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Abstract 
We examine the estimation of selectivities for range and 
spatial join queries in real spatial databases. As we have 
shown earlier [FK94], real point sets: (a) violate consistently 
the “uniformity” and “independence” assumptions, (b) can 
often be described as “fractals”, with non-integer (fractal) 
dimension. In this paper we show that, among the infinite 
family of fractal dimensions, the so called “Correlation 
Dimension” Dz is the one that we need to predict the 
selectivity of spatial join. 

The main contribution is that, for all the real and syn- 
thetic point-sets we tried, the average number of neighbors 
for a given point of the point-set follows a power law, with 
LI& as the exponent. This immediately solves the selectiv- 
ity estimation for spatial joins, as well as for “biased” range 
queries (i.e., queries whose centers prefer areas of high point 
density). 
We present the formulas to estimate the selectivity for the 
biased queries, in&ding an integration constant (KLshape,) 
for each query shape. Finally, we show results on real and 
synthetic point sets, where our formulas achieve very low rel- 
ative errors (typically about lo%, versus 40%-100% of the 
uniformity assumption). 

1 Introduction 

The goal of this paper is to illustrate the power 
of the concept of fractal dimension as a succinct 
description for the distribution of real k-dimensional 
point-sets. Specifically, we show how to use the so- 
called “Correlation” fractal dimension, to estimate the 
selectivity of several types of spatial queries (spatial 
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joins, range queries, etc..). Multi-dimensional point-sets 
have numerous applications in databases: 

. 

. 

. 

In 

traditional relational databases, where records with 
k-attributes become points in k-d spaces; e.g. a 
relation with patient data (age* blood pressure, etc.) 
becomes a cloud of points; 
geographical information systems (GIS) contain 
point data, such as cities on a two-dimensional map; 
medical image databases with, for example, three- 
dimensional MRI brain scans, require the storage 
and retrieval of point-sets, such as digitized surfaces 
of brain structures [AC:F+93], etc. 
multimedia databases, where multi-dimensional ob- 
jects can be represented as points in feature space 
[FRM94] e.g., 2-d color images correspond to points 
in (R,G,B) space (where R,G,B are the average 
amount of red, green and blue [FBF+94]); 
time-sequences analysis and forecasting [C:ES’L], where 
k successive values are treated as a point in k-d 
space; correlations and regularities in this k-d space 
help in characterizing the dynamical process that 
generates the time series. 
all the above applications the distribution of R- 

d points is seldom (if ever) uniform [C:hr84], [FK94]. 
Thus, it is important to be able to characterize the 
deviation from uniformity in succinct way (e.g. as a sum 
of gaussians, or something like that). Such a description 
is vital for the following two requirements: 
1. selectivity estimation and, in general, query opti- 

mization: “Given a range query, or a spatial join, 
estimate the amount of effort for a variety of alterna- 
tive query plans”. This is increasingly important, as 
the size of spatial databases increases (19Gb for the 
GIS data of the TIGER system of the U.S. Bureau of 
C:ensus, > lC:b and up to several Terabytes for the 
spatial data of the Sequoia benchmark [DKPY94], 
[SFGM93]). 

2. “data mining” [AIS93],[AS94], with hypothesis test- 
ing and rule discovery. A succinct description of 
a k-d point-set could help reject quickly some non- 
promising hypotheses, or could help provide hints 
about hidden rules. For example, consider a medical 

299 



database, with patient records! with k numerical at- 
tributes (eg., age, blood-pressure, cholesterol-level, 
etc.); in this case, a fast, positive test for uniform 
distribution of points in k-d space would indicate 
that there are no correlations or rules to search for. 

We argue that the theory of fractals provide powerful 
tools to solve the above problems. The paper is 
organized as follows. Section 2 gives past work in spatial 
databases query optimization and analysis of spatial 
access methods (SAMs). Section 3 gives a survey of the 
main ideas in the theory of fractals. Section 4 shows 
how to use fractals to describe real point-sets and how to 
obtain accurate estimates for the selectivities of several 
spatial queries. Section 5 gives experimental results on 
real and synthetic data sets, illustrating the accuracy of 
our proposed formulas. Section 6 discusses the practical 
use of the obtain results. Section 7 lists the conclusions 
and directions for future research. 

2 Past work in databases 
There are two areas within the database field that are 
related to our present work: 

(a) query optimization and, specifically, selectivity 
estimation in multi-attribute queries; 

(b) analysis of spatial access methods. 

Within query optimization, a set of records with k- 
attributes can be seen as a set of points in k-d 
space. To estimate selectivities for range queries, 
one typically makes the uniformity and independence 
assumptions. These assumptions, however, do not 
hold on real data; moreover, they lead to pessimistic 
estimates [Chr84]. For a single attribute, the uniformity 
assumption has been relaxed [IC91], typically through 
the use of the Zipf distribution [Zip49]. Distributions 
of real attributes do indeed follow the Zipf distribution 
or the generalized Zipf distribution: for example, 
word frequencies in the English language (as well as 
other languages); salaries [Zip49]; first names and last 
names of people [FJ92], etc. For multi-dimensional 
distributions, though, the deviations from uniformity 
and independence are difficult to model. The general 
practice is to divide the address space in cells and to 
keep statistics with their occupancy, in the form of 
histograms [IC94],[MD88]. 

Similar assumptions are made in the analysis of spa- 
tial access methods. Theoretical analysis in such cases 
assumes that points are uniformly distributed in the ad- 
dress space [FSR87],[AS91], which also implies that the 
attributes are uncorrelated. Even in simulation stud- 
ies, researchers on spatial access methods and multi- 
attribute query optimization are forced to use ad-hoc, 
non-uniform distributions, such as the Gaussian dis- 
tribution {NSSS], some sort of clustered distributions 

Figure 1: Sierpinski triangle: the jirst 3 steps of its 
recursive construction. 

(with points clustering around uniformly distributed 
sites [Ore86], or points clustering around curves, like the 
sinusoidal curve [BKSSSO]). Although these distribu- 
tions are non-uniform, they suffer from two drawbacks: 
1. it is unclear whether these distributions are related 

to real-world distributions; 
2. they do not help make the analysis tractable. 
In a recent paper [FK94] we proposed an alternative 
viewpoint to modeling real-world point-sets, which 
alleviates both of the above problems. The idea was 
to use concepts from the theory of fractals. Using 
real data sets, we showed that they indeed behave as 
fractals and we showed how to accurately predict the 
performance of R-trees [Gut84], [BKSSSO] using the 
Hausdorff fractal dimension (DO) of the target point-set. 
Next we introduce the basic concepts from the theory 
of fractals. Later on we show how to use a different 
fractal dimension, the ‘Correlation’ one, to estimate the 
selectivities of spatial queries.. 

3 Introduction to fractals 
Intuitively, a set of points is a fractal if it exhibits self- 
similarity over all scales. This is illustrated by an exam- 
ple: Figure 1 shows the first few steps in constructing 
the so-called Sierpinskz triangle. Figure 2 gives 5,000 
points that belong to this triangle. Theoretically, the 
Sierpinski triangle is derived from, an equilateral trian- 
gle ABC by excluding its middle (triangle A’B’C’) and 
by recursively repeating this procedure for each of the 
resulting smaller triangles. The resulting set of points 
exhibits ‘holes’ in any scale; moreover, each smaller tri- 
angle is a miniature replica of the whole triangle. In gen- 
eral, the characteristic of fractals is this self-similarity 
property: parts of the fractal are similar (exactly or 
statistically) to the whole fractal. For our experiments 
we use 5,000 sample points from the Sierpinski trian- 
gle (termed ‘SierpinskiBK’ dataset from now on), us- 
ing Barnsley’s algorithm of Iterated Function Systems 
[BSSS] to generated these points quickly. 

Like all fractals, the Sierpinski triangle is a rich source 
of paradoxes: it is a point-set with area zero (being 
proportional to limi-,(3/4)i), and with infinite-length 
perimeter (proportional to: limi,,( 1 + l/2)“). 



An interesting observation is that the above definition 
encompasses traditional Euclidean objects: 

Observation 1 For Euclidean objects, thezr fractal 
dimenszon equals their Euclidean dimension. 

-0 0.25 0.5 0.75 1 

‘,SierpznskiSK’ dataset 

Figure 2: Theoretical fractals: a sample of the Sierpinski 
triangle 

Thus, it is not a l-dimensional Euclidean object, 
(otherwise it would have finite length perimeter). but 
it is not a 2-dimensional Euclidean object either (since 
it has zero area). The way to resolve the issue is to 
consider fractional dimensionalities, which are called 
fractal dimensions. As we shall see shortly, there are 
several definitions; among them, we first choose the 
Hausdorff fractal dimension, or box-counting dimension 
or D0, because it is easier to describe. 

The Hausdorff fractal dimension D0 for a given point- 
set in an E-dimensional address space is defined as 
follows [SchSl]. Divide the E-dimensional space into 
(hyper-)cubic grid cells of side T. Let N(r) denote the 
number of cells that are penetrated by the set of points 
(i.e., that contain one or more of its points). Then 
the (box-counting) fractal dimension D0 of a fractal is 
defined as: 

1% NW Do z 22 log(I/r) 
This definition is useful for mathematical fractals, 

that consist, of infinite number of points. For a finite 
number of points, we avoid the limit r + 0; instead we 
restrict our attention to a suitable range of scales r E 
(q, rs), in which the point-set exhibits (statistical) self- 
similarity. More specifically, we use the box-count plot, 
which plots log( N(r)) vs. log(r) (e.g., see Figure 4(a), 
top row, for the box-count plot of the ‘SierpinskiSK’ 
dataset). If the point-set is self-similar for r E (q, rz), 
then its box-co&t plot will be a straight line for this 
range. The (negated) slope of this line is the Hausdorff 
fractal dimension D0 of the point-set for the range of 
scales (rl, ra): 

Definition 1 (Hausdorff fractal dimension) For a 
point-set that has the self-similarity property in the 
range of scales (r1 1 rg), its Hausdorfl fractal dimension 
Do for this range is measured as 

Do = _ alodN(r)) = 
8 log(r) 

constant for r1 < r < rg (2) 

Thus, lines, line segments, circles, and all the standard 
curves have D0=1; planes, disks and standard surfaces 
have D0=2; Euclidean volumes in E-dimensional space 
have D0 = E. 

Figure 4(a)(top row) shows the box-count plot for ZI0 
for the ‘Sierpinski5K’dataset. Notice that the slope for 
r E (e-4.5,t+-1) is 1.574, very close to the theoretical 
value of log 3/ log 2 = 1.585 [Man77]. Also notice that 
the horizontal parts of the plot are perfectly explainable: 

For very fine granularities (i.e., r - 0), each of 
the 5,000 points eventually is in a cell by itself. 
Thus, it becomes clear that the point-set is a finite 
collection of points (each with fractal dimension D0 
= 0), and therefore, the collective Hausdorff fractal 
dimension is also 0. Notice that the limit value 
lim,+0 N(r)=5,000. 
For very coarse granularities (i.e., r --* co), the whole 
point-set fits in a single cell (lim,,, N(r) = l), and 
thus behaves like a single point. 

There is an infinite family of fractal dimensions. For 
a finite point set, the generalized fractal dimension D, 
(where q is a real number) is as follows. Consider again 
a grid with cells of side r, and let pi denote the frequency 
with which points fall into the i-th cell of the grid. 

Definition 2 (Generalized fractal dimension) For 
a point-set that has the self-similarity in the range of 
scales (rl, r2), the generalized fractal dimension D, is 
de$ned as 

a1ogCpp 

Dq E -!- 
q- 1 i)loLr = 

constant q # 1 (3) 

This definition holds for q < r < ~2. 

Clearly, the plot of log Cj p: versus log r is vital for 
the estimation of a generalized fractal dimension D,. 
For the rest of this paper, we shall refer to it, by the 
generalized box-count plot or simply the box-count plot. 
In the definition of the generalized fractal dimension, 
notice that for q = 2, we have the so-called ‘correlation’ 
fractal dimension D2, which is the one we shall use next: 

a log c pi” 

D2z 
i3lo~r 

= constant r E (rl, r2) (4) 

Thus, for the rest of this paper, we focus on q = 2. To 
make the discussion more clear, we introduce the term 
‘sum of squared occupancies’ &(r): 
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Definition 3 For a point-set P in a grid of cell-side r, 
the SUIT of spuared occupancies &(r) is defined as: 

(5) 

We close this introduction to fractals with a formula 
whic,h is valuable for selectivity estimation: by integrat- 
ing Equation 3, we have that the sum of squared occu- 
pancies follows the power law: 

1 ,92(r) o( rD2 1 (6) 

where the symbol ‘0~ ’ stands for ‘proportional’. Corn- 
bined with the upcoming Lemma I this power law is 
the first stepping stone towards the desired selectivity 
estimation formulas. 

Symbols 

4 
DO 

D2 

E 

r 

Pi 

Se1 r-range (6 
Sdb-range(C 

Seljoin(c) 
iii+) 

‘shape’ 
step(z) 

dist($, 6) 

Definitions 

general Fractal Dimension 

Hausdorff Dimension 

Correlation Dimension 

Dimensionality of address space 

(‘Enibedding Dimension’) 

set of points 

single multi-dimensional point 

cardinality of the considered 

point set 

length of the side of a grid cell 

frequency with which points fall 

into each grid cell 

sun1 of squared occupancies 

radius of the spatial join or 

size of the query region 

selectivity of random range queries 

selectivity of biased range queries 

selectivity of spatial join 

average number of neighbors 

shape of the query region 

function which returu 1 if I > 0, 

0 otherwise 

Euclidean distance between two 

points q; and q; 

Table 1: Definition of symbols 

3.1 Description and fractal dimensions of 
sample datasets 

The reader might be wondering whether real datasets 
behave like fractals, with linear box-count plots. In this 
subsection we give (a) a description of 4 datasets (2 
real and 2 synthetic), that we shall use throughout this 
paper and (b) their box-count plots, for the Hausdorff 
(Do) and correlation (02) fractal dimensions. 

The two real point-sets are road intersec,tions of (J.S. 
counties, from the TIGER database of the 1J.S. Bureau 
of Census: 

l ‘MCnty dataset: road intersections from the Mont- 
gomery County, Maryland, with N =9,552 points 
(see Figure 3(a)); 

l ‘LBCInty’ dataset: road intersections from the Long 
Beach County, California, with N=10,377 points 
(see Figure 3(b)). 

As a ‘sanity check’ for our formulas and algorithms, we 
also used synthetic point-sets, which are self-similar and 
have known fractal dimensions: 

l ‘SierpinskiSK’ dataset: a 5,000 point sample from 
the Sierpinski triangle (D, = 1.585 Vq), see Figure 2; 

l ‘StrLineSD’ dataset: a 5,000 point sample from a 
straight line in 3 dimensional space (D,=l Vq). 

Next, we give the box-count plots for the above 4 
datasets, for both the Hausdorff and correlation fractal 
dimension. For the two synthetic datasets (Figures 4(a, 
b)) the plots are indeed straight lines in the suitable 
range of scales, and the slope is very close to the 
theoretically expected ones (the relative error is less 
than 2%). 

For the real datasets, the box count plots are shown in 
Figure 5(a,b). Notice that they, too, have plots that are 
straight lines for suitable ranges of scales. The slopes 
are smaller than the embedding dimension (ES), 
reflecting the visually obvious fact (see Figures 3(a,b)) 
that the point sets are not uniformly distributed in the 
address space. 

(a) ‘MCnty’ dataset (b) ‘LBCnty’ dataset 

Figure 3: Real data sets: road intersections from (a) the 
Montgomery county, MD; and (b) and the Long Beach 
county, CA. 

Table 2 lists the measured Do and D2 for each 
dataset. The last column lists the theoretical fractal 
dimension, whenever known. We shall use the results of 
this Table in the experiments (Figures 7, 8, 9 and 10). 

4 Selectivity estimation 
In the previous section we saw the definitions of several 
fractal dimensions, and specifically, the ‘correlation’ 
fract,al dimension D2 of a point-set. Next, we show 
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(a) ‘A’ierpanski5K dataset (b) ‘,StrLineSD’ dataset 
(theor. ZI, = &=1.585) (theor. ZIc = &=l.OOO) 

Figure 4: flax count plots for ‘SierpinskiSK’ and 
‘StrLineSD’ datasets, for the Do (top row) and D2 
(bottom row) 

1 Data Sets ] Measured 1 Theoretical 
Do D2 D4 

‘SierpinskiJK 1.574 1.587 1.585 
‘S’trLineSD’ 0.979 1.008 1 .ooo 
‘MCnty’ 1.719 1.518 N/A 

1 ‘LBCntu’ 1 1.697 1 1.732 ] N/A I 

Table 2: Summary of measured fractal dimensions (DO 
and Dz), for all datasets 

how to use this machinery, in order to estimate the 
selectivities for spatial queries, and specifically (a) for 
range queries and (b) for spatial joins. 

First, we give some preliminary definitions and the 
problem description; then we show that the desired 
selectivities follow a power law, with exponent the 
correlation fractal dimension D2; next we give a formula 
to estimate the constant of proportionality; and finally 
we combine everything in the main theorem, in Eq. (81). 
Each subsection corresponds to each of the above steps, 
respectively. 

4.1 Definitions and problem description 

As mentioned before, we focus on range queries and 
on spatial joins. A range query specifies a region in 
the address space and requires all the data items that 
intersect this region. Thus, we can describe a range 

WO 

(a) ‘MCnty’ dataset 

WJ) 

(b) ‘LBC’nty’ dataset 

Figure 5: Box count plots for ‘MCnty’ and ‘LBCnty’ 
datasets, for the Do (top row) and 02 (bottom row) 

query as a triplet: 
< ‘shape’, C, {> 

where: 
l ‘shape’ represents the shape of the query region 

(e.g.: square, circle, diamond, etc.); without loss of 
generality, we designate the center of gravity of the 
query region as the ‘anchor’ point. 

l {is the position of the ‘anchor’ in the address space, 
l c is the extent of the shape, that is, the distance 

of the center-of-gravity to the most remote point of 
the shape on the positive c-axis (e.g., in the case of 
a circle, c is the radius). 

We distinguish between two models [PSTW93] for the 
probability distribution of the anchors $ 
1. the Random model, which assumes that the anchors 

are uniformly distributed in the address space and 
2. the Biased model, which assumes that queries are 

more probable in high-density areas of the address 
space. For example, in a GIS/transportation 
application with a map of cities, we would expect 
few queries on deserts and bodies of water, and more 
queries on highly populated areas. In the ‘biased 
model’, we assume that the anchors are allowed to 
land only on data points; thus, high-density areas 
attract more queries. 

A ‘self spatial join’, or simply a ‘spatial join’, of a set 
of points P is a query that requests all unique pairs 
of distinct points, whose relative distance is less than a 
given radius ‘6’. We typically use the Euclidean distance 
as the distance metric. 
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For any query, its selectivity is defined as the 
proportion of records that it retrieves. 

For range queries under the random model. the 
problem is easy: the selectivity Sel,.-range(~, ‘shape’) 
for a query of the specified shape with radius f is the 
relative volume Vol(~, ‘shape’) of the query shape: 

se1 r-rangr (6, ‘shape’) = 
voqt ) ‘shape’) 

( volume of address space ) (7) 

Since Eq. (7) solves the problem, we will not examine 
the random model any further. 

Before we give the formulas to express the selectivities 
of biased range queries (se/b-,,n,,(f)) and of spatial 
joins (Se/join(E)), we define two auxiliary quantities, 
which will make the presentation and the proofs more 
clear: (a) the total number CJniquePnirs(c) of unique 
pairs of points that lie within distance f from each other, 
and (b) the average number of neighbors a(~) within 
distance c from a data point. 

Definition 4 The total number lJniquePnir.s( t) of 
unique pairs of a point set P is de$ned a,s: 

IJniquePnirs(t) G c (unique pairs of points (6, &) 

within Euci. distance e) (8) 

where: $, q: E I’, i # j and ‘unique’ means that (& , q:) 
and (q:, 5) are counted once. More formally: 

N N 

i=l j=i+1 

where: 9;., q; E I’, dist(q:, q:)i is the Euclidean distance 
between two points 6, q: and step(z) =l if z is positive. 
=0 otherwise. 

Definition 5 The average number of neighbors a(f) is 
defined as 

a(<) z (avg. # of neighbors within distance 6) 

OT 

N 

Gqc) = ; C( # points within distance 6 
2 

from the i-th point) (10) 

where the summation is over all the N points of the 
point-set Pp. Notice that this summation is exactly twice 
as large as the summation of Eq. (9), because it counts 
each pair of points twice. Thus 

a(t) = l/N x 2 x IJniquePnirs(6) (11) 

We can generalize the above definition, to include 
other distance measures, or even other query shapes, 
like diamonds, squares, etc.: 

Definition 6 The average number ofneighborsz(c, ‘shape’) 
for a specified query shape is defined as 

N 
a(<. ‘shape’) f J$ c(# points within a shape of 

z 
radius L anchored at the i-th point) (12) 

We designated the default shape to be the ‘circle’ 
(corresponding t,o Euclidean distances). That is 

a+) E Ji(t, 0) (13) 

Based on that, the selectivities for the range query and 
the spatial join can be expressed as follows: 

(14) 

and 

.Seljoin (t) = 
lJniqzlePairs(c) a(t) 

N x (N - 1)/2 = - N-l (15) 

Thanks to Eq. (14,15), we only need to study the 
average number of neighbors a(c). 

Before we proceed with the major results, we men- 
tion the concept of ‘Correlation Integral’, which has 
been studied in the theory of fractal dimension, and, 
specifically, in connection to the ‘correlation’ fractal di- 
mension. The correlation integral can he defined in two 
ways, depending on whether we count the ‘self-pairs’ 
(like (q:,z)) or not. Here we follow the definition by 
Richard L. Smith in [Smi92], where self-pairs are not 
counted. Then, the ‘Correlation Integral’ C(f) coincides 
exactly with our definition for the selectivity of spatial 
goinSelj,*,(t): 

Definition 7 The Correlation Integral C(C) of a point 
set P is dejined as: 

(7(f) E c ( 
unique pairs (q;, 9;) within Eucl. dist. c) 

N x (N - 1)/2 (16) 

where: $, 6 E P and i # j. 

Notice that this formula is identical to our definition of 
spatial join selectivity: 

(17) 

After these preliminary definitions and observations, we 
are ready for the major results. 

4.2 A power law for selectivity estimation 

Our goal is to find a formula to estimate the average 
number of neighbors $6, ‘shape’). An important 
stepping stone towards our goal is provided by the 
following Lemma: 
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Lemma 1 (Schuster) Given a point set P and the The next subsection is devoted to the estimation of 
sum of squared occupanczes ,T&(c) (=Ci p,“) on a grad the KSShapr’ constant, to complete the estimation of 
with cells of sade t, we have: selectlvities and average number of neighbors. 

C(t) oc 5-2(t) 

Proof: See [SchM]. 

(18) 

An obvious consequence of the above Lernma is the 
following power law: 

Lemma 2 Given a set of points P with finite cardinal- 
ity N and its Correlation Dimension D2, the average 
number of neighbors within radius 6 follows the power 
law: 

4.3 Estimation of the constant I(‘&,& 

Our goal is to estimate the constant Ii0 for circles 
(ie.. Euclidean distances). A head-on attack on this 
problem seems difficult. Instead, we propose to exploit, 
Observation 2, to estimate the constant K~Shap~’ for a 
more convenient shape first, and, specifically, a square. 
Without loss of generality, we can normalize the address 
space to the unit hyper-cube. Then, we have: 

G(t) cx 6 D2 (19) 
Proof: Trivially, from Eqs. (18) and (6). QED 
lJsing Eq. (19), we know how to estimate the aver- 
age number of neighbors, except for a constant of pro- 
portionality. Our experiments (see Section 5) led to 
an observation that simplifies greatly the estimation of 
this constant. This observation states that other query 
shapes, too, obey the same power law? with the sanle 
(!) exponent D2: 

Figure 6: ‘Sierpinski5K’ dataset: measured average 
number of neighbors for diflerent query shapes. 

Observation 2 The measured average number of neigh- 
bors for any query shape follows a power law with expo- 
nent the correlation fractal dimension: 

a(~, ‘shape’) = ICgshape, x ~~2 I (20) 

where Kcshapet depends on the specific query shape. 
The observation is illustrated in Figure 6, which plots 

the measured values of a() for several query shapes 
(square, circle and diamond). The point-set was the 
“Sierpinski5K” dataset. The horizontal axis is the 
radius E; both axes are logarithmic. Notice that all the 
plots are straight lines for a long range of scales, and 
that their slopes are extremely close to the measured 
Correlation fractal dimension Dz= 1.587 of the point- 
set. 

Lemma 3 For a square query shape, the comtant of 
proportionality Km is given by: 

Ko = (N - 1) x 2D2 (21) 

Proof: The idea is that a query that covers the whole 
address space should retrieve N - 1 neighbors. Since 
queries that exceed the limits of the address space are 
‘wrapped around’ [KF94],[Fa192], a radius of 6 = l/2 is 
needed to cover the address space. Thus 

&(1/2,O)=N-1 (22) 

Combining Eq. (22) with Eq. (20), we prove Eq. (21). 
QED 
From the above lemma, we have finally: 

1 ii&O) = (N - 1) x (2 x ~)~2 1 (23) 

The formula for the constant I<‘&,@ is based on the 
following assumption: 

Assumption 1 For a fractal point set P, biased range 
queries with equal (hyper-)volurnes, retrieve on the 
average the same number of points, regardless of the 
query shape. 

We do not have a solid justification for this assumption, 
apart from the fact that it ‘sounds right’. However, 
in our pursuit of an accurate selectivity formula, we 
don’t need to provide a justification: this assumption 
eventually leads to predictions which are consistently 
accurate (see Figures 9 and 10 in the experiments 
section). Since the assumption works, we should use 
it! The consequence of this assumption is the following: 

Lemma 4 For a given point set, the constant Kcshape, 
is given by 

&IE 
Kc = Kox 

Vol(~, ‘shape’) 
shape’ 

VOl(C, 0) (24) 
1 
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where D2 is the C.Iorrelation dimension of the point set, 
E is the embedding dimension and Vol(~, ‘shape’) gives 
the volume of the specified shape with radius t. 
Proof: CJonsider a query (QcshapP,) of the desired shape 
and radius E, and a query (Qo) of square (i.e., E-d 
hyper-cube) shape and the same radius. Then we have 

Theorem 1 The average number of nezghbors for a 
pozntset F as given by 

a(t, ‘shape’) = ( 
Vol(~, ‘shape’) 

) 
&lE 

Vol(t, 0) 
x (N - 1) x 2D2 x CD2 

(31) 

qt, 0) = Ii’0 x ED2 (25) 

G(t, ‘shape’) = Kcshapej x c 02 W-5) 

The main idea in the proof is to consider a query 
which is a square query with the same volume as 

~27.p,~. Let f* denote the radius of this query. Then 
we have 

Vol(c, ‘shape’) = Vol(c,, 0) 

and, by Assumption 1 

‘) 

G(t, ‘shape’) = a(~,, “) (‘28) 

From Eq. (20) we have 

For a E-dimensional hypercube, the volume is given by 

I/01(6, 0) = (20E and Vol(f,, 0) = (2f*)E (30) 

Putting all of the above together, we have 

Ii’< shapt+O = (Vol(q ‘shape’) / Vol(~, •))~2/~ 

QED 
Table 3 gives arithmetic examples of the ratio KcShap@/KO 
for circles and diamonds, for the four sample datasets. 
We use the measured value of D2, from Table 2. The 
measured D2 is repeated in the second column, for con- 
venience. 

Data Sets K. shape’/% 
CXrcle Diamond 

‘Sierpinski5K’ (~/4)'.~~'/' = 0.83 (1/2)1'587/2 = 0.58 

‘StrLine3D’ (~r/6)'."~'~ = 0.80 (1/6)1.oo8/3 = 0.55 

‘MC:nty’ (,/4)'.518/2 = 0.83 (l/2)1.518/2 = 0.59 

‘LBC:nty’ (T/4)'.732/2 = 0.81 (l/2)1.732/2 = 0.55 

Table 3: Theoretical values for the ratio K~shape,/K~ 

4.4 Main result 

The final conclusion of all these mathematical deriva- 
tions is the formula that estimates the average number 
of neighbors for any query shape, as a function of the 
c.orrelation fractal dimension D2. 

where D2 is the correlation fractal dimension of the 
point-set, N is the number of points in the point-set 
and Vol(f, ‘shape’) is the volume of a shape of radius t. 
Proof: By substituting Eqs. (24) and (21) into Eq. (20). 
QED 

From the above theorem and Equations (14) and 
(15), we can estimate the selectivity of the spa- 
tial join (Se/join(c)) and of the biased range queries 
(Selb-range(c)), which was our initial goal. The ques- 
tion is to find out how accurate these formulas are, in a 
real setting. This is exactly the goal of the next section. 

5 Experiments 

The purpose of the experiments is to test the prediction 
accuracy of our main result, Eq. (31). This equation 
estimates the average number of neighbors G(e, ‘shape’) 
for a given query, in a point-set with N points and 
correlation fractal dimension D2. For our experiments, 
we used the four clatasets described in subsection 3.1. 

We present two sets of experiments. In the first set, 
we examine the accuracy of our analysis for square 
queries, because the derivations for square queries 
(Eq. (23)) required fewer assumptions than the rest 
of the shapes; if our analysis is inaccurate for square 
queries, it will be at least as inaccurate for the rest of 
the shapes. In the second set, we examine additional 
query shapes (namely, circles and diamonds). 

All the upcoming plots have the same format: they 
give the average number of neighbors a(f, ‘shape’) 
versus the radius 6 of the query. Our estimates (using 
Eq. (31)) are shown in solid line; a clashed line shows 
the estimates under the uniformity assumption (i.e., 
by Eq. (31), after forcing D2 to be E). Actual 
measurements are represented by ‘bullets’ (.); for each 
such ‘bullet’ we measured the number of neighbors 
within the desired radius c for each point of the point- 
set, and averaged the results. To accelerate the searches, 
we used an R-tree spatial index. Also, we selected the 
radii so that they form a geometric progression. 

5.1 Accuracy of predictions for square 
queries 

Figure 7 and Figure 8 show the results of the exper- 
iments for square queries. Each column corresponds 
to the indicated dataset. Each plot follows the format 
mentioned above: it shows the average number of neigh- 
bors a(f, 0) versus the radius c of the square queries. 
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The plots in the top and bot,tom rows use linear 
and logarithmic scales, respectively. The consistent 
conclusion is that Eq. (31) (which reduces to Eq. (23) 
for square shapes) gives very accurate predictions. In 
contrast, the uniformity assumption may give large 
errors; its errors increase with t,he discrepancy between 
LIZ and E, as intuitively expected. The largest error is 
for the ‘,StrLineSZI’dataset (Figure 7(b)), which has the 
highest such discrepancy. 

(a) ‘Sierpinskidh” (b) ‘StrLineSD 
Measured Dz = 1.587 Measured Dz = 1.008 

Figure 7: Synthetic datasets with square queries. Av- 
erage number of neighbors a(c, 0) vs. c in linear (top 
row) and logarithmic plots (bottom row): actual mea- 
surements (‘bullets’), estimates with 02 (solid line), es- 
timates with uniformity assumption (dashed line). 

Table 4 lists the exact values of the errors for 
our predictions, as well as the predictions of the 
uniformity assumption. Following the recommendations 
from statistics, we compute the geometric average of 
relative errors, for each setting. While the uniformity 
assumption leads to errors in the range of 40%-lOO%, 
the accuracy of our predictions is striking, typically 
within 10%. 

Avg. Relative Error 
Data Sets Proposed formula Uniformity assum. 

‘SierpinskiTjK’ 8.9% 61.2% 
‘StrLine3D’ 
‘MCnty’ 
‘LBCnty’ 

3.3% 97.1% 
12% 75.8% 

4.5% 43.2% 

Table 4: Average relative error in estimating a(t, 0). 

(a) ‘MCnty’ 
Measured Dz = 1.518 

(b) ‘LBCnty’ 
Measured Ds = 1.732 

Figure 8: Real datase2.s with square queries. Average 
number of neighbors a(~! 0) vs. 6 in linear (top row) 
and logarzthmc plots (bottom row): symbols as for 

Synthetic datasets. 

5.2 Accuracy of predictions for arbitrary 
query shapes. 

Here we list the plots for queries of additional shapes 
(circles and diamonds). Figure 9 and Figure 10 have the 
results. All the plots follow the same format as before: 
they give the average number of neighbors vs. the radius 
C, for all 4 datasets and for circle queries (top row) and 
diamond queries (bottom row). The observations are as 
follows: 

As mentioned in Observation 2, the ‘bullets’ of any 
plot fall on a straight line, whose slope is very close 
to the measured correlation fractal dimension D2 of 
the respective point-set. 
Our predictions are consistently good, justifying 
our Assumption 1, which was necessary for the 
estimation of the ratio K~shapsl/Kn. 
The predictions of the uniformity assumption can 
lead to large errors, as happened for the square 
queries. The error in the predictions increases 
with the deviation of the dataset from uniformity 
(E - Dz), as expected: the smallest error is for the 
‘LHGnty’dataset (E- 02 = S-l.732 = 0.268), while 
the largest error is again for the ‘StrLineSD dataset 
(E - Da = S-l.008 w2 ). 

Finally, Table 5 lists in detail the (geometric) average of 
the relative errors for circles and diamonds, respectively. 
The observations are 

l the relative errors seem insensitive to the shape of 
the queries (compare also with the errors for square 
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(a) ‘Sierpinslci5K’ (b) ‘strL,ine3D’ 
Measured Dz = 1.587 Measured 02 = 1.008 

Figure 9: Synthetic datasets, with circle (top row) 
and diamond queries (bottom row). Average number 
of neighbors a() vs. t in logarithmic plots: Actual 
(bullets), estimates with D2 and t<$hap& (solid line), 
estimates with uniformity assumption (dashed line). 

queries, in Table 4). The only major change is in 
the error for our formula, for diamond queries on 
the ‘StrLine3D’ dataset (3.3%, 9.9% and 26% for 
squares, circles and diamonds, respectively). The 
phenomenon is probably due to unlucky relative 
orientation of the the 3-d line with respect to the 
surfaces of the diamonds (it?., octahedra, in 3-d). 
The error for the uniformity assumption is not 
changed, probably because it was large to begin with 
(97.1%, 98% for squares and circles, respectively). 

with the above exception, the accuracy of our predic- 
tions is in the lo-15% range, while the competition 
remains in the 40-100% range. 

I Average relative error I 

Circle Diamond 

Sample sets Proposed CJniform Proposed Uniform 

formula assump. formula assump. 

‘Sierpinski5K’ 8.1% 71,6% 9.4% 74.6% 
‘StrLine3D’ 9.9% 98% 26% 93.3% 
‘MChty’ 12.4% 80.4% 14.1% 82.5% 
‘LBCnty’ 3.7% 42.6% 4.3% 45.8% 

Table 5: Shapes CIRCLE and DIAMOND: Average 
relative error in estimating &(e, 0) and a(e, 0). 

(a) ‘MCnty’ 
Measured 02 = 1.518 

(b) ‘LBCnty’ 
Measured 02 = 1.732 

Figure 10: Real datasets, with circle (top row) and 
diamond queries (bottom row). Average number of 
neighbors a() vs. t in logarithmic plots: symbols as 
for Synthetic datasets. 

6 Discussion 

Here we discuss some questions about the practicality 
of the proposed concepts and formulas. 

&l How often do real point-sets behave like fractals? 
Surprisingly often. Recall that Euclidean objects 
(smooth curves and surfaces), as well as uniformly 
distributed point sets behave like fractals, with 
fractal dimension their Euclidean dimension. There 
is overwhelming evidence [Man77](p. 447),[Sch91] 
that a huge number of real point sets behave like 
a fractal, for an appropriate range of scales: coast 
lines and country borders (Do x 1.2 - 1.3); the 
periphery of clouds and rainfall patches (Do M 
1.35)[Sch91](p.231); the distribution of galaxies in 
the universe (Do M 1.23); the brain surface of 
mammals (Do M 2.7); the human vascular system 
(DO = 3, because it has to reach every cell in the 
body!) and so on. Thus, applications with GIS, 
with meteorological databases, with medical image 
databases, etc., will encounter fractal sets very often. 

Q2 How would a practitioner use the provided formu- 
las? 
The setting we envision is as follows: given a point- 
set (e.g., a set of cities of a country, as 2-d points), 
the practitioner needs to compute the correlation di- 
mension D2. We propose an efficient (O(N 1ogN)) 
algorithm (see [RF95]), by measuring the sum of 
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loo0 2000 3000 4000 5000 

natabase size. (#of points) 

Figure 11: Elapsed time vs. database saze N, for the 
estimation of Dz: Our algorithm (O(N log N) - solid 
line); an older algorithm ( O(N2) - dashed line). 

squared occupancies *92(r), for several grid sides r. 
Once 02 is known, Equation (31) can be used to 
estimate the average number of neighbors for any 
query shape. Moreover, with the help of Equations 
(14) and (15), accurate predictions for biased range 
queries and for spatial joins can be made. Our anal- 
ysis can also be used to provide bounds, or educated 
guesses, in case that a computation of D2 is expen- 
sive. 

Q3 How expensive is the computation of Dz ? 

Older algorithms [GraSO] used a different definition 
of D2, through the ‘correlation integral’ C(f); this 
requires the enumeration of the number of pairs 
within distance E. Given that the average number 
of pairs is N(N - I)/2 x ~~2, the complexity of 
such an algorithm will inevitably be O(N’). Our 
algorithm (see [BF95]) reduces the complexity to 
O(N log(N)), b ecause it uses Schuster’s Lemma and 
computes the sum of squared occupancies (,!$(i(r)) 
instead; this can be achieved by a linear scanning 
of the points and by a (lexicographic) sorting of 
them. Figure 6 shows the timing results for the two 
approaches (elapsed time vs. database size). Both 
algorithms ran on a dedicated SlJN SPARCstation 
5. Our algorithm, in solid line, was implemented in 
the ‘Mathematics’ system. The dashed line shows 
the time for our implementation (in ‘(17) of the older 
algorithm, using an R-tree to accelerate the search 
for neighbors. The advantage of our algorithm is 
clear and it will increase with larger databases. 

7 Conclusions 

The major contribution of this paper is a fractal-based 
approach to estimate the selectivity of several spatial 
queries on real, non-uniform point sets. Query types 
of interest are: spatial joins, ‘biased’ range queries 
and average number of neighbors. Expanding on our 

previous work [FK94] ( w ere we used the Hausdorff h 
fractal dimension to study range queries on R-trees), 
here we use the ‘Correlation’ fractal dimension to 
find accurate estimates for all the above query types. 
Additional. smaller contributions are: 

the discovery of Schuster’s Lemma from the theory 
of fractals, which justifies our choice of the ‘(Iorre- 
lation’ fractal dimension D2; 

the experimental discovery that the average number 
of neighbors for any query shape follows a power law 
(Equation (20)) 
the accurate estimation of the constant of propor- 
tionality (Kt,hopej) for Equation (20), justifying our 
Assumption 1. 
the design of a fast (O(N log N)) algorithm to es- 
timate D2; other algorithms, by fractal theory ex- 
perts [Gra90], require quadratic (O(N’)) time. Our 
algorithm has been implemented in the Mathematics 
2.2 environment and is available through ftp and mo- 
saic (URL ftp://olympos.cs.umd.edu/pub/SRC 
/fractal.dim.bundle). 
the experimentation on real data sets, which showed 
that the proposed approach gives very accurate 
results (typically, within 10% or less), while the 
uniformity assumption typically leads to 40%-100% 
relative errors. 

Future research could further exploit ideas from 
the theory of fractals, to solve problems in spatial 
databases, such as the performance of nearest neighbor 
queries [RKV95], and the analysis of other spatial access 
methods (e.g., z-ordering [OregO]) on real, non-uniform 
datasets. 
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