
The ClustRa Telecom Database: High Availability,
High Throughput, and Real-Time Response

Svein-Olaf Hvasshovd
Telenor Research

N-7005 Trondheim, Norway
Svein-Olaf.HvasshovdOtf.telenor.no

Oystein Torbjgrnsen
Telenor Research

N-7005 ,Trondheim, Norway
Oystein.TorbjornsenOtf.telenor.no

Per Holager
SINTEF DELAB

N-7034 Trondheim, Norway
Per.HolagerOdelab.sintef.no

Svein Erik Bratsberg
Telenor Research

N-7005 Trondheim, Norway
Svein.BratsbergQtf.telenor.no

Abstract

New telecommunication services and mo-
bility networks have introduced databases
in telecommunication networks. Compared
with traditional use of databases, telecom
databases must fulfill very tough requirements
on response time, throughput, and availabil-
ity. ClustRa is a telecom database prototype
developed to run on standard workstations in-
terconnected by an ATM switch. To meet the
throughput and real-time response require-
ments, ClustRa is a main memory database
with neighbor main, memory logging. Trans-
actions are executed in parallel. To meet the
availability requirements, we use a 2-safe repli-
cation scheme over two sites with independent
failure modes, a novel declustering strategy,
early detection of failures with fast takeover,
and by on-line self-repair and maintenance.
This paper gives an overview of ClustRa and
includes a set of performance measurements.

1 Introduction

Digital switches are monolithic units supporting plain
old telephony service (POTS). They have over time
been stuffed with increasing amounts of functionality,
e.g., for management of routing, terminals, subscribers
and charging. A digital switch typically contains mil-

lions lines of software. It is not allowed to be out of
service for more than two to three minutes per year,
corresponding to availability class five [GR92]. The
large amount of software combined with the required
high availability results in long lead time for introduc-
tion of new services and a dominance of switch suppli-
ers over service providers.

Intelligent networks (IN) were introduced in the 80’s
to support new types of telecom services, e.g., termi-
nal mobility (UPT), virtual private nets, and credit
card calling. Most IN services are required to have the
same service availability as POTS. IN are designed for
rapid development and deployment of new services and
to give service operators control over service develop-
ment. To obtain this goal, services are built by service
programs using basic functions supported by special-
ized servers (SCPs) in the network. The effect is that
functionality that was buried invisibly inside digital
switches becomes open, modularized, and allocated as
servers on multiple platforms. One entity that appears
in this architecture is the telecom database.

The classical use of telecom databases is in vari-
ous types of call routing, where transactions read one
record, demand 5 to 50 milliseconds response time,
availability class five, and 10,to 10.000 TPS. Exam-
ples are mapping from phone number to terminal in a
digital switch, and,from a universal phone number to a
physical phone number in UPT. Update transactions
are less than 10% of the transaction volume, and de-
mand from 50 milliseconds to a few seconds response
time, with availability class five. Mobile telephony im-
plies update transactions with 10 to 20 millisecond re-
sponse time because a user should experience no longer
glitches than 100 milliseconds when a mobile termi-
nal is handed over from one switch (MSC) to another.
Durable connections which imply crash atomic call sta-

469

tus, demand update transactions with similar response
time as mobile telephony.

ClustRa is a telecom DBMS kernel designed to meet
the total combination of requirements from IN and mo-
bility networks. As a consequence, all performance re-
quirements refer to TPC-B-like transactions, i.e. trans-
actions with the same semantics as TPC-B [CragI]
transactions, but with a data volume adapted to the
application. The following are the main project goals:
1) Response time for TPC-B-like or lighter transac-
tions of maximum 15 milliseconds for at least 95% of
the transactions; 2) Scalable throughput with an up-
per limit of at least 1000 TPC-B-like TPS; 3) Class
five availability.

This unique set of requirements are approached by
a combination of old and well known techniques, to-
gether with new techniques developed primarily to
meet the availability goal. To meet the response time,
ClustRa employs a main memory database for real-
time data, main memory logging, and parallel intra-
transaction execution. A parallel database design is
used to achieve scalable transaction throughput. To
meet class five availability we use a ‘L-safe replication
synchronization over two sites, and on-line self-repair.
ClustRa uses the relational model, but can also sup-
port object oriented models. The system is also de-
signed to support traditional on-line and decision sup-
port transaction types through the use of traditional
database buffering and a flexible record structure.

The organization of the paper is as follows: The
state of the art is briefly surveyed in Section 2. Sec-
tion 3 presents the ClustRa architecture and how it
executes distributed transactions. The ClustRa avail-
ability management is presented in Section 4. The de-
tection and masking of node failures are emphasized.
Section 5 gives an overview of the ClustRa log and re-
covery method. Measurements of transaction response
and throughput together with take-over time are pre-
sented in Section 6. Section 7 concludes the paper.

2 State of the Art

Telecom databases have mainly been developed by
switch manufacturers. These systems have barely been
documented in the research literature. They were
tailored to the needs of routing applications in dig-
ital switches. As a consequence, they support very
fast reading of a few records, and most provide dirty
read. Some systems are pure main-memory databases,
others have background disk support. Update trans-
actions involve write-ahead logging to disk, and the
response time is therefore longer than a disk access.
The throughput rate for update transactions is rather
low. Some systems are centralized, some are parallel.
The parallel systems seem to give scalable through-

put growth. They differ on availability attention and
implementation. Some rely entirely on fault-tolerant
hardware, others have implemented this in software us-
ing multiple loosely synchronized main memory repli-
cas of tables. A hot stand-by replica becomes primary
in case the primary fails. Automatic repair is realised
by producing a new replica for one that has been lost.
On-line software upgrade is not supported. The rela-
tional model is used by most systems.

New telecom databases have appeared over the last
years [Ahn94]. 0 ne of these is the Dali system from
AT&T Bell Labs [JLRS94]. This is a single node site
main-memory system with background disk support
that is tailored to routing applications. It supports
more flexible record structures than most older prod-
ucts. It uses a l-safe hot spare system with a system
as the atomic failure unit. By utilizing hot spares,
Dali indicates ability to support schema and software
changes without bringing the entire system down. Dali
does not have throughput scalability given its current
centralized architecture, nor does it support on-line
automatic repair, which is imperative to achieve class
five availability.

Smallbase is a telecom database developed by
Hewlett-Packard Laboratories [HLNW94]. The sys-
tem is designed for the throughput and response time
characteristics of IN transactions. A main goal is to
achieve transaction scale-up using commodity hard-
ware and Unix. Like Dali, Smallbase uses a l-safe hot
spare system.

TDMS is developed by Nokia for use in switching
and mobile systems [Tik92, Tik93]. The system runs
on dedicated hardware and basic software. The focus
is on response time and throughput of read transac-
tions. Throughput scale-up and high availability have
not been catered for beyond the use of fault-tolerant
hardware.

Commercial SQL databases are used within IN and
some mobile applications. Some SQL systems meet
throughput and response time requirements for read-
only transactions, but their applicability to mobile and
switch applications are limited by their longer response
time for update transactions caused by disk logging.
Availability has been achieved through system pairs
and manual repair. Limited attention has been given
to aspects like on-line schema upgrades.

3 Database Architecture

3.1 Platform

For fault-tolerance, the ClustRa database manage-
ment system uses a shared-nothing hardware model.
Each node of the database system is a standard Unix
workstation with a 64.0 (Sun Sparcstation 5/85) or

470

50.2 (Sun Sparcstation 10/40) SPECint92 CPU and
256 MBytes of RAM. UNIX (SunOS 4.1.3) is the oper-
ating system at each node. Inter-node communication
is via an ATM (FORE Systems ASX-200) switch with
a capacity of 100 Mbits/set per connection through the
switch. The purpose of the project is partly to show
that it is possible to meet the requirements of a tele-
corn database using standard, off the shelf hardware
and operating system.

Each node is an atomic failure unit. Nodes are
grouped into sites, which are collections of nodes with
correlated probability of failure. Sites are failure inde-
pendent with respect to environment and operational
maintenance. Logically, the database system consists
of a collection of interconnected nodes that are func-
tionally identical and act as peers, without any node
being singled out for a particular task. This improves
the robustness of the system and facilitates the main-
tenance and replacement of nodes. Figure 1 shows an
architecture with two sites, each having four nodes.
Each site has a replica of the database. Each node at
a site is connected to an ATM switch, which again is
connected to the switch at the other site. The switches
have external connections.

SW A : SiteB

Figure 1: An architecture with two sites.

3.2 Traditional and Main Memory-Based
Server

ClustRa is a traditional database server, in the sense
that it manages a buffer of data with a disk-based
layout in blocks; it has a B-Tree access method, a se-
mantically rich two-phase record locking protocol, and
it has a two-level logging approach. However, it is
main memory-based in the sense that tables may be
declared to reside in main memory. Unlike pure main
memory databases [HLNW94, JLRS94], this allows for
many classes of queries and transactions, not limited
to those requiring real-time response. This is impor-
tant in a telecom database, due to multiple services

having diverse characteristics with respect to response
time and data volume.

High throughput is achieved by a distributed ar-
chitecture. A table may be distributed onto differ-
ent nodes by horizontal fragmentation, according to
either a hash or a range partitioning algorithm. High
availability is achieved by replication over several sites.
We are using an asymmetric replication scheme, where
there always will be one primary replica of a (horizon-
tal) fragment of a table, but there may be several hot
stand-by replicas. The node of the primary replica
will always be the one executing the request for a spe-
cific record found in that replica. The hot stand-by
replicas will be kept consistent by redoing log records
that are shipped from the primary node. Each node in
the system may be primary for some fragments, and
hot stand-by for other fragments. This facilitates load
balancing both during normal processing and during
node failure where takeover must take place, i.e. the
hot stand-bys will become primary. The number of hot
stand-by replicas are dependent on the desired avail-
ability level. For our requirements it is enough with
one hot stand-by replica [Tor95].

ClustRa provides a basis for a relational system. It
supports variable length records identified by primary
keys and organized in tables. Records may be accessed
by primary keys or sequentially, and they are stored in
fixed sized blocks according to the block size in the un-
derlying secondary storage. Tables are stored in files,
which currently are organized as B-Trees. This holds
also for resident, internal administration data, like the
free block management, the resident part of the dis-
tributed log, and the file directory, which is a mapping
from file identifiers to root block identifiers. By using
B-Trees also for internal data structures, we have re-
duced the code volume of the system. We have chosen
to use a B-Tree access method due to its generality
- it gives sufficient performance both with respect to
sequential and direct record access.

To access the database we use an internal code for-
mat, which express a rich set of record, algebra and
cursor operations. In addition, this code format is
used in messages sent between the processes. Thus,
it is also capable of expressing log records and infor-
mation about transaction processing.

The buffer manager holds copies of blocks residing
on disk with three different priorities:

l Real-time: the block always resides in main mem-
ory.

l Random: the block will be accessed randomly and
is kept in the buffer according to a LRU policy.

l Sequential: the block will be accessed sequen-
tially. This is a hint to the buffer manager to

471

prefetch the next blocks in the same file and to
make used blocks available for replacement.

3.3 Runtime Architecture and Transaction
Execution

On each node there is a number of services: A trans-
action controller, a database kernel, a node supervi-
sor, and an update channel. These services may be
built (during make) either as separate UNIX processes,
or as our own light weight processes (threads) inside
one UNIX process. The transaction controller receives
requests from clients to execute certain precompiled
procedures, or it receives user code which it compiles
into the internal code format. It coordinates trans-
actions through a two-phase commit protocol, The
kernel has the main database storage manager capabil-
ities, like locking, logging, access methods, block and
buffer management. It receives code to be interpreted
from a transaction controller. The update channel is
responsible for reading the log and for shipping log
records to hot stand-by nodes. The node supervisor is
responsible for collecting information about the avail-
ability of different services, and for informing about
changes.

Figure 2 illustrates the 2-safe [GR92] execution of a
simple transaction by showing the processes involved.
There are two sites with two nodes each. The trans-
action controller (TO) receives the client request, and
thus become the primary controller. It has a hot stand-
by controller (T2) on another node, which is ready to
take over as primary if TO fails. TO uses the distribu-
tion dictionary to find the nodes holding the primary
and the hot stand-by replicas of the records in ques-
tion. For this particular transaction, Kl has the role
of a primary kernel and K3 the role of a hot stand-
by kernel. TO sends the operations to be executed
piggybacked on the start transaction command to Kl.
Simultaneously, it sends K3 a start transaction com-
mand together with the number of log records to re-
ceive from Kl. The update channel (Ul) reads the
log of Kl and ships the log records for this trans-
actions to K3, -where they are stored in the log and
redone. When TO has received ready (dnd possible re-
turn values) from both kernels and an ack from the
hot stand-by controller, it gives an early answer to
the client. The second phase of the commit includes
sending commit messages to the two kernels involved.
When both kernels have responded to TO with done,
the transaction is removed from T2 and TO.

The illustrated transaction is simple, because when
a transaction accesses several records, there may be
several primary and hot stand-by kernels executing the
transaction in parallel.

Internally each process is organized as a set of

c\:1> Client

i\ \,\\ ~---~---:~

1 Node 1] ! 1 Node. 3

Site A i Site B

Figure 2: Processes involved in a simple transaction.

threads, which are handled by our own scheduler.
Threads facilitate multiple users in the system without
any significant overhead, as well as waiting conditions
in the communicatipn and for disk access. Threads are
non-preemptive, which are used to ensure that access
to shared data is synchronized.

4 Availability Management

High availability is based on data replication and al-
location of primary and hot stand-by fragment repli-
cas to nodes with independent failure modes. Addi-
tionally, ClustRa balances the load on the nodes both
during normal operation and failures, and it supports
self-repair.

To discover failed services or nodes, ClustRa applies
an I-am-alive protocol internally inside a node and be-
tween nodes. All processes on a node are polled repeat-
edly by a node supervisor to detect their state. The
I-am-alive protocol between the nodes is organized as
a circle. Each node sends and receives I-am-alive mes-
sages from both its neighbors in the circle. In addition
to discovery of failed nodes and services, the I-am-alive
protocol is used whenever a node is changing the set of
provided services. It is also used to determine which
unavailable nodes each available node is responsible
for attempting to restart at regular intervals.

The I-am-alive system is fully distributed with no

472

centralized knowledge. Hence, a virtual node set pro-
tocol is used to maintain a consistent set of available
nodes [ESC88]. If consecutive I-am-alive messages are
missing from one of the neighbors in the circle, the
protocol is activated. The node supervisor sends a
build node set message to all known nodes. Other
nodes should respond with their services. If a node
has not responded within a certain number of resends,
the node is assumed to be down, and a new node set
is distributed.

For high availability it is important to perform a fast
take-over a.fter a node failure. Given the low proba-
bility of lost messages and the short message queues
in the ATM technology, we minimize the number of
missing I-am-alive messages before the virtual node
set protocol is activated. This shortens the interval
from a failure happens to it is reacted upon. To min-
imize the delay caused by updating the distribution
dictionary, it is cached at each node and the current
node set is used as a filter to it. The distribution
dictionary itself is modified outside critical path. To
minimize unavailability of replicas changing their role
to primary, locks are maintained (but not effective)
to the hot stand-by replicas. These replicas become
available immediately after redoing the hot stand-by
log records arriving before the new node set. In-flight
transactions being active at a crashed node are rolled
back, while those losing their hot stand-by controller
continue. To minimize the window where the system
is vulnerable to double faults, the log where only one
replica exists, is copied to a node at the other site.
Together with the main memory logging to two sites
with independent failure modes, this is as reliable as
traditional logging to disk [Tor95].

After a takeover, a recovery of the failed node is
started. If it does not recover within a certain period
of time, ClustRa starts its on-line, non-blocking self-
repair. New replicas of its fragments, possibly sub-
fragmented, are produced fuzzily, and they are then
caught up with the use of distributed logs [HST+Sl].

One of the main goals of ClustRa is to achieve high
availability and load balancing, both during normal
processing and upon failures. To fulfill this goal, a
new strategy for placement of replicated fragments,
minimum intersecting sets deelustering, has been de-
veloped [Tor95]. The principle of this methodology is
that the largest cardinality of any intersection of the
sets of’ fragments allocated to different nodes, should
be minimized. It achieves low unavailability by fast
takeover and self-repair. A takeover is made fast by
tuning the system to not involve more nodes than nec-
essary. Self-repair is made fast by exploiting spare ca-
pacity of non-failed nodes.

5 Logging and Recovery

5.1 The Distributed Log

ClustRa combines two logging methods: a distribution
transparent method for record operations and a phys-
iological method for node-internal operations. The
neighbor write-ahead logging developed in [Hva92] is
applied to record operations. This is a main-memory
logging technique where transaction commit does not
force log to disk. A log record must be written to
two nodes with independent fa.ilure modes, i.e. neigh-
bor nodes, before the effect of an update operation is
allowed to be reflected on disk, and before,the trans-
action commits. The log shipping serves in addition as
the loose replication synchronization scheme [CriSO].

The idea of this scheme is to save the delay in forc-
ing log to disk at commit time. We do this by tak-
ing advantage of modern communication technology,
where the delay in writing to main memory on a neigh-
bor node is much lower than the delay in writing to
disk. Since we exploit the log shipping for replication
as well, this comes almost for free. The distributed
logging uses a compensation log record (CLR) policy.
CLRs are produced by the primaries and contain com-
plete redo information and reference to the log record
it compensates. Only a single CLR can be produced
per non-CLR [MHL+92].

To allow subfragmentation of a hot stand-by replica
as compared with its corresponding primary, both redo
and undo use logical, i.e. primary key-based record ac-
cess. This allows for encapsulation of block size and
access method in each node. Of the same reason state-
identifiers reflecting the sequence of operations exe-
cuted to a record are connected to records instead df
as traditionally to blocks. State-identifiers are gen-
erated at the primaries with unique values within a
fragment. They are included in the log records and
are reflected to the hot stand-bys through redo pro-
cessing. Therefore, two replicas of a record with t,he
same state-identifier reflect the same state indepen-
dently of the fragment, replica, and node the record is
located at.

Another strong point of the replication scheme, is
that no’concurrency control is needed on hot stand-by
fragment replicas, because the execution order is the
same to a hot stand-by record as to its primary. How-
ever, fragment shield locks are used on hot standby
fragment replicas, because during take-over, when hot
stand-by fragment replicas do not yet reflect all pend-
ing redo operations, new transactions should wait.

5.2 The Node-Internal Log

Node-internal operations for access methods, free
block management, and file directory are implemented

473

transactionally. These operations are logged in a node-
internal log. A physiological, single CLR policy with
just reference to the compensated non-CLR is used
[GR92]. The node-internal log is disk-based and is not
shipped to any other node. To be able to undo a node-
internal operation a node-internal log record must be
produced in main memory before the corresponding
operation is executed. The log record must have been
flushed to disk before the effect of the operation is re-
flected on disk. A sequence may be imposed on writ-
ing blocks to disk to avoid logging records moved in
a block split. Committing a node-internal transaction
does not involve any block flush, because redoing the
distributed log to the node will establish an equivalent
node-internal state. This synchronization protocol be-
tween the distributed and the node-internal logging
avoids altogether introducing log-related disk flushes
in the time-critical transaction execution.

To support fast node crash recovery and efficient log
garbage collection, ClustRa uses a fuzzy checkpointing
algorithm in combination with a steal and no-force
buffer management policy. Transactions are allowed
to go on while the checkpoint is made, only a single
block is read-latched at a time with copy-on-write op-
tion while they are inspected and possibly flushed to
disk. The checkpointing limits the redo work, by al-
lowing the redo recovery to start at the penultimate
checkpoint in the log. However, the undo work must
go back in the log until the active transaction table is
empty.

5.3 Node Recovery

The recovery method of ClustRa distinguishes among
different degrees of corruption at a node. When the
disk is corrupted, the complete database is reloaded
from other nodes. When the contents of main mem-
ory is garbled, a recovery based on log records and
database from disk is done. When only parts of main
memory are corrupted, a recovery based on main mem-
ory is done. The decision on using disk or main mem-
ory recovery is based on checksums on the internal
administration data. If the checksums on the buffer
access structure, the log access structure, and the lock
structure are found to be in order, a main memory re-
covery may be done. A node recovery based on main
memory involves just undoing the eventual ongoing
node-internal transactions and undoing the record op-
erations that were not reflected on any other node be-
fore the crash occurred. A disk-based recovery per-
forms a redo followed by an undo recovery from the
stable node-internal log, before a redo recovery is exe-
cuted based on the distributed log shipped from nodes
with primary fragments for those stored at the recov-
ering node. If during a main memory-based recov-

ery a block is found to be corrupted upon access, i.e.
records or administration data inside a block is broken,
a partial recovery is performed by reading the block
from disk, redoing the node-internal log regarding this
block, and then the distributed log.

6 Measurements

All measurements presented here were taken on Sun
Sparcstation 5/85’s, except the scaleup tests, where
the first four nodes are singleprocessor 10/40’s and the
last four are 5/85’s

6.1 Response Time

We have performed some response time measurements
for TPC-B-like transactions: three updates and one
insert in different tables. Figure 3 shows the key num-
bers for both the single- and multi-process versions of
the system. The statistics is gathered over a period
of 80 seconds, running a total of 6395 transactions in
the singleproc version and 5674 in the multiproc ver-
sion. Figure 4 shows the response time distribution
for the singleproc version. This test is run on a two
node configuration, where one node acts as primary
and the second acts as hot stand-by. Thus, the test
involves distributed 2-safe two phase commit process-
ing, where a hot stand-by replica is ready to take over
in case the primary goes down. All response times
are measured in milliseconds. From these figures we

Version Avg Min Max % < 15ms
Singleproc 9.77 8.81 73.6 99.5
Multiproc 11.64 9.26 69.9 98.9

Figure 3: Response time measurements for TPC-B-like
transactions.

see that the response time requirement that 95% of
TPC-B-like transactions answer in less than 15 mil-
liseconds, is met on this small configuration. In the
singleproc version 73% of the transactions have a re-
sponse time between 9 and 10 milliseconds. There is a
small group of transactions taking around 60 millisec-
onds. We assume these transactions to be delayed by
some regularly scheduled UNIX daemons.

The response times are approx. 1.87 milliseconds
better in the singleproc version. This is due to less
work done by the operating system. We avoid some
process switches and overhead in node-internal inter-
process communication.

The communication consumes a large portion of a
transaction’s response time. A remote message passing
takes about 0.8 millisecond. There are four remote and

474

Version I Val. I Window

Distribution

8 9 1011121314151617181920 Millisec

Figure 4: Distribution of response times for TPC-B-
like transactions in the singleproc version.

two node-internal message sends ‘included in the crit-
ical path of the transaction in the singleproc version.
These remote sends alone consume 3.2 milliseconds of
the response time. Outside the critical path, there are
another two remote and two node-internal messages
sent before a transaction responds. Including the com-
mit processing are ten messages sent remotely, and six
node-internally during a transaction execution.

The primary node has a CPU utilization of 70%,
while the hot stand-by is 35% loaded. This load dis-
tribution is explained by the primary controller hav-
ing a higher load than the kernels and the hot stand-by
controller, because all internal messages are within the
primary node, and because the client communication
hits the primary.

6.2 Throughput

Figure 5 shows the measurements for throughput and
average response time when we load the server with
several parallel transactions. The window size is the
number of parallel transactions. These measurements
are taken over a period of 80 seconds. The increase
in response time is an effect of queuing. From these
figures we can see that this configuration has a maxi-
mum throughput of 104 2-safe TPC-B-like TPS in the
singleproc version. With an acceptable response time,
we can get 83 2-safe TPC-B-like TPS out of this con-
figuration. We could have traded throughput with re-
sponse time by coalescing many transactions into the
same messages, and by using a grouped neighbor write-
ahead protocol.

1 Multiproc 1 Resp 1 11.36 1 21.3 1 49.5 (93.2

Figure 5: Throughput and response time as a function
of window size for TPC-B-like transactions.

Nodes TPS Eff. Response time
Avg] Min 1 Max

2 114 1.00 14.6 1 10.5 1 92
3 144
4 172
5 211
6 243

Figure 6: Scaling up in the two-updates transactions
with high load.

To measure the scale-up of the system we imple-
mented a transaction updating two records in two dif-
ferent tables. The tables were fragmented to all nodes,
both as primary and as hot stand-by. To be able to run
with an odd number of nodes without getting skewed
load, we allocated fragments in a circle. Node O’s pri-
mary fragments have hot stand-bys on node 1. Node
l’s primary fragments have hot stand-bys on node 2,
and so on. To scale the load as well, each node has a
separate client. Thus, when we add a node, we also
add a client.

Nodes TPS Eff. Response time
Avg 1 Min 1 Max

2 66 1.00 12.0 I 7.3 I 89

1
-I
-I

10.9 6.5 85
12.1 7.3 65
12.9 7.1 112
13.6 6.8 129
14.0 6.5 139
14.0 6.5 139

Figure 7: Scaling up in the two-updates transactions
with medium load.

Figure 6 shows the throughput and response time as
a function of the number of nodes when we run trans-

475

actions back-to-back, thus loading the server heav-
ily. Figure 7 shows the same when we let the clients
sleep some milliseconds between each request, causing
less load on the system. In both tables the statis-
tics for each row is gathered over a period of 40 sec-
onds. The efficiency columns use two nodes as refer-
ence for throughput. Figure 8 illustrates the through-
put graphically, where the dark plot is the heavy load
and the lighter plot the lighter load. We can see that
the throughput seems to scale linearly.

TPS
350

I

300.

250.

200.

150: /
100

50' : Nodes 2 3 4 5 6 7 8

Figure 8: Close to linear scale-up.

The TPC-B-like transaction was not used for the
scale measurements, because it touches too many
records per transaction compared with the number of
nodes in the current version of the laboratory. Due to
the high cost of communication, there is a noticeable
saving for the transaction when the two records are on
the same node. When adding more nodes, we expect
the response time and efficiency to stabilize, because
the locality effect disappears. An indication that this
is true, may be seen in the asymptotic behavior of the
measured average response times and the fairly con-
stant minimum and maximum response times.

6.3 Takeover

Fast takeover is necessary to ensure high availability.
To measure the takeover time, we instrumented the
client to register the interval the system was unavail-
able. In our measurements we used a two node configu-
ration. One node holds the primary kernel and the hot
stand-by controller. The other holds the hot stand-by
kernel and the primary controller. The former node
was stopped by sending it a UNIX signal.

The client sends transactions back-to-back to the
controller and receives either committed or aborted
status. The time is taken between the receipt of two
committed transactions, where there was a node crash
in between.

Figure 9 shows the takeover time measured both
for the singleproc and the multiproc versions of the
system. In these measurements the I-am-alive mes-

Figure 9: Takeover time (milliseconds) measured from
the client.

sages are sent between nodes every 50 millisecond. If
a neighbor node in the I-am-alive circle has not sent
any I-am-alive messages within 100 milliseconds, the
virtual node set protocol is started. The node super-
visor discovering the lacking I-am-alive message builds
a new node set by asking all known nodes about their
services. The nodes which have not responded within
50 milliseconds, is questioned once more. If they have
not answered within another period of 50 milliseconds,
they are assumed to be down, and a new node set is
distributed. In average, the two phases take 225 mil-
liseconds (125 + 100). The rest of the time is used in
the takeover itself.

7 Conclusions and Further Work

There are several other approaches (briefly surveyed in
Section 2) addressing the response time and through-
put requirements, but we do not know of any other
approach which address all three requirements of re-
sponse time, throughput, and high availability. The
ClustRa project has during the first year approached
two of its main goals for response time and throughput,
and it has partially met the third goal for high avail-
ability. The response time requirement is met on small
configurations of the system. The main technique used
to meet this goal is the main memory database with
main memory logging. Main memory logging is pos-

sible by writing the log to the main memory of an-
other node with an independent failure mode. The
current system is CPU-bound due to high communi-
cation costs. Thus, to meet the response time goal also
on larger configurations, we are porting the system to
workstations with faster CPUs, and we are optimiz-
ing the ATM drivers. The throughput seems to scale
linearly. Thus, we assume the throughput goal to be
met by adding more nodes. Fast take-over is achieved,
and high availability will be achieved by having two

476

sites, minimum intersecting sets declustering, on-line
self repair, and system maintenance.

Currently we are addressing takeback, where a failed
node recovers and catches up with the rest of the sys-
tem. In the next few months we will implement fuzzy
replica production. In 1996 we will put effort in fur-
ther enhancements of availability. We are developing
a protocol for on-line non-blocking upgrade of dictio-
nary data, a set of algebra methods for incremental
on-line modification of data as a result of schema up-
dates, and support for upgrade of basic software and
disk structures.

Acknowledgements

We would like to thank Oddvar Risnes and CCsar
Galindo-Legaria for their constructive comments to
the paper.

References

[Ahn94]

[CriSO]

[ESCSS]

[GR92]

[GraSl]

Ilsoo Ahn. Database issues in telecommu-
nications network management. In Pro-
ceedings of ACM/SIGMOD (Management
of Data), May 1994.

Flaviu Cristian. Understanding fault-
tolerant distributed systems. Research re-
port, IBM Research Division, Almaden
Research Center, 650 Harry Road, San
Jose, California 95120-6099, USA, 1990.

Amr El Abbadi, Dale Skeen, and Flaviu
Cristian. An efficient, fault-tolerant pro-
tocol for replicated data management.
In M. Stonebraker, editor, Readings in
Database Systems, pages 259-273. Morgan
Kaufmann Publishers, Inc., San Mateo,
California, 1988.

Jim Gray and Andreas Reuter. Transac-
tion Processing: Concepts and Techniques.
Morgan Kaufmann Publishers, 1070 p.,
1992.

Jim Gray, editor. The Benchmark Hand-
book for database and transaction process-
ing systems. Morgan Kaufmann Publish-
ers, 334 p., 1991.

[HLNW94] Michael Heytens, Sheralyn Listgarten,
Marie-Anne Neimat, and Kevin Wilkin-
son. Smallbase: A main-memory dbms
for high-performance applications (release
3.1), March 1994. Hewlett-Packard Labo-
ratories, Palo Alto, CA, USA.

[HST+Sl]

[HvaO2]

[JLRS94]

[MHL+92]

[Tik92]

[Tik93]

[Tor95]

Svein-Olaf Hvasshovd, Tore_Saeter, @ys-
tein Torbjornsen, Petter Moe, and Oddvar
Risnes. A continously available and highly
scalable transaction server: Design experi-
ence from the HypRa project. In Proceed-
ings of the 4th International Workshop on
High Performance Transaction Systems,
September 1991.

Svein-Olaf Hvasshovd. HypRa/TR: A Tu-
ple Oriented Recovery Method for a Con-
tinuously Available Distributed DBMS on
a Shared Nothing Multi-Computer. PhD
thesis, The Norwegian Institute of Tech-
nology, University of Trondheim, July
1992. 266 p. ISBN 82-7119-373-2. Also
SINTEF DELAB Technical report STF40
A93085.

H. V. Jagadish, Daniel Lieuwen, Rajeev
Rastogi, and Avi Silberschatz. Dali: A
high performance main memory storage
manager. In Proceedings of the 20th
International Conference on Very Large
Databases, Santiago, Chile (VLDB ‘94),
pages 48-59, September 1994.

C. Mohan, Don Haderle, Bruce Lind-
say, Hamid Pirahesh, and Peter Schwarz.
ARIES: A transaction recovery method
supporting fine-granularity locking and
partial rollbacks using write-ahead lock-
ing. ACM Transactions on Database Sys-
tems, 17(1):94-162, March 1992.

M. Tikkanen. TDMS: An embedded rael-
time main-memory database management
system. Proceedings of Embedded and
Real-Time Systems, The Finnish Aritifi-
cial Intelligence Society, November 1992.

M. Tikkanen. Objects in a telecom-
munications oriented database. In PTO-
ceedings of the Conceptual Modelling
and Object-Oriented Programming Sympo-
sium, November 1993.

Q)ystein Torbjornsen. Multi-Site Declus-
tering Strategies for Very High Database
Service Availability. PhD thesis, The Nor-
wegian Institute of Technology, University
of Trondheim, January 1995. 186 p., ISBN
82-7119-759-2.

477

