t#he index trees first, 
fintl out which fragincnts contain qlli~lifyillg tuples 
and fetch only t,hosc fra.gll1c~nt.s la.tcr. This will 
help remove random I/OS which can be wasteful 
ou t#ertia.ry memory. 

l Although brca,king queries into independent sub- 
queries is fa.vornble for reducing I/O costs to ter- 
tiary nlcmory, we n1a.y 1)il.y higher processing cost 
for SOIIIC queries. For instance, in a hash join if 
10le probe relation is broken into 71. fra,gments, then 
t.he hnsh t,a.ble for each fra.ginent of the build re- 
la.tion has to bc construct,4 n times. To reduce 
this overhea.d, WC will modify our scheduler to or- 
der the execution of subquerics so 1ha.t whenever 
possible the hash table can be sha.red across mul- 
tiplc subqueries, This will be treal,ed as a pa.rt, 
of 1,1lc genera.1 multiple query optilnization to be 
handled by the scheduler. 

l For some queries t,he order of the result tuples 
is importa.nt and rxcAc.utCing subqucries indepen- 
&ntly is not possible. In our initial model, we 
are ignoring queries tShnt require sorted results. 

3 Scheduling policies 

3.1 Fragment fetch policies 

The scheduler ha,s a pool of (*asks which arc tither 
ISwo-way joins or select queries on a. single fragment, or 
fdch rc~rluest, for a list of lnrge o1)ject.s. For an index 
scan on A fragment with the index residing on tertiary 

memory, we view the index tree as another fragment 
and the index scan query as a join between the in- 
dex and the base fragment. Implicitly, this collection 
of plans forms a query graph. where the nodes denote 
the fragments and the edges denote the joins between 
two fragments. In this graph, an edge between two 
nodes implies that both the fragments represented by 
these nodes must reside in the cache together for the 
query to be processed. Fragments which do not join 
with any other fragment will be represented as isolated 
nodes. We are given a limited amount of disk cache, 
typically, less than the sum of the sizes of the frag- 
ments queried. The query graph keeps on changing as 
queries get completed and new queries arrive. 

At any time, there is a pool of subqueries waiting 
t,o be executed, ea.ch of t,hese subqueries requires one 
or more fragments to be present in the cache for pro- 
cessing. Of the fra,gments required, some fragments are 
already in the disk ca.che and others need to be fetched 
from t#ertiary stora,ge. Of these fragments, some reside 
on platters iShat are currently loaded and others reside 
on unloaded platters. Our objective is to migrate these 
fragments to and from tertiary memory and the disk 
cache so as to minimize the total time spent doing I/O 
on teri,ia.ry memory. 

The above on-line problem is NP-complete since an 
off-line restriction of the formulation has been shown 
to be NP-complete in [MKYSl]. Hence, an algorithm 
that, finds the optimal solution is’likely to be too ex- 
pensive to be useful. Consequently, we use a number 
of heuristics for reducing the search space. 

Design Methodology 

The design of a good heuristic for fetching fragments is 
made challenging by the large number of parameters, 
c.g., cache size, number of users, size of fragments, 
platter switch cost,, data. transfer cost and seek cost. 
In order to control the complexity, we designed the 
algorithm in mu1Gple stages. We first started with 
an algorithm that, minimizes transfer cost, then we 
added the platter switch cost to the cost model and 
refined the algorithm to minimize the sum of the plat- 
ter switch and transfer cost,. Finally, we incorporated 
seek cost into the cost model by refining the algorithm. 
For brevity we present the final resulting set of heuris- 
tics. We used extensive simulation to aid us in the 
search for good heuristics. 

Optimizing for transfer cost 

We first started with the case where the platter switch 
and seek overhead is zero and minimizing I/O time is 
equivalent t(o minimizing the total bytes transferred. 
Even this problem is NP-complete. Hence, we tried 
out different, heuristics for deciding on the order in 
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which fragments slmultl be fetched from tertiary mem- 
ory. Some of the important heuristics were: fetch frag- 
ment with the largest number of queries next; fetch the 
smallest, fragment next; and fetch fragment that joins 
with the maximum number of cached fragments next. 
Amongst these and others that we tried, we found that 
the policy which performed the best overall was: 

POLICY-~: Fetch fragment that joins with the 
largest sum of sizes of cached fragments. Re- 
solve ties by choosing fragment that has the 
greater number of queries. 

Incorporating platter switch cost 

To ena.ble POLICY-~ to optimize for both platter 
switches and transfers we refined it as follows: As long 
a9 there are fragments on the loaded platters that join 
wibh the cached fragments we fetch fragments from the 
loadrd platters. When there are no more fragments of 
that type, we could either fetch fragments from the 
loaded platters or load a new platter that, contains 
fragments which join with the cached fragments using 
the order given by POLICY-~. This decision depends 
on the amount of cache space available. If the cache 
space is large so that we do not have to evict active 
fragments from the cache, we call fetch fragments from 
the loadetl platters, or else, we need to switch platters. 
The modified policy is given below: 

POLICY-2 

Fetch next fragment that joins with the cached 
fragmentIs and resides on a loaded platter. 

Jf no such fragment, 
If (“no room in cache”) 

Switch to an unloaded platter choosing 
platter with fragments that join with 
maximum cached fragments 

Fetch fragment from the chosen platter 
Else 

Fetch fragment from the loaded platters 
If no fragment on the loaded platters, 

switch an unloaded platter choosing 
platter with maximum queries 

We need a method to estimate if there is “room 
in cache” for fragments on the loaded platters that 
do not join with the cached fragments. Clearly, just 
using the total size of the cache for estimating this 
predicate is not sufficient because the current set of 
active fragments in the cache and the fragments that 
they join with play an important part. Let a be the 
total size of active fragments in the cache and’b be the 
total size of fragments that join with cached fragments. 
Hence a+ 6 is an estimate of the amount, of cache space 
that, will be needed in the future. 

This leads to the notion of pressure on the cache: 

a+b 
Cache pressure = c, 

where C is the cache size. Thus the pressure expresses 
potential demand for the cache as a fraction of the 
cache size. We can use cache pressure to determine if 
there is any room for unrelated fragments. The predi- 
cate “no room in cache” then translates to “cache pres- 
sure > threshold”. Next we need to choose a value of 
the “threshold”. Using the same value of the threshold 
for tertiary memory of widely varying characteristics is 
not suitable. A low value of the threshold implies more 
frequent platter switches, which is unsuitable for ter- 
tiary memory devices with high switch cost. Similarly, 
high value of the threshold implies more active evic- 
tion of cached fragments, which is unsuitable when the 
data bandwidth is low. To understand these tradeoffs, 
we tried the above algorithm for different values of the 
threshold, over different tertiary memory devices and 
workload parameters. From our experiments we ob- 
served that one important parameter that affects the 
threshold is the ratio of the platter switch time to the 
average transfer time incurred in fetching a fragment. 
When the value of the threshold was set to be this ra- 
tio we obtained the best overall performance. Hence, 
in our heuristics we set the value of the threshold to 
this ratio. 

Incorporating seek cost 

The seek cost on tape devices consists of a fixed startup 
cost and a variable search/rewind cost. The only way 
we can reduce the startup cost is by making fewer I/O 
requests. The variable search/rewind cost can be re- 
duded by fetching fragments in the order in which they 
are placed on tape. In our policies so far we have used 
a ranking function based on join size for determining 
the order in which fragments are fetched from a loaded 
platter. While this order is good for reducing transfer 
time, it is preferable to fetch fragments in their stor- 
age order when the goal is to reduce seek cost. Thus, 
we need to identify which cost is more important to 
optimize at any time. 

Suppose we have a tape of capacity T bytes, trans- 
fer rate d bytes/second and seek rate s bytes/second. 
Assuming that on an average the seek distance is a 
fraction, f, of the tape, the average seek cost is Tfls 
seconds. This means that seek time dominates trans- 
fer time only for fragments smaller than Tdf/s bytes. 
In most tapes, the seek rate is lo-100 times higher 
than the transfer rate (refer Table 2), so the object 
size has to be smaller than 150th the tape capacity for 
the seek cost to dominate the transfer cost (for f = 
l/3). Hen’ce, when choosing fragments from a loaded 
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platter, if Tdj/ s exceeds’ the avemge fragment size, 
we use proximity to the ta.pe head as t,lie criteria. for 

choosing the next fragment. This formldation assumes 
that the seek cost is linearly proportional to the dis- 
tn.nce seek-cd. This assumption does not hold for DLT 
tal)es where the seek ra.te is higher for la.rger seek dis- 
tances. For such 1,a.p~~ we nred to put the average seek 
cost in the formula instead of deriving the average seek 
cost front the seek rate. 

3.2 Fragment eviction policies 

Oncr a. fra.gnieut is selected for fetching, we choose 
fra.gnrerlts to be evictSed from the ca,chc to ma.ke space 
for this fra.gnient. Like the f&A policy, our eviction 
policy is a~lso based on the careful combination of a 
nnlnbcr of simple heuristic policies. 

The classical mclle ‘iqlacemtnl, policy is LRU when 
all ot?jects are of the same size and WEIGHTED-LR.IJ 

when the objects are of varying size. In our case, we 
might also have to evict fragments which ha.ve pen& 

ing queries on them. This ma.kes policies like LRU and 
WEIG HTED-LRU meaningless since we already know 
t,tta.b the fra.gment will bc used in the future. Hence, to 
choose among fragments with pending queries we use a 
policy WC call LEAST-WORK, which evicts the fragment 
with the fewest, remaining queries. 

Tics a.re resolved using a policy we call LEAST- 

OVRJr.I,AP. Int,uitively, while resolving ties, we want, 
t,o avoid evicting fragments that joiu with many over- 
la.pping fra.g;,nents so that when the overlapping frag 
ment is fetched it can complete joins with many frag- 
ments together. Thus, policy LEAST-OVERLAP chooses 

the fragment with the least overlap bet*wecn fragments 
t,ha.t joill bot,h with the given fragment and other 
cached 
below. 

fragments. Our fina. eviction policy is given 

Choose fragment, using LEAST-WORJ< 

&solve tics by using LEAST-OVERLAP 

Resolve further ties using WEIGJlTED-LRU. 

3.3 Pt:rforrna11co rasu1ts 

Evalua,ting tht\ benefit from various policies is a difi- 
cult t,ask, in part becansc it is unclear what, the ba.sc- 
line performance ought to be. In particular, it is not 
fcasiblc to pick the optimal schedule as t,he baseline be- 
ca.use the search space is absurdly large, even for prob- 
lems of reasonable size. Our approach was to estima.te 
bounds on t,he opt,imal performance and compare the 
performance of our policy against these bounds. The 
baseline policy merely provides a scale for comparison; 
a.bsolutc performance numbers are less significant. 

Anobhcr pra.ctical issue that arises is the choice be- 
t,ween real vs. simulated tertiary devic&. Loading data 

(of sizes UP to a terabyte) and running queries is an 
inconveniently slow process. Besides, a small set of 
tertiary devices gives us but a few data points regard- 
ing performance parameters, whereas much of our in- 
tuition in heuristic design originated from a deeper 
understa.nding of the pa.ra.meter space. Therefore, we 
used an event driven simulator where workload, de- 
vice, and heuristics were all flexible. Details of the 
simulation setup are presented next. 

3.3.1 Siximlation details 

Our simulabor consists of a centralized database sys- 
tem serving requests from different query streams. We 
model a closed queuing sysl,em consisting of multiple 
users who submit a query, wait for the result, and then 
think for an exponentially distributed time before sub- 
mitting the next query. Table 2 lists the performance 
specifications of the four tertiary. memory types we 
used in our study: (1) the Sony WORM optical juke- 
box, (2) the Exabyte 8500 tape library, (3) the Metrum 
RS6000 tape jukebox and (4) Sony’s DMS tape library. 
These devices were chosen so as to cover adequate rep- 
resentatives from the diverse tertia.ry memory hard- 
ware in existence today. Table 3 lists the three datasets 
that we used as the underlying database. Each dataset 
is characterized by the range of sizes of the relations 
and the number of relations. The size of a relation is 
assumed to be uniformly distributed within the range 
specified by the dataset. The default size of the cache 
and the number of users is given in Table 4. Further 
details about the simulator are given below: 

R.elation layout 

For laying out the relations on tertiary memory we use 
the following approach: We divide a relation into par- 
t,itions of size no more than p. The value of p is always 
2 to the pla,tter capncity. These partitions are laid out 
contiguously on the platters. A partition is stored with 
equal probability in one of the pa.rtially filled platters 
that has space for it or a new pla.tter if one is available. 
We will denote the tota.f number of platters over which 
da,ta is spread as P. For disk-based platters, the lay- 
out of da.ta partitions within a. plaiter is not modeled. 
For tapes, the space between two adjacent pa.rtitions 
is uniformly dist,ributed between 0 and the total free 
space left on tape over the number of relations that 
are assigne< to the tape.’ 

Workload 

Table 4 summarizes the relevant workload parameters 
and their default values. We simulate a stream of sin- 
gle relation queries and two-way joins. Base relations 
for queries are chosen using the 80-20 rule i.e, 80% of 
the accesses refer to 20% of the relations. The scan 

590 



classification 

switch time (SW) 
t.ransfer rate (MB/set) 
seek ra.1.e (MB/src) 
seek start (WC) 
num her of drives 
platkr size- (GR) 
uumber 0C platters 
total capac:ity (GR) 

DAT autochanger 12OOC 
tape 
slacker 
101 
0.17 
23.1 
11 
1 
2.0 
12 
24 

Sony 
small optical 
jukebox 
8 
0.8 

0.5 
2 
3.27 
100 
327 

Exabyte Metrum 
small tape large tape 
library library 
171 58.1 
0.47 1.2 
36.2 115 
16 20 
4 5 
5 14.5 
116 600 
580 8700 

DMS 
large tape 
library 
39 
32 I 
530 
5.0 
2 
41 
320 
13120 

‘I’al)lc 2: Tertiary Memory Parameters: The swit,ch tirne is a summation of the average time needed to rewind 
~I.II.Y nxisl,ing plall~er, ejrct it from the drive, move it from the drive to the shelf, move a new platter from shelf 
t.o drive, 1oa.d the drive amI make it ready for reading. The seek startup cost is the average of the search and 
rewind st*art,up cost, a.nd t,he seek rate is the average of the search and rewind rate. 

Ihl.a.4 # rehtions range of sizes total size 
SMAI.I,-DATASET 2000 5 Ml) to 50 MI% 50 GB 
MEIIN!M-I)ATASET 400 250 MU to 2.5 GB 500 GB 

LARGE-IIATASET 80 12.5 GB to 125 GB 5 TB 

‘IUlc C!: L)atascts: sizes of the relations are unifortily distributed across the given range 

on l.Irr Imsc: relation can he eit,her a sequential sca.ti, 
;I cluntcred intlcx aca.n or a.n unclustered index scan. 
I II our srtup 20% of t,he scans are assumed to be se- 
ctnf\nt.ial anti t.11~ rest, are clnst~~~~i or uncluatercd with 
c’ctnal prol&ilily. ‘I‘hc selectivit,y of an index scan can 
IN anywhcrc bt.wc:cn 0.1 and 0.2. WC a9sumc in thfxae 
expcrittlmts f.hab all indices reside on magnetic disks 
and 1.11~ ilitlc:x Irw is pre-scanned to get a list of frag- 
rrlc~nt~s 1.llil.l contain qualifying tuples. 

‘1’11~ tbrorc\ssing time of a. query a,fler the component 
1’wg11tvtit.s a.r(’ fc%ched from tertiary memory is com- 
p11b11 as t.11~ sum of the t,ime needed to read/write data 
I)VI ww~~ disk and the ma.in memory and the CPU pro- 
ccssitlg I il,lc. In Ta.hle 4, we list the number of inst.ruc- 
t.iws rcqnirrd for va.rions query t,ypcs. The time to 
t)roc(‘ss a. join is derived assnnling a. hash join method. 
‘1’11~ t.irtlc> tSo rc\a.d a. page from disk is modeled <as a. 
$11111 ol’ ~.hr a.vcxrnge seek lime a.nd the time to transfer 
ii ibiip* of tlatz~ Our model of the execution unil. is n6t 
vc>ry ~Ir~t.ailf~cl, Init0 this ha.rdly impa.cts the, accuracy 
of OII~ rcsult,s I~~ause WC arc ta.king measurements of 
only I.cxri,ia.ry rncm~0r.y J/O in this pil.pCr. 

Ia’or a giveu tlntahase and tertiary Illemory, we detar- 
lninc a tila.xilnum fra.gment size, F’. Any partition 
Iargc,r t11a11 sixc I’ is divided inbo fra.gments of size 

Description Default 
Workload 
Mean think time 100 set 
Number of queries per run 800 
Number of users 80 
Join fract,ion 0.8 
Sequential sca.n fraction 0.2 
Selectivity 0.1-0.2 

Execution Mode1 
MIPS .’ ‘0 
Instructions for seq scan 100 per tuple 
Instructions for index scan 200 per tuple 
Instructions for huh join 300 per tuple 
Instructions for starting a scan 20,000 

Tuple sisr 400 bytes 
Disk Charan:t,eristics 
Average seek time 20ms 
Data transfer rate 5 .MH/sec 
Ca.che size 3% of database size 

Table 4: Simula.tion Pa.rameters and their default val- 
ues. 
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‘htiary SMALL -MEDIUM LARGE 

Memory DATASET DATASET DATASET 
Sony 4 

1 DMS SO 1500 20000 

Table 5: Maximum fragment size (in MB) for each 
tertiary memory and dataset pair 

at most F. .The optimal fragment size depends on the 
transfer time, access latency, the request size distri- 
bution and the kind and degree of sharing between 
queries. In general, it is hard to find the optimal frag- 
ment size since it is difficult to get exact specification 
of the request size distribution and the degree of shar- 
ing between queries. However, one can use approxi- 
mate ideas about the expected pattern of referente for 
determining reasonable values of fragment size analyt- 
ically. We present below one such method. 

Let f be the average access latency, d be the data 
transfer rate and R be the maximum size of a relation, 
For a fragment of size F, the average time required to 
read II bytes of data is: 

T(n, F) = [;I (f + Fd) 

If p(n) denotes the probability that a request is of size 
n., then the average access cost for a request is: 

n=R 

n=l 

For a given value of d, f and R we can calculate the 
value of F for which A(F) is minimum by plotting a 
graph of A(F) versus F. 

Using the workload parameters in Table 4 to get 
estimates of the request size distribution, we plotted 
A( I’) versus F for different relation sizes and tertiary 
memory devices. It was observed that there was not 
much variation in the optimal fragment size for rela- 
tions in the same dataaet. Hence, for each tertiary 
memory and dataset pair we chose a fragment size. In 
Table 5 we show the fragment size we obtained for each 
tertiary memory and datsset pair using this method. 
Estimatq like these could be used by the da;abase 
designer to choose the fragment size for a particular 
setup. 

3.3.2 Estimating performance bounds 

We define our baseline policy to be first come first serve 
(FCFS) for fetching fragments with LRU for evicting 
fragments. We first used this policy to estimate the 
fraction of time that is spent in doing tertiary memory 

data transfers, seeks and platter switches. We then 
estimated bounds on maximum achievable reduction 
in I/O time based on the number of queries per relation 
and the number of queries per platter. If a relation has 
q queries on it, then the maximum possible reduction 
in transfer time is (q - 1)/q. Similarly, if a platter 
has r queries on it, the maximum possible reduction 
in number of platter switches is (r - 1)/r. In reality, 
these improvements might be unachievable because of 
further limitations imposed by the amount of cache. 

In Table 6 we list the percentage of time spent in 
transfers (column 2), platter switches (column 3) and 
seeks (column 4) using the baseline policy. We give 
our calculation of the values of q and r in columns 
5 and 6 respectively. We show the maximum possi- 
ble reduction in total I/O time by reducing the trans- 
fer time and the switch time in columns 7 and 8 re- 
spectively. The maximum improvement achievable by 
rkdudbg seeks is more difficult to analyze. By sum- 
ming columns 4, 7 and 8 we can get an upper bound 
to the maximum improvement that can be achieved 
by any policy (column 9). For instance, for SMALL- 
DATASET on the Sony although 75% of the tertiary 
memory I/O time is spent in data transfers, we can- 
not reduce the transfer time any further because there 
is ,only one query per fragment on an average. The 
only saving we can get is by reducing the number of 
platter switches.- :Tht?re are about q = 20 queries per 
platter,‘hence there is a possibility of getting a 95% (= 
(20-1)/2OY) ‘d t o re UC ion in switch time and, a 24% ( = 
25% x 95%) reduction in total I/O time by reducing 
the switch time: 

The last Column in Table 6 lists the improvement 
we achieved over the baseline policy using our fetch 
and eviction policy. These numbers are very close to 
the maximum estimated improvement in column 9. 
Some deviations can be explained by the seek over- 
head which we could not quantify exactly and others 
by the inherent limits placed by the limited amount of 
cache. 

4 Iknpiementation 

We are extending the POSTGRES relational database 
system to support the proposed query processing ar- 
chitecture. The original storage manager used an LRU 
managed disk cache. It was modified to take hints 
from the scheduler in deciding which data blocks to 
evict from this cache and which to fetch next. The 
scheduler was thus able to control the movement of 
fragments from the disk cache to the tertiary memory. 
In the old architecture all user-sessions run indepen- 
dently as yparate POSTGRES process - as a result 
there is no ,synchronization between I/O requests to 
the tertiary device. In the new architecture, each user 
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1 2 1 3 1 4 5 
Tertia.ry % tot,a.l TM I/O spent. in 

I 6 7 8 9 10 
# of queries per 

I 
ma.x. % reduction by improvement 

memory transfer switch seek relation (q) platter (r) transfers switches projected achieved 

Sony 71.6 25.0 3.4 1 20.2 0 24 27.4 27 

E:xabyte 23.2 42.1 34.7 1 6.8 0 36 70.7 66 
Met.rum 16.7 31.9 51.4 1 14.4 0 30 81.4 63 

1 I)MS ( 1.9 ( 58.6 1 39.4 1 1 14.4 0 55 94.4 83 
SMALL-DATASET 

Exabyk! 83.8 8.6 7.6 1.35 1.7 22 3.7 33.3 31 
Metrum 75.5 6.9 17.6 1.35 5.18 20 5.6 43.2 37 
DMS 30.0 22.3 47.7 1.35 7.2 8 19 74.7 42 

MEPIUM-DATASET 

Mctrum 97.0 1.1 1.9 5.96 5.96 81 1 83.9 46 

I)MS 81.5 5.8 12.7 5.96 5.96 67 5 84.7 59 

LARGE-DATASET 

‘l’irblc 6: I’ercentagr distribution of the time spent at various stages: Columns 7 and 8 represent the maximum 
reduction in transfer and platter switch cost possible. Column 9 is an upper bound on the maximum total 
improvement in tota. I/O time possibJe. Cblumn 10 is the best improvement we could obtain by our policies. 
(Some data&-tertiary memory pairs ate missing because the dataset was too large to fit on that tertiary memory) 

process first compiles and fragments the query, and 
then submi Is t,he fra.gmant.ed queries to a. centralized 
sclltdulcr process. The scheduler m&tains a number 
of slave backeud processes. These processes are used 
for transferring data from the tertiary memory to the 
disk cache. Thr number of processes of such type is 
equal t#o the number of drives in the tertiary mem- 
ory device. This way it is possible to emplvy all the 
drives of t,hc tertiary memory in parallel for transfer- 
ring da.tn. Submitting m~;ltiple requests to multiple 
tlrivc5 nlso hr4ps hi&: some of t,he latency of plat,ter 
loit.tl/~~~iloa.tl ol~cra.t.ion --.-- wlion one drive is trarisfcr- 
ring tla.ta, the robot arm is free and can be employ4 
for swit,ching plntters on some other drive. When all 
iShc da.ta recluind by a. part8icular subqucry ha.ve been 
p111, in the disk ca.che the corresponding user procrss is 
notified. ‘I’hc user process can then execute the sub- 
qnrry whencvm it is free. /\k~ finishing cxccution of 
t,hc subqucry it, uotifies i,he scheduler which ca.n evict 
t,he fragment,s used by this subquery when desired. 

‘I‘wo tc>rtinry memory st,ora.ge tlevicr:s .- a Sony opti- 
~a.1 jukebox and an HP magneto-optical jukebox have 
a.lrca.dy hcen interfa.ced with t,he POSTGRES'S storage 
ma.ua.ger switch as described in [Ols92]. In a.ddition, to 
facilita.tr lucasurements on robots for which the actua.1 
device was una.va.ilable to us, we interfackd a. tertiary 
memory device simula.tor to POSTGRES. The simu- 
la.ted stora.ge manager used a ma.gnetic disk for da,ta 
storage but serviced l/O requests wit,11 the sa,me delay 
as woul(l a,n actual t,ert,ia.ry device which received the 
same request8 sequence. 

To compare t,he performa.nce of the new architec- 
ture with the old one and, also to evaluate the pa.yoffs 
of the policies in a real system, we measured the per- 
formance of the Sequoia benchmark [SFGM93] queries. 
We chose the nabional version of the benchmark which 
is of total size 18 GB. Since the data for the national 
benchmark was not available, we constructed the na- 
tional benchmark by replicating the regional bench- 
mark. The data. was stored on a (simulated) tape 
stacker whose performance characteristics are summa- 
rized in Table 2 (Autochanger 1200C with DAT tapes). 
The da.t,a.base-consists of four different kinds of rela- 
tions: RASTER, POINT, POLYGON and GRAPH as sum- 
marized in Table 7. For the RASTER data, each tuple 
contains a. 2-dimensional array of size 129 MB which 
is stored as a separate large object. The base table 
for t,he raster data. is stored on magnetic disk whereas 
t)he two-dimensional raster images are stored on ter- 
tiary memory over 12 different, DAT tapes. The POINT, 

POLYGON and GRAPH data are stored on one tape each. 
All indices reside on magnetic disk. The benchmark 
consists of 10 data retrieval queries which consist of 
two-way joins and select queries on various relations. 
The last query involves a “*” operator 011 the GRAPH 

table which we could not run on POSTGRES, instead 
we run a select query on the table. Since, the Sequoia 
benchmark does not, have any information about the 
frequencies of posing individual queries - we let each 
user choose one of the 10 queries uniformly randomly. 
The default number of users was 5 and the total num- 
ber of queries ran per user was 10. The size of the 
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'l'd~lc 7: Sequoia ncnchnla.rk relations (national). 

ma.gnctic disk cache was va,ried as shown in Figure 2. 
‘UIC I.01,a.l time required to run the benchmark for the 
new architecture aa compa.red against the old architec- 
tr~rc: is shown in Figure 2 for ca.che size of 32 MI3 a.nd 
64 M R. On moving from the old to the new a,rchitec- 
ture the total time reduces by a. facCor of 4 with a 32 
MH cache a.nd by a. f&or of 6.4 with a 64 MB ca.che. 
‘1’11~ Ina.in TCR.SOII for this change is the reduction in 
1.11~ number of platter switches. The time to switch a 
t,a~)e is almost 1.6 minutes. Hence, when we reduced 
t,he uumbcr of switches from 2333 to 533 (for 32 MB 
Cil.ClIC size) the I/O time reduced by 50 hours. 

5 Related work 

Allhough ttrtiilry memory flevices are not common in 
dil~htJRSf?S they have long I)c~cu used in m;\.ss storage 
systems like tlw N(:hH.‘s MSS [Nt87], Lawrence Liv- 
crlnorc I,a.l)ora.tory’s LSS [HogSO] a.nd t,he Los Alamos 
Nationa. lAora.tory’s CFS [C+82]. ‘l’hcse arc kyJ'- 

ically ceutralized suJ)rrcompnling systems with mul- 
t,iplc cliont,s a.nd usr huge ta.pe libraries for storing 
tlai,a.. Disk caches a.re. used for st,aging da.ta in a.nd 
0111, of tapes in units of a. file. Files are brought from 
thr tape libra.ry on user request, a.nd when spa.ce needs 
t,o ho I’rwtl from disk, trclrniqurs like WEMHTED-LRU 

[SmiHl] arc‘ used t,o sclcct, files t80 lx evicted next. Our 
c~nvironmenl, is diflcrent lrom the conventional mass 
stora.ge S~S~CY~IS hcca.use we are working in a, rela.tional 
fra,mework where it is possible t,o get more information 
about, the na.turc of data. ~CCCSSCS from the query sa- 
malitics. Other area.s where use of tcrt,iary memory is 
gaining popula.rit,y recently is ima,ge archiving syst,ems 
[SB+93] and multilnedia. da.ba.bases [ltFJ+93]. TIow- 
rver, t,hcre is lit,tle reported work on the efficient use 
of t,lic l.crbia.ry storage devices in this context. 

Many device scheduling a.lgorithms developed in a 
disk to main memory environment arc relevant in our 
context,. [SI,M93] discusses the problem of reading a 
set of pages from disk to main memory so as to min- 
ionize t.he sum of the seek and transfer time. [BK79] 
a.utl [Wie87] discuss scheduling policies for magnetic 
disk a.rms t,o minilnize seeks. [MKYHl] and [MR93] ad- 
dress t.he problem of minimizing the number of pages 
ft$cl~ctl from disk t,o a. Ii mited a.tnount of main memory 
while processirlg a l,wo-way join rr:presentcd as a graph 

on the pages of the relation. This problem is a spe- 
cial case of our formulation for fetching and evicting 
fragments from the tertiary memory to the disk cache. 
[MSD93] discusses the problem of scheduling parallel 
hash joins in a batched environment. Query schedul- 
ing with the aim of reducing seek cost or platter switch 
cost in tertiary memory has been addressed in a few 
places: [KMPSO] addresses the question of finding the 
optimum execution order of queries on a file stored on 
a tape and [WonSO] addresses the problem of placing 
records with known access probability on tape to min- 
imize expected head movement. [ML951 studies the 
benefit of doing hybrid hash join and nested loop join 
with the data still resident on tape instead of caching 
all of it on to disks before executing the query. 

6 Conclusion 

We presented the design of a query processing and 
cache management strategy that, is optimized for ac- 
cesses to a tertiary memory database. Our main con- 
tributions can be summarized as follows: 

We take a. more unified and aggressive approach 
to reducing J/O on tertiary memory. Our sys- 
tem consists of a centralized scheduler that knows 
about the state of the tertiary memory, the disk 
cache a,nd the queries present in the system. In- 
stead of processing queries from separate users in- 
dependently, the scheduler uses global considera- 
t,ion to decide on the order in which data required 
by the query wili be fetched from tertiary mem- 
ory and bat,ches the J/O and computations of this 
query with other queries in the system. 

We employed the notion of a fragment to reveal 
the layout of the relation on tertiary memory to 
the query optimization a.nd the cache managc- 
ment, modules. Data is moved to and from the 
disk cache and the tertiary memory in units of 
fragments. This avoids small random I/OS, com- 
mon in many-conventional query execution meth- 
ods thereby dramatically improving the perfor- 
mance of tertiary memory. 

We showed how we can further optimize tertiary 
memory I/O costs by carefully scheduling the or- 
der in which these fragments are fetched from ter- 
tiary memory and evicted from the disk cache. We 
developed a fragment fetch policy that performs 
well under a wide range of tertiary memory char- 
act,eristics, workload types, cache sizes and system 
load and adapts dynamically to changes in these 
pa.rameters. 

We are extending POSTGRES to implement t#his 
architecture. Initial measurements of the Sequoia 
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Figure 2: Result of running Sequoia benchmark on the original and new architecture in P~STGRES. 

benchmark on t,he new architecture yield signifi- 
cn.nt, improvement over the old a,rchitecture used 
in IWSTGRES. 

Our next project is to extend the model so a.s to 
ha.ndlc mult(i-way joins and sort-merge joins. We want 
to tlcsign the multiple query optimizer to reduce the 
tinlc spent in processing queries. Finally, we would 
like to measure the payofrs we can get on more real- 
life worklon.ds. 
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