
OPOSSUM: Desk-Top Schema Management .
through Customizable Visualization*

Eben M. Haber Yannis E. Ioannidist Miron Livny

Department of Computer Sciences, University of Wisconsin-Madison, 1210 W. Dayton St., Madison, WI 53706
{haber,yannis,miron} @cs.wisc.edu

Abstract

Several recent trends have changed the usage and users of schemas
beyond those of a database administrator’s tool for describing
database contents. Distribution of computing power to the desk-top
and increasing needs for data management have broadened the base
of schema users to include people who are not database experts. The
advent of graphical user interfaces has brought schemas into use as
templates for a variety of database operations such as query specifi-
cation and browsing. Such changes demand advanced schema man-
agement techniques, primarily schema visualization, in order to sup-
port productive interaction between increasingly novice users and in-
creasingly complex schemas. In this paper, we present OPOSSUM, a
flexible, customizable, and extensible schema management system.
Working within the established paradigm of schema editing through
direct manipulation, OPOSSUM employs several novel techniques
to offer the following capabilities: enhancement of schema visu-
alizations with user-specific information; exploration of schemas
through choice of visual representations; and creation of new vi-
sual representation styles when existing ones prove unsatisfactory.
We discuss the architecture of the system and the methodology that
guided its development, and illustrate its most important features
through examples of how it has been used. OPOSSUM is operational
and is in use by three groups of experimental scientists on the Uni-
versity of Wisconsin campus as a tool for experiment and database
design.

1 Introduction

Traditionally, database schemas have been developed, exam-
ined, and modified by specialized database administrators us-
ing stylized data definition languages. The primary role of
these schemas has been to define the information content of
the database. Today, several trends are expanding this lim-
ited usage and user base. Distribution of computing power
to the desk-top and increasing needs for data management
have broadened the base of users who must interact with

Work supported in part by the National Science Foundation under Grant
IRI-9224741.

t Additionally supported in part by the National Science Foundation un-
der Grant IRI-9157368 (PYI Award) and by grants from DEC, IBM, HP,
AT&T, and Informix.
Permission to copy withoutfee all orpart of this material is grantedprovided
that the copies are nor made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear;
and notice is given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise. or to republish, requires a fee and/or special
permission from the Endowment.

Proceedings of the 21th VLDB Conference
Zurich, Switzerland, 1995

database schemas to include people who are not database ex-
perts. These non-expert’ users need to design and access
their databases, yet they have no desire to learn or use ar-
cane database languages. Graphical User Interfaces (GUIs)
provide more user-friendly access to schemas, and tend to
broaden the role of schemas, using them as templates for
other database operations such as querying and browsing. The
growing number of non-expert users and increasing schema
roles demand improved techniques and tools for schema man-
agement.

Schema visualization2 is the key issue that arises in any at-
tempt to provide improved tools for schema management. Im-
proved schema visualization is particularly helpful for non-
experts, but it aids all users interacting with the database or
sharing information about the data among themselves. It is
also a tool to aid in the management of large and complex
schemas; diagrammatic presentations are generally easier to
understand than text, and different visual styles can be used to
highlight or filter out different schema information. Although
existing database systems and prototypes support GUIs that
present schemas in non-textual ways, these GUIs do not ad-
dress all of the challenges posed by complex schemas and
non-expert users. Most of them provide little flexibility, sup-
porting only a single hard-wired visual style.

To better support schema visualization, we have developed
a Desk-Top Schema Manager (DTSM) called OPOSSUM
(Obtaining Presentations Of Semantic Schemas Using Meta-
phors). OPOSSUM follows the established GUI paradigm in
supporting creation and modification of schemas through di-
rect manipulation of schema visualizations. It is unique, how-
ever, in offering all of the following capabilities:

1. Externally Dejned Data Models and Visual Styles: Arbi-
trary visual representation styles for schemas in any data
model can be defined by the user in a declarative and ex-
tensible manner. Thus, the process of schema visualiza-
tion is not realized through hard-wired code, but through
external definitions provided by the user.

2. Personal and Aesthetic Information: Schema visualiza-
tions can be enhanced with user-specific annotations and

1 We use the term “non-expert” to refer to users who are not database ex-
perts, regardless of their expertise in other areas.

2Schemu visualization describes a representation of the information of a
schema that a person can look at, or the process of creating such a represen-
tation from a schema. Visual style refers to the generai form of a schema
visualization.

527

aesthetic preferences. In other words, it is possible to vi-
sually capture information that is important to the user,
yet not needed by the underlying database.

3. Multiple Visual Styles: Multiple visualizations can si-
multaneously exist for the same schema, so that a user
can switch back and forth between them during schema
exploration whenever a different visual style is desired.

4. Mixed Usual Styles: Mixed visualizations of a schema
can be created, where different parts of it are presented
using different visual styles, each style emphasizing
something different.

In the remainder of this paper, we describe how OPOS-
SUM achieves these capabilities, discussing the architecture
of OPOSSUM, the methodology that guided its development,
and its most important features.

OPOSSUM has been developed as part of the user inter-
face to ZOO, an ongoing effort to develop a Desk-Top Ex-
periment Management System3. The goal of ZOO is to en-
able scientists to manage the entire life-cycle of their exper-
imental studies via a single uniform desk-top interface. This
is achieved by placing the conceptual/logical schema of the
experiment data at the center of ZOO. Whether designing a
study, invoking an experiment, querying the data, or analyz-
ing query results, a graphi.cal presentation of the schema is
used to perform the activity; in essence, the schema captures
the experimental study itself. Schemas in ZOO are based on
the MOOSE object-oriented data model [37], which is similar
to many other object-oriented or semantic models. (MOOSE
schemas are used in many of the examples in this paper.) The
needs of several experimental scientists collaborating in the
development of ZOO have led us to realize the importance of
improved and flexible schema management and have been our
main guide in the design and implementation of OPOSSUM.
OPOSSUM is currently used by some of these scientists for
experiment and database design and their overall feedback has
been very positive.

The rest of this paper is organized as follows. Section 2
provides a more thorough definition of a Desk-Top Schema
Manager and its functionality. Section 3 outlines our formal
approach to visualization. Section 4 describes OPOSSUM,
the DTSM that we have implemented. Section 5 presents ex-
amples of how OPOSSUM supports visualization of different
information. Section 6 describes related work, and Section 7
summarizes and offers conclusions.

2. Desk-Top Schema Managers

528

A Desk-Top Schema Manager may be generally defined as a
tool to allow all kinds of users to view, comprehend, and ma-
nipulate schemas in all the roles schemas play. In order to un-
derstand the functionality of a DTSM in more detail, it is first
necessary to consider how users will work with it.

3Nat~rally, the various modules of ZOO am named with acronyms like
MOOSE, FOX, EMU, LOBSTER, and of course, OPOSSUM!

2.1 Modes of User Interaction

A user of a Desk-Top Schema Manager may interact visually
with the system in one of the following three modes: cre-
ation/modijcation of visual styles, creation/modification of
schema visualizations (with analogous effect on the under-
lying schemas), and exploration of schemas. These do not
necessarily occur independently, but their separation helps in
identifying their properties.

In visual style creation and modification, a user describes
new ways to visualize schemas, or changes existing visual
styles. These are then used during the other two modes of in-
teraction for visual representation of schemas.

In schema creation and modzjkation, a user constructs a vi-
sualization that captures the structure of the underlying data
schema, as well as any personal information and aesthetic
preferences. This is done through visual manipulations that,
based on their effects, may be classified as follows: editing,
which affects information in the underlying data schema, en-
hancing, which affects personal annotations but not the data
schema, and embellishing, which affects only the aesthetics
of the visualization.

In schema exploration, a user simply examines the schema.
The most powerful tool to aid this task is dynamic, fine-
grained flexibility of visual representation, allowing a schema
to be visualized using arbitrary styles. Other useful tools in-
clude hard copy output (paper provides unsurpassed portabil-
ity and resolution, and the ability to piece together visualiza-
tions larger than any computer screen), as well as traditional
operations such as zooming and panning.

2.2 Functionality

Given the schema management needs discussed in Section 1
and the modes of interaction described above, a DTSM should
offer the following capabilities with respect to functionality
and flexibility, which are not found in current database GUIs:

l Supporting evolution in the fundamental visual styles.
Over time, users may find existing visual styles unsatisfactory
in highlighting the important aspects of their schemas. They
should be allowed to change the styles to reflect this. Thus,
the visual styles should not be hard-wired into the system.

l Allowing users to add personal information to schema
visualizations beyond that which the database needs. Each
(group of) user(s) may have a different view of the high-level
organization of the schema and may need to express different
concepts on top of the data model. To capture these varied
concepts, a DTSM must appear to operate with potentially a
different data model for each user.

l Accommodating the varying senses of aesthetics be-
tween different users. Users should be permitted to change the
appearance of schema visualizations, and the system should
maintain it to the greatest extent possible.

l Providing choice in visual representation. There are
many ways to visualize schema information, and users may
differ over which they find most intuitive. In addition, vi-
sual styles that work well for small schemas may not scale

up, and different styles may highlight different aspects of a
schema. A DTSM should provide a choice of different rep-
resentations for the same schema; this choice should be avail-
able in any granularity, so that it can be made independently
for individual pieces of the schema, and also dynamically, so
that a user can easily flip between different representations
during schema exploration.

2.3 Example

The last three desirable capabilities mentioned above are illus-
trated in the following example. Consider an object-oriented
database storing information on various Companies, which
consist of Departments, Employees, and Buildings, where all
four of these entities are captured as classes. Figure 1 shows
a visualization of this database schema in the form of a graph,
where classes and relationships appear as nodes and edges,
respectively.4

Assume that a user wishes to represent the personal infor-
mation that Employees, Addresses, and Floors are more im-
portant than the other classes. A DTSM should allow users to
express such information: in Figure 1, the important classes
are given a different background color.

Figure 1: A simple schema using a graph style.

Figure 2: The same schema using a containment style.

Figure 2 shows a different visualization of the above
schema. This time a containment representation is used,
where each class appears as a box containing a set of smaller

4All figures in this paper showing example schemas have been created as
PostScript output from OPOSSUM.

boxes, one for each relationship it has to another class.
Clearly, both visualizations are equivalent in capturing the
database schema and the personal information. It is also clear
that there are trade-offs in the quality of the two visual rep-
resentations. Figure 1 is better at showing global structure
and transitive relationships. On the other hand, it is worse at
showing immediate relationships because there may be very
long edges and many edge crossings. Figure 2 brings out lo-
cal structure better in such cases.

Note that the user may also affect the aesthetics of a visu-
alization: in Figure 1, the shared classes, Floor and Address,
are moved below the others to make it easier to identify them
and to reduce spatial density of edge crossings. The specific
placement reflects no schema or personal information, and is
therefore not captured in Figure 2 where such layout is unnec-
essary.

3 Visualization Methodology

A database system is able to manage many different data ar-
rangements using a declarative description of the data, i.e., the
schema, and generic components for storing and manipulat-
ing the data. To manage schemas as described in Section 2, a
DTSM must take a similar approach: use declarative descrip-
tion of schemas and their visualizations, and generic meth-
ods to manipulate them. These cannot be developed in an ad
hoc manner; the design and implementation of a customizable
and extensible schema manager must be based on a formal un-
derstanding of the interplay between schemas and their visual
presentations. In this section, we briefly discuss the formalism
of the visualization process underlying the design and devel-
opment of OPOSSUM, which is presented in detail elsewhere
r171.

3.1 Overview

As is well known, every database schema is an instance of
some data model, and a data model essentially defines a set
of valid schemas for that model. In exactly the same way, we
introduce the notions of a visual model and a visual schema.
A visual schema is just a visualization rendered on a screen,
drawn on paper, or otherwise expressed. It is always an in-
stance of a visual model. For example, a specific graph drawn
on the screen with its nodes and edges in specific locations is a
visual schema, and the set of all possible such graph drawings
is defined by a visual model that specifies their general look.

The primary contribution of our framework is that it brings
visualizations and visual models to the same level as tradi-
tional “data” schemas and data models, demonstrating dual-
ity between the two. Hence, the basic techniques that are ap-
plied to translate schemas between different data models [24]
can also be applied between visual and data models. Such
a translation establishes a correspondence between a schema
and its visualization (visual schema). In particular, we intro-
duce the notion of a visual metaphor, which is defined as a
mapping from (the elements of) a visual model to (the ele-
ments of) a data model. Through this mapping, one is able to

529

assign meaning to a visualization (visual schema) in terms of
the underlying data schema, e.g., a rectangle in an E-R graph
indicates an entity set in the underlying E-R schema. In our
framework, both the visual and data models and the visual
metaphor may be specified declaratively: the models as in-
stances of a me&model, and the metaphor as a set of pairs
of elements from these models. Thus, schema visualization
does not have to be realized through hard-wired code, but can
be established externally in an extensible way.

With the above framework, it becomes easy to define dif-
ferent ways to visualize schemas of any given data model. All
that is required is the specification of different visual models
and corresponding visual metaphors to the same data model.
Moreover, given multiple metaphors, one may combine them,
which permits schemas to be displayed with different parts vi-
sualized through different metaphors.

Another benefit of the above formalism stems from the fact
that visual models usually offer many more degrees of free-
dom in visual representation than is necessary to capture the
characteristics of a data model. For example, the locations of
the nodes of a graph visualization carry no meaning with re-
spect to the graph itself, so no matter how a graph is laid out, it
still has the same meaning. Thus, even when using a single vi-
sual metaphor, one data schema may be represented by many
visual schemas. This plurality of representation can be used to
capture personal and aesthetic information, discussed earlier,
both of which do not reflect information in the data schema.
Personal information is encapsulated in a superset of the data
model called the personal model. It is visualized through an
enhanced visual metaphor from the visual model to this per-
sonal model. Aesthetic information is captured in the parts of
the visual model not mapped by the metaphor. Figure 3 shows
the relationships between data, personal, and visual models,
along with the original and enhanced visual metaphors.

(Visual Model ‘,
Aesthetic Info

Figure 3: The Various Models and Metaphors.

3.2 A Brief Example

A complete discussion and examples of model and metaphor
definitions appears elsewhere [17]. The crux of the formal-

* ism is that models are described in terms of primitive types5,
atttibutes of those primitives, and possible values of the at-
tributes. Models also include constraints that must be satis-
fied by every schema in the model. Metaphors are defined as
mappings between the parts of the models. A simple exam-

5To avoid any confusion, we should note that we use ‘primitive type’ as
a shorter version of ‘type of primitive’, indicating a fundamental modeling
element/construct, and not as a qualified noun phrase, indicating a type that
is basic/simple.

ple of such a mapping is demonstrated in Figure 4. The vi-
sual model includes a primitive type that appears as a rectan-
gle with two labels inside. The data model includes the prim-
itive type “Class”, which has attributes Name and Rind, and
the Rind attribute has a set of allowable values. The metaphor
establishes correspondences between the two primitive types,
their attributes, and possible values, giving meaning to visual
schemas.
Data Model Visual Model

Class 4
Name 4 Label-l
Kind 4 -I- Label-2 ,

Tuple < 0
set * 0
:

.

.
. .

Data Schema Visual Sch

CLASS
Name =Water Stress”
Kind=Tuple

I,:“‘““‘1

Figure 4: Metaphor example, with corresponding schema in-
stantiations.

3.3 Impact of Visualization Methodology on DTSM
Flexibility

The visualization methodology described above establishes
the foundation upon which a DTSM like OPOSSUM may be
built to provide all of the necessary capabilities listed in Sec-
tion 2.2. Declarative definition of models and metaphors al-
lows users to introduce them in an evolutionary way based
on their changing needs (first capability). Customized per-
sonal models allow users to enhance schema visualizations
with user-specific annotations (second capability), while any
unused elements of a visual model allow the user to aesthet-
ically improve schema visualizations (third capability). Fi-
nally, support for multiple and mixed visual models allows
users to view the same information in multiple ways (fourth
capability).

All users of a DTSM will share the same data model, but
each one may have a distinct personal model. In addition,
there may be several visual models with as many or more vi-
sual metaphors mapping between them and the various per-
sonal models. Finally, for a given schema, personal model,
visual model, and metaphor, there may be multiple visual
schemas differing only in aesthetic information. This exten-
sive plurality of representation opportunities, the source of the
power of a DTSM, is graphically depicted in Figure 5.

4 Design and Implementation of OPOSSUM
4.1 System Architecture and Implementation

Figure 6 shows the overall architecture of OPOSSUM, which
consists of three main components: the schema manager, the
meta-creator, and the storage manager. The schema man-
ager supports schema creation/modification and exploration
(Section 2.1) and can be used by non-experts. It consists of

530

/ Personal \

Figure 5: Plurality of representation opportunities.

Model/Metaphor
Desians

User
Comniands II

Screen
lnfn

Modeb
Metaphors

l-l=
ASCII

I

, 11 Metaawrsxs’l$ls,

Figure 6: The Architecture of the OPOSSUM DTSM.

two modules. Module I accepts as input descriptions of data
models, visual models, and metaphors. Just as a database sys-
tem can manage data given a schema, Module I can manage
schemas given this model and metaphor information. At run-
time, models, metaphors and schemas are represented as in-
stances of C++ classes, and all operations on them are man-
aged by methods. Module II uses InterViews [23] to convert
visual schemas to screen objects. Given any specific visual
model and metaphor, this code provides direct manipulation
tools for creating, modifying, exploring, and printing schema
visualizations.

The second component, the meta-creator, supports cre-
ation/modification of models and metaphors and is intended
to be used by relatively knowledgeable people. Ideally, the
schema manager should be used for me&creation through
meta-models and a visual meta-metaphor that capture the
structure of models and metaphors.

Finally, the third component provides storage and in-
put/output to the first two components for models, metaphors,
and schemas. Through generic code, it offers storage to
ASCII files on disk. In addition, it can communicate schema
information with external programs for further processing.
When a model is defined for OPOSSUM, the definition in-
cludes a list of external programs that may be invoked by tbe
user to process schemas of that model. Examples of such pro-
cessing include sending the schema to the database, apply-
ing an automatic layout program to a visual schema, or pro-
ducing statistics about a schema. These external programs
are necessary because schemas in different models must be
treated differently, e.g., a relational schema will be sent to a
different database than an object-oriented schema. We should
also mention that the Storage Manager separates the parts of a
schema that are meaningful to the data model from those that
are not, permitting many visual schemas in many visual mod-
els based on the same underlying data schema.

4.2 A ‘Demo’ of OPOSSUM

In this subsection, we describe how OPOSSUM operates and
how users interact with it. Assume, for example, that a
user wants to use OPOSSUM to manage MOOSE database
schemas and prefers to view them as graphs. The user (or pos-
sibly a more knowledgeable designer) must first use the meta-
creator to define the MOOSE data model, a directed graph vi-
sual model (like that seen in Figure l), a metaphor between the
two, and any external functions needed to communicate with
the database. Once these models and metaphor are in place,
the user can invoke the schema manager. Using the model de-
scriptions, the system customizes itself to work with schemas
of those models. An example of this customization is shown
in the screen dump of Figure 7.

Near the top of the window; the “File” and “Edit” menus
provide several generic capabilities for file operations (e.g.,
printing a schema or saving it to a file), as well as visual
manipulation (e.g., cut, paste, zooming, panning, etc.). The
“Mlsc” menu contains an option for each of the model-defined
external schema processing programs mentioned in section
4.1 (e.g., it might include a program for sending the schema to
a database). On the left, there is a column of buttons, each but-
ton defining a mode for direct manipulation of screen objects.
There are generic buttons (e.g., to select, move, or stretch)
and buttons specific to the visual model. In particular, there
is a button for each primitive type of the visual model which,
when selected, permits the generation of corresponding prim-
itive instances. When these types are mapped by the metaphor
to primitive types in the Data Model, the buttons are labeled
with the Data Model type names. In Figure 7, there are two
model-specific buttons, one for the Class primitive type and
one for the Relationship primitive type. By selecting the Class
button, every subsequent mouse click on the drawing area
generates a graph Node, which is mapped by the metaphor to
a Class in the underlying data schema. By selecting the Re-
lationship button, a subsequent mouse click starts the process

531

Figure 7: The OPOSSUM Interface, using the EditTool.

for the generation of an Edge? in which the system asks the
user to specify the two Nodes connected by the Edge.

The difference in system behavior for Node or Edge cre-
ation is not achieved by any specialized code written explic-
itly for the graph/MOOSE models. It is generic code that takes
into account information that exists in the models. For exam-
ple, the model specifies that the Edge primitive type has two
attributes of type Node whose values may not be null. As a re-
sult, the system knows that it must ask the user to indicate two
Nodes whenever an Edge is created. Thus, OPOSSUM uses
the declarative definition of models and metaphors to capture
not only appearance but behavior of visualizations as well.

into those that are mapped to the underlying data model (e.g.,
Label.text mapped to ClassName) and those that simply affect
aesthetics. If a personal model had been specified as well, then
the attributes in the pop-up menu would have been partitioned
into three categories.

4.3 Implementation Status

In addition to creating instances of the various primitive
types of the visual model; a user may also want to change the
values of the attributes of some of these instances. Spatial (lo-
cation) and textual attributes can be modified directly through
the ‘Edit-Text’, ‘Move’, and ‘Stretch’ buttons. All other at-
tributes are modified using the, ‘Edit’ button. When ‘Edit’ is
selected, a mouse click on a visual primitive ‘instance results
in the appearance of a pop-up menu with all the primitive’s at-
tributes that are relevant to the area ofthe click. By choosing
one of the menu entries, a dialog box appears through which
one may specify a value for the corresponding attribute. An
example of the process is shown in Figure 7, where the system
is in ‘Edit’ mode, the menu with attributes of a Node primitive
has appeared (the Node being barely visible below the menu),
and the text of the central label of the Node has been cho-
sen for modification. Note that the attributes are distinguished

The current implementation of OPOSSUM consists of about
3 1 K lines of C++. It provides the entire spectrum of func-
tionality described above, with the exception of a few issues
on which work is still in progress (but close to completion).
Specifically, the storage manager cannot yet store personal
and aesthetic information in -an underlying database; this is
currently stored in ASCII files only. In addition, the meta-
creator does not use the capabilities of the schema manager,
instead requiring models and metaphors to be specified as ex-
pressions in a formal grammar. Work is under way to allow
meta-editing of models; a complete meta-model has been de-
fined and is undergoing testing.

Due to the diverse hardware environments of our collabo-
rating scientists in ZOO, we have strived to maintain portabil-
ity. Thus, OPOSSUM currently runs on several Unix worksta-
tion platforms, including DecStations, HP Snakes, Sun Sparc-
Stations, and SC1 Indigos. As for underlying database sys-
tems, we have developed code to communicate schemas to
both Informix and the MOOSE-based database system used
in ZOO.

532

Figure 8: The input of the Cupid simulation model as a MOOSE schema, created using OPOSSUM.

5 Case Studies: OPOSSUM in Action

At present, we have used OPOSSUM with the Relational,
MOOSE, and E-R data models, in each case using a variety
of visual models and metaphors. The visual model of graphs
has proved to be meaningful for all three data models, espe-
cially enriched with primitives for capturing abstraction (de-
scribed in Section 5.2). We have also used OPOSSUM be-
yond schema visualization, as the core of query and object vi-
sualization tools for ZOO. This section describes how OPOS-
SUM can be used for different kinds of schemas and other
data. Special attention is given to how OPOSSUM can be
used to support the complex functionality of visual abstrac-
tion.

OPOSSUM is currently used by scientists in Genetics,
Biochemistry, and Soil Sciences to design schemas for their
databases or experiments. The feedback in all cases has been
very positive, especially with respect to OPOSSUM’s ease of
use: people are able to learn the system and then organize and
layout large schemas with hundreds of classes within a few
hours. This informal feedback from our users has proved very
valuable; as our user base expands we intend to do mare or-
ganized usability assessments to better tailor the operation of
OPOSSUM to its intended users.

5.1 Cupid, MOOSE, and a Graph Visual Model

A group of soil scientists have used OPOSSUM to layout a
MOOSE schema describing the parameters of Cupid, a FOR-
TRAN simulation model of plant growth [19, 201. The in-
put part of the Cupid schema alone has 159 classes (see Fig-
ure 8). The visual model is that of a directed graph, where
Nodes and Edges represent classes and relationships, respec-

tively, Node shape and a text field represent class kind, and
the Edge’s line pattern indicates the type of the relationship.
The tool has brought substantial improvements in the scien-
tists’ work. Before OPOSSUM, the soil scientists’ only refer-
ence to Cupid was the input data file to the Fortran program,
which had grown increasingly fractured and confusing over
the years. They now use the visual schema of Figure 8 as their
reference in thinking about the model, planning experiments,
and explaining experiments to other scientists.

5.2 Grouping: a Means of Visual Abstraction

Large schemas present a major problem for schema managers;
it is often difficult to convey both large-scale structure and
fine details. In this section, we focus on abstraction, a well-
known approach for managing large graphs. We demonstrate
how OPOSSUM can be customized to support it, illustrating
in the process several features of the system. The ease with
which this is done provides a case study of the flexibility and
extensibility of our tool.

5.2.1 Problem

During schema exploration, a user often wants to see both the
high-level structure of schemas and their fine details. Due to
size and resolution limitations of common displays, however,
any attempt to view a very large schema in its entirety will
result in text and possibly shapes that are too small to deci-
pher, obtaining neither the overall structure nor the details. In
particular, when large schemas are displayed as graphs, the
amount of Nodes, Edges, and Edge crossings may limit many
of the advantages of such a metaphor (e.g., Figure 8).

533

Figure 9: The CUPID input schema, Grouped.

Figure 11: Cupid, partially abstracted.

One established approach to this problem is Grouping, i.e.,
to recursively permit subgraphs of a visual schema to form a
single abstract unit, a Group. A Group may be collapsed, i.e.,
displayed as a single Node with its constituent subgraph invis-
ible, or expanded, i.e., displayed with the entire subgraph visi-
ble. Grouping has been proposed and implemented in the past
[3, 4, 361, although not always on the scale described here.
Unlike zooming, which shows the same detail at a smaller
scale, Grouping shows less detail at the same scale. By draw-
ing only high-level Groups, the overall structure of a com-
plex schema can be clearly shown. By expanding the sub-
graphs of selected Groups, the details of these subgraphs can
be clearly seen as well. As an example, Figure 9 presents the
same schema as in Figure 8, only partitioned into rectangu-
lar Groups. Figure 10 shows the schema at its highest level
of abstraction, with only eleven Groups and Nodes. Finally,
Figures 11 and 12 show the internal structure of one and two
top-level Groups, respectively, allowing study of their details.

5.2.2 Grouping as an Example of a Mixed Metaphor

Grouping has already been seen in several systems, e.g.,
QBD* [3], SUPER [4], and others [36]. Below we describe
how it is realized in OPOSSUM, with little effort, as an ex-
ample of a mixed metaphor.

Working with the typical graph visual model described

Figure 10: Cupid, abstracted.

J

Figure 12: Cupid, partially abstracted another way.

above, we introduce a new primitive type called a Group.
Both the Node and Group primitives are given a ParentGroup
attribute, which takes values among the instances of Group in
any schema. Also, a Group has an expanded and a collapsed
visual representation, the choice between which is controlled
by the value of a Representation attribute, which makes the
resulting metaphor mixed. In the expanded representation, a
Group appears as a large box with a label at the top. In the
collapsed representation, a Group appears the same size as a
Node.

In addition to the above, the model has several constraints
to ensure the visual integrity of a schema with.Groups, among
which the most important are the following:

1. In the expanded representation of a Group, if the foot-
print of a Node or Group c is within the footprint of a
Group p, then c is a member of p.

2. The footprint of a Group is no smaller than the footprint
of all its members.

3. In the expanded representation of a Group, all its mem-
bers are visible.

4. In the collapsed representation of a Group, all its mem-
bers are invisible.

534

5. When a Group’s expanded location changes, the loca-
tions of its members change by the same amount.

Given the multiple representations of Groups and the po-
tential invisibility of Group members, visibility of Edges be-
comes an issue as well. To address this, the visual model
is enhanced with a GroupEdge primitive type. GroupEdges
connect collapsed Groups when those Groups have mem-
bers that are connected, as for example, in Figure 10. Con-
straints similar to the above are defined to handle the creation
of GroupEdges and the visibility of GroupEdges and regular
Edges.

Switching back and forth between two visualizations can
cause challenging layout problems. When a Group collapses,
e.g., from Figure 11 to 10, the entire graph should move closer
together so that it does not become too sparse. Likewise,
when a Group expands, the rest of the graph should move
away to make space for the Group’s expanded representa-
tion; otherwise, there may be Node/Group overlaps with un-
desirable semantics or aesthetics. Managing such layout side
effects caused by changes in the Group footprints is a key
challenge in implementing Grouping without using special
code just for this problem. We address this challenge using
a generic mechanism that is built in to OPOSSUM to han-
dle differently-sized alternative representations for the same
primitive type. Briefly, the system maintains separate ‘base’
locations for each possible representation, and whenever lay-
out problems occur (e.g., primitives overlapping or space be-
ing freed) each neighboring primitive moves along the line
between its current location and the appropriate base location
until the problem is solved.

From all the above, it should become clear that OPOS-
SUM can be customized to provide complex functionality like
Grouping with no specialized effort, simply through the ap-
propriate definitions of models and metaphors. Not only is
the desired appearance and behavior of Groups obtained, but
most tasks involved with using Groups can be accomplished
with very few actions on the part of the user. Grouping is a
testament to the flexibility and extensibility of our approach
to visualization.

5.3 A Relational Schema as a Graph

Another group of scientists, working on NMR research, have
used OPOSSUM to develop a very large Relational schema
(over 250 tables and more than 2000 attributes) for describing
their experiments. They have used another graph-based vi-
sual metaphor, with rectangular relation Nodes, oval attribute
Nodes, and vertical placement representing relation-attribute
relationships. In addition, primary keys are captured by a
darker color and foreign keys relationships are represented as
Edges. An example of a small piece of this schemas is shown
in Figure 13. The NMR researchers have found OPOSSUM
very useful in helping them design their large schema since
it enables them to see its overall structure and easily navigate
around it.

Figure 13: Part of the NMR Relational Schema.

Roughness - P
Has---Parr From stl-ucture

Sand - P
Has--Part From Texture

Sat . Cond. - P
Has-Parr From Water Prop.

Soil - ()
Has--Part To integer As No. Depths
Has-Part To real As Ref. Depth ,
Has-Part To Layer Depths
Has--Part From Layers

Soil - ()
Has-Part To Icumdy
Has-Part To Water Cont.
Has-Part To temp
Has-Part From Environment Data

Soil Characteristics - <)
Has-Part To Texture
Has--Part To rad. Prop.
Has--Part To Structure
Has--Fart To Water Prop.
Has-Part From CUPID INPUT

Soil RcfIect. - ()
Has--Part To NIR As NIR
Has-Part To VIS As VIS
Has-Part To THERMAL As Thermal
Has-Part From rad. Prop.

Solar RAd. - []
Collection-Of To ObjectName As Rad Values
Collection-Indexed-By To IHR
Collection-Indexed-Sy To IDAY
Has--Part From Air

Figure 14: Part of the Cupid schema, as a textual list.

5.4 Other Visual Models and Other Data

While two of the previous examples used visual models based
on directed graphs, Opossum is capable of supporting other
types of model. One example is containment for expressing
parent-child relationships, something used in Grouping. An-
other example is textual lists, whose linear nature allows them
to be sorted. Figure 14 shows a portion of the Cupid schema
visualized using a textual list visual model, sorted by class
name. This visual model and metaphor is basically a 2-level
outline, representing MOOSE classes as MainPoints, and re-
lationships as SubPoints. MainPoints are pairs of labels with a
fixed X location and free Y location. SubPoints include labels
beneath and to the right of both the source and the destination
of the Relationship. Constraints ensure placement of the Sub-
Points below the MainPoints that they connect.

The variety of visual models for schemas also prove useful

535

for queries and data. Directed graphs work well for queries;
queries can be considered as pieces of schema with various
qualifications and operators attached. To visualize them, one
only needs to extend a visual model for schemas to include
representations for the qualifications and operators. In a sim-
ilar manner, schema visualizations can be used as a template
for representing instances of data. Such a template works well
for browsing, but is less useful in showing many instances at
once (unless one has a very good automatic layout program).
For many instances, one can use a textual list, or design a vi-
sual model especially for the data, e.g., forming an x-y chart
by mapping attributes of the data to position in the plane, color
and shape of chart ticks, etc. All these examples demonstrate
that OPOSSUM has the flexibility to be used as a visualization
and editing tool for schemas and many other kinds of informa-
tion.

6 Related Work
As mentioned earlier, the main contribution of OPOSSUM
is its comprehensive support for (a) declarative definitions of
data and visual models and metaphors in a way that is ex-
plicit, extensible, and external6 to the database system, (b)
multiple and mixed metaphors for visualization, and (c) en-
hancements of schema visualizations with personal informa-
tion and aesthetic preferences. To the best of our knowl-
edge, support for (a) alone makes OPOSSUM the only im-
plemented database schema manager whose appearance and
behavior can be declaratively customized by the user. OPOS-
SUM is also unique in supporting (c), personal information.

Some of the ideas in (a) and (b) can be found in other sys-
tems. In this section, we present an overview of the spec-
trum of related (implemented or paper) systems and pinpoint
their differences from OPOSSUM. We divide systems into
four categories: schema visualization and manipulation tools
(schema managers); query or data visualization tools that use
schemas as templates; query or data visualization tools un-
related to schemas; and user interface tools, which generate
separate stand-alone visualization tools. For the last two cate-
gories, the notion of metaphor is generalized to capture a map-
ping from a visual model to arbitrary internal domains, not
simply data models. Table 1 summarizes the overall compari-
son that follows, indicating for each system surveyed whether
or not it supports any of the features in (a) and (b). When sev-
eral systems are presented as a group, the characterization of
the group in parenthesis is used as an identifier. The abbre-
viations VM and DM are used to indicate ‘visual model’ and
‘data model’, respectively.

6.1 Schema Toois

Most database systems have a fixed, hard-coded visual model
and metaphor. Although textual representations are most
common, there are other frequently used visual metaphors
including tables, graphs (such as E-R diagrams), and icons.

6We view all three ‘ex’ properties as equivalent.

There are several systems that provide multiple metaphors
for visualizing schemas, including ISIS-V [131, Sidereus [2],
SUPER [41, IDDS P51, and WINONA [29]. They provide
metaphor choices from among those listed above, as well as
more unusual metaphors such as 3-D displays and natural lan-
guage dialogs with the user. While these systems provide a
certain amount of choice, the alternatives are pre-defined and
hard-coded. Alternatively, England and Cooper [151 suggest
visualizing schemas using a data visualization tool that per-
mits user-specified mappings of information to icons in a 2-D
space. This system’s flexibility, however, stops at metaphor
definition; the data and visual models are hard-coded.

6.2 Schema Template Tools

The idea of using schema visualizations as templates for query
specification or data presentation goes all the way back to
QBE [39] and GUIDE [38] and has been routinely incorpo-
rated in many systems and prototypes.

Although not yet implemented, conceptually the most ad-
vanced of these systems (and, in fact, the one that comes
closest to OPOSSUM) is DOODLE [121. It offers a visual
declarative language that allows users to define with pic-
tures OODBMS queries or visualizations of database objects.
DOODLE defines the visual model and metaphor together,
and the former is not separable from the latter. Similarities
between OPOSSUM and DOODLE include the declarative
specification of models and metaphors, the ability to visually
specify models and metaphors, and the ability to have multiple
visual languages, i.e., multiple metaphors. The disadvantages
of DOODLE over OPOSSUM include its inability to support
mixed metaphors, and the fact that DOODLE has not yet been
implemented. The advantages of DOODLE include its ability
to visually specify visual constraints and data visualizations
and the fact that the expressive power of its language is well
studied.

On a simpler level, the Relational report generators and
forms tools found in most commercial database systems (and
some research prototypes [21, 311) allow users to specify
metaphors for schema visualizations to be used for query and
data presentation. These metaphors are usually defined either
interactively or with a declarative language, and many of them
may co-exist (i.e., one may use multiple forms or report defi-
nitions for the same data). The data and visual models in such
systems are mainly textual, however, and are not extensible.

Finally, there is a multitude of schema template visual-
ization tools in Object-Oriented database systems, which use
class methods to procedurally define object visualizations
(ADAM [27], DEED [28], ODDS [16], OdeView [l], and
others [32]). They all present the user with a single, mixed
metaphor, where each object can be seen in one of many ways.
A limitation of these systems is that there is no mechanism
to deal with co-existing contradictory or ambiguous visualiza-
tions.

536

Other Work
Schema Tools
OPOSSUM
(Most systems)
ISIS-V [13], Sidereus [2], SUPER [4], IDDS [25], WINONA [29]
1151
Schema Template Tools
DOODLE [121
(Repon Generators) & (Form Systems)

p
Binnacle [5] & (Most OODBMS Tool Generators)

1 PI

d

J
d J

J J
VM only

J 4 Partly J
VM only VM only

VM only

DM only DM only

Table 1: Comparison of OPOSSUM with other related systems.

6.3 Query/Data Visualization Tools

There are a few systems that offer choice in metaphors for
query and/or data visualization, though their metaphors and
models are not extensible. For data visualization, Hy+ [141
deals with graph-type data and provides a hard-wired mixed
metaphor to accommodate a grouping abstraction similar to
that of Section 5.2. ‘Iwo other such systems are Q-PIT [6],
which proposes allowing user-defined mappings of tuples and
attributes to visual primitives and attributes in a 3-D space
(although there is no concrete suggestion on how this map-
ping would be accomplished), and PRIMA [33], which al-
lows query results to be viewed at four levels of abstraction.
For query visualization, Catarci et. al. [9] describe a power-
ful framework that uses both mixed and multiple metaphors;
queries may be specified in a diagrammatic, form, icon, or hy-
brid fashion, with procedural transformations between them.

6.4 Tool Generators

In our discussion of tool generators (user interface tools), we
view them as a means to define models and metaphors for the
tools that they generate, and focus on the properties of their
definitional power. We distinguish two categories of tool gen-
erators, those unrelated and those related to database systems.
Most general user interface tools specify visual models proce-
durally, though a few, such as HUMANOID [35] and UIDE
[34], allow.description of visual models through expressions
in formal modeling languages. HUMANOID does not allow
any description of a data domain, and all data is encapsulated
in the visual primitive types. UIDE permits declarative defi-
nitions of the data and visual domains, though its ‘metaphor’
is defined as correspondences between operations on visual
model objects (such as a click of the mouse) and actions on
data model object (such as incrementing a value).

Model Def. Metaphor Def. Metaphor Choice
Declarative 1 Extensible Declarative 1 Extensible Multiple

I I
Mixed

d

A-.
xl

A--

5

There are several user interface tools designed to support
a specific database system and hence a single data model.
Binnacle [5] and Rl [18] are two similar systems for the
nested Relational data model, which allow procedural spec-
ified metaphors, with interface behavior determined through
an extensible description of a finite state automaton. Binna-
cle allows extensible descriptions of the visual model as well.
There are also several user interface tools for object-oriented
data models (DUET [26], FaceKit [22], 02Look/ToonMaker
[7], Picasso [30]), which allow the procedural definition of a
single, mixed metaphor, and associated visual model. There
are notable exceptions, however, which can deal with several
object-oriented and semantic data models by capturing their
common characteristics [ll], or deal with a specific object-
oriented model and uses a single, hard-coded visual model and
metaphor to automatically generate form and menu-based in-
terfaces from the database schema [81.

7 Summary

In the natural world, the Opossum is an animal known for
its acting ability; the expression “playing ‘possum” originates
from its inclination to feign death when startled or alarmed.
The OPOSSUM system is also an actor: given the script of
model and metaphor definitions, it can assume’ the role of a di-
rect manipulation editor for schemas from virtually any data
model visualized in diverse ways. Not only can OPOSSUM
play many different roles, it can also combine them into a sin-
gle, mixed role.

OPOSSUM is part of the user interface module of an on-
going effort to develop a desk-top experiment management
system called ZOO. Our future work includes the comple-
tion of the implementation of the me&creator through meta-
modelling; expansion of the methodology used in OPOSSUM

537

so that the system can be used for complete query and data
visualization within ZOO; a comprehensive evaluation of us-
ability of the system; and a study of constraint evaluation tech-
niques that could help expand the capabilities of the system.

References
[I] R. Agmwal, N.H. Gehani, and J. Srinivasan. OdeView: The Graphical

Interface to Ode. SIGMOD Record, pp. 34-43, 1990.

[2] A. Albano, L. Alfo, S. Colnccini, and R. Orsini. An Overview of
Siderens, A Graphical Database Schema Editor for Galileo. ht. &I& on
EDBT, 1988.

[3] M. Angelaccio, T. Catarci, and G. Santncci. QDB*: A Graphical Query
Language with Recursion. IEEE Transactions on Sofmare Engineering,
pp. 1150-I 163, October 1990.

[4] A. Auddino, E. Amiel, Y. Dennebony, Y. DuPont, E. Fontana, S. Spac-
capietra, and Z. Tari. Database Visual Environments Baed on Advanced
Data Models. In AVl’92: Proc. Work on Advanced Visual Interfaces, pp.
156-172, 1994.

[5] J. R. Bedell and F. J. Maryanski. Extensible Semantic Automatafor Mod-
ular Design Systems, pp. 43-56. Elsevier Science Publishers B.V., 1989.

[6] S. Benford and J. Mariani. Virtual Environments for Data Sharing and
Visualization - Populated Information Terrains. In Proc. 2nd lnt. Work. on
User Interfaces to Databases, pp. 168-184, 1994.

[7] P. Borras, J.C. Mamon, D. Plateau, B. Poyet, and D. Tallot. Building user
interface for database applications. SIGMOD Record, pp. 32-38, March
1992.

[8] R. Carapnca, A. Serrano, and J. Farinha. Automatic Derivation of
Graphic Human-Machine Inferfaces for Databases. In Proc. 1st lnt. Work.
on User lnteeaces to Databases, pp. 176-192, 1992.

[9] T. Catarci, S.K.Chang, and G. Santncci. Query Representation and Man-
agement in a Multiparadigmatic Visual Query Environment. Journal of
Intelligent Information Systems, 3(3/4):299-330, July 1994.

[lo] M. Consens and A.O. Mendelzon. Hy+: A Hygraph-based Query
and Visualization System. Technical Report CSRS-285, University of
Toronto, June 1993.

[1 I] R. Cooper. Configurable Data Modelling Systems. In Proc. 9th Co@
on the Entity Relationship Approach, pp. 57-73, 1990.

[121 Isabel Crnz. User-Defined Visual Languages for Querying Data. Tech-
nical Report CS-93-58; Brown University, December 1993.

[13] J. Davison and S. Zdonik. A Visual Interface for a Database with Ver-
sion Management. ACM Transactions on O$ice Information Systems,
4(3):22&256, July 1986.

[14] F. Ch. Eigler. Hy+ User’s Manual. Technical Report CSRS-285, Uni-
versity of Toronto, June 1993.

[15] D. England and R. Cooper. Reconfigurable User Interfaces for
Databases. In Proc. 1st lnt. Work. on User Interfaces to Databases, pp.
338-352, 1992.

[161 B. Flynn and D. Maier. Supporting Display Generation for Complex
Database Objects. SlGMOD Record, pp. 18-24, March 1992.

[17] E. M. Haber, Y. Ioannidis, and M. Livny. Foundations of Visual
Metaphors for Schema Display. Journal of Intelligent Information Sys-
tem.7, 3(3/4):263-298, July 1994.

[18] G. Honben and J. Paredaens. A Graphical Interface Formalism: Spec-
ifving Nested Relational Databases, pp. 257-276. Elsevier Science Pnb-
lishers B.V., 1989.

[191 Y. Ioannidis and M. Livny. Conceptual Schemas: Multi-Faceted Tools
for Desktop Scientific Experiment Management. lnt. Joumal of Intelligent
and Cooperative Information Systems, l(3), December 1992.

[2O] Y. Ioannidis, M. Livny, and E. M. Haber. Graphical User Interfaces for
the Management of Scientific Experiments and Data. SIGMOD Record,
pp. 47-53, March 1992.

[21] R. King and M. Novak. Freeform: A User-Adaptable Form Manage-
ment System. In Proc. lnt. Conf: on VLDB, pp. 331-339, 1987.

[22] R. King and M. Novak. FaceKit: A Database Interface Design Toolkit.
In Proc. ht. Co@ on VLDB, pp. 115-123, 1989.

1231 M. A. Linton, P. R. Calder, and J. M. Vlissides. Interviews: A C++
Graphical Interface Toolkit. Technical Report CSL-TR-88-358, Stanford
University, July 1988.

[24] R. Miller, Y. Ioannidis, and R. Ramakrishnan. The use of information
capacity in schema integration and translation. In Proc. 19th lnt. VLDB
Co@, Dublin, Ireland, 1993. .

[25] M. C. Norrie. An Interactive System for Object-Oriented Database De-
sign. In Proc. 1st lnt. Work. on User Interfaces to Databases, pp. 9-24,
1992.

[26] B.C. Ooi, C. Zhao, and H. Ln. DUET - A Database User Inter-
face Design Environment. Journal of Intelligent Information Systems,
3(3/4):33 l-356, July 1994.

[27] N. W. Paton, G. al Qaimari, and A. C. Kilgonr. An Extensible Interface
to an Extensible Object-Oriented Database System. In Proc. Zst lnt. Work
on User Interfaces to Databases, pp. 265-281, 1992.

[28] K. Radermacher. An Extensible Graphical Programming Environment
for Semantic Modelling. In Proc. 1st In?. Work. on User lnteqaces to
Databases, pp. 353-373, 1992.

[29] M. Rapley and J. Kennedy. Three Dimensional Interface for an Ob-
ject Oriented Database. In Proc. 2nd lnt. Work. on User lnterfnces to
Databases, pp. 143-167, 1994.

[30] L. Rowe, J. Konstan, B. Simth, S.Seitz, and C. Lin. The Picasso Ap-
plication Framework. Technical Report UCB/ERL M90/18, University of
California, Berkeley, March 1990.

[31] L. A. Rowe. Fill-in-the-Form” Programming. In Proc. 10th lnt. VLDB
Conf, Stockholm, Sweeden, 1985.

[32] P. Sawyer, A. Colebonme, I. Sommervill, and J. Mariani. Object-
Oriented Database Systems: a Framework for User Interface Develop-
ment. In Proc. 1st lnt. Work on User Interfaces to Databases, pp. 25-38,
1992.

[33] H. Schoning. A Graphical Interface to a Complex-Object Database
Management System. In Pmt. 1st Int. Work. on User Interfaces to
Databases, pp. 193-208, 1992.

[34] P. ‘Noi’ Snkavariya, J. D. Foley, and T. Griffith. A Second Generation
User Interface Design Environment: The Model and The Rnntime Archi-
tecture. In INTERCHI ‘93, Proc. Conj on Human Factors in Computing
Systems, pp. 375-382, 1993.

[35] P. Szekely, P Lno, and R. Neches. Beyond Intferface Builders: Model
Based Interface Tools. In INTERCHI ‘93, Proc. Cof on Human Factors
in Computing Systems, pp. 383-390, 1993.

[36] T. J. Teory, G. Wei, D. L. Bolton, and J.A. Koenig. ER Model Clnster-
ing as an Aid for User Communication and Documentation in Database
Design. Communications of the ACM, pp. 975-987, August 1989.

[37] J. L. Wiener and Y. Ioannidis. A Moose and a Fox can aid scientists with
data management problems. In Proc. 4th lnt. Work on Database Program-
ming Languages, 1993.

[38] H. K. T. Wong and I. Kon. GUIDE: Graphical User Interface for
Database Exploration. In Proc. lnt. Co@ on VLDB, pp. 22-32, 1982.

[39] M. Zloof. Query-by-Example, The Invocation and Definition of Tables
and Forms. In Proc. lnt. Co@ on VLDB, 1975.

538

