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Abstract 

Semi-structured documents (e.g. journal art,i- 
cles, electronic mail, television programs, mail 
order catalogs, . ..) a.re often not explicitly 
typed; the only available t,ype information 
is the implicit structure. An explicit t,ype, 
however, is needed in order to a.pply object- 
oriented technology, like type-specific meth- 
ods. 

In this paper, we present a.n experimental vec- 
tor space cla.ssifier for determining the type of 
semi-structured documents. Our goal was to 
design a. high-performa.nce classifier in t,erms 
of accuracy (recall and precision), speed, and 
extensibility. 

Keywords: file classification, semi- 
st*ructured data, object, text, and image 
databases. 

1 Introduction 

Novel networked informa.tion services [ODL93], for ex- 
ample the World-Wide Web, offer a huge diversity of 
information: journal articles, electronic mail, C source 
code, bug reports, television listings, mail order cata- 
logs, etc. Most of this information is semi-structured. 
In some cases, the schema of semi-structured informa- 
tion is only pa.rtially defined. In other cases, it has 
a highly variable structure. And in yet other cases, 
semi-structured informa,tion ,has a well-defined, but 
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unknown schema [S&93]. For instance, RFC822 e- 
mail follows rules on how the header must be con- 

structed, but the mail body itself is not further re- 
st,rict.ed. 

The abilit,y t,o deal with semi-structured informa- 
t,ion is of emerging importa,nce for object-oriented 
da.ta.base mana.gement# systems, st.oring not only nor- 
malized dat,a. but a.lso text or images. However, semi- 
st,ruct,ured documents are often not explicitly typed 
objects. Instead they are, for instance, data stored as 
files in a file system like UNIX. This makes it difficult 
for da.taba.se ma.nagement systems to work with semi- 
structured data., because they usually aSsume that ob- 
jects have an explicit t,ype. 

Hence, the first step towa.rds automatic processing 
of semi-struct#ured da.ta is chssification, i.e., to assign 
an explicit’ type to t,hem [Sal89]. A classifier explores 
the implicit structure of such a document a.nd assigns 
it to one of a set, of predefined types (e.g. document 
categories, file classes, . ..) [GRW84, Hoc94]. This type 
can then be used to apply object-orientsed techniques. 
For example, type-specific methods can be triggered to 
extract values of (normalized and non-normalized) at- 
tributes in order to st#ore them in specialized da.tabases 
such as an object,-oriented database for complex struc- 
t,ured data., a t,ext dat(aba.se for natural language text, 
and an ima.ge database for pictures. 

Such a classifier plays a key role in the Rufus sys- 
tem [SLS+93], 1 w lere t,he explicit type of a file, assigned 
by the classifier, is used to trigger type-dependent ex- 
traction algorithms. Based on this extraction, Rufus 
supports structured queries that can combine queries 
against t,he extract,ed attributes as well as the text of 
the origina. files. In general, a, file classifier is neces- 
sa.ry for a.ny applica.tion t,liat operates on a va.riety of 
file types and seeks t,o t,a,ke adva,nt,age of the (possibly 
hidden) document structure. 

Classifying semi-st,ruct,ured documents is a. cha.l- 
lenging t,ask [GRW84, Sal89]. In cont,rast, to fully 
sbruct,ured da.ta., their schema, is only pa.rtially known 
and the assigument of a, type is often not clear. But 
as opposed to completely uastruct,ured information! 
t,he analysis of documents ca.n be guided by pa.rt(ially 
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available schema information and must not fully rely 
on a semant,ic document analysis [Sa189, Hoc94]. As 
a consequence, much bet,ter performing classifiers ca.n 
be achieved. However, neilher the database nor the 
information ret.rieval communit,y ha.ve come up with 
comprehensive solutions to this issue. 

In this paper, we present a high performa,nce cla,ssi- 
fier for semi-structured data that is ba,sed on t.he vector 
space model [SWY75]. B ased on our experiences with 
the Rufus system, we define high performance as: 

l Accuracy. The cla.ssifier must have an extremely 
low error rate. This is the primary goal of any 
classifier. For exa.mple, to be relia,ble for file clas- 
sificat.ion an a.ccura.cy of more than 95% must, be 
achieved. 

l Speed. The classifier must be very fast. For exam- 
ple, to be able to classify files fed by an informa.- 
tion network, classification time must, be no more 
than l/10 of a second. 

l Ex2ensibility. The classifier must easily be ext#en- 
sible with new user-defined classes. This is im- 
portant to react to changing user demands. The 
ability of quick and incremental retraining is cru- 
cial in this context,. 

The remainder of the paper is organized as follows. 
In Section 2, we review the basic technology of our 
experimental vector space classifier and compare the 
accuracy of several implement,a.tion alterna.tives. In 
Section 3, we introduce a novel confidence measure 
that gives important feedback about how certain the 
classifier is after classifying a document. In Section 
4, we show that, finding a good schema is crucial for 
the classifier’s performance. We present techniques for 
selecting distinguishing features. In Section 5, we com- 
pare the vector space classifier with ot,her known clas- 
sifier technologies, and conclude in Section G with a 
summary and outlook. 

2 An Experimental Vector Space Clas- 
sifier 

In this section, we introduce our experimental vect,or 
space classifier (VSC) system. The goal was to build 
an extremely high-performance classifier, in t,erms of 
accuracy, speed, and extensibility for the classification 
of files by type. UNIX was considered a.s a sample 
file system. The classifier examines a. UNIX file (a 
document) and assigns it to one of a set of predefined 
UNIX file types (classes). To da,te, the classifier is a.ble 
to distinguish the 47 different file types illustrated in 
Figure 1. These 47 types were t.hose that, were readily 
available in our environment. Note that the classifier 
presented here can be generalized to most non-UNIX 

file syst,ems. In the sequel, we briefly review the under- 
lying vector space model [SWY75]. We focus on issues 
that are unique and novel in our pa.rticular implemen- 
t,at,ion. 

VSCs are created for a given cla.ssifica.tion task in 
two st,eps: 

Schema deJnifion. The schema. of t,he classifier 
is defined by describing the names and features 
of all t,he classes one would like to identify. The 
features, sa.y fi . . . fna, span an m-dimensional fea- 
ture spa.ce. In t,his featsure spa,ce, each document, 
d can be represented by a vector of the form 
v(i = (al,. . .) a,) where coefficient ai gives the 
value of feature fi in document d. 

Classifier 1rainin.g. The classifier is trained with 
tra.ining dat,a -. a. collectiou of typical documents 
for ea.& class. The frequency of ea.& fea.ture fi 
in all training documents is determined. For each 
class ci, a cent.roid we, = (~1, . . . , am) is computed, 
whose coefficients & are the mean values of the 
extra.cted features of all t,raining documents for 
that, class. 

Given a t,rained classifier with centroids for each 
class, classification of a document, d means finding t.he 
“most, simi1a.r” cent,roid o, and assigning d to that class 
c. A commonly used similarity measure is the cosine 
metric [vR79]. It. defines the distance between docu- 
ment d a,nd class centroid c by the angle M between 
the document vector and the centroid vector, that is, 

Vd . vc sim(d, c) = cos Q = - . 
IV~IIVCI 

Building centroids from t,ra.ining cla.ta and ubing the 
similarit,y niea,sure allows for very fast cla.ssifica.tion. 
To give a rough idea; an individual document can be 
classified by our system in about 40 milliseconds on an 
IBM RISC System/6000 Model 530H. In Section 2.2, 
we will compare the accura.cy of the cosine metric with 
common alterna,tives. 

2.1 Defirhg the Classifier’s Schema 

A feat,ure is some identifiable part of a. document that, 
distinguishes between document classes. For example, 
a fea.ture of LATEX files is that file names usually 
have the extension “. tex” and t,hat the text frequently 
cont,ains patterris like “\begin<. . .I”. 

Feat,ures ca,n eit,her be boolean or counting. Boolean 
features simply determine whether or not a feature oc- 
curred in the document,. Counting features determine 
how often a fea,ture was detect.ed. They are useful to 
partially filter out “noise” in the training dat(a.. clan- 
sicler for example C’SOURCE files, having a. lot. of curly 
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Figure 1: Class hierarchy of the experiment,a.l file classifier 
braces. Many other file types ha.ve curly braces too, 
but only a few. Hence, counting t,his feature instead of 
just noting its presence would differentiate CSOURCE 
files from others. 

In the remainder of t,his pa.per, we assume boolean 
features only. Using counting features is part of future 
work. In general, counting feaQures in a VSC must be 
normalized before using, like proposed for example by 
the non-bina.ry independence mddel [YMP89]. 

To define the schema of the file classifier, four dif- 
ferent types of features are supported. They can be 
used to describe patterns tl1a.t characterize file types: 

l A filenames fea.ture specifies a pa.t(tern t.hat is 
matched against the na.me of a file; 

l A firstpats feature specifies a, pattern that is 
ma.tched against the first line of a file; 

l A restpats feature specifies a. pattern tha,t is 
ma.tched against any line of a file; 

l An extract feat,ure specifies tha,t t,here exist,s an 
extraction function (e.g. a. C program) to deter- 
mine if the feature is present. 

The feature types filenames, firstpats, and 
restpats are processed by a pat,tern matcher. For 
performance reasons, this is a finite state machine spe- 
cially built, from the classifier schema. Pat,terns ca.n ei- 
ther be string literals or regular expressions. The reg- 
ular expressions supported are similar to the regular 
expressions of the UNIX “ed” command. The fea.ture 
type extract is used to define file properties that ca,n- 
not be described by regular expressions. For instance, 
extract features can be programmed to check whet,her 
a document is an executable file or a direct,ory. 

Any feature can be defined as must, which mea.ns 
that its occurrence is mandatory. If such a feature is 
not present in a. given file, the file cannot be a member 
of tha.t class. Notice tl1a.t the converse is not true: the 
presence of a must fea.ture does not force a type match. 

Example 1: Figure 2 shows an excerpt of a sam- 
ple classifier schema, defining classes for POSTSCRIPT 

pictures, LATEX documents, MHFOLDER directories, 
a.nd COMPRESS files. 

A filenames feat,ure specifies that names of 
POSTSCRIPT files usually end with the extension 
“.ps”, names of LATEX files with “. tex”, and names 
of COMPRESS files with “. z” or “. Z” They a.re all de- 
fined as regular expressions, as indicated by t,he key- 
word “regexp” . 

A firstpats feature is defined for POSTSCRIPT 
files. It is a regular expression, saying that the first 
lines of these files always begin with “%!“. This pat- 
tern is given with a must keyword, i.e., it must be 
present in POSTSCRIPT files. 

restpats features specify that POSTSCRIPT files 
usually contain the two string literals “(/rEndComments” 
and “%Creator” and tha.t LATEX files often con- 
tain the &ring literals “\begin(“, “\end(“, or 
“(document)“. 

Ext#ra.ction functions exist for classes MHFOLDER 
and COMPRESS. Notice, that, the implementation 
of extra.ction functions is not pa.rt of the classifier 
schema. However, by na.ming convent,ion, they are 
implemented by C functions called “ex,MHFolder” 
aud “ax-Compress” respectively. For example, 
“ex,Compress” searches for a file checksum and 
“ex_MHFolder” opens t,he directory a.nd looks for mail 
files. 0 

Finding a.ppropriate features for each class is crucial 
to the accura.cy of a classifier [Jam85]. This has been 
verified by our experiments. For example, to define 
t#he 47 classes of t,he UNIX file classifier, a t,ot(al of 206 
fea.tures were carefully specified. We come t,herefore 
back to t,he issue of feature selection in Se&ion 4. 

2.2 Alternative Similarity Metrics 

Diverse simi1a.rit.y metrics are proposed in the litera- 
ture. For example, [vR79] describes Asymmetric, Co- 
sine, Dice, Euclidia,n, Jacca.rd, and Overlap distance. 

Table 1 sunlmarizes our extensive classifier perfor- 
mance experiments. Experiments involved choosing 
random subsets from a collection of 26MB of sample 

265 



PostScript C 
filenames 1 

“\ . ps$” regexp 

3 
f irstpats C 

“^%!I’ regexp must 

3 
restpats C 

“%EndComments” 
“%Creator : ” 

3 
3 

MHFolder { 
extract 

3 

LaTeX C 
filenames C 

‘I\. tex$” regexp 

3 
restpats { 

“\beginC” 
“\endC” 
“{document)” 

3 
3 

Compress C 
extract 
filenames C 

‘I\. [zZl$” regexp 

3 
3 

Figure 2: Sample cla.ssifier schema 
dat,a for t,raining and then for performance testming. To 
find the closest, cent,roicl, the tlist.ance between docu- 
ment d and centroid c was alternatively measured with 
the above six common dist,ance met#rics (dj , cj means 
the j-t,h coefficient of t,he vector d or c respectively).’ 

Best and most reliable a.ccuracy 1la.s been achieved 
using the cosine as similarity measure in our VSC. A 
promising alternative though is the asymmetric mea.- 
sure. It captures t,he inclusion rela.tions between vec- 
tors, i.e., the more that. properties of d are also present 
in c, the higher the similarity. Dice, Jaccard, and 
Overlap metrics give lower accuracy for our purposes. 
Surprisingly very low results ha.ve been achieved by 
Euc1idia.n distance. 

The bottlom line of this evaluat,ion is tha.t the classi- 
fier’s accuracy could not have been improved by choos- 
ing a. different, distance measure. In the following sec- 
tion we discuss a way of getting feedback about the 
classifier’s confidence which can, in turn, be used to 
improve the accuracy of t,he cla,ssifier. 

‘The accuracy of a classifier is measured for a particular class 
C as [Jonil] 

recall(C) = 
objects of C assigned to C 

total object,s of C 

precision(C) = 
objects of C assigned to C 

total objects assigned t.o C ’ 

To measure a classifier as a whole, we use the arithmetic mean 
of recall or precision over all classes. Not.ice that every object. is 
classified into exactly one class (no unclassified or double clas- 
sified objects). The E-value [vR79] 

E-value = 
2 precision recall 

precision + recall 

is a single measure of classifier accuracy that conlbines and 
equally weight,s bot.h, recall and precision. 

3 The Confidence Measure 

Independent of which similarity measure is chosen, 
closeness t,o a cent,roid is not a very useful indicator 
of the cla.ssifier’s confidence in it(s result. Hence, we 
&roduce the following novel measure that gives im- 
portant feedback on how sure the classifier is about a 
result,. 

Definition. The co~fidc~ce of a.n a.ssignment of doc- 
ument d to class ca is defined a.s 

def sim(d, cd) - sim(d, cj) 
confidence(d, ci) = 

sim(d, ci) 

wit,h ci the closest, centroid and cj t.he second closest 
centroid. 

The confidence is t#he ratio of the similarity of the 
closest and second closest centroid over the similarity 
of the file a,nd the closest. centroid.2 The following 
exa.mple illustra.tes how the confidence measure works. 

Example 2: Consider two centroids cl and ~2, having 
both the same distance from a, given document d, i.e. 
sim(d, ci) = sim(d,q). Classification as one or the 
other cla.ss is therefore completely arbitrary. 

However, if these cenQroids are very close to the 
document, the simila,rit,y alone suggests a very good 
cla.ssifica,tion result, which is not, correct. The t,rue 
situa.tion is reflected by the confidence, which gives a 
very low value, namely 0. 0 

The confidence mea.sure ca.n be used to tell whether 
the cla.ssifier probably miscla.ssified a document. The 

2Tlle confidence nleasure can be generalized to t,ake into ac- 
count t.he n closest. centroids. In t.his paper however, we use the 
closest and second closest centroids only. 
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Table 1: Alterna.tive similarit,y met,rics 

distance niet.ric sim( d, c) reca.ll precision E-value 

higher the confidence value, the higher the classifier’s 
certaint,y and therefore t.he higher the proba,bility that 
the file is cla.ssified correctly. 

Figure 3 shows the dist,ribution of the confidence 
for a sample classifier. Each dot represents one of the 
-2500 test, files. The (logarithmic) x-axis shows the 
classifier’s confidence in assigning a. t,est file to a file 
type. The y-axis is separated into t,wo areas, t.he lower 
one for correctly classified files a.nd the upper one for 
incorrectly classified files. Both areas ha,ve one row for 
each of the 47 file types. 

This distribution illustrates the tendency of cor- 
rectly classified files to ha,ve a confidence around 0.7 
and the incorrectly classified files around 0.07. One 
can make use of that to alert a human expert, tha.t is, 
to apply t(lie following algorit,hm: choose a confidence 
threshold 0; cla.ssify document d, resulting in a cla.ss c 
with confidence y; if y < 0 then ask a human expert 
to a.pprove the classification of document d a.s class c. 

Figure 4 illustrates how much feedba.ck can be de- 
rived from the confidence mea.sure. Assumes a given 
confidence threshold 0 (vert(ica1 line), such t1ta.t the 
user ha,+ t,o approve the cla.ssification if a file is classi- 
fied with a smaller confidence. 

The dotted curve shows t,he percenta.ge of test, files 
for which the assumption is true that they are clas- 
sified correctly if classified with a, confidence above 
threshold 0 and classified incorrectly otherwise. If, 
for exa.mple, the threshold 0 is set to 0.1, tShen about 
94% are classified correctly if their confidence is above 
0.1 and incorrectly otherwise (see dot,ted line hit.ting 
threshold). 

The solid curve shows the percentage of test, files 
t,hat were classified wit,h a confidence below 0. With 
0 = 0.1, about 10% of the files are present,ed to the 
user for checking (see solid curve hitting the thresh- 
old). These were shown t,o a 1luma.n expert. Note that 
about 5% of the files had a confidence of 0. These 
files were equidistant from 2 centroids indicating t.hat 

t(he classifier ha.d to ma.ke a.11 arbit,ra.ry choice between 
t,lieni. 

Finally, the dashed curve shows t.he percenta.ge of 
t.est, files lha,t were cla.ssified correctfly even t#hough they 
have a. confidence below t,hreshold 0. These are the 
files where the classifier “anaoyed” the user for no good 
reason. With 0 = 0.1, only 30% of the presented files 
were act,ually classified correctly (see dashed line hit- 
ting the threshold). Thus, using the confidence mea- 
sure, a user ha.d t.o touch 10% of all files, of which 
in fact, 7OYo were classified incorrectly. The classifier’s 
overall recall could t,herefore be improved by 7% with- 
out, bothering t,he user t,oo much. 

In this cla,ssifier, 0 = 0.1 provides a maximum accu- 
ra.cy (dott,ed line) while providing a reasona,ble number 
of files for the user’s consideration while maintaining 
a modest “annoyance” level. 

3.1 Classifier Training Strategies 

The confidence measure’s primary use is to detect mis- 
cla.ssified documents. This not, only improves the clas- 
sifier’s performance, but also proved to be useful for 
other purposes. In this section, we concent,rate on us- 
ing the confidence measure to speed up classifier train- 
ing. Quick (re)t(raining is an abilit,y t,hat is crucial for 
any cla.ssifier, especially for extensibility, as we will see 
lat.er. 

To t$ra.in t,he classifier, a human expert has to pro- 
vide a reasonable number of document8s that are typ- 
ica.1 of ea.& cla,ss. The first, quest,ions is: how much 
tra.ining dat,a. is required for it, t,o perform well? Pre- 
liminary experiments showed that a. surprisingly small 
set, of tra.ining data produces a sufficiently a.ccurat,e 
classifier. In Figure 5, the solid line shows the perfor- 
mance (E-value) of a classifier built with different sizes 
of tra.ining data. 

For example, a classifier trained with only one doc- 
umentS per class has avera.ge E-value of 0.89. The same 
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cla,ssifier wit,h 5 training documents has average E- 
value of about 0.96, with 10 documents about 0.97, 
and with 20 documents (-1000 total) nearly 0.98. 

In the experiments discussed in t.he remainder of 
this pa.per, we use (unless sta.ted otherwise) training 
data sets wit,h an average of -17 documents per class 
(t,ot.al -800 documents = -2G MBytes). These data 
sets have ra.ndomly been select*ed as subsets of a large 
collection of training documents. On an IBM RISC 
System/6000 Model 530H, training the experimenta. 
file classifier takes a,bout 50 seconds, with this amount 
of training data. For evaluating the cla,ssifier’s perfor- 
mance randomly select.ed data is used that is always 
disjoint from the training dat,a. 

Though it shows t,ha.t only little t,raining data is re- 
quired, the second question is: wl1a.t are good training 
documents and how can t,hey be found. One common 
way is to use an incremental training strategy, where 
the classifier is init,ially trained with few (one or two) 
documents of training data for each class. Then t.he 
classifier is run on unclassified test, document,s. A hu- 
man expert manually classifies some of them and adds 
them to the training data. Aft,er about 20 documents 
have been added to the training data, the cla.ssifier is 
retrained with the extended training set. 

The crucial para.meter of t,his stra.tegy is whether 
the correctly or the incorrectly classified document,s 
should be added to the training da.ta set. We actu- 
ally used a third approach and added those document,s 
to the training data for which the classifier was least 
confident about the classification, i.e., the confidence 
measure was below a given threshold. The final incre- 
mental training algorithm is illustrat,ed in the follow- 
ing: 

a 

step 1: 
train an initial cla.ssifier with No 

documents per class; 
step 2: 

while the classifier’s performance is 
insufficient 

and a user is willing to classify 
documents do 
classify document using current 

classifier; 
if confidence was below a certain threshold 

then 
classify document, by user and 
add it to training data set; 

if Nl training document,s have 
been added then 
retrain the classifier wit,h new 
tra.ining set.; 

end 

Incremental training is very efficient when adding 
the lea.st confident documents to the t,ra.ining da.ta set. 
Consider again Figure 5: the dashed line shows the 
classifier’s performa.nce using the increment.al training 
strategy, as opposed to training the classifier with ran- 
domly selected data,, all a.t once (solid line). An initial 
classifiers was built, with II’” = 2 training documents 
per class (-100 documents in total), which resulted in 
an E-value of a.bout, 0.94. In five iterations, N1 = 20 
documeuts per iterat,ion were increment,ally added to 
the training da.ta.. 

To achieve a classifier of E-value 0.96, one iteration 
wa.s necessary. Notice, that at this point of time, only 
a toba,l of 120 training document,s were used, compared 
to 250 needed documents if tra,ining with random data 
in one st,ep. After five iterations we already achieved 
0.98 and used only 200 training documents, compared 
to 1,000 if trained with random data in one step (cf. 
Figure 5). 

The incremental tra.ining algorithm is simi1a.r to the 
uncertainty strategy proposed by [LG94]. However, 
the number of files needed by their strategy is signif- 
icantly la,rger t(ha,n ours (up to 100,000 documents), 
because they a,re doing semantic full t(ext,ual analysis 
of all the words in the documents. In contrast, we 
look for a few synta.ctic pa.tterns and can get enough 
randomness in 10 files. 

4 Feature Selection 

Finding good features is crucial for a cla.ssifier’s per- 
formance. However, it is a difficult task that can not 
be automated. 

On one hand, features must identify one specific 
class and should apply a,s little as possible to other 
classes. This is easy for classes that can be ident,i- 
fied by examining files for matching string literals, like 
e.g., Fra.meMaker documents, or GIF pictures. But 
it is difficult for cla,sses that, a.re very simila.r, like dif- 
ferent kinds of elect,ronic ma.il formats, e.g. RFC822 
mail, Usenet, messa.ges, MBox folders. It may also be 
a problem for textual files containing mainly natural 
langua,ge and having only few commonalities. 

On t.he other hand, t,here must be enough fea.tures 
to ident.ify all kinds of files of a particular class. This 
causes a. problem, if classes can only be described by 
very general patterns or can take alternative forms, 
like for inst,ance word processors having different file 
saving formats. In these cases, it, is advisable to ei- 
ther define completely different, classes or t,o combine 
feat#ures t,ogether. 

In this se&ion, we present t,echniques to analyze and 
improve the schema of a, classifier. These t,echniques 
help a human expert, choose good fea.tures. To reveal 
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the results in adva,nce, we managed to improve a. cla.s- 
sifier’s performance from an avemge E-value of 0.8G to 
0.94, just by optimizing the schema.. 

4.1 Distinguishing Power 

The most importa.nt, pr0pert.y of features is how precise 
they identify one pa.rticular cla.ss. Thus, good features 
can be separated from bad features in how distinguish- 
ing they a.re, i.e., the number of cla,sses t,hey match. 

We use the variation of feature coefficients over all 
centroids to measure how dist~inguishing fea.tures are. 
Consider vector ji = (~$1, . . . , nan), where aij is the 
coefficient, of feature ji in centroitl cj (1 2 i 5 m, 1 5 
j 5 n). This vector represents t.he feature’s dist.ribu- 
tion over classes. Assuming normal distribution, we 
define: 

Definition. The disii~~g~uishiag po’wer of feat,ure ji: is 
defined as 

dist-power(ji) ef c 

where s2 = 5 cjnZl(a;j - Z)2 is the variance and 
B = t C,“,, nij is t,lie mean. 

This definition of distinguishing power values both, 
low va,ria.nce and low mean. It ranges from 0 to 1. 
For an optimal feature t,hat( has all coefficients aij = 
0 except for one that, is 1, the variance s2 is equal 
to its mean Z. Hence, the distinguishing power of a 
perfect feature is 1. For a worst-case feat,ure t,hat has 
a. uniform distribution over all classes (and zi # 0), the 
variance, and therefore the distinguishing power, is 0. 
The higher dist-power( ji) is, the more distinguishing 
is feature ji. 

Example 3: Figure 6 illustra.tes distin- 
guishing power for t,wo sample features. Fea- 
ture “Shellscript--set-” is defined for class 
SHELLSCRIPT and sea,rches for string literal “ set “. 
This feat,ure matches many different classes to a low 
degree, which is reflected in a very low distinguishing 
power (0.1978). 

Feat.ure “RFC822-*From:” is defined for class 
RFC822 (an e-mail format) and sea.rches for lines be- 
ginning with “From:“. This feature has a much better 
distinguishing power (0.7742). It selects fewer classes, 
most of them to a high degree. Not.ice that, this feature 
now identifies a. group of four classes that are similar 
(e-mail like). 

An example of a perfect fea.ture (distinguishing 
power 1.0) is feature “CHeader- . h$” (not shown in 
Figure 6), a regular expression looking for file na.mes 

ending wit,h ‘I. h” . 1t.s coefficients a.re 1 for class 
CHEADER a.nd 0 for a.11 ot.hers. 0 

In general, feat(ure aaalysis can be performed in t,wo 
different, ways. These approaches are complementary: 

. the analyzer scans human generated features and 
identifies those wit.11 poor distinguishing power; 

l the a,nalyzer scans all training documents and pro- 
poses fea.tures with high distinguishing power. 

A huiilan expert is necessary in bot#h cases. Ultimately, 
the expert must decide whetsher to include a proposed 
fea.t.ure int,o a, schema,, change an existing feature’s def- 
inition in order to make it, more specific. delete a fea- 
t.ure, or keep it, as it. is. It is difficult, to automate this 
t,ask. Some fea.tures must be included although they 
a,re not, very dist.inguishing, for instance, those t,ha.t 
are the only feature of a top-level class in the hier- 
archy (TEXT, BINARY, DIRECTORY, SYMLINK). On 
the other ha,nd, regu1a.r expression pa.tterns, for exam- 
ple, may contain an error tha.t cannot be detected and 
corrected automa.tic,ally. 

To illustra.te feature a,nalysis, the experimental file 
VSC wa,s built. using a non-optimized schema with 
about, 200 fea,tures, created by a user with moderate 
experience in using the classifier. This classifier had 
an average E-va.lue of 0.86. 

Subsequent fea.ture analysis showed that only about 
15% of these features ident#ified exactly one type (dist- 
power = l), 10% did not match any t,ype at all, and 
more than 50% ha.d dist,-power < 0.5. Based on this 
fea,ture a.nalysis, t,he schema was optimized. Patterns 
were cha.nged to make feat)ures more specific and syn- 
t,ax errors tha.t ca.used features to fail to ident.ify any 
class were corrected. A new classifier was built with 
t,his improved schema.. The average E-value increased 
to 0.94, just from using the optimized schema. 

4.2 Combining Features 

Some file t,ypes have the property that documents of 
t,hese classes ma.tch a highly varying number of fea- 
tures (e.g. SCRIPT, TROFFME, YACC, CSOURCE). 
Some documents match 20 to 30 fea.tures, whereas oth- 
ers only 1 or 2. Even if the 1 or 2 features are a. subset 
of t,lie 20 t,o 30 feat,urcs, the classifier performs poorly 
for these classes, beca,use it can only be trained to 
properly recognize one of t,he two styles of documents. 

One a,pproach would be t,o define two different 
cla.sses t#o cover t,he t,wo styles. However, it proved to 
be ext,remely difficult, t,o define t,he schemas for t,he two 
separated cla,sses and to separate the tmining data. 

A bet.ter solut.ion is combining severa. fea.tures 
jl, . . . , j,,, int,o one feat#ure. The new feat,ure is built 
a,s a regular expression j = jl ( . . (j,, , coniiecting the 
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Figure 6: Distinguishing power of features 
original fea.tures via “or” patterns. There are two wa.ys 
to combine the features of a. given class together: 

l Combining “disjoint” fdures. The first way is to 
combine “disjoint” features that never (less than a 
given amount of t.he time) appear together. Con- 
sider as an example file types with two different 
initialization commands where only one of which 
appears at the beginning of the file. 

l Combining “duplicate” features. The second way 
is to combine “duplicate” features, that is, fea- 
tures tha.t always (more tha.n a given amount 
of the time) appear together, but do not a.p- 
pear often (in more than a given amount, of the 
files). For example, patterns “argc” and “argv” 
in CSOURCE. The second limitation allows the 
classifier to keep the really good features like 
“Yleceived” and “- From” which a.ppear in a.11 
RFC822 files, but it will combine “argc” and 
“argv” which only sometimes occur in CSOURCE 

files. 

The algorithm for combining feat,ures looks as fol- 
lows (choosing 80% as the t8hreshold to combine fea- 
tures and 60% for the number of files duplicate features 
should not appea.r in ha.s given the best result,s): 

foreach cla.ss ci (i = 1 . . . n) of the schema do 
st,ep 1: 

nz = number of features of class ci; 
F = features {fi, . . . , fm} of class q; 
P(F) = the powerset of F, 

without the empty set; 
step 2: 

train the classifier: 
sca.n all training documents of class ci 

for feature occurrences; 
foreach s E P(F) do 

WC(~) = percent,age of training 
document,s of cla.ss ci 
where features s occur together; 

end 
step 3: 

find feat(ures t#o be combined: 
while m > 1 do 

foreach s E P(F) with In fea.tures do 
if (avgfEJocc(s)/occ(f) < 0.20) 
or ((avgf~,occ(s)/occ(f) > 0.80) 
and occ(s) < 0.60) 
then 

combine features in s; 
remove all sets from P(F) 
containing any of the 
features in s; 

end 
In - -; 

end 
end 

The algorithm works class by class and combines only 
feat,ures tl1a.t are defined within the same class, that 
is, features from different classes are never combined 
together.3 

In st,ep 1, the algorithm computes P(F) as the set 
of a,11 possible subsets of fea,tures {fl,. . . , fm} for the 
current class ci. In st,ep 2, the classifier is trained 
by classifying a la.rge number of documents (-40 - 50 
per class). While sca.nning training documents, the 
algoribhm remembers for ea.& of the fea.ture combina- 
tions s E P(F) the percenta.ge of d0cument.s in which 
t#his combina,tion occurred. In step 3, the algorithm 
sea.rches fea.tures to be combined. It, tries to combine 
as many features as possible and starts therefore with 
t(lie largest feature combina~tion having all m features. 
If the combination fulfills one of the “disjoint” or “du- 

“In the current, experimental classifier, feature combinat~ion 
runs on restpats feat.ures only. 
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plica.te” occurrence conditions, a.11 feat,ures of the set, 
s are removed from the schema and replaced by one 
new fea.ture tha.t combines t,liem as described above. 
All sets are removed from P(F) cont,aining a.ny of the 
features from s, because maximum combination was 
already achieved for these features. If all feature com- 
binat.ions of t,his size m ha.ve been processed, m is 
decremented and t,he algorithm tries to combine the 
remaining fea.ture combina.tions of the smaller size. 

Running feature combination on the restpats of 
the ahcady opt,imized schema, of t&he previous section, 
combined 37 disjoint features into 14 new features and 
58 duplicate features into 20 new ones. Just by auto- 
matic feature combina.tion, the classifier’s performance 
has been improved from a.n overall E-value of 0.94 to 
now 0.96. In detail, the recall of file type TROFFME 
has been increased by 9.1% combining 7 intao 2 fea.- 
tures, YACC by 7.1% combining 2 into 1 feature and 
SCRIPT by 6.2% combining 38 int,o 13 features. 

5 Comparison of other Classifier Tech- 
nologies 

There a.re diverse tZechnologies for building classifiers. 
Decision tables are very simple classifiers that deter- 
mine a.ccording to ta.ble entries wha.t cla.ss to assign t,o 
an object. The UNIX “file” command is an example 
of a decision table based file classifier. It scans the 
/etc/magic file, the decision table, for ma,tching val- 
ues and ret#urns a corresponding string tl1a.t describes 
the file type. Decision. tree classifiers construct, a, tree 
from training data, where leaves indicate classes and 
nodes indicate some test,s t.o be ca.rried out. CART 
[BFOS84] or C4.5 [Qui93] are well known exa,mples of 
generic decision tree classifiers. Rule based classifiers 
create rules from training data. R-MINI [Won941 is an 
example of a rule based classifier that generates dis- 
junctive normal form (DNF) rules. Both, decision tree 
and rule classifiers, usually apply pruning heuristics to 
keep these trees/rules in some minimal form. Discrim- 
inant analysis (linea,r or quadra.tic) is a well known 
basic statistical classification approach [Ja.m85]. 

To rate our experimental vector space classifier, we 
built alternative file classifiers using quadratic discrim- 
inant a.nalysis, decision t,ables, the decision tree system 
C4.5, and the rule generation approa,ch R-MINI. Ta- 
ble 2 summarizes the conducted experiments. The in- 
tent of this table is to give a rough overview of how 
the different techniques compa.re on the file classifica- 
t,ion problem a.nd not to present, detailed performa.nce 
numbers (“+” means an advantage and “-” means a 
disadvant,age of a particular classifier technology). 

Speed. Training and classifica.tion using qua.dra.tic 
discriminant a.nalysis is very slow because extensive 
computations must be performed. All ot,her classi- 

fier technologies provide fast’ training and classifica- 
tion. The vect$or spa.ce classifier simply needs to com- 
putme angles bet,ween t,he document vector a.nd all cen- 
t,roids. For example, on an IBM RISC Syst,em/BOOO 
model 530H, an individual document is classified by 
t.he experimental classifier in about 40 milliseconds, 
on aver a,ge . The ot,her c.lassifier tec.hnologies (except 
of discrimina.nt, analysis) proved a’ similar speed. 

Accuracy. Qua.dra.tic discriminant ana.lysis and 
decision tables did not a.chieve our accuracy require- 
ments. They had error ra,tes up to 30%. All other clas- 
sifier t,echnologies proved much lower error rat,es. The 
C4.5 file classifier showed error rates from 2.6 t#o 5.0% 
misclassified files. The R-MINI file classifier showed 
error rates from 2.6 to 4.9%. The vector space clas- 
sifier had 2.1 to 3.1% error rates. Hence, a.11 three 
t,eclinologies have a.pproximately bhe same range of er- 
rors. 

Extensibility. A classifier is usually trained wit.11 
a basic set of genera.1 classes. However, this basic class 
hiera.rchy must be ext,ensible. Users want to define 
and add specific classes a.ccording to their personal 
purposes. Extensibility of a classifier is t$herefore cru- 
cial for ma,ny a.pplica.tions. In order to add classes 
t,o a cla.ssifier, a user must provide class descriptions 
(schema.) and tra,ining da.ta. for the new classes. Train- 
ing documents of the existing cla.sses must be available 
too. This “old” tra.ining da.ta is necessary because new 
classes must be tra.ined wit,h data for existing classes 
as well. 

Vector spa.ce cla.ssifiers are highly suited for exten- 
sibilit,y purposes. Consider as an example a classi- 
fier wit,h existing classes cl, . . . , cg and existing fea- 
tures fl , . . . , fj . Assume this classifier is extended with 
new classes ch, , . . , cn (h = y + 1) and new features 
fk, . . . , frill (h = j + 1). After extension, the feature- 
cedroid matrix A of the classifier, where each coeffi- 
cient u’.~ shows t.he value of featcure y in t,he centroid 
of class 2, looks as follows: 

A= 

fl ... fj fk . . . fin 
r________________- ,I , 
Iall . . . ulna 
I . 

n1j : alk . .. UC* 

: : . . ! : 
. :;. . . 

. : 

;aqt . . . ngj ’ Ugk . . . Uym 
L.: ---_----___--_: 

2’~~ 

ah1 . . . ahj Ghk *.. al&In VCh 

. . 
. : . . 

. : 

The upper-left (dashed) sub-matrix of A shows the 
existing feature centroid ma.trix. To add new cla.sses, 
t,hese exist,ing cent,roid coefEcients need not be recom- 
put,ed. The fea.ture-cent,roid ma,trix can incremenbally 
be ext,ended wit,11 coefficients for newly a.dded classes. 

272 



Table 2: Different Classifier Technologies 

Quad. Decision Decision DNF Vector 
Discr. Tables Trees Rules Spxe 

hna.lysis (C4.5) (R-MINI) Model 

Speed + + + + 
Accuracy - + + + 
Extensibility - + 

The lack of extensibilit,y of discriminant a,nalysis, 
decision table/tree and rule classifiers is the most dra- 
ma.tic difference. In contrast to vect,or spa.ce classifiers, 
extending this kind of classifiers with new user-specific 
classes demands rebuilding the whole system (tables, 
trees, or rules) from scratch, that is, it requires com- 
plete reconstruction of the classifier. Increment*al, ad- 
ditive extension is not possible. 

6 Conclusion and Outlook 

High accuracy, fast classification, and incrementsal ex- 
tensibilit,y a.re the primary crit,eria for any classifier. 
The experimental VSC for assigning types to files pre- 
sented in this paper fulfills a.11 three requirements. 

We evaluat,ed different similarity metrics and 
showed that the cosine measure gives best, results. A 
novel confidence measure was intlrocluced tha,t detects 
probably misclassified documents. Based on this con- 
fidence measure, an incremental t,ra.ining strategy was 
presentsed that significantly decreases the number of 
documents required for training, and therefore, in- 
creases speed and flexibility. The notion of dist,in- 
guishing power of features was formalized and an algo- 
rithm for automa.tic combining disjoint and duplicate 
features was presented. Both techniques increase the 
classifier’s accuracy again. Finally, we compa.red t,he 
VSC with other classifier technologies. It revealed that 
using the vector space model gives highly a.ccurate and 
fast classifiers while it provides a.t the same time ex- 
tensibility with user-specific classes. 

The file classifier can be seen as a component of ob- 
ject. text, and image database mana.gement systems. 
There is recent,ly an increasing interest in merging the 
functionality of database and file systems. Several pro- 
posals have been ma,de, showing how files can benefit, 
from object-orienbed t,echnology. 

Christophides et al. [CACS94] describe a map- 
ping from SGML documents int,o a,u object,-orientled 
database and show how SGML documents can benefit 
from da.tabase support,. Their work is restricted t,o this 
particular document t,ype. It would he int#eresting to 
see how easily it can be extended t,o a. rich diversity of 
types by using our classifier. 

Consens and Milo [CM941 transform files into a. 

da,tabase in order t,o be able t,o optimize queries on 
those files. Their work focuses on indexing and op- 
timizing. They a.ssume t,ha.t files are already typed 
before reading, for exa.mple, by the use of a. classifier. 

Hardy and Schwa.rt(z [HS93] are using a UNIX file 
classifier in Essence, a resource discovery syst,em based 
on semant(ic file indexing. Their classifier determines 
file types by exploiting naming conventions, data, and 
common structures in files. However, the Essence clas- 
sifier is decision t,able based (similar to the UNIX “file” 
command) and is t,herefore much less flexible and tol- 
erant,. 

The file classifier can also provide useful services in a. 
next-genera.tion opera.ting system environment,. Con- 
sider for instance a. file system backup procedure that 
uses the classifier to select file-type-specific backup 
policies or compression/encryption methods. 

Experiments have been conducted using the classi- 
fier for language and subject classification. Whereas 
language classification showed encouraging results, 
this technology has its limitat,ions for subject classi- 
fica.tion. The reason is tha.t the classifier works mainly 
by synta.ctica.l exploration of the schema, but subject 
classifica,tion must take into account the semant,ics of 
a document. 

We are currently working on making the classifier 
ext,ensible even wit,hout the requirement of training 
data for existming cla,sses. We are also investigating the 
classificat,ion of struct,urally nested documents. A file 
classifier is being developed that is, for example, able 
to recognize Postscript pictures in electronic mail or C 
language source code in na,tural text documents. Use 
of this classifier to recognize, and take advantage, of a 
class hierarchy is an item for future work. 
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