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Abstract 

Int#ra-operator (or partitioned) parallelism is a 
well-established mechanism for achieving high per- 
formance in parallel database systems. How- 
ever, the problem of how to exploit intra-operator 
parallelism in a multi-query environment is not 
well underst,ood. This paper presents a detailed 
performance evaluation of several algorithms for 
managing intra-operator parallelism in a parallel 
database system. A dynamic scheme based on the 
concept of matching the ra.te of flow of tuples be- 
tween operat,ors is shown to perform well on a va- 
riety of workloads and configurations. 

1 Introduction 

Highly-parallel databa.se systems are increasingly be- 
ing used for large-scale database applications. Exam- 
ples of these systems include products like Teradata 
DBC/1012 [26], Tandem Hima,laya [13], IBM SP1/2 
[16], and research prot,otypes like Bubba [8], Ga.mma 
[7], and Volcano [12]. Inlru-operafor parallelism (or 
partitioned parallelism [4]) is a well-established tech- 
nique for increasing performance in these systems. Ba- 
sically, by allowing the input data to be partitioned 
among multiple processors and memories, this tech- 
nique enables a database operator to be split into many 
independent operators each working on a part of the 
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dat,a. However, it is not evident how intra-operat,or 
parallelism should be used in a multi-query environ- 
rnent, where multiple concurrent queries are cont,end- 
ing for system resources. Selecting low degrees of op- 
era.tor parallelism can lead to underutilizat,ion of the 
system and reduced performance. On the other hand. 
high degrees of parallelism can give “too many” re- 
sources to a single query and lead t.o high resource 
contention. This paper explores this problem of deter- 
mining the %ppropriat,e” degree of intra-operator par- 
allelism for queries in a multi-query pa.rallel dat.aba.se 
system. 

T.here are two important issues that need to be ad- 
dressed. First, for each query, t,he algorithm must de- 
termine the degree of parallelism of each operator in 
the query plan. Second, the algorithm must a.ssign 
specific processors to execute each operat.or inst,ance. 

The degree of parallelism of an operator should be 
selected such that the cost of starting and terminat- 
ing all of the instances of t,he operat,or is more than 
offset, by the performance improvement due t,o paral- 
lelism. Since startup and termination costs are a func- 
t,ion of the configuration and workload, the degree of 
parallelism should change for different workloads and 
configurations. In this paper, we present, several al- 
gorithms for determining the degree of parallelism of 
operat,ors. A detailed performance evaluation shows 
that a new dynamic algorit,hm based on t,he concept, 
of matching the rat,e of flow of tuples bet.ween oper- 
at,ors provides good performance across a variet,y of 
workloads and configurations. 

The primary objective of an algorithm for assigning 
processors to operators is load balancing. Processors 
should be assigned t#o operators such that, the workload 
is uniformly distributed and all the nodes are equally 
utilized. This paper presents several alternative meth- 
ods of assigning processors to operators. The results 
show that algorithms that utilize information about 
the system workload in assignment decisions perform 
better than algorithms t,hat assign processors stati- 
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tally. 
The rest, of the paper is organized as follows. Sec- 

tion 2 presents the system archit,ecture of a typical 
highly-para.llel database syst,em. The algorithms for 
selectming the degree of parallelism are presented in Sec- 
tion 3 while algorithms for mapping operators t,o pro- 
cessors are presented in Section 4. Section 5 discusses 
how these algorithms can be combined to produce a 
comprehensive processor allocation scheme. The simu- 
lation model used for the performance evaluation is de- 
scribed in Section G followed by a, description of the ex- 
periment#al parameters in Section 7. Section 8 presents 
a performance evaluation of algorithms for determin- 
ing the degree of parallelism and Section 9 cont,ains the 
evaluation of algorithms for mapping the operators to 
processors. Related work is discussed in Section 10 
and Section 11 contains our conclusions and sugges- 
tions for future work. 

2 System Architecture 

Highly parallel systems are typically constructed using 
a sha,red-nothing [25] archit#ecture. The system con- 
sists of a set of external terminals from which trans- 
actions a.re submitted. The transactions a.re sent to 
a. randomly-selected scheduling node. The execution 
of each transaction on the processing nodes is coor- 
dinated by a specialized process called the schedvler. 
The scheduler allocates resources (memory and proces- 
sors) to the transaction and is responsible for sta.rting 
and terminating all the operators in a t,ransaction. The 
processing nodes are composed of a CPU, memory, and 
one or more disk drives’. There is no shared mem- 
ory/disk between the nodes, hence the term Sha.red- 
Nothing. All inter-node communicat,ion is via message 
pa.ssing on the int,erconnection network. 

3 Determining the Degree of Operator 
Paralleliqm 

In most shared-nothing database syst8ems, the only 
way t,o access data on a node is to schedule a select 
operator on that node. This implies that the degree of 
parallelism of select operators is fixed a-priori by the 
data placement mechanism. However, the degree of 
parallelism for other operators, like joins and stores, 
can be chosen independently of the initial data place- 
ment. We consider four algorithms for determining the 
degree of parallelism,of such operators. 

3.1 Maximum 

The degree of parallelism chosen by this algorithm is 
equal to t,he number of nodes in t#he system. Maxi- 
mum therefore achieves t,he highest parallelism, but it 

‘For the rest of this paper, the term node is used to collec- 
tively refer to a processor, its l&xl memory and the attached 
set of disks. 

also has the highest startup and termination costs a,nd 
leads to the highest resource contention. Moreover, 
it is a static algorithm that selects the same degree 
of parallelism for all operators regardless of the query 
type and the workload. 

3.2 MinDp 

The degree of parallelism selected by this algorit,hm is 
equal to the minimum of the degree of parallelism of 
all the input streams. For example, consider a binary 
hash-join query where the degrees of parallelism of the 
selects on the inner and outer relations are Inner-dp 
and Outer-dp, respectively. The MinDp algorithm will 
select the join’s degree of parallelism as min(Inner-dp, 
Outer-dp). 

3.3 MaxDp 

The MaxDp algorithm is sets t,he degree of join paral- 
lelism to be the maximum of the degree of parallelism 
of the input &earns. Note that in the case of unary op- 
erators like store, the MaxDp and MinDp a.lgorithms 
are identical. 

3.4 RateMatch 

The RateMatch algorithm is based on the idea of 
matching processing rates of operators. If the rate 
at which tuples are sent to an operator is much higher 
than the rate at which the tuples can be processed by 
the operator, incoming messa,ges will accumulate and 
the message buffer can overflow, forcing the sender to 
block. On t,he other hand, if the rate at which t,u- 
ples are received by an operat,or is much lower than 
the maximum possible processing rat,e, the operator 
will frequently be idle and will wast,e syst,em resources 
(specifically memory). By matching operator process- 
ing rates, the RateMatch algorithm prevents senders 
from blocking and, at the same time, conserves system 
resources by avoiding idle operators. 

We next present. t,he formulas used by the RateM- 
atch algorit.hm to calculate the rate at which t.uples are 
processed by the select and hash-join operators. Sim- 
ilar formulas can also be developed for other database 
operators. These formulas adjust the degree of paral- 
lelism based on the current, CPU utilization and disk 
response times, and therefore allow the RateMatch al- 
gorit,hm t.o adapt to different workloads and config- 
urations. We first develop formulas for a single-user 
system assuming no buffering of messages, and then 
incorporate the effect of multiple users and message 
buffering. 

3.4.1 Processing Rate of Select Operators 

The total time (in seconds) taken by each select oper- 
ator to process a data page is 
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where TIIO~,,,,, is the time taken to perform one I/O 
and Tcpuselect is the CPU time taken for processing 
one data page. Note that the above equation assumes 
a.n overlap in CPU and I/O processing. TI/o~,,,,~ is 
calculated as the sum of the time taken to initiate an 
I/O request and the actual time taken to perform the 
I/O. Therefore, 

TIl Osdect = 
II/O 

CPUSpeed 
$ AvgDiskReadTime 

where Ill0 is the number of instructions needed to ini- 
tiate an I/O and CPUSpeed is the speed of the CPU 
in instructions per second (MIPS * 106). TcpuSelcct 
includes the time taken by the selects to examine each 
tuple on the data page, apply the selection predicate, 
and send the selected tuples to the next operator. 
Therefore, 

T CPU,,,,,, 
= (IRONS + Ipred) * TwPerPw 

CPCTSpeed 

+ 
ISend * Selection,~electivity 

CPUSpeed 

where IRead is the number of instructions for reading 
a tuple in memory, Ipred is the number of instructions 
for applying a predicate, ISend is the time taken to 
send a page (including the cost of copying tuples to 
the network buffer), TupsPerPage is the number of 
tuples in each page, and SelectionSelectivity is the 
fraction of tuples that satisfy the selection predicate. 

Therefore the total rate at which pages are pro- 
cessed by the select operators is 

NSelect 
ProcRateseleet = ~~eleel 

where Nseleet is the degree of parallelism of the select 
operator. Similarly, the total rate (in pages/second) 
at which tuples are produced by the select operators 
is 

RateSelect = ProcRateSelect * SelectionSelectivity 

N select * SelectionSelectivity 
= 

T select 
Finally, since the rate at which tuples are produced 

may be different in the build and probe phases due 
to a different degrees of select parallelism in the build 
and probe phase, the above calculaGon is carried out 
for each phase separately. These rates are denoted as 
RateserectB,,,ld and Rateseleetp,,b,, respectively. 

3.4.2 Processing Rate of Hash-Join Operators 

The rate at which tuples are processed by a hash-join 
operator depends on the amount of memory allocated 
to it. Here, we present formulas only for maximum 
and minimum join memory allocation. The formulas 
for intermediate memory allocations can be developed 
similarly. 

Maximum Memory Allocation: In the case of 
maximum memory allocation, join operators do not 
perform any I/OS. During the build phase, the join 
operators read each incoming tuple and insert them 
into a hash table. Therefore, the time taken to pro- 
cess a data packet in the build phase is 

TBuild = 
1R’~ev + (IRead + IH~~~) * TupsPerPkt 

CPUSpeed 

where IReV is the number of in&ructions needed to re- 
ceive a data packet, IHash is t,he number of instructions 
needed to hash a tuple (this assumes that the tuple is 
already in memory and no copying is required), a.nd 
TupsPerPkt is the number of tuples in each network 
packet. In the probe phase, the join reads incoming tu- 
ples and probes the hash table for matches. If a match 
is found, the result tuples are composed and sent to 
the parent operator. Therefore, 

IPerTupde = IRead + I$+.& + Iconapode * Join.Sek 

T 
I&o + IPerTuple * TupsPerPFt 

Probe = 
CPUSpeed 

+ knd * JoinSel 

CPlJSpeed 

where Ip&e is the number of instructions needed 
to probe the hash table, Iconapose is the number of 
instructions needed to produce a result tuple, and 
JoinSel is the join selectivity. 

Minimum Memory Allocation: If the joins are 
allocated their minimum memory allocation, the in- 
coming tuples are divided into disk-resident partitions. 
Since select, operators send tuples to join. operators 
only during the partitioning phase, the rate calcula- 
tion ma,tches processing rates only for the partitioning 
phase. In both the build and probe phases, the incom- 
ing tuples are read, hashed and then written to the 
corresponding disk partition’. Therefore, 

TBuildll+-,,be = AvgDiskWriteTime + 
IRev + II/O 

CPUSpeed 

+(IRead + IHash -t Icopy),* TupsPerPkt 
CPUSpeed 

where IcO’opY is the number of instructions needed to 
copy the tuples to the outgoing disk page. 

Once the time t.aken for processing in each phase has 
been calculated, the number of join processes needed 

‘Recall that if joins are given their minimum memory alloca- 
tion, the build and probe phases refer to the initial phases that 
distribute the inner and outer relations, respectively. The result 
tuples are produced in a third phase where each participating 
join processor processes its disk-resident partitions. 
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to absorb the incoming tuples in the build phase, 
NJOilZ&,ld 9 is calculated by equating the rat,e at which 
tuples are processed by t,he joins t,o t.he rate at which 
t,uples are produced by the select,s. 

RateJoin,,,,,d = 
NJOi~EWd 

Tkhdd 
= RateselectB,,,,d 

Therefore: 

l~Join&,,d = RateselectBulld * TBuild 

Similarly: 

NJoinprobe = RatwelectProbe * TProbe 

Finally, the number of join sites should be such that 
select, operators do not block in either the build or the 
probe phase, so: 

where N,,, is the total number of nodes in the system. 

3.4.3 Extension to Multiple Users 

The only extension needed in the formulas for a 
multiple-user syst.em is to modify the value of the 
CPU CPUSpeed parameter to incorporate the fact 
that other users in the system will a.lso be using the 
CPU simultaneously. Note t.hat the effect of multiple 
users at the disk is already incorporated in the value of 
the Average Disk Read/Write parameters. Therefore, 
the value of CPUSpeed is modified to EffectiveCPUS- 
peed using the formula for service time, S(x), for a 
task wit,h service demand x on an M/G/l server with 
round-robin scheduling [17], i.e.: 

S(x) = 
2 

1 - Utilization 

where x is the service demand of the arriving job. 
Therefore, the time taken for each CPU processing 
task should be modified using the following equat.ion. 

TCPU = 
CPlTInstructi0n.s 

Ef fectiveCPUSpeed 

CPUInstructions 

= CPUSpeed * (1 - Utilization) 

3.4.4 Effect of Message Buffer Size 

The previous formulas assumed that there is no mes- 
sage buffering and therefore t,hat the processing rates 
need to match exactly. However, in practice, the oper- 
ators buffer only a limited number of message packets. 
In this case. the join processing rate may be slower 
than the select, processing rate as long as there is no 

messa.ge buffer overflow. Let, M be t,he size of the mes- 
sage buffer, T the t,ime taken by the select to process 
all of the t,uples, and NJ~~ and Nselect are the the de- 
grees of join and select, parallelism, respectively. The 
total number of message packets accumulated per sec- 
ond at the join operators is the difference in the rate 
at which tuples are sent, by the select operat,ors and 
the rate at which they are consumed by the join op- 
erators. Therefore, the total number of data packets 
accumulated over the period of the query is given by: 

#AccumulatedMsgs = 

(Nse~eet * Rateseleet - NJG~ * RateJoin) *T 

If t,his number is equal to the total message buffer size 
of the join operators (i.e. M * NJ~~~~), there will be 
no message overflow. Therefore, 

#AccumulatedMsgs = M * NJoins l(l) 

The total time taken to process the input is, in turn, 
estimated as. 

T= 
Tseleet * InputSize 

Nseleet 

where InputSize is the number of pages accessed from 
t,he input relation. Substituting the value of T and 
#AccumulateMsgs in Equation 1 and simplifying. the 
degree of join parallelism is calculated as: 

N~oan = 
Nseleet * Rateselect * Tselect * InputSize 

M * Nseleet + RateJ,i, * Tseleet * InputSize 

where Tselzet is the time taken by a select operator to 
process one data’page. 

4 Processor Assignment Algorithms 

Once the degree of parallelism for an operator has been 
determined, each instance of an operator must, be as- 
signed to a specific processor. Six algorithms for pro- 
cessor assignment are considered in this paper: 

4.1 Random 

The desired number of processors are chosen rahdomly 
in this algorithm. Although the Random algorithm 
is simple to implement, it, can lead to load imbal- 
ance (since it does not use any information about the 
present state of the system). 

4.2 Round-Robin 

The Round-Robin algorithm chooses processors in a 
round-robin fashion (i.e. if the first operator is exe- 
cuted on nodes l-10, the next operator is executed 
on nodes 11 onwards). This algorithm distributes the 
processing load bet.ter than Random, but it can also 
lead to load imbalances because it ignores the actua1 
distribution of the load in the system. 
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4.3 Avail-Memory 

The third algorithm was proposed in [24] and assumes 
t,hat the processing load of an operator is proportional 
to its memory requirement and chooses the processors 
with the most free memory. This assumption is ap- 
plicable t,o memory-intensive operat,ors like joins and 
sorts. Since memory allocation is performed at the 
scheduling nodes, memory utilization figures are al- 
ready available to the query schedulers. Therefore, 
this algorithm does not entail any extra communica- 
tion bet#ween the scheduling and processing nodes3. 

4.4 CPU-Util 

The CPU-Util algorithm was first proposed in [23] and 
assigns the lea&utilized processors to an operator. 
The performance of this algorithm depends on the fre- 
quency with which CPU utilization statist,ics can be 
updated at the scheduling nodes. Also. in order to 
prevent, two successive operat#ors from being scheduled 
on the same set of nodes, once a set, of processors have 
been chosen, their CPU utilizations are increased “ar- 
tificially”. This artificial increase in CPU utilization 
prevent,s successive operators from being scheduled on 
the sa.me set of processors, and it is cancelled the next 
time the st,a.tistics are updated. The amount by which 
the utilization should be increased is difficult to esti- 
mate, however. If the amount is too low, it may not 
prevent two successive operators from being executed 
on the same set of nodes. Conversely, if the amount 
is too high, it can lead to a large difference between 
the a.ctual utilization of the node and the utilization as 
seen by the query schedulers, leading the CPU-Util al- 
gorithm t,o schedule queries on nodes that are already 
more heavily utilized. 

In order to select these parameters, we performed 
a detailed sensitivity analysis of CPU-Util [Meht94]. 
As a result of the ana.lysis, our simulation model up- 

dates utilization statistics at the scheduling nodes ev- 
ery 5 seconds. Also, once an operator is scheduled on 
a node, its utilization is increased “artificially” by 5%. 
Not,e that this algorithm is not useful for operators like 
store, that do not perform much CPU processing. 

4.5 Disk-Util 

The Disk-Util algorithm chooses the processors on 
the nodes with the least disk-utilization. Similar to 
the CPU-Util algorithm, disk utilization statistics are 
reported to the scheduling nodes every 5 seconds, 

3 If there are multiple scheduling nodes, some communication 
is needed among the scheduling nodes to maintain an accurate 
estimate of memory consumption at the processing nodes. How- 
ever, these costs are ignored in this paper since inter-scheduler 
communication for memory management is needed in all pro- 
cessor allocation algorithms. 

and disk-utilization is artificially increased by 5% in- 
between periods of sta.tistics collection. This algorithm 
is not useful for operators tha.t do not perform a signif- 
ica.nt amount of disk I/O. An example is a hash-join 
operator wit,h maximum memory allocation. Such a 
join operator performs only CPU processing since the 
input relations are read by separate select operators. 

4.6 Input 

The Input, strat.egy can only be used with the MinDp 
and the MaxDp algorithms. Recall that, the degree of 
parallelism selected by the MinDp and MaxDp algo- 
rithms is equal to the degree of parallelism of one of 
the input opera,tors; the input operator w&h t(he maxi- 
mum parallelism for MaxDp and minimum parallelism 
for MinDp. The Input strategy executes an opera.tor 
on the same set of processors as the selected input op- 
erator. For example, if the MinDp policy selects the 
inner relation data stream for a. hash-join operat,or, t(he 
Input, strategy will assign the join operator to the set 
of nodes where the inner relation is being accessed. 

5 Processor Allocation Strategies 

The algorithms for determining the degree of operator 
parallelism can be combined with t,he algorithms for 
processor assignment to obtain a wide variety of pro- 
cessor allocation algorithms. Most, of the combined al- 
gorithms perform processor allocation in t,wo phases. 
The degree of parallelism is determined in the first 
phase. The degree of operator parallelism and the to- 
t,al memory allocation to the operator are then used 
to determine the memory needed per processor. In 
the second phase, a list is made of candidate proces- 
sors that have enough memory available in their buffer 
pools. Finally, the processor assignment algorithm is 
used to select a subset of the processors from the can- 
didate list. If the number of processors in t#he candi- 
date list is less than the degree of parallelism of the 
operator, the query blocks and waits for memory to 
become available. The only exceptions to this process 
occur with the Maximum policy, which executes each 
operator on all processors, and the Input processor as- 
signment policy, which executes the operator on the 
nodes where the input data stream is produced. 

6 Simulation Model 

The performance studies presented in this paper are 
based on a detailed simulation model of a shared- 
nothing parallel database system. The simulator is 
written in the CSIM/C++ process-orient,ed simulation 
language [SchwSO] and models the database system as 
a closed queueing system. The following sections de- 
scribe the configuration, database and workload mod- 
els of the simulator in more detail. 
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6.1 Configuration Model 

The terminals model the external workload source for 
t,he syst,em. Ea.ch terminal sequentially submits a 
stream of transactions. Each t.erminal has an expo- 
nentia.lly distributed “thinktime” t,o creat,e variations 
in a.rrival rates. All experiments in this paper use a. 
configuration consisting of 128 nodes. The nodes are 
modeled a.s a CPU, a buffer pool of 16 Mbyt.es4 with 
8 Kbyt.e data pages. and one or more disk drives. The 
CPU uses a round-robin scheduling policy with a 5 
millisecond timeslice. The buffer pool models a set of 
main memory page frames whose replacement is con- 
trolled via t#he LRU policy extended with “love/hat,e” 
hints. These hints are provided by the various rela- 
tional operators when fixed pages ark unpinned. For 
example, “love” hints are given by the index scan op- 
erator t,o keep index pages in ‘memory; “hate” hints 
a.re used by the sequential scan operator to prevent 
buffer pool flooding. In addition, a memory reserva- 
tion system under the control of the scheduler task 
allows buffer pool memory to be reserved for a par- 
ticular operator. This memory reservation mechanism 
is used by hash join operators to ensure t#hat enough 
memory is available to prevent their hash table frames 
from being stolen by other operators. 

The simulated disks model a Fujitsu Model M2266 
(1 Gbyte, 5.25”) disk drive. This disk provides a cache 
t&hat, is divided into 32 Kbyt,e cache contexts for use 
in prefetching pages for sequential scans. In the disk 
model, which slightly simplifies the actual operation of 
the disk. the cache is managed as follows: each I/O re- 
quest, a,long with the required page number, specifies 
whether or not prefetching is desired. If prefet#ching 
is requested. four pages are read from the disk into a 
cache context as part, of transferring the page originally 
requested from the disk into memory. Subsequent re- 
quests to one of the prefetched blocks can then be 
satisfied without incurring an I/O operation. A sim- 
ple round-robin replacement, policy is used t,o allocate 
cache contexts if the number of concurrent prefetch 
requests exceeds the number of ava.ilable cache con- 
texts. The disk queue is ma.naged using an elevator 
algorithm. 

The interconnection is modeled as an infinite band- 
width net,work so t.here is no network contention for 
messages. This is based on previous experience with 
the GAMMA prototype [7] which showed that network 
contsention is minimal in typical sha,red-nothing PDBs. 
Messages do, however, incur an end-to-end transmis- 
sion delay of 500 microseconds. All messages are 

4The simulated buffer pool size is smaller than buffer pools in 
typical configurations. Unfortunately, simulating a larger buffer 
pool size would require enormous amounts of resources. Some 
of our simulations took up to 36 MBytes and ran for 24 hours 
on an IBM RS/SOOO even with 16 Mbytes of memory per node. 

“point’-t’o-point” and no broadcast mechanism is used 
for communica.tion. Table 1 summarizes the configu- 
ration parameters and Ta.ble 2 shows the CPU instruc- 
tion costs used in the simulator for various dat,a,base 
operations. 

Parameter 1 Value 

1 Number of Nodes I 128 
Memory Per Node 16 Mbytes 
CPU Speed 10 MIPS 
Number of Disks per Node 1 
Page Size 8 Kbytes 
Disk Seek Factor 0.617 
Disk Rotation Time 16.667 msec 
Disk Settle Time 2.0 msec 
Disk Transfer Rate 3.09 Mbytes/set 
Disk Cache Context Size 4 pages 
Disk Cache Size 8 contexts 
Message Wire Delay 500 psec 

Table 1: Simulator Parameters: Configuration 

7 Experimental Parameters 
7.1 Configuration 

Although we have experimented with both a disk- 
intensive and CPU-intensive configuration, for the 
sake of brevity, results are presented in this paper only 
for a CPU-intensive configuration. The results of t,he 
disk-intensive configuration are briefly summarized in 
each performance section and t,he interestsed reader is 
referred bo [20] for detailed experimental results. The 
CPU-intensive configuration consists of a 10 MIPS 
CPU and four disks per processor. The CPU speed 
was chosen to be artificially low so that the processors 
could be saturated with only 4 disks per node, thus 
reducing the running time of the simulations time5. 

A message buffer of 256 Kbytes is provided for each 
operator. This implies that at most, 32 8Kbyte pages 
can be buffered by each operator. Operat,ors st,op send- 
ing messages when they detect that, the receiver’s mes- 
sage buffer is full. 

5For a faster processor, we would need to simulate many more 
disks per processor. For instance, it takes upto 16 disks with 
high I/O prefetching to saturate one Alpha AXP processor [5] 

Operation 

Initiate Select, Operator 
Terminate Select Operator 
Initiate Join Operator 
Terminate Join Operator 
Apply a Predicate 
Read Tuple from Buffer 
Probe Hash Table 
Insert Tuple in Hash Table 
Start an I/O 
Copy a Byte in Memory 
Send(Receive) an SK Message 

Instr. 

20000 
5000 
40000 
10000 
100 
300 
200 
100 
10000 
1 
10000 

Table 2: Simulation Parameters: CPU Costs 
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7.2 Database 

A simplified database is used in all of the experiments. 
Each database relat,ion contains five million tuples and 

is fully declustered. Although the relations are fully 
declustered, we model range queries to explore the ef- 
fect of reading data on only a subset of nodes. The 
tuple size is fixed at 200 bytes and a clustered index is 
modeled on each relation. 

7.3 Workload 

The workload contains only binary hybrid hash-join [6] 
queries. The hybrid hash-join method was chosen since 
it ha.s been shown to be superior to other join meth- 
ods. Binary join queries were chosen so that issues, 
like pipelining and query scheduling, that arise while 
processing complex queries could be ignored. This is a 
rea.sona.ble simplification as most, commercial database 
systems execute queries comprised of multiple joins as 
a series of binary joins, and do not pipeline tuples be- 
t(ween adjacent joins in the query tree. Each binary 
join query is composed of two select, operators (one for 
the inner and one for the outer relation) plus a join 
operat,or and a store operator. The select operators 
execut,e wherever the input relations are declustered. 
Therefore, processor allocation needs t,o be determined 
only for the join and store operators. In order to 
simplify this performance study, a simplistic proces- 
sor allocation policy is used for store operators - the 
store operator of each query executes on the same set 
of nodes as the join operator of the query. There- 
fore, the degree of parallelism and specific processor 
assignments need to be determined only for the join 
operator in a query. Moreover, the join selectivity has 
been fixed at 1% to make the size of the join out- 
put small to reduce the impact of store operators on 
the performance results. Based on the results of ear- 
lier memory allocation studies [21] [28] [l] [3], joins are 
given either t,heir maximum or their minimum memory 
allocation. Three kinds of workloads are considered: 
Small, Medium and Large. Table 3 summarizes the 
important parameters of these three workloads. 

Workload Access Method indexselectivity 
Small Clustered Index Scan 1% 

Medium Clustered Index Scan 25% 
Large File Scan N/A 

Table 3: Workload Parameters 
We also assume the presence of some mechanism 

that, can be used to direct the select operators to only 
a subset of the nodes.6. Therefore, the degree of select 
operator parallelism is chosen randomly from 1 to 128. 

GEven though all the relations are fully declustered, select. 
operators can be directed to a subset of nodes in several cases 
(e.g. when range de&&wing [ll] is used to map tuples to 
relation partitions). 

The performance of all of the algorithms is examined 
under various system loads by increasing the number 
of query terminals from 10 to 40. 

8 Determining Degree of Parallelism 

This section presents a performance comparison of al- 
gorithms that, determine the degree of parallelism. The 
CPU-Util algorithm is used in all the experiments t,o 
perform processor assignment; the reason for using this 
algorithm here will become evident in Section 9. 

8.1 Maximum Memory Allocation 

The first experiment compares the performance of the 
algorithms on the Small workload (clustered index 
scans with 1% indexselectivity) when each query is 
given its maximum memory allocation. We assume 
that range declustering is used and the degree of paral- 
lelism of the select operators varies uniformly between 
1 and 128. Figure 1 shows the average query response 
time and the degree of join parallelism as the load in- 
creases from 10 to 40 terminals. 

Since the queries in t,his work1oa.d are small, st,artup 
and t,ermination costs form a large fraction of t,he 
query response time. Therefore, the rela.tive order 
of the algorithms is determined by the startup and 
termination costs, which, in turn, a.re determined by 
the degree of join parallelism. The Maximum algo- 
rithm, which selects the highest degree of join par- 
allelism (128), has the highest startup and termina- 
tion costs and, consequently, the highest, average query 
response time. The MaxDp and MinDp algorithms 
choose smaller degrees of parallelism (85 and 38, re- 
spectively) and therefore achieve layer average query 
response times (as compared to the Maximum algo- 
rithm). The lowest query response time is achieved 
by the RateMatch algorithm. This algorithm realizes 
that the sizes of the inner and outer relations of t,he 
join queries are small, and that the join and select 
processing rates can be ma,tched with a low degree 
of join parallelism. Moreover, unlike the other algo- 
rithms, the RateMatch algorithm dynamically adapts 
to the query workload: it selects a higher degree of 
join parallelism as the system load increases because 
the CPU-utilization increases. The degree of join par- 
allelism increases from 25 to 32 as the 1oa.d increases 
from 10 to 40 terminals. 

The next experiment explores the relative perfor- 
mance of the algorithms on the Medium workload 
(clustered index scans with 25% indexSelectivity). 
Figure 2 shows the average query response time and 
the degree of join parallelism chosen by the algorithms. 
Note that, except for the RateMatch algorithm, the 
degrees of join parallelism chosen by all the other al- 
gorithms are the same as in the previous experiment. 
This is, because, t-heir choice of the degree of paral- 
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lelism depends only on the data pla.cement and config- 
uration size, both of which remain static for all work- 
loads. 

The performance results for the Medium workload 
are quit,e different from those of the Small workload. 
The MinDp algorithm has the highest average query 
response time for the Medium workload for less than 30 
terminals, followed by the Maximum, then the MaxDp, 
and finally the RateMatch algorithm. The important 
thing to note is that MinDp has the worst perfor- 
mance, even though Figure 2 shows that it chooses 
the smallest degree of join parallelism (38). 

The inferior performance of MinDp is due to the 
fa.ct it selects a degree of join parallelism that is so low 
that the join operators cannot process tuples at the 
rate at which they are produced by the selects, so the 
message buffers of the join operators overflow. This 
causes the select operators to block leading t#o lower 
CPU and disk utilizations and higher query response 
times. Note that message buffer overflow was not ob- 

served in the previous workload since the queries were 
much smaller (1% indexselectivity) and the message 
buffer size (256 KB) was large enough to prevent over- 
flow. The RateMatch algorithm dynamically selects a 
higher degree of join parallelism for this workload to 
prevent the message buffers of the join operators from 
overflowing. The MaxDp and Maximum algorithms 
avoid message buffer overflow but, they incur higher 
startup and termination costs than the RateMatch al- 
gorit,hm since they select degrees of join parallelism 
that are “too” high. However, startup and termina- 
tion costs are a smaller fraction of the total response 
time of the queries in this workload, so the average 
query response times achieved by the Maximum and 
MaxDp algorithms are only 17% and 9% higher, re- 
spectively, than those of the RateMatch algorithm. 

However, as the number of terminals is increased, 
the relative performance of the MinDp algorithm im- 
proves as the load increases (more than 20 termi- 
nals). This is, because, even though some of the op- 

389 



160- b Maximum 1407 

_._. ..-.- Max&, _._. +.-.- MinDp 

---A--- RateMatch 

w 
120- 

0 a - 0 

% 
i IOO- 

e $ 80- ..-.-.--~-.-.-.-..-.-.-.~ 

.B 
2 60- 4 
0 
0 

~ __.___. i ___.-. -A--.-‘-. 

p 40- ..-.-.-.*-.-.-.-..-.-.-.. 
a 

20 

1 
04 ,.,......,....,....,.........,.,..,.... ( 

0 10 20 30 40 
0 I . , . , . , . . , 

0 IO 20 30 40 
Number of Terminals Number of Terminals 

Figure 3: Performance of Algorit,hms for Det,ermining the Degree of Parallelism - Large Workload 
Maximum Memory Allocation 

era,tors block in the MinDp a.lgorithm due to mes- 
sage buffer overflow, there is enough concurrent, ac- 
tivity in t,he syst,em t,o achieve high processor ut,iliza- 
tion, and there is no increase in t,he average response 
t,ime. The Maximum and Ma.xDp algorit8hms, on t.he 
ot,her hand, perform relatively worse because of their 
higher sta.rt,up and termination c0st.s. The Ra,teM- 
a.tch algorithm chooses a. much smaller degree of join 
parallelism (compared to Maximum and MaxDp). and 
therefore performs well. At the highest load of 40 ter- 
minals. RateMatch resu1t.s in an average response time 
t,hat, is only 2% higher than the average response time 
achieved by MinDp. 

The next experiment examines the performance of 
the algorithms on the Large query workload (file scans 
wit#h 100% selectionSelect,ivity). Figure 3 shows the 
average query response time and the degree of join 
parallelism for each algorithm. The resu1t.s show that 
RateMat,ch still has t,he best performance, but t,he 
performance of the other algorit#hms is much closer; 
Maximum a.nd MaxDp provide response times that are 
only ll’% and 9% higher, respectively. The reason is 
the same as before - file scans increase the execution 
time of t#he queries, so the effect of extra startup and 
termination costs in the MaxDp and Maximum algo- 
rithms become less and less significant. The MinDp 
algorithm behaves similar to the last experiment. It 
selects a low degree of parallelism, causing the select 
operat,ors to block; thus, leading t(o high average query 
response times at low query loads. As the load in- 
creases, t,he effect of blocking diminishes and MinDp 
is able to achieve lower average query response times. 

It is interesting to note that the degree of join par- 
allelism chosen by the RateMatch algorithm for the 
Medium and for the Large workloads is nearly identi- 
cal (even though the Large queries process nearly four 
times the data processed by the Medium queries). The 
reason is t,hat the rate at which tuples are sent by the 

select operators is the same for both workloads. The 
rate depends on t,he degree of parallelism of t,he se- 
lect operators. Since the degree of parallelism of select 
operators is identical for bot,h workloads, t,he rat,e at, 
which t,uples a.re sent. t,o t,he join opera,tors in t#he two 
workloads is also identical. Therefore, the same degree 
of join pa,rallelism can be used for hot#h t,he workloads. 
This implies that any algorithm which chooses the de- 
gree of join parallelism based on the size of t,he input 
relations will be non-optimal. The degree of join paral- 
lelism chosen by such an algorithm for the Large work- 
load would be four t.imes that of t.he Medium workload, 
while these experiments have shown t#hat the degree of 
join parallelism should remain the same for both work- 
loads. 

The last t,hree experiments have shown that the 
MinDp algorithm performs well for small-query work- 
loads but can lead to a underutilized system and higher 
query response times for larger queries (since it can 
underestimate the proper degree of join parallelism 
causing select operators to block). The Maximum 
and MaxDp algorithms perform poorly for small query 
workloads due to high startup and termina.tion cost,s 
but can provide reasonable performance as query sizes 
increase. Finally, the RateMatch algorithm consis- 
tently shows good performance. The RateMatch al- 
gorithm performs well for the small query workload 
because it, reduces startup and termination costs. At 
the same time, it can dynamically increase the degree 
of parallelism for larger queries to prevent operators 
from blocking. 

8.1.1 Minimum Memory Allocation 

In each of the previous experiments, queries were given 
their maximum memory allocation. The next exper- 
iment compares the performance of the algorithms 
when queries are given their minimum memory allo- 
cation. Figure 4 shows the average query response 
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time and t)he degree of join parallelism for the medium 
workload. Result#s are not presented for the Small 
work1oa.d since there is not much of a difference be- 
tween maximum and minimum memory allocation for 
queries in the Small workload. Additionally, Large 
workload results were qualitatively very similar to 
the Medium workload results and have therefore been 
omitted. 

Figure 4 shows that, if queries are allocated their 
minimum memory allocation, the higher the degree of 
join parallelism, the lower the average query response 
time. This occurs for two reasons. First, minimum 
memory allocation implies t#hat input relations must 
be pa.rtitioned by the join operators into disk-resident, 
buckets. Since writing out tuples t,o disk is slow, the 
processing rate of join operators decreases. Therefore, 
too little join parallelism can cause the select opera- 
tors to block. Second, once partitioning of the input 
relat.ions is complete, a higher degree of join paral- 
lelism implies faster processing for each disk-resident 
bucket,. Consequently, the Maximum and RateMatch 
algorithms, which both select high degrees of join par- 
allelism (128 and 122, respectively), provide better 
performance than the MinDp and MaxDp algorithms, 
which select lower degrees of join parallelism (85 and 
38, respectively). 

8.2 Result Summary 

The results of the previous experiments have shown 
that when queries are allocated their maximum mem- 
ory allocation, the MinDp algorithm performs well for 
small queries since the cost of startup and termina- 
tion constitutes a large fraction of t,heir response time. 
However, the MinDp algorithm’s performance can de- 
teriorate as the size of the input relations increases 
because it can underestimate the degree of operator 
parallelism, thus causing other operators t.o block. The 
Maximum and MaxDp algorithms perform poorly for 

small query workloads due to high startup and t,ermi- 
nation cost,s, but t#hey provide rea.sona,ble performance 
for larger query sizes. On the other hand, the RateM- 
atch algorithm can dynamically adapt the degree of 
parallelism to provide good performance for bot.h small 
and large query workloads. 

If minimum memory allocation is used for queries. 
a higher degree of jqin parallelism improves response 
times. Therefore, the Maximum and RateMat#ch al- 
gorithms perform well. but, the MinDp and MaxDp 
algorithms lead to higher response times. 

The relat,ive performance of the algorithms is also 
the same in a disk-int,ensive configuration [20] except 
that all the algorithms have nearly identical perfor- 
mance when queries are given their maximum mem- 
ory allocation. Response times are dominated by I/O 
processing time in a disk-intensive configuration; since 
all t,he algorithms perform the same I/O processing if 
queries are allocated their maximum memory alloca- 
tion, their performance is also identical. 

9 Determining Processor Assignment 

So far we have compared the performance of t,he al- 
gorithms for selecting the degree of join parallelism. 
This section presents a performance evaluation of the 
six processor assignment algorithms discussed in Sec- 
tion 4. 

9.1 Maximum Memory Allocation 

The first experiment in t,his section compares the per- 
forma.nce of the algorithms on the Small workload. 
Maximum memory allocation is used for the queries 
and the degree of select parallelism varies varies uni- 
formly between 1 and 128. Figure 5 shows the perfor- 
mance of the various processor assignment algorit.hms 
when t,he RateMatch algorithm is used to determine 
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the degree of join parallelism7. As explained previ- 
ously, the Input algorithm cannot be used with the 
Rate algorithm, so it is not shown in Figure 5. The 
Disk-ITtil algorithm is also absent since it is used only 
with minimum memory allocation. 

---@--- Random 

- - -) - - Round-Robin 

- - -+ - - Avail-Mem 

---A--- CPU-W 

Ofi 
Number of Terminals 

Figure 5: Processor Assignment Algorithms 
Small Workload, Maximum Memory Allocation 

Figure 5 shows that t,he Random algorithm leads 
t,o the highest response times since it. sometimes as- 
signs even heavily loaded processors to a join. The 
Round-Robin and Avail-Memory algorithms distribute 
the join workload more uniformly than the R.andom 
algorithm and therefore achieve lower response times. 
However, both t,hese algorithms ignore the CPU load 
from the select operators, and thus do not perform 
as well as the CPU-Util algorithm. The CPU-Util 
achieves the lowest query response times, but it is 
only about 10% better than the Round-Robin algo- 
rithm. This is because the CPU-Util algorithm uses 
utilization statistics that are updat,ed every 5 seconds. 
Since queries in this workload are very small (1% se- 
lectivity on the input relations), multiple queries often 
a.rrive in the system within the 5 second int,ervals when 
the CPU-utilization statistics are out-of-date. These 
queries therefore get executed on nodes that do not 
necessarily have the lowest CPU-utilization. As a re- 
sult, the performance of the CPU-Util algorithm is 
only slightly better than the simpler Round-Robin al- 
gorithm. 

The relative performance of the processor assign- 
ment algorit,hms is also similar with the Medium work- 
load. Figure 6 shows the performance of the different 
algorithms when the RateMatch algorithm is used to 
select the degree of join parallelism. CPU-Util pro- 
vides the best performance in all the cases, followed 
by the Avail-Mem, Round-Robin, and the Random al- 

7[20] also contains experimental results when other algo- 
rit.hms like MaxDp are used determine the degree of join paral- 
lelism and the results are qualitatively very similar. 

gorithms. Results for the Large workload were quali- 
tatively similar and ha,ve been omitted. 
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Figure 6: Processor Assignment Algorithms 
Medium Workload, Maximum Memory Allocation 

The resuhs of these experiments show that the 
CPU-Util algorithm for processor assignment, achieves 
the lowest response times when queries are given t.heir 
maximum memory allocation. However, as query sizes 
increase, simpler algorithms like R.ound-Robin and 
Avail-Mem ca.n also perform quite well. 

9.2 Minimum Memory Allocation 

The next experiment with the CPTT-intensi.ve configu- 
ration explores the performance of the processor allo- 
cation algorithms when joins are given their minimum 
memory allocation. As in Section 8.1.1, results are re- 
ported only for the Medium workload (since there is 
not much difference between the maximum and mini- 
mum memory allocations for the Small workload and 
the results for the Large workload are similar to the 
results of Medium). Figure 7 shows the average query 
response times for the different processor assignment 
algorithms under various system loads. Since join op- 
erators perform I/OS with minimum memory alloca- 
tion, the performance of the Disk-Util algorithm is also 
included. 

Figure 7 shows that all the processor assignment al- 
gorithms have virtually identical performance in this 
case. This is mainly because t,he number of proces- 
sors chosen by RateMatch is high for this workload. 
The average degree of join parallelism is 122. There- 
fore, the set of processors chosen by the CPU-Util al- 
gorithm, for example, is not very different from the 
set of processors chosen by the Random algorithm. As 
a result, all of the algorithms have basically the same 
performance for this workload. This experiment shows 
that as the degree of operator parallelism increases, the 
differences in the performance of the various processor 
allocation algorithms virtually disappear. 
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9.3 Result Summary 

This section has presented the performance of several 
processor assignment algorithms. The results show 
that the choice of the processor assignment algorithm 
has a significant performance impact only if the work- 
load is CPU-intensive and queries a.re given their max- 
imum memory allocation. In this case, the CPU-Util 
algorithm, which selects the least utilized processors, 
achieves the lowest response time.’ In all other cases9 , 
the choice of a processor assignment algorithm has a 
small performance impact and therefore a simple algo- 
rithm like Round-Robin is sufficient t#o obtain reason- 
able performance. Finally, the experiments show that 
the choice of the processor assignment algorithm is not 
as important as the choice of the algorithm used to de- 
cide the degree of join parallelism; the differences be- 
tween the performance of the processor assignment al- 
gorithms are smaller than the differences in the perfor- 
mance of the algorithms for select,ing join parallelism. 

10 Related Work 

Intra-operator parallelism and processor assignment 
has been an active area of database research. The 
topic has been studied extensively in t,he context of 
load balancing in shared-everyt,hing systems [14] [19]. 
Several researchers have focused on processor assign- 
ment for queries with multiple join operators [lo] [22] 
[9]. Processor assignment has also been studied exam- 
ined in t,he context of distributed database systems [2] 

WI. 
A formula for determining the optimal degree of 

parallelism of database operators was presented in [27]. 

8These results explain the use of the CPU-Util algorithm in 
all of the experiments comparing algorithms for selecting join 
performance (Section 8). 

gThe experiments with the disk-intensive configuration [20] 
also show that all the algorithms perform similarly. 

The formula assumes that if S is the startup cost, of 
a’n operation, and P is the per-tuple processing cost,, 

then the optimal degree of parallelism, noFt = 
d- 

PN 

Note that, t,his formula is based only on t,he size of t”hd 
operand and disregards the rate of flow of tuples be- 
tween operators. The results presented earlier in the 
paper (Section 8) show that this can lead to exces- 
sively high degrees of parallelism. Rahm and Marek 
[23] study algorithms to determine the degree of par- 
allelism for t,he join operator and also st,udy proces- 
sor assignment algorithms. The authors consider only 
small queris and decrease the degree ofjoin parallelism 
based on the CPU-utilization in a multi-user environ- 
ment. Our results, however, show t,hat, reducing the 
degree of parallelism even in CPU-int,ensive configu- 
rations does not affect performa.nce significantly, es- 
pecially for large query sizes. Moreover, the algorit,hm 
presented in [23] uses the optimal parallelism in single- 
user mode as input. This parameter can be hard to 
estimate especially since it is a complex function of 
the configuration, memory, and the memory alloca- 
tion policy. Algorithms for processor and memory al- 
location were also studied in [24]. [MurpSl] use the 
concept of matching processing rates of operators in a 
query plan to determine buffer allocation. 

11 Conclusions 

This paper has investigated the problem of managing 
intra-operator parallelism in a multi-query environ- 
ment for a parallel database system. Four algorithms 
for deciding the degree of operat,or para.llelism and six 
algorithms for selecting the assignment of operat,or in- 
stances to processors were considered. A detailed per- 
formance evaluation of the algorithms showed that us- 
ing the RateMatch algorithm for deciding the degree 
of parallelism and the CPU-Util algorithm for select- 
ing processors achieves the best performance irrespec- 
tive of the workload and hardware configuration. The 
RateMatch algorithm calculates the degree of paral- 
lelism based on the rate at which tuples are processed 
by various operat,ors, while the CPU-Util algorithm 
selects the processor with the least CPU-Utilization. 
Both algorithms use information about the current 
system state and can therefore dynamically adapt to 
different workloads. However, experiments also show 
that if the workload consists of large queries, or if the 
configuration is disk-intensive, simpler allocation al- 
gorithms like MaxDp can perform equally well. This 
implies that processor allocation can be significantly 
simplified in several cases. 

In this paper, the RateMatch algorithm was used 
only to determine the degree of join parallelism for bi- 
nary join queries in a shared-nothing system. However, 
we feel that the paradigm of matching the rate of tu- 
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ple flow between operators can be used in other cases 
also. For example, it can be used in a complex query 
to match the rat#e of flow bet,ween the opera.tors in a 
parallel-query pipeline. Similarly, the algorithm can 
be used to decide the degree of parallelism for other 
operators like sorts and aggregates. We plan to explore 
these issues further in the future. Another direction of 
future research is t,he application of the RateMatch 
algorithm t,o shared-memory and sha,red-disk sy&ems. 

The results presented in this st,udy have also shown 
the importance of decoupling processor allocation from 
data placement. The MinDp algorithm, for inst.ance, 
can underestimate the degree of operator parallelism 
and cause high query response times. Similarly, the 
MaxDp algorit,hm can overest,imate operator paral- 
lelism and lead to higher startup and termination 
costs. The decoupling of processor allocation a.nd 
da.ta placement can have a significant impact on sev- 
eral other area.s of research in shared-nothing paral- 
lel database syst,ems as well. For example, all of the 
studies on declustering policies [ll] [15] also make the 
implicit, assumption that operations like joins are ex- 
e&ed on the nodes where data is accessed. A re- 
exa.mination of the algorithms proposed in t,hese st,ud- 
ies will be required if this assumption is removed. 
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