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Abstract 
We present a shape definition language, called SDC, 
for retrieving objects based on shapes contained in 
the histories associated with these objects. It is a 
small, yet powerful, language that allows a rich variety 
of queries about the shapes found in historical time 
sequences. An interesting feature of SDC is its ability 
to perform blurry matching. A “blurry” match is one 
where the user cares about the overall shape but does 
not care about specific details. Another important 
feature of SVL is its efficient implementability. The 
SVC operators are designed to be greedy to reduce 
non-determinism, which in turn substantially reduces 
the amount of back-tracking in the implementation. 
We give transformation rules for rewriting an SDL 
expression into a more efficient form as well as an index 
structure for speeding up the execution of SVC queries. 

1 Introduction 
Historical time sequences constitute a large portion 
of data stored in computers. Examples include 
histories of stock prices, histories of product sales, 
histories of inventory consumption, etc. Assume a 
simple data model in which the database consists of 
a set of objects. Associated with each object is a set 
of sequences of real values. We call these sequences 
histories and each history has a name. For example, 
in a stock database, associated with each stock may 
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be histories of opening price, closing price, the high 
for the day, the low for the day, and the trading 
volume. 

The ability to select objects based on the occur- 
rence of some shape in their histories is a require- 
ment that arises naturally in many applications. 
For example, we may want to retrieve stocks whose 
closing price history contains a head and shoulder 
pattern [4]. We should be able to specify shapes 
roughly. For example, we may choose to call a trend 
uptrend even if there were some down transitions as 
long as they were limited to a specified number. 

To t,his end, we propose a shape definition 
language, called SDC. It is a small, yet powerful, 
language that allows a rich variety of queries about 
the shapes found in histories. The most interesting 
feature of SVC is its capability for blurry matching. 
A “blurry” match is one where the user cares 
about the overall shape but does not care about 
specific details. For example, the user may .be 
interested in a shape that is five time periods long 
and contains at least three ups but no more than 
one down. SVC has been designed to make it 
e&y and natural to express such queries. Another 
important feature of SDC is that it has been 
designed to be efficiently implementable. Most 
of the SDC operators are greedy and therefore 
there is very little non-determinism (in the sense 
of multiple match possibilities) inherent in an SVC 
shape, which in turn substantially reduces the 
amount of back-tracking in the implementation. In 
addition, SDC provides the potential for rewriting 
a shape expression into a more efficient form as 
well aa the potential for indexes for speeding up 
the implementation. 

SDC benefits from a rich heritage of languages 
based on regular expressions, but this earlier work 
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UP slightly increasing transition 

UP highly increasing transition 
down slightly decreasing transition 
Down highly decreasing transition 
appears transition from a zero value to a non-zero value 
disappears transition from a non-zero value to a zero value 
stable the final value nearly equal to the initial value 
zero both the initial and final values are zero 

Symbol 1 Description I lb I ub 
.05 
.20 

-.19 
-1.0 

0 
-1.0 
-.04 

0 

Table 1: An Illustrative Alphabet A 

.19 
1.0 

-.05 
-.19 

L 1.0 
0 

.04 
0 

has a different design focus that influences which 
expressions are easy to write, understand, optimize, 
and evaluate. For example, while the blurry 
matching of SVC is reminiscent of approximate 
matching for strings (e.g., [9]) or for patterns in time 
series [2], SVC allows the user to impose arbitrary 
conditions on the blurry match but requires that 
the user specify those conditions completely. The 
event specification languages in active databases 
[3] [5] [6] concentrate on detecting the endpoints 
of events rather than concentrating on intervals as 
SVC does. The S&Q work of [S] focused on building 
a framework for describing constructs from various 
existing sequence models. 

Organization of the Paper The rest of the pa- 
per is organized as follows. In Section 2, we intro- 
duce SVC informally through examples; the formal 
semantics is given in Appendix A. In Section 3, we 
discuss the design rationale of SVC. We discuss its 
expressive power, its capability for blurry matching, 
its ease of use, and its efficient implementability. In 
Section 4, we give transformation rules for rewriting 
an SVC expression into an equivalent but a more 
efficient form. In Section 5, we describe an index 
structure and show how it can be used to speed up 
the evaluation of SVC queries. We conclude in Sec- 
tion 6 with a summary. For an expanded version of 
this paper, see [l]. 

2 Shape Definition Language 
We will introduce our shape definition language, 
SVC, informally through examples. The formal 
semantics is given in Appendix A. Every object in 
the database has associated with it several named 
histories. Each history is a sequence of real values. 

The behavior of a history can be described by 
considering the values assumed by the history at 

iV 

anyvalue 
anyvalue 
anyvalue 
anyvalue 

zero 
nonzero 
snyvalue 

zero 

fv 
anyvalue 
anyvalue 
anyvalue 
anyvalue 
nonzero 

zero 
anyvalue 

zero 

the beginning and the end of a unit time period; 
that is, by considering transitions from an instant 
to the following one. It is immediate then that 
a history generates a transition sequence based 
on an alphabet whose symbols describe classes of 
transitions. 

2.1 Alphabet 

The syntax for specifying alphabet is : 

(alphabet (symbol Ib ub iv fv)) 

Here symbol is a symbol of the alphabet being 
defined and the rest four descriptors provide the 
definition for the symbol. The first two, lb and ub, 
are the lower and upper bounds respectively of the 
allowed variation from the initial value to the final 
value of the transition. The latter two, iv and fv, can 
be one of zero, nonzero and anyvalue, and specify 
constraints on the initial and final value respectively 
of the transition. 

Table 1 gives an illustrative alphabet A. Consider 
the time sequence 7f in Figure 1. 

Given alphabet A, a transition sequence corre- 
sponding to ti will be: 

(zero appears up up up down stable Down 
down disappears) 

Depending on the alphabet, there can be more than 
one transition sequence corresponding to a time 
sequence. For example, another transition sequence 
corresponding to ‘H is: 

(zero stable up up up down stable Down down 
stable) 

This ambiguity does not cause inconsistency at 
query time because the user specifies the particular 
shape to be matched. For example, if the user 
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This definition has no parameters. The meaning of ’ 
the descriptor will become clear momentarily. 

1 I 
0 

2 

4 0 0 10 

Figure 1: Time Sequence ‘H = (0 0 .02 .17 .35 .50 
.45 .43 .15 .03 0) 

had asked for stable, we will resolve the ambiguity 
between stable and zero,in the favor of stable. 

We will use the alphabet A and the time sequence 
‘H throughout the paper to give concrete examples. 
We will use the notation ‘H[i,j] to represent the sub- 
sequence of X consisting of elements from position 
i to the position j inclusive, 0 being the first po- 
sition. ‘H[i,i] will represent the null sequence since 
an elementary shape (see Section 2.2.1) requires at 
least one transition. 

2.2 Shape Descriptors 
Using the alphabet of the language, we can define 
classes of shapes that can be matched in histories or 
parts of them. The application of a shape descriptor 
P to a time sequence S produces a set of all the 
subsequences in S that match the shape P. If no 
subsequence in S matches P, then the result is an 
empty set. Depending on the descriptor, a null 
sequence can match a shape. For the convenience 
of the user, however, the null sequences are not 
reported to the user. 

The syntax for defining a shape is: 

(shape name(parameters) descriptor) 

A shape definition is identified by means of a 
name for the shape, which is followed by a possibly 
empty list of parameters (see Section 2.4) and then 
a descriptor for the shape. For example, here is a 
definition of a spike: 

(shape spike0 (concat Up up down Down)) 

2.2.1 Elementary Shapes 
The simplest shape descriptor is an elementary 
shape. All the symbols of the alphabet correspond 
to elementary shapes. When an elementary shape 
is applied to a time sequence S, the resulting set 
contains all the subsequences of S that contain only 
the specified elementary shape. 

For example, the shape descriptor (stable) 
applied to the time sequence 3-1 given in Figure 1 
yields the set {?f[O,l], ‘&[1,2], ‘H[9,10]}, where 
‘H[O,l] = (0 0), ‘H[1,2] = (0 .02) and X[9,10] = (.03 
0). The descriptor (zero) yields the set {ti[O,l]}. 
Note that the subsequence ‘H[O,l] is contained 
in the result set of both the descriptors because 
the transition corresponding to this subsequence 
satisfies the definitions of both stable and zero. 
Finally, the shape descriptor (Up) results in an 
empty set because ‘H contains no Up transition. 

2.3 Derived Shapes 

Starting with the elementary shapes, complex shapes 
can be derived by recursively combining elementary 
and previously defined shapes. We describe next 
the set of operators available for this purpose. 

Multiple Choice Operator any. The any oper- 
ator allows a shape to have multiple values. The 
syntax is 

(any PI P2 . . . P, 1 

where Pi is a shape descriptor. When a shape 
obtained by means of the any operator is applied 
to a time sequence S, the resulting set contains all 
the subsequences of S that match at least one of 
the Pi shapes. 

For example, the shape (any zero appears) 
applied to the time sequence 7-l yields the set 
{‘X[O,l], ‘H[1,2]}, where ‘H[O,l] = (0 0) which is a 
zero transition and ‘H[1,2] = (0 .02) which is an 
appears transition. 

Concatenation Operator concat. Shapes can 
be concatenated by using the operator concat: 

(concat ‘PI PZ . . . P, 1 

When a shape obtained by using the concat 
operator is applied to a time sequence S, first the 
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shape PI is matched. If a matching subsequence 
s is found, PZ is matched in the subsequence of S 
immediately following the last element of s and the 
match is accepted if it is strictly contiguous to s, 
etc. For example, the shape descriptor 

(concat up up up (any stable down) 
(any stable down) (any down Down)) 

specifies that we are interested in detecting if an 
upward trend (indicated by three consecutive ups) 
has reversed (indicated by two stables or downs, 
followed by a down or Dovn). When applied to the 
time sequence 3-1, it yields the set {3c[2,8]}, where 
7f[2,8] = (.02 .17 .35 .50 .45 .43 .15). The transition 
sequence corresponding to this subsequence is (up 
up up down stable Down). 

Multiple Occurrence Operators exact, atleast, 
atmost. Shapes composed of multiple contiguous 
occurrences of the same shape can be defined using 
three other operators, exact, atleast and atmost: 

(exact n P) 
(atleast n P) 
(atmost 12 P) 

When a shape obtained using exact/atleast/ 
atmost is applied to a time sequence S, it matches 
all subsequences of S that contain exactly/at 
least/at most n contiguous occurrences of the shape 
P. In addition, the resulting subsequences are 
such they are neither preceded nor followed by a 
subsequence that matches P. For example, 

(exact 2 up) yields 0. 
(atleast 2 up) yields {%[2,5]}, where 

‘H[2,5]= (.02 .17 .35 .50). 
(atmost 2 up) yields {[k, k] 1 

O~k~lV6<k~lO). 

The first shape results in an empty set because 
there is no subsequence in ‘H which is exactly 
two transitions long, consisting entirely of up 
transitions, and neither preceded nor followed by 
an up transition. The second shape matched 
the subsequence consisting of three contiguous up 
transitions. 

The result for the third shape merits further 
discussion. The shape (atmost 2 up) matches 
the null sequence at those positions of ‘Ii that do 
not participate in an up transition. The other 
null sequences are not in the answer since they 

participate in a sequence of 3 consecutive ups. Since 
the final answer in this case is a set of null sequences 
and we do not report null sequences, the user will 
see 0 as the answer. Allowing a null sequence 
to match atmost n P has the virtue that we can 
naturally specify 

(concat (atleast 2 up) (atmost 1 Down)) 

and match it to ‘H[2,5] corresponding to the transi- 
tion sequence up up up. 

Bounded Occurrences Operator in. The in 
operator is the most interesting SDL operator. It 
permits blurry matching by allowing users to state 
an overall shape without giving all the specific 
details. The syntax is 

(in length shape-occurrences) 

Here length specifies the length of the shape in 
number of transitions. The shape-occurrences has 
two forms. 

In the first form, the shape-occurrences can be 
one of 

(precisely 12 P) 
(noless n Q) 
(nomore n R) 

or a composition of them using the logical operators 
or and and. 

When a shape defined using this form is applied 
to a time sequence S, the resulting set contains all 
subsequences of S that are length long in terms of 
number of time periods (transitions) and contain 
precisely (no less than/ no more than) n occurrences 
of the shape P (Q/R). The n occurrences of 
P (Q/R) need not be contiguous in the matched 
subsequence; there may be arbitrary gap between 
any two of them. They may also overlap. For 
example, the’ shape descriptor 

(in 6 (and (noless 2 (any up Up)) 
(nomore I (any down Down)))) 

specifies that we are interested in subsequences five 
intervals long that have at least two ups (either 
up or Up) and at most one down (either down or 
Down). When applied to the time sequence X, it 
yields the set {R[2,7]}, where %[2,7] = (.02 .17 .35 
.50 .45 .43). The transition sequence corresponding 
to this subsequence is (up up up down stable). 
Note that the subsequence ‘H[3,8] = (.17 .35 .50 
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.45 .43 .15) E (up up down stable Down) is not 
in the answer because it has two downs. As another 
example, consider the shape 

(in 7 (precisely 0 Down)) 

We are looking for sequences seven time periods 
long that do not have any Down transitions. ‘Ff[O,7] 
is the only subsequence of 3-1 that satisfies this 
constraint. 

The operators precisely, noless, nomore should 
not be confused with the multiple occurrence op- 
erators exact, atleast, and atmost. The lat- 
ter are “first class” operators that can be used 
to introduce shapes to be matched, whereas the 
former can only appear within the in operator 
and constrain the sub-shapes. More importantly, 
precisely, noless, and noinore allow overlaps and 
gaps, whereas exact, atleast, and atmost do not. 

The second form for the shape-occurrences is: 

(inorder PI PZ . . . Pn) 

where Pi is a shape descriptor. When a shape 
obtained using this form is applied to a time 
sequence, each of the resulting subsequences is 
length long and contains the shapes PI through P, 
in that order. Pi and Pi+1 may not overlap, but 
they may have arbitrary gap. For example, the 
shape descriptor 

(in 7 (inorder (atleast 2 (any up Up)) 
(in 4 (noless 3 (any down Down)>)>) 

specifies that we are interested in subsequences 
seven time periods long. The matching subsequence 
must contain a subsequence that has atleast two ups 
and that must be followed by another subsequence 
four intervals long that contains at least three 
downs. When applied to the time sequence ‘If, it 
yields the set {X[2,9]}, where 7f[2,9] = (.02 .17 
.35 .50 .45 .43 .15 .03) s (up up up down stable 
Down down). 

2.4 Parameterized Shapes 
Shape definitions can be parameterized by specify- 
ing the names of the parameters in the parameter 
list following the shape name and using them in the 
definition of the shape in place of concrete values. 
Here is an example of a parameterized spike: 

(shape spike(upcnt dncnt) 
(concat (exact upcnt (any up Up)) 

(exact dncnt (any down Down)>)) 

When a parameterized shape P is used in the 
definition of another shape Q, the parameters of P 
must be bound. They can be bound to concrete 
values or to the parameters of Q. Here is an 
example: 

(shape doublepealc(width htl ht2) 
(in width (inorder spike(ht1 htl) 

spike(ht2 ht2)))) 

3 Design of SDL 
SVL provides the following key advantages: 

l a natural and powerful language for expressing 
shape queries 

l capability for blurry matching 

l reduction of output clutter 

l an efficient implementation 

3.1 Expressive Power of SDL 
Using SDL, one can express a wide variety of 
queries about the shapes found in a history. Given 
a sequence and a shape, one type of query (called 
continuous matching in [S]) finds all the subse- 
quences that match the shape; the other type of 
query (referred to as “regular matching” in this pa- 
per) produces a boolean indicating whether the en- 
tire sequence matches the shape. 

Since SDL includes the operators concat, any, 
and atleast, SDC is equivalent in expressive power 
to regular expressions for regular matching. This 
equivalence is proven in [l]. Because SDL is de- 
signed to provide ease of expression together with 
an efficient implementation, it has several features 
to enhance its effectiveness. The atleast opera- 
tor, which is a variant of the * operator of regu- 
lar expressions, provides both efficiency gains and 
expressiveness enhancements for continuous match- 
ing. The * operator, once it has found the re- 
quired number of matches, is allowed (nondeter- 
ministically) either to exit or to continue matching; 
whereas atleast is a greedy operator that does not 
exit until it has found as many matches as it can. 
In the regular matching case, the greedy nature of 
atleast does not cause a loss of expressive power 
since one can always write the shape so that subse- 
quent shapes are not affected by the greedy nature 
of atleast. Details of this construction are given 
in [l]. 
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In the case of continuous matching, the greedy se- 
mantics of atleast allow SVC to take advantage of 
contextual information to eliminate useless clutter. 
For example, given the shape (atleast 5 up), SVL 
will find all the maximal subsequences that have at 
least five consecutive ups. In other words, SDL does 
not report the non-maximal subsequences thereby 
eliminating useless clutter. Regular expressions 
would not be able to eliminate the clutter since they 
are unable to “look-ahead” to provide contextual 
information. If there happen to be seven consecu- 
tive ups in the history, SVL will report this single 
subsequence of length 7 whereas the regular expres- 
sion would report six different (largely overlapping) 
subsequences; there would be three subsequences of 
length 5, two subsequences of length 6, as well as 
the entire subsequence of length 7. If, in the future, 
finding all such subsequences becomes important, a 
non-greedy version of atleast could be added eas- 
ily to SVL. 

3.2 Ease of Expression in SVC 

SVC is designed to make it easy and natural to ex- 
press shape queries. For example, the atleast op- 
erator provides a compact representation of repeti- 
tions that seems natural even to someone not famil- 
iar with regular expression notation. SVC provides 
a (non-recursive) macro facility (with parameters) 
that enhances readability by allowing commonly oc- 
curring shapes to be abstracted. 

One of the most exciting features of SVC is the 
inclusion of the in operator that permits “blurry” 
matching in which the user cares about the overall 
shape but does not care about specific details. For 
example, to indicate a uptrend with a.subsequence 
specified by the in operator, the user might specify 
(nomore 2 down) thereby limiting the number of 
downs that can occur in the subsequence. While 
the in operator can be simulated using regular 
expressions, it is not easy to do so. The details 
of the construction can be found in [l] and involve 
keeping track of how many times diverse finite 
automatons have entered accepting states. The in 
operator presents a much more natural method for 
expressing the desired shape. 

It is instructive to give an example. Assume that 
al,..., a, are “disjoint” elementary shapes (where 
two elementary shapes are disjoint if they never 
match the same transition sequence). Consider 
the problem of finding a “permutation” expression 
that matches exactly those sequences of length n 

that have precisely one occurrence of each ei. The 
straightforward approach of listing all such possible 
strings grows factorially. It is well-known that the 
permutation expression can be compacted a bit to 
exponential size but no further compaction is possi- 
ble in regular expression notation. (See [l] for more 
details and for proofs.) Since at least exponential 
size is required, expressing permutations in regular 
expression notation is tedious, error-prone, and not 
particularly readable. 

Parameterized shapes (macros) can dramatically 
reduce the size of a permutation expression. One 
can define (inductively) the parameterized shapes 
Pi to describe all permutations of i elements as 
follows: 

(shape PI(x:~>(x:~)) 
(shape &(zl, ~2) (=y (concat XI PI(Q)) 

(con-t 22 PI))) 

(shape P~(xI,Q,Q) (my (concat $1 Pz(Q, a)) 
(con-t 22 P2(~1,~3)) 

(con-t 23 P2(x1,22)) 

(shape Pi(Zl,...,Zi) 
(any (concat X1 Pi-l(Xz, . . . , Xi)) 

. . . (concat Xi Pi-l(Zl,...,Xi-I)))) 

Since each Pi has size O(i2), a permutation expres- 
sion for n elements has size O(n3). 

Blurring matching provides an even more effec- 
tive permutation expression. For example, (in n 
(and (precisely 1 ur) . . .(precisely 1 a,)) does 
the trick in only linear size. It is instructive to ex- 
amine the features of blurry matching that permit 
such a compact permutation expression. Blurry 
matching permits the use of conjunctive as well 
as disjunctive expressions. It is well known that 
adding “and” to regular expressions does not in- 
crease the expressive power of regular expressions 
but does permit more compact expressions (see 
Chapter 3 exercises in [7]). A permutation expres- 
sion is such an example. The regular expression 
(ui 1. . . ]a,) can be used to describe all the charac- 
ters. By concatenating n copies, it is possible to 
express in O(n2) size all sequences of length exactly 
n. It is also easy to see that the regular expression 
(al I * * * I&-l l&-+1 I . * * I%)* ai (al I * * * /ai-ll%+l I . * * ( 

an)* expresses all sequences that have exactly one 
ui. By conjuncting these expressions together, we 
obtain a regular expression with conjunctions that 
expresses permutations and has size O(n2). As al- 
ready noted, a (pure) regular expression that ex- 
presses permutations must have exponential size. 
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The compactness of permutation expressions in 
blurry shape notation is primarily due to the fact 
that blurry shapes permit conjunctions. Blurry 
shapes also enhance readability by allowing over- 
lap directly whereas regular expressions (even with 
conjunctions) can handle overlap only indirectly by 
coding up the overlap in a different regular ex- 
pression. Even though the permutation example is 
somewhat contrived to permit the easy analysis of 
the complexity and expressive of SVC versus regu- 
lar expressions, it is representative of a large class 
of blurry queries that search for shapes which may 
occur in any order. 

3.3 Efficient Implementability for SVL 
Since the semantics of SVL specifies that operators 
such as atleast be greedy, any is the only oper- 
ator that introduces any “non-determinism”. (In 
this context, non-determinism means that there is 
some starting point that has at least two different 
subsequences that match starting from that partic- 
ular starting point.) This implies that the amount 
of back-tracking an SVL implementation needs to 
do is substantially reduced. For example, in the 
shape (concat (atleast 4 P)(atleast 3 Q)) un- 
der the normal regular expression semantics, after 
4 P’s were found, the evaluator (i.e. automaton) 
would have to keep searching for P as well as begin 
searching for Q. In the SVL semantics, the search 
for & would not begin until all the P's had been 
found. 

In addition, SVL provides the potential for 
rewriting a shape expression into a more efficient 
form (Section 4) as well as the potential for indexes 
(Section 5). 

4 Shape Rewriting 
We now present a set of transformation rules to 
rewrite a shape expression into an equivalent but 
a more eficient expression. SVC shape operators 
can be classified into the following groups: 

a concat, exact, atleast, atmost, and inorder: 
Shape arguments must appear in the specified 
order without overlap. 

l precisely, noless, and nomore: Shape argu- 
ments must appear in the specified order but 
can overlap. 

l and, or and any: Shape arguments may appear 
in any order. 

An operator can be rewritten using only operators 
belonging to the same group. 

4.1 Idempotence, Commutativity, and 
Associativity 

An operator has the idempotence property if the du- 
plicates of a shape can be removed. It has the com- 
mutativity property if shapes can be permuted. The 
sssociativity property is useful for unnesting similar 
operators, after which redundant shapes can be re- 
moved using idempotence and commutativity. The 
any, or, and and operators are idempotent, commu- 
tative, and associative. The concat and inorder 
operators are associative (but not idempotent and 
commutative). 

Here is an example of the application of these 
properties: 

(=Y Pl (any p2 S)) 

* (any Pi P2 Pi) - associativity 
* (any Pi PI P2) - commutativity 
* (any PI P2) - idempotence 

4.2 Distributivity 

The concat and and operators distribute over any 
and or operators: 

(concat PI (any P2 P3)) 
* (any (concat PI P2) (concat PI P3)) 

(ad 9 (or PZ pa)) 
& (or (and PI Pz) (and PI Ps)) 

Deciding which form is less costly to match is 
similar to the problem of distributing the join over 
the union in rel.ational query optimization, since 
concat and and result in joins and any and or result 
in a union of resulting sets (see Section 5). 

4.3 Folding identical shapes in concat 

Identical shapes inside the concat operator are 
folded using the exact operator. For example: 

(concat PI P2 P2 . . . P2 P3) 
* (concat PI (exact n P2) P3) 

where n is the number of occurrences of P2 in 
the original shape definition, and PI and P3 do 
not have a common suffix/prefix with P2. This 
transformation allows the index structure presented 
in Section 5 to be used to evaluate the subshape 
(exact n P2). 
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4.4 Multiple Occurrences Operators 
The shape expressions involving a multiple Occur- 
rences Operator (MOO) can often be reduced to 
simpler expressions. The transformation rules fall 
into three categories, depending on how the MOO 
has been used: composed with another MOO, inside 
concat, or inside any. 

Composition. When a MOO, Ml, is composed 
with another MOO, M2, the result depends on what 
Ml is: 

({exactlatleast} n (M2 m P)) 
*((Ma mP)if n=l, 0 ifn>l. 

(atmost n (A2 m P)) 
e (any (exact 0 (Mz m P)) (Mz m P)) 

if n 21. 

In the rule for the atmost operator, the shape 
arguments to any in the right-hand side of the rule 
correspond to 0 and 1 occurrences of the atmost 
argument in the match. 

Inside concat. When the concat operator is 
applied to two MOOS, Ml and M2, on the same 
shape, the result is 0. The only exception is when Hz 
matches the null sequence, in which case the result 
is the same as yielded by Ml. ~2 can match the null 
sequence either because it is atmost or because the 
specified number of occurrences is 0. 

(concat (Mi n P) (MS m P)) 0 (Ml n P) if 
(Mz=atmost or m=O), and 0 otherwise. 

Inside any. The operators atmost and atleast 
can match a range of number of occurrences of 
the specified shape, whereas exact matches only 
the specified number of occurrence. Therefore, 
their behavior differs inside any. Two atmost 
(or atleast) over the same shape are equivalent 
to one atmost (or atleast) with the number of 
occurrences equal to the maximum (or minimum) 
of the original ones. 

(any (atleast n P) (atleast m P)) 
* (atleast min(n,m) P) 

(any (atmost n P) (atmost m P)) 
(j (atmost moz(n, m) P) 

If two exact over the same shape specify the same 
number of occurrences, they can be reduced to 
one exact; otherwise, the shape expression remains 
unchanged. 

When different MOOS are used inside any, we 
have the following rules (the order in which different 
MOOS are written inside any is not important 
because any is commutative): 

(any (exact 72 P) (atleast m P)) 
($ (atleast m P) if m 5 12, 

(atleast n P) if n = m - 1 
(any (exact 71 P) (atmost m P)) 

(j (atmost m P) if m 2 12, 
(atmost n P) if m = n - 1 

(any (atmost n P) (atleast m P)) 
H(atleastOP) ifmln+l 

The above rules are the consequence of the 
following rewritings of atleast and atmost: 

(atleast nP) * (any ( exact 12 P) (exact (n+ 1) P) 
. (exact (p- 1) P) (exact p P)) 

(atmost n P) G (any (exact 0 P) (exact 1 P) . . . 
(exact (n - 1) P) (exact n P)) 

where p is the length of the interval over which the 
matching is being performed. 

4.5 The “in” operator 
When composed with each other, the operators 
precisely, noless and nomore have the same 
properties as the MOOS. When used inside and 
or or operators, they have the same properties as 
MOOS when used inside concat or any operators, 
respectively. 

When the length specified for the in operator is 
less than the guaranteed minimum length of the 
shape or the interval length where the match is 
to be performed, then the result is empty. The 
guaranteed minimum length can often be computed 
when the shape expression involves noless or 
precisely. 

It might be tempting, but inorder cannot be 
rewritten using the other in operators because 
it is the only .one in the in family that allows 
gaps but not overlap. For example, the following 
transformations are not valid: 

(or (inorder Pi P2) (inorder PZ PI)) 
+ (ad 9 P2) 

(inorder P . . . P) 
$4 (precisely ra P) 

5 Indexing 
A straightforward method to evaluate a shape query 
will be to scan the entire database and match the 
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specified shape against each sequence. We propose 
a storage structure and show how it is used for 
speeding up the implementation of S’DDL. 

5.1 The Storage Structure 

The proposed hierarchical storage structure, which 
also acts as an index structure, consisting of four 
layers. The top layer is an array indexed by a 
symbol name from the alphabet. Its size is ns where 
ns is the number of symbols in the alphabet. Its 
elements point to one instance of the second layer. 
An instance of the second layer is an array indexed 
by the start period of the first occurrence of the 
symbol in the sequence, whose elements point to 
one instance of the third layer. The size of an 
array of this layer is np where np is the maximum 
number of time periods in some time sequence. One 
instance of the third layer is an array indexed by the 
maximum number of occurrences of the associated 
symbol. Each element of this array points to a 
sorted list of object-ids. Consider an array at this 
layer, being pointed to from the kth element of a 
second-layer array. This array will have np - 6 
elements, starting from the &h position, because 
a symbol can occur at most np- k times. Thus, the 
number of elements in a third-layer array depends 
on its parent in the second-layer. We use NULL, 
as a special value, to mark elements corresponding 
to empty combinations, e.g., when a given symbol 
does not start at a specific position in any of the 
sequences in the database. Having created this 
structure, we no longer need the original data. 

Figure 2 illustrates this structure. The specific 
entries in this structure are for the sequence ‘BY given 
in Figure 1. 

The size of the first three layers of the structure 
is independent of the number of sequences in the 
database, whereas the fourth layer depends on the 
number of sequences. In the worst case, the first 
three layers will have ns( 1 + np + np x (np + 1)/2) 
entries, which can be approximated to ns x: npa/2. 
This case arises when all the elements of all the 
arrays are non-NULL. In the worst case, there 
can be a total of np entries in the fourth layer 
for a sequence whose transition sequence does not 
contain any identical symbol in two contiguous 
positions. In the best case, there will be one 
entry. If sequences have on average k identical 
contiguous symbols, the total number of entries in 
the index will roughly equal np x (ns x np/2 + 
nseq/k). The original data sequences can be stored 

as sequences of tuples (s, k’), where k’ is the number 
of contiguous occurrences of the symbol s, requiring 
2x npx nseq/k entries. We generally expect np to be 
much smaller than nseq. Thus, if we were to store 
sequences using the index storage structure, we can 
save storage as long as k < (2 x nseq)/(ns x np). 
For ns = 10, np = 50, nseq = 1000, k up to 10 can 
save storage. In addition, the index can speed up 
query processing. 

5.2 The Mapping Problem 

There may be more than one transition sequence 
corresponding to a time sequence. For example, 
the time sequence (0 0 0) can be mapped either 
to (zero zero) or to (zero stable). One way to 
deal with this problem is to store both mappings in 
the index. However, this may lead to an exponential 
explosion in the number of mappings. Instead, we 
store only one form in the index as explained below. 

Assume the existence of a set P of primitive el- 
ementary shapes that are disjoint (i.e. every tran- 
sition is in at most one of the primitive shapes). 
Thus, there is no ambiguity with regard to the mem- 
bers of the set P. Further assume that every ele- 
mentary shape is the “union” of some subset of P 
(i.e. every transition in the given elementary shape 
is in exactly one of the primitive elementary shape 
in the subset of P corresponding to the given el- 
ementary shape). In this case, the transformation 
rule E ($ (any Pi . . . Pn) eliminates the elemen- 
tary shape E in favor of the corresponding primitive 
elementary shapes Pi . . . Pn for which there is no 
ambiguity. 

Since there might not already be a set of primitive 
elementary shapes, it might be necessary to add 
new primitive elementary shapes. In general, this 
requires an exponential number of new primitive 
elementary shapes since there would need to be a 
new primitive elementary shape for every possible 
non-empty subset of the original elementary shapes. 
Fortunately, there is a natural sufficient condition 
that requires only a linear blowup in the number of 
new primitive elementary shapes. If every primitive 
shape can be associated with an interval of real 
numbers, then there is only linear blowup. TO 
see this, imagine n elementary shapes. These give 
rise to 2n endpoints. These endpoints define at 
most 2n + 1 disjoint consecutive intervals. (There 
may be fewer than 2n + 1 intervals since some 
of the endpoints might coincide.) Add a new 
primitive symbol for each such interval, giving rise 

510 



transitic 

start 

period 

In (or shape) 
zero BDDears up UP stable down Down disappears 

NLJLL / \ \ 

\ / 

number of 
consecutive 
Occurences I \ I-* I I I \ I-* P 

1 np-1 

a 

2 R 

1 np-5 

+ 
. . 

0 H 
Figure 2: An index structure for SVL queries. 

to 2n + 1 new primitive symbolsl. Each of the 
original elementary shapes can clearly be expressed 
as the “union” of the corresponding new primitive 
elementary shapes. Intuitively; the fact that each 
of the original elementary shapes has an associated 
interval implies that most of the “intersections” 
between the original elementary shapes is empty 
and thus require no new primitive shapes, thereby 
controlling the blowup. 

5.3 Shape Matching Using the Index 

Notation In the following, P and D denote 
an elementary and a derived shape, respectively, 
ewal(D, [s, e]) d enotes the evaluation of shape D 
within the interval [s,e], and p denotes the length 
of the interval, i.e., p = e - s. The result of 
eval is a set of tuples [aid, start, length], where 
oid is the object-id, start is the start period, and 
length the length of the matched subsequence. 
The notation shape[P].start[z].occur[y] means “get 
object identifiers that have y occurrences of the 
shape P starting from z”, and represents index 
traversal. The tuples resulting from matching the 
null sequence have start = s and length = 0. 

5.3.1 Operations on Elementary Shapes 

We first consider the evaluation of elementary 
shapes and those shapes derived by applying mul- 
tiples occurrences operators on elementary shapes. 
l Elementary shape 

‘Extra primitive symbols may be needed to handle 
constraints on initial and final values. 

1 np-7 

F . . 
0 R 

eval( P, [s, e]) = { [oid : o, start : i, length : l] 1 32, y 
(o E shape[P].start[z].occur[y])A 
(max(s, z) < i < min(z + y, e))} 

0 exact 

eval(ezact n P, [s, e]) = 
{[oid:o, start :maz(s, z), length:n] 1 3 2, y 
(o E shape[P].start[t].occur[y]) A (z 5 e - n)A 
(s+n 5z+y) A ( min(e, y+z)-mat(s) 2)= n)} 

When n = 0, we cannot use directly the index to 
get subsequences that match the null sequence. In- 
stead, they are computed by the following expres- 
sion: 

eval(ezact 0 P, [s, e]) = { [oid : 0, start : s, length : 0] 1 
[o, s] # eval(atleast 1 P, [s, e])[oid, start]) 

0 atmost 

eval(atmost n P, [s, e]) = {[oid: 0, start: 7na2(s, 2)) 
length: min(e, z + y) - maz(s, z)] 1 3 z, y 
(o E shape[P].start[z].occur[y]) A (z < n)A 
(s<z+y) A (min(e, z+y)-maz(s, z) In)} 
U ewal(ezact 0 P, [s, e]) 

0 atleast 

eval(atleast n P, [s, e]) = {[oid: 0, start : ma2(s, 2)) 
length : min(e, z + y) - maz(s, z)] 1 3 2, y 
(o E shape[P].start[x].occur[y]) A (z 5 e-n)A 
(s+ns z+y) A (min(e, z+y)-maz(s, z) In)) 

When n = 0, eval(ezact 0 P, [s, e]) must be 
“unioned” to the above expression. 
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0 precisely, nomore, noless 
The evaluation of (precisely/nomore/noless n P) 
within the interval [s, e] is similar to (exact/atmost 
/atleast n P) except that n must be equal/greater 
/smaller than the sum of all P occurrences in [s, e]. 

5.3.2 Operations on Derived Shapes 

The evaluation of more complex forms of derived 
shapes is performed using the index structure 
inductively. 
0 concat 
The result of matching one shape constrains the 
interval in which the next shape should be searched. 
The following expression implements it for n=Z; for 
n>2, the evaluation is performed inductively: 

eval(concat D1 Dz, [s, e]) = 

Here Ii denotes the interval where the match- 
ing of D2 starts. It results from the evaluation 
of DI, and is given by 11 = [min(S~.stcart + 
S1 Jength), mat(Sl.start + S1 length)]. D1 is eval- 
uated first, then 11, then D2, followed by a join 
operation between resulting sets, Sr and 5’2, us- 
ing the predicate PR1 = (&,oid = &.oid) A 
(&.start = Sl.start + Sl.length) and projection 
PJ1 = [oid : Sl.oid, start : S~.start, length : 
Sr .lengt h + S’s Jengt h]. The inductive evaluation 
for the concatenation of n shapes stops either when 
the result of a join is empty or after all joins have 
been performed. In the former case, the evalua- 
tion returns an empty set. Since Si elements are 
sorted on oid, the join ,operations are implemented 
as merge-join. 
l Multiple Occurrences Operators 
We use the same evaluation schema as for the 
concat, replacing Di by D. The exact and atmost 
operators have the same stopping condition as 
concat. The exact operator returns the result 
of step n if the result of step n+l is empty, and 
the empty result otherwise. The atmost operator 
returns the result of step i if i 5 n and the result 
of step i+l is empty. For atleast the evaluation 
stops when a join returns an empty set. It returns 
the result of step i if i>n and the step i+l returns 
empty result. 

l =Y 

eval((any DI . , . D,), [s, e]) = IJ (evai b, el)) 
lSilt.3 

l in 
The length parameter of in defines a family of 
intervals inside interval [s, e] where the match 
should be performed. Thus, in is implemented by 
the following expression: 

hd((in n D), [s, e]) = U (eval(D, [i, i + n])) 
s<i<e-n 

The precisely, nomore, and noless operators 
have the same evaluation schema as exact, atmost, 
and atleast, respectively, but a different definition 
for the interval, predicate, and projection, because 
they allow gaps and overlap between their shape 
arguments. Their definitions for the interval, 
predicate and projection require an offset of at least 
one time period between two consecutive shapes. 
On the other hand, inorder does not accept 
overlap, and its evaluation schema is the same as 
for concat with the exception that its definition of 
the interval, predicate, and projection requires that 
two consecutive shapes, D1 and D2, are separated 
by at least the length of the subsequence matched 
by Dl. 

Since we allow gaps and overlap between shapes 
inside and, it is implemented as a join between 
the set of subsequences that match D1 and D2. 
The shape order in the sequence does not matter. 
The or operator over two shapes, D1 and D2, is 
implemented as the union of the set of subsequences 
that match D1 and the set of sequences that match 
D2. 

6 Summary 
We presented SVC, a shape definition language for 
retrieving objects based on shapes contained in the 
histories associated with the objects. S’DC is de- 
signed to be a small, yet powerful; language for ex- 
pressing naturally and intuitively a rich variety of 
queries about the shapes found in histories. SVC 
is equivalent in expressive power to the regular ex- 
pressions when finding if a given sequence matches a 
particular shape. In the case> of continuous match- 
ing [8], where one finds all the subsequences of a 
given sequence that match a particular shape, SVC 
provides context information that regular expres- 
sions are unable to. Thus, SVC can discard the 
non-maximal subsequences thereby eliminating use- 
less clutter, whereas the regular expressions cannot 
provide this service since they are unable to “look- 
ahead” to provide context information. 
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A novel feature of SDC is its ability to perform 
“blurry” matching where the user gives the overall 
shape but not all the specific details. SVL: 
is efficiently implementable - its operators are 
designed to limit non-determinism, which in turn 
reduces back-tracking. An SV,C query expression 
can be rewritten into a more efficient form using 
transformation rules and its execution can be 
speeded using our index structure. 
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7 Appendix A: Formal Semantics for 
SVL 

Notation Let ?f be a sequence of real values 
describing a history. Formally, a sequence is a 
function from an interval into the real numbers 
where an interval is a finite set of consecutive non- 
negative integers. An interval is frequently denoted 
by [i, j]. By length(H), we indicate the number 
of elements in the domain of the function that 
represents the sequence ‘H. Every element in ‘R 
is identified by its position in the sequence. The 
first element for the whole history is in position 0. 
We refer to the symbol in position i as ‘H[i], with 
0 5, i < length(X). 

Let S C ‘H be a subsequence of H defined as 
follows. Each element in S is identified by its 
position in the original sequence ‘H and elements 
in S are in the same order they are in ‘H. The first 
element of S is referred to as first(S), while the 
last as last(S). 

The subsequence of ‘H from position i to position 
j inclusive is represented as ‘H[i, j], where 0 5 i < 
j < length(H). Similarly, S[i, j], where first(S) < 
i 5 j 5 last(S), indicates a subsequence of S. The 
length of S[i, j]‘is defined as length(S[i, j]) = j-i+ 
1. Notice,that S[i, j][k, 13 = S[maz(i, k), min(j, l)]. 

There exists an alphabet A of symbols and a 
mapping that can map the values of any two 
consecutive elements of Z into the symbols of A. 
Each symbol corresponds to an elementary shape. 
An elementary shape induces a class containing 
all the subsequences of 7i of length 2 that satisfy 
the definition of the corresponding alphabet. We 
use the notation s E P to indicate a sequence s 
belonging to the class induced by P’s definition, 
where P is an elementary shape. 

The 21 operator is an application from a pair (S, 

P), where S is a sequence and P a shape, to a 
possibly empty set of intervals. This resulting set of 
intervals contains all subsequences of S that match 
the shape P. Notice that the definition implies that 
if [k, I] E X[i, j] N P, then i 5 Ic 5 1 5 j. The 
interval [k, h] denotes any null sequence since any 
elementary shape matches only intervals that have 
a single transition (i.e. are of the form [k, k + 11). 

Elementary shapes. Let X be a sequence and 
P one of the symbols in A. Then 
[k,I] E X[i, j] N P iff ?#,I] E P and i 5 k < 1 = 
k+l<j. 

Derived Shape any. Let 7-1 be a sequence and 
4 . . . P, some shapes. Then 

Ff[i, j] 2 (any 9 PZ . . . P, > = rj Tf[i, j] N Pk. 
k=l 

Derived Shape concat. The syntax of the con- 
catenation operator is: 

(concat PI Pz . . . Pn) for n 10. 

The following formulas give the semantics: 

‘H[i, j] 21 (concat 1 = {[k,k] ) i _< k 5 j). 

If n 2 1, then [k, m] E ‘H[i, j] N (concat PI . . . P,,) 
iff there exists an 1 such that [h, 13 E ‘H[i, j] N PI 
and [I, m] E ‘H[l, j] 21 (concat P2 . . , P,). 

Derived Shapes: exact, atleast, atmost. The 
syntaxes are: 

(exact n P > 
(atleast n P > 
(atmost n P ) 
where n 2 0. 

These operators provide richer forms of concate- 
nation. Their semantics is described as follows. 

[k, l] E 7f[i,j] z Catleast n P 1 iff 
4r-n < k ([m, Ic] E %[i, /z] 21 P) and 
G’m 2 1 ([I, m] E %[I, j] N P) and 
3m 2 n ([h, l] E X[i, j] N (concat PI . . . Pm) 

where PI = . . . = P,,, = P) 
[k, r] E X[i, j] 2 (atmost n P > iff 

+n ,< ) ([m, h] E ‘Pf[i, k] -N P) and 
+lm 2 1 ([I, m] E ‘H[l, j] z P) and 
3m 5 n ([L, l] E 7f[i, j] 2: (concat PI . . . Pm) 

where PI = . . . = P,,, = P) 
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[k, I] E ‘H[i,j] N (exact n P ) iff 
4m 5 k ([m, k] E ti[i, B] = P) and 
4rn 2 1 ([I, m] E 3c[I, j] N P) and 
([k, 11 E %[i, j] N (concat PI . . . Pu) 

where PI = . . . = P, = P) 

Derived Shape: in. The syntax is: 
(in rz P) where n 2 0 indicates the length of the 

sequence in terms of time periods (transitions) for 
which the condition expressed by the 9 argument 
must hold. 

N[i,j] N (in 12 P ) = {[k, k+n] 1 i 5 kAk+n 5 
jr\[k,k+n] EYl[k,k+n]2 P}. 

Derived Shapes: nomore, noless, precisely. 
The syntaxes are: 

(nomore n P ) 
(noless n P 1 
(precisely n P > 
where n 2 0. 

Even though these forms make sense in general, 
they are restricted to use within the in shape. 

[k,I]E%[i,j]~(noless nP )iffi<k<l<j 
and card(X[k, l] N P) > n. 

[k, I] E ‘H[i, j] N ( noaore nP )iffiskll<j 
and card(X[k, r] E P) 5 n. 

[k,l] E 3c[i,j] II (precisely n P ) iff i 5 k < 
15 j and card(X[k, I] N P) = n. 

Derived Shape: inorder. The syntax is: 
(inorder PI . . . P,,) for n 1 0. 

Even though this form makes sense in general, it 
is restricted to use within the in shape. 

[k, m] E ?f[i, j] 1? (inorder PI . . . Pu) iff there 
exist lo, kl, 11,. . . , k,, 1, such that i = lo 5 k 5 
k1 < l1 5 kz 5 12.. . < k, 5 1, 5 m < j and 
[k,,l,] E ‘l&1, j] N Pu for 1 2 u 5 n. 

Derived Shapes: and, or. The syntaxes are: 
(and PI . . . P, ) 
(or PI . . . Pn 1 
where n 2 0. 

Even though these forms make sense in general, 
they are restricted to use within the in shape. 

3c[i, j] 21 (or PI.. .P,)=‘H[i,j]-(anyPl...P,). 

‘H[i, j] E (and 9 Pz . ..P.)= h ?l[i,j]zPk. 
k=l 
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