
Type Classification of Semi-Structured Documents*

Markus Tresch, Neal Palmer, Allen Luniewski

IBM Alma.den Research Cent,er

Abstract

Semi-structured documents (e.g. journal art,i-
cles, electronic mail, television programs, mail
order catalogs, . ..) a.re often not explicitly
typed; the only available t,ype information
is the implicit structure. An explicit t,ype,
however, is needed in order to a.pply object-
oriented technology, like type-specific meth-
ods.

In this paper, we present a.n experimental vec-
tor space cla.ssifier for determining the type of
semi-structured documents. Our goal was to
design a. high-performa.nce classifier in t,erms
of accuracy (recall and precision), speed, and
extensibility.

Keywords: file classification, semi-
st*ructured data, object, text, and image
databases.

1 Introduction

Novel networked informa.tion services [ODL93], for ex-
ample the World-Wide Web, offer a huge diversity of
information: journal articles, electronic mail, C source
code, bug reports, television listings, mail order cata-
logs, etc. Most of this information is semi-structured.
In some cases, the schema of semi-structured informa-
tion is only pa.rtially defined. In other cases, it has
a highly variable structure. And in yet other cases,
semi-structured informa,tion ,has a well-defined, but

‘Research partially supported by Wright Laboratories, Wright
Patterson AFB, under Grant Number F33615-93-C-1337.

Permission to copy with0,u.t fee all or part of this material is
granted provided that the copies o,re sot made or distribu.ted for
direct commrrcia.1 a.dvantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 21st VLDB Conference
Zurich, Swizerland, 1995

unknown schema [S&93]. For instance, RFC822 e-
mail follows rules on how the header must be con-

structed, but the mail body itself is not further re-
st,rict.ed.

The abilit,y t,o deal with semi-structured informa-
t,ion is of emerging importa,nce for object-oriented
da.ta.base mana.gement# systems, st.oring not only nor-
malized dat,a. but a.lso text or images. However, semi-
st,ruct,ured documents are often not explicitly typed
objects. Instead they are, for instance, data stored as
files in a file system like UNIX. This makes it difficult
for da.taba.se ma.nagement systems to work with semi-
structured data., because they usually aSsume that ob-
jects have an explicit t,ype.

Hence, the first step towa.rds automatic processing
of semi-struct#ured da.ta is chssification, i.e., to assign
an explicit’ type to t,hem [Sal89]. A classifier explores
the implicit structure of such a document a.nd assigns
it to one of a set, of predefined types (e.g. document
categories, file classes, . ..) [GRW84, Hoc94]. This type
can then be used to apply object-orientsed techniques.
For example, type-specific methods can be triggered to
extract values of (normalized and non-normalized) at-
tributes in order to st#ore them in specialized da.tabases
such as an object,-oriented database for complex struc-
t,ured data., a t,ext dat(aba.se for natural language text,
and an ima.ge database for pictures.

Such a classifier plays a key role in the Rufus sys-
tem [SLS+93], 1 w lere t,he explicit type of a file, assigned
by the classifier, is used to trigger type-dependent ex-
traction algorithms. Based on this extraction, Rufus
supports structured queries that can combine queries
against t,he extract,ed attributes as well as the text of
the origina. files. In general, a, file classifier is neces-
sa.ry for a.ny applica.tion t,liat operates on a va.riety of
file types and seeks t,o t,a,ke adva,nt,age of the (possibly
hidden) document structure.

Classifying semi-st,ruct,ured documents is a. cha.l-
lenging t,ask [GRW84, Sal89]. In cont,rast, to fully
sbruct,ured da.ta., their schema, is only pa.rtially known
and the assigument of a, type is often not clear. But
as opposed to completely uastruct,ured information!
t,he analysis of documents ca.n be guided by pa.rt(ially

263

available schema information and must not fully rely
on a semant,ic document analysis [Sa189, Hoc94]. As
a consequence, much bet,ter performing classifiers ca.n
be achieved. However, neilher the database nor the
information ret.rieval communit,y ha.ve come up with
comprehensive solutions to this issue.

In this paper, we present a high performa,nce cla,ssi-
fier for semi-structured data that is ba,sed on t.he vector
space model [SWY75]. B ased on our experiences with
the Rufus system, we define high performance as:

l Accuracy. The cla.ssifier must have an extremely
low error rate. This is the primary goal of any
classifier. For exa.mple, to be relia,ble for file clas-
sificat.ion an a.ccura.cy of more than 95% must, be
achieved.

l Speed. The classifier must be very fast. For exam-
ple, to be able to classify files fed by an informa.-
tion network, classification time must, be no more
than l/10 of a second.

l Ex2ensibility. The classifier must easily be ext#en-
sible with new user-defined classes. This is im-
portant to react to changing user demands. The
ability of quick and incremental retraining is cru-
cial in this context,.

The remainder of the paper is organized as follows.
In Section 2, we review the basic technology of our
experimental vector space classifier and compare the
accuracy of several implement,a.tion alterna.tives. In
Section 3, we introduce a novel confidence measure
that gives important feedback about how certain the
classifier is after classifying a document. In Section
4, we show that, finding a good schema is crucial for
the classifier’s performance. We present techniques for
selecting distinguishing features. In Section 5, we com-
pare the vector space classifier with ot,her known clas-
sifier technologies, and conclude in Section G with a
summary and outlook.

2 An Experimental Vector Space Clas-
sifier

In this section, we introduce our experimental vect,or
space classifier (VSC) system. The goal was to build
an extremely high-performance classifier, in t,erms of
accuracy, speed, and extensibility for the classification
of files by type. UNIX was considered a.s a sample
file system. The classifier examines a. UNIX file (a
document) and assigns it to one of a set of predefined
UNIX file types (classes). To da,te, the classifier is a.ble
to distinguish the 47 different file types illustrated in
Figure 1. These 47 types were t.hose that, were readily
available in our environment. Note that the classifier
presented here can be generalized to most non-UNIX

file syst,ems. In the sequel, we briefly review the under-
lying vector space model [SWY75]. We focus on issues
that are unique and novel in our pa.rticular implemen-
t,at,ion.

VSCs are created for a given cla.ssifica.tion task in
two st,eps:

Schema deJnifion. The schema. of t,he classifier
is defined by describing the names and features
of all t,he classes one would like to identify. The
features, sa.y fi . . . fna, span an m-dimensional fea-
ture spa.ce. In t,his featsure spa,ce, each document,
d can be represented by a vector of the form
v(i = (al,. . .) a,) where coefficient ai gives the
value of feature fi in document d.

Classifier 1rainin.g. The classifier is trained with
tra.ining dat,a -. a. collectiou of typical documents
for ea.& class. The frequency of ea.& fea.ture fi
in all training documents is determined. For each
class ci, a cent.roid we, = (~1, . . . , am) is computed,
whose coefficients & are the mean values of the
extra.cted features of all t,raining documents for
that, class.

Given a t,rained classifier with centroids for each
class, classification of a document, d means finding t.he
“most, simi1a.r” cent,roid o, and assigning d to that class
c. A commonly used similarity measure is the cosine
metric [vR79]. It. defines the distance between docu-
ment d a,nd class centroid c by the angle M between
the document vector and the centroid vector, that is,

Vd . vc sim(d, c) = cos Q = - .
IV~IIVCI

Building centroids from t,ra.ining cla.ta and ubing the
similarit,y niea,sure allows for very fast cla.ssifica.tion.
To give a rough idea; an individual document can be
classified by our system in about 40 milliseconds on an
IBM RISC System/6000 Model 530H. In Section 2.2,
we will compare the accura.cy of the cosine metric with
common alterna,tives.

2.1 Defirhg the Classifier’s Schema

A feat,ure is some identifiable part of a. document that,
distinguishes between document classes. For example,
a fea.ture of LATEX files is that file names usually
have the extension “. tex” and t,hat the text frequently
cont,ains patterris like “\begin<. . .I”.

Feat,ures ca,n eit,her be boolean or counting. Boolean
features simply determine whether or not a feature oc-
curred in the document,. Counting features determine
how often a fea,ture was detect.ed. They are useful to
partially filter out “noise” in the training dat(a.. clan-
sicler for example C’SOURCE files, having a. lot. of curly

264

Figure 1: Class hierarchy of the experiment,a.l file classifier
braces. Many other file types ha.ve curly braces too,
but only a few. Hence, counting t,his feature instead of
just noting its presence would differentiate CSOURCE
files from others.

In the remainder of t,his pa.per, we assume boolean
features only. Using counting features is part of future
work. In general, counting feaQures in a VSC must be
normalized before using, like proposed for example by
the non-bina.ry independence mddel [YMP89].

To define the schema of the file classifier, four dif-
ferent types of features are supported. They can be
used to describe patterns tl1a.t characterize file types:

l A filenames fea.ture specifies a pa.t(tern t.hat is
matched against the na.me of a file;

l A firstpats feature specifies a, pattern that is
ma.tched against the first line of a file;

l A restpats feature specifies a. pattern tha,t is
ma.tched against any line of a file;

l An extract feat,ure specifies tha,t t,here exist,s an
extraction function (e.g. a. C program) to deter-
mine if the feature is present.

The feature types filenames, firstpats, and
restpats are processed by a pat,tern matcher. For
performance reasons, this is a finite state machine spe-
cially built, from the classifier schema. Pat,terns ca.n ei-
ther be string literals or regular expressions. The reg-
ular expressions supported are similar to the regular
expressions of the UNIX “ed” command. The fea.ture
type extract is used to define file properties that ca,n-
not be described by regular expressions. For instance,
extract features can be programmed to check whet,her
a document is an executable file or a direct,ory.

Any feature can be defined as must, which mea.ns
that its occurrence is mandatory. If such a feature is
not present in a. given file, the file cannot be a member
of tha.t class. Notice tl1a.t the converse is not true: the
presence of a must fea.ture does not force a type match.

Example 1: Figure 2 shows an excerpt of a sam-
ple classifier schema, defining classes for POSTSCRIPT

pictures, LATEX documents, MHFOLDER directories,
a.nd COMPRESS files.

A filenames feat,ure specifies that names of
POSTSCRIPT files usually end with the extension
“.ps”, names of LATEX files with “. tex”, and names
of COMPRESS files with “. z” or “. Z” They a.re all de-
fined as regular expressions, as indicated by t,he key-
word “regexp” .

A firstpats feature is defined for POSTSCRIPT
files. It is a regular expression, saying that the first
lines of these files always begin with “%!“. This pat-
tern is given with a must keyword, i.e., it must be
present in POSTSCRIPT files.

restpats features specify that POSTSCRIPT files
usually contain the two string literals “(/rEndComments”
and “%Creator” and tha.t LATEX files often con-
tain the &ring literals “\begin(“, “\end(“, or
“(document)“.

Ext#ra.ction functions exist for classes MHFOLDER
and COMPRESS. Notice, that, the implementation
of extra.ction functions is not pa.rt of the classifier
schema. However, by na.ming convent,ion, they are
implemented by C functions called “ex,MHFolder”
aud “ax-Compress” respectively. For example,
“ex,Compress” searches for a file checksum and
“ex_MHFolder” opens t,he directory a.nd looks for mail
files. 0

Finding a.ppropriate features for each class is crucial
to the accura.cy of a classifier [Jam85]. This has been
verified by our experiments. For example, to define
t#he 47 classes of t,he UNIX file classifier, a t,ot(al of 206
fea.tures were carefully specified. We come t,herefore
back to t,he issue of feature selection in Se&ion 4.

2.2 Alternative Similarity Metrics

Diverse simi1a.rit.y metrics are proposed in the litera-
ture. For example, [vR79] describes Asymmetric, Co-
sine, Dice, Euclidia,n, Jacca.rd, and Overlap distance.

Table 1 sunlmarizes our extensive classifier perfor-
mance experiments. Experiments involved choosing
random subsets from a collection of 26MB of sample

265

PostScript C
filenames 1

“\ . ps$” regexp

3
f irstpats C

“^%!I’ regexp must

3
restpats C

“%EndComments”
“%Creator : ”

3
3

MHFolder {
extract

3

LaTeX C
filenames C

‘I\. tex$” regexp

3
restpats {

“\beginC”
“\endC”
“{document)”

3
3

Compress C
extract
filenames C

‘I\. [zZl$” regexp

3
3

Figure 2: Sample cla.ssifier schema
dat,a for t,raining and then for performance testming. To
find the closest, cent,roicl, the tlist.ance between docu-
ment d and centroid c was alternatively measured with
the above six common dist,ance met#rics (dj , cj means
the j-t,h coefficient of t,he vector d or c respectively).’

Best and most reliable a.ccuracy 1la.s been achieved
using the cosine as similarity measure in our VSC. A
promising alternative though is the asymmetric mea.-
sure. It captures t,he inclusion rela.tions between vec-
tors, i.e., the more that. properties of d are also present
in c, the higher the similarity. Dice, Jaccard, and
Overlap metrics give lower accuracy for our purposes.
Surprisingly very low results ha.ve been achieved by
Euc1idia.n distance.

The bottlom line of this evaluat,ion is tha.t the classi-
fier’s accuracy could not have been improved by choos-
ing a. different, distance measure. In the following sec-
tion we discuss a way of getting feedback about the
classifier’s confidence which can, in turn, be used to
improve the accuracy of t,he cla,ssifier.

‘The accuracy of a classifier is measured for a particular class
C as [Jonil]

recall(C) =
objects of C assigned to C

total object,s of C

precision(C) =
objects of C assigned to C

total objects assigned t.o C ’

To measure a classifier as a whole, we use the arithmetic mean
of recall or precision over all classes. Not.ice that every object. is
classified into exactly one class (no unclassified or double clas-
sified objects). The E-value [vR79]

E-value =
2 precision recall

precision + recall

is a single measure of classifier accuracy that conlbines and
equally weight,s bot.h, recall and precision.

3 The Confidence Measure

Independent of which similarity measure is chosen,
closeness t,o a cent,roid is not a very useful indicator
of the cla.ssifier’s confidence in it(s result. Hence, we
&roduce the following novel measure that gives im-
portant feedback on how sure the classifier is about a
result,.

Definition. The co~fidc~ce of a.n a.ssignment of doc-
ument d to class ca is defined a.s

def sim(d, cd) - sim(d, cj)
confidence(d, ci) =

sim(d, ci)

wit,h ci the closest, centroid and cj t.he second closest
centroid.

The confidence is t#he ratio of the similarity of the
closest and second closest centroid over the similarity
of the file a,nd the closest. centroid.2 The following
exa.mple illustra.tes how the confidence measure works.

Example 2: Consider two centroids cl and ~2, having
both the same distance from a, given document d, i.e.
sim(d, ci) = sim(d,q). Classification as one or the
other cla.ss is therefore completely arbitrary.

However, if these cenQroids are very close to the
document, the simila,rit,y alone suggests a very good
cla.ssifica,tion result, which is not, correct. The t,rue
situa.tion is reflected by the confidence, which gives a
very low value, namely 0. 0

The confidence mea.sure ca.n be used to tell whether
the cla.ssifier probably miscla.ssified a document. The

2Tlle confidence nleasure can be generalized to t,ake into ac-
count t.he n closest. centroids. In t.his paper however, we use the
closest and second closest centroids only.

266

Table 1: Alterna.tive similarit,y met,rics

distance niet.ric sim(d, c) reca.ll precision E-value

higher the confidence value, the higher the classifier’s
certaint,y and therefore t.he higher the proba,bility that
the file is cla.ssified correctly.

Figure 3 shows the dist,ribution of the confidence
for a sample classifier. Each dot represents one of the
-2500 test, files. The (logarithmic) x-axis shows the
classifier’s confidence in assigning a. t,est file to a file
type. The y-axis is separated into t,wo areas, t.he lower
one for correctly classified files a.nd the upper one for
incorrectly classified files. Both areas ha,ve one row for
each of the 47 file types.

This distribution illustrates the tendency of cor-
rectly classified files to ha,ve a confidence around 0.7
and the incorrectly classified files around 0.07. One
can make use of that to alert a human expert, tha.t is,
to apply t(lie following algorit,hm: choose a confidence
threshold 0; cla.ssify document d, resulting in a cla.ss c
with confidence y; if y < 0 then ask a human expert
to a.pprove the classification of document d a.s class c.

Figure 4 illustrates how much feedba.ck can be de-
rived from the confidence mea.sure. Assumes a given
confidence threshold 0 (vert(ica1 line), such t1ta.t the
user ha,+ t,o approve the cla.ssification if a file is classi-
fied with a smaller confidence.

The dotted curve shows t,he percenta.ge of test, files
for which the assumption is true that they are clas-
sified correctly if classified with a, confidence above
threshold 0 and classified incorrectly otherwise. If,
for exa.mple, the threshold 0 is set to 0.1, tShen about
94% are classified correctly if their confidence is above
0.1 and incorrectly otherwise (see dot,ted line hit.ting
threshold).

The solid curve shows the percentage of test, files
t,hat were classified wit,h a confidence below 0. With
0 = 0.1, about 10% of the files are present,ed to the
user for checking (see solid curve hitting the thresh-
old). These were shown t,o a 1luma.n expert. Note that
about 5% of the files had a confidence of 0. These
files were equidistant from 2 centroids indicating t.hat

t(he classifier ha.d to ma.ke a.11 arbit,ra.ry choice between
t,lieni.

Finally, the dashed curve shows t.he percenta.ge of
t.est, files lha,t were cla.ssified correctfly even t#hough they
have a. confidence below t,hreshold 0. These are the
files where the classifier “anaoyed” the user for no good
reason. With 0 = 0.1, only 30% of the presented files
were act,ually classified correctly (see dashed line hit-
ting the threshold). Thus, using the confidence mea-
sure, a user ha.d t.o touch 10% of all files, of which
in fact, 7OYo were classified incorrectly. The classifier’s
overall recall could t,herefore be improved by 7% with-
out, bothering t,he user t,oo much.

In this cla,ssifier, 0 = 0.1 provides a maximum accu-
ra.cy (dott,ed line) while providing a reasona,ble number
of files for the user’s consideration while maintaining
a modest “annoyance” level.

3.1 Classifier Training Strategies

The confidence measure’s primary use is to detect mis-
cla.ssified documents. This not, only improves the clas-
sifier’s performance, but also proved to be useful for
other purposes. In this section, we concent,rate on us-
ing the confidence measure to speed up classifier train-
ing. Quick (re)t(raining is an abilit,y t,hat is crucial for
any cla.ssifier, especially for extensibility, as we will see
lat.er.

To t$ra.in t,he classifier, a human expert has to pro-
vide a reasonable number of document8s that are typ-
ica.1 of ea.& cla,ss. The first, quest,ions is: how much
tra.ining dat,a. is required for it, t,o perform well? Pre-
liminary experiments showed that a. surprisingly small
set, of tra.ining data produces a sufficiently a.ccurat,e
classifier. In Figure 5, the solid line shows the perfor-
mance (E-value) of a classifier built with different sizes
of tra.ining data.

For example, a classifier trained with only one doc-
umentS per class has avera.ge E-value of 0.89. The same

267

,____..-.......

,J’

r ,’
,-a.”

I

.
,. ” ’

..’ . .

.
. m *.

. .

I .

.

.

-.

,

Figure 3: DistSributiou of the co&deuce measure

conlldencm lhreshold

Figure 4: Feedba.ck from he coufideuce measure

I ’ I - I m I ’ I
0 200 400 600 800 1000

total number of training documents

* randomly selected documents, trained in one step
- U- incremental training strategy

Figure 5: Number of t,raiuing documeh vs. chssifer performance

268

cla,ssifier wit,h 5 training documents has average E-
value of about 0.96, with 10 documents about 0.97,
and with 20 documents (-1000 total) nearly 0.98.

In the experiments discussed in t.he remainder of
this pa.per, we use (unless sta.ted otherwise) training
data sets wit,h an average of -17 documents per class
(t,ot.al -800 documents = -2G MBytes). These data
sets have ra.ndomly been select*ed as subsets of a large
collection of training documents. On an IBM RISC
System/6000 Model 530H, training the experimenta.
file classifier takes a,bout 50 seconds, with this amount
of training data. For evaluating the cla,ssifier’s perfor-
mance randomly select.ed data is used that is always
disjoint from the training dat,a.

Though it shows t,ha.t only little t,raining data is re-
quired, the second question is: wl1a.t are good training
documents and how can t,hey be found. One common
way is to use an incremental training strategy, where
the classifier is init,ially trained with few (one or two)
documents of training data for each class. Then t.he
classifier is run on unclassified test, document,s. A hu-
man expert manually classifies some of them and adds
them to the training data. Aft,er about 20 documents
have been added to the training data, the cla.ssifier is
retrained with the extended training set.

The crucial para.meter of t,his stra.tegy is whether
the correctly or the incorrectly classified document,s
should be added to the training da.ta set. We actu-
ally used a third approach and added those document,s
to the training data for which the classifier was least
confident about the classification, i.e., the confidence
measure was below a given threshold. The final incre-
mental training algorithm is illustrat,ed in the follow-
ing:

a

step 1:
train an initial cla.ssifier with No

documents per class;
step 2:

while the classifier’s performance is
insufficient

and a user is willing to classify
documents do
classify document using current

classifier;
if confidence was below a certain threshold

then
classify document, by user and
add it to training data set;

if Nl training document,s have
been added then
retrain the classifier wit,h new
tra.ining set.;

end

Incremental training is very efficient when adding
the lea.st confident documents to the t,ra.ining da.ta set.
Consider again Figure 5: the dashed line shows the
classifier’s performa.nce using the increment.al training
strategy, as opposed to training the classifier with ran-
domly selected data,, all a.t once (solid line). An initial
classifiers was built, with II’” = 2 training documents
per class (-100 documents in total), which resulted in
an E-value of a.bout, 0.94. In five iterations, N1 = 20
documeuts per iterat,ion were increment,ally added to
the training da.ta..

To achieve a classifier of E-value 0.96, one iteration
wa.s necessary. Notice, that at this point of time, only
a toba,l of 120 training document,s were used, compared
to 250 needed documents if tra,ining with random data
in one st,ep. After five iterations we already achieved
0.98 and used only 200 training documents, compared
to 1,000 if trained with random data in one step (cf.
Figure 5).

The incremental tra.ining algorithm is simi1a.r to the
uncertainty strategy proposed by [LG94]. However,
the number of files needed by their strategy is signif-
icantly la,rger t(ha,n ours (up to 100,000 documents),
because they a,re doing semantic full t(ext,ual analysis
of all the words in the documents. In contrast, we
look for a few synta.ctic pa.tterns and can get enough
randomness in 10 files.

4 Feature Selection

Finding good features is crucial for a cla.ssifier’s per-
formance. However, it is a difficult task that can not
be automated.

On one hand, features must identify one specific
class and should apply a,s little as possible to other
classes. This is easy for classes that can be ident,i-
fied by examining files for matching string literals, like
e.g., Fra.meMaker documents, or GIF pictures. But
it is difficult for cla,sses that, a.re very simila.r, like dif-
ferent kinds of elect,ronic ma.il formats, e.g. RFC822
mail, Usenet, messa.ges, MBox folders. It may also be
a problem for textual files containing mainly natural
langua,ge and having only few commonalities.

On t.he other hand, t,here must be enough fea.tures
to ident.ify all kinds of files of a particular class. This
causes a. problem, if classes can only be described by
very general patterns or can take alternative forms,
like for inst,ance word processors having different file
saving formats. In these cases, it, is advisable to ei-
ther define completely different, classes or t,o combine
feat#ures t,ogether.

In this se&ion, we present t,echniques to analyze and
improve the schema of a, classifier. These t,echniques
help a human expert, choose good fea.tures. To reveal

269

the results in adva,nce, we managed to improve a. cla.s-
sifier’s performance from an avemge E-value of 0.8G to
0.94, just by optimizing the schema..

4.1 Distinguishing Power

The most importa.nt, pr0pert.y of features is how precise
they identify one pa.rticular cla.ss. Thus, good features
can be separated from bad features in how distinguish-
ing they a.re, i.e., the number of cla,sses t,hey match.

We use the variation of feature coefficients over all
centroids to measure how dist~inguishing fea.tures are.
Consider vector ji = (~$1, . . . , nan), where aij is the
coefficient, of feature ji in centroitl cj (1 2 i 5 m, 1 5
j 5 n). This vector represents t.he feature’s dist.ribu-
tion over classes. Assuming normal distribution, we
define:

Definition. The disii~~g~uishiag po’wer of feat,ure ji: is
defined as

dist-power(ji) ef c

where s2 = 5 cjnZl(a;j - Z)2 is the variance and
B = t C,“,, nij is t,lie mean.

This definition of distinguishing power values both,
low va,ria.nce and low mean. It ranges from 0 to 1.
For an optimal feature t,hat(has all coefficients aij =
0 except for one that, is 1, the variance s2 is equal
to its mean Z. Hence, the distinguishing power of a
perfect feature is 1. For a worst-case feat,ure t,hat has
a. uniform distribution over all classes (and zi # 0), the
variance, and therefore the distinguishing power, is 0.
The higher dist-power(ji) is, the more distinguishing
is feature ji.

Example 3: Figure 6 illustra.tes distin-
guishing power for t,wo sample features. Fea-
ture “Shellscript--set-” is defined for class
SHELLSCRIPT and sea,rches for string literal “ set “.
This feat,ure matches many different classes to a low
degree, which is reflected in a very low distinguishing
power (0.1978).

Feat.ure “RFC822-*From:” is defined for class
RFC822 (an e-mail format) and sea.rches for lines be-
ginning with “From:“. This feature has a much better
distinguishing power (0.7742). It selects fewer classes,
most of them to a high degree. Not.ice that, this feature
now identifies a. group of four classes that are similar
(e-mail like).

An example of a perfect fea.ture (distinguishing
power 1.0) is feature “CHeader- . h$” (not shown in
Figure 6), a regular expression looking for file na.mes

ending wit,h ‘I. h” . 1t.s coefficients a.re 1 for class
CHEADER a.nd 0 for a.11 ot.hers. 0

In general, feat(ure aaalysis can be performed in t,wo
different, ways. These approaches are complementary:

. the analyzer scans human generated features and
identifies those wit.11 poor distinguishing power;

l the a,nalyzer scans all training documents and pro-
poses fea.tures with high distinguishing power.

A huiilan expert is necessary in bot#h cases. Ultimately,
the expert must decide whetsher to include a proposed
fea.t.ure int,o a, schema,, change an existing feature’s def-
inition in order to make it, more specific. delete a fea-
t.ure, or keep it, as it. is. It is difficult, to automate this
t,ask. Some fea.tures must be included although they
a,re not, very dist.inguishing, for instance, those t,ha.t
are the only feature of a top-level class in the hier-
archy (TEXT, BINARY, DIRECTORY, SYMLINK). On
the other ha,nd, regu1a.r expression pa.tterns, for exam-
ple, may contain an error tha.t cannot be detected and
corrected automa.tic,ally.

To illustra.te feature a,nalysis, the experimental file
VSC wa,s built. using a non-optimized schema with
about, 200 fea,tures, created by a user with moderate
experience in using the classifier. This classifier had
an average E-va.lue of 0.86.

Subsequent fea.ture analysis showed that only about
15% of these features ident#ified exactly one type (dist-
power = l), 10% did not match any t,ype at all, and
more than 50% ha.d dist,-power < 0.5. Based on this
fea,ture a.nalysis, t,he schema was optimized. Patterns
were cha.nged to make feat)ures more specific and syn-
t,ax errors tha.t ca.used features to fail to ident.ify any
class were corrected. A new classifier was built with
t,his improved schema.. The average E-value increased
to 0.94, just from using the optimized schema.

4.2 Combining Features

Some file t,ypes have the property that documents of
t,hese classes ma.tch a highly varying number of fea-
tures (e.g. SCRIPT, TROFFME, YACC, CSOURCE).
Some documents match 20 to 30 fea.tures, whereas oth-
ers only 1 or 2. Even if the 1 or 2 features are a. subset
of t,lie 20 t,o 30 feat,urcs, the classifier performs poorly
for these classes, beca,use it can only be trained to
properly recognize one of t,he two styles of documents.

One a,pproach would be t,o define two different
cla.sses t#o cover t,he t,wo styles. However, it proved to
be ext,remely difficult, t,o define t,he schemas for t,he two
separated cla,sses and to separate the tmining data.

A bet.ter solut.ion is combining severa. fea.tures
jl, . . . , j,,, int,o one feat#ure. The new feat,ure is built
a,s a regular expression j = jl (. . (j,, , coniiecting the

270

Figure 6: Distinguishing power of features
original fea.tures via “or” patterns. There are two wa.ys
to combine the features of a. given class together:

l Combining “disjoint” fdures. The first way is to
combine “disjoint” features that never (less than a
given amount of t.he time) appear together. Con-
sider as an example file types with two different
initialization commands where only one of which
appears at the beginning of the file.

l Combining “duplicate” features. The second way
is to combine “duplicate” features, that is, fea-
tures tha.t always (more tha.n a given amount
of the time) appear together, but do not a.p-
pear often (in more than a given amount, of the
files). For example, patterns “argc” and “argv”
in CSOURCE. The second limitation allows the
classifier to keep the really good features like
“Yleceived” and “- From” which a.ppear in a.11
RFC822 files, but it will combine “argc” and
“argv” which only sometimes occur in CSOURCE

files.

The algorithm for combining feat,ures looks as fol-
lows (choosing 80% as the t8hreshold to combine fea-
tures and 60% for the number of files duplicate features
should not appea.r in ha.s given the best result,s):

foreach cla.ss ci (i = 1 . . . n) of the schema do
st,ep 1:

nz = number of features of class ci;
F = features {fi, . . . , fm} of class q;
P(F) = the powerset of F,

without the empty set;
step 2:

train the classifier:
sca.n all training documents of class ci

for feature occurrences;
foreach s E P(F) do

WC(~) = percent,age of training
document,s of cla.ss ci
where features s occur together;

end
step 3:

find feat(ures t#o be combined:
while m > 1 do

foreach s E P(F) with In fea.tures do
if (avgfEJocc(s)/occ(f) < 0.20)
or ((avgf~,occ(s)/occ(f) > 0.80)
and occ(s) < 0.60)
then

combine features in s;
remove all sets from P(F)
containing any of the
features in s;

end
In - -;

end
end

The algorithm works class by class and combines only
feat,ures tl1a.t are defined within the same class, that
is, features from different classes are never combined
together.3

In st,ep 1, the algorithm computes P(F) as the set
of a,11 possible subsets of fea,tures {fl,. . . , fm} for the
current class ci. In st,ep 2, the classifier is trained
by classifying a la.rge number of documents (-40 - 50
per class). While sca.nning training documents, the
algoribhm remembers for ea.& of the fea.ture combina-
tions s E P(F) the percenta.ge of d0cument.s in which
t#his combina,tion occurred. In step 3, the algorithm
sea.rches fea.tures to be combined. It, tries to combine
as many features as possible and starts therefore with
t(lie largest feature combina~tion having all m features.
If the combination fulfills one of the “disjoint” or “du-

“In the current, experimental classifier, feature combinat~ion
runs on restpats feat.ures only.

271

plica.te” occurrence conditions, a.11 feat,ures of the set,
s are removed from the schema and replaced by one
new fea.ture tha.t combines t,liem as described above.
All sets are removed from P(F) cont,aining a.ny of the
features from s, because maximum combination was
already achieved for these features. If all feature com-
binat.ions of t,his size m ha.ve been processed, m is
decremented and t,he algorithm tries to combine the
remaining fea.ture combina.tions of the smaller size.

Running feature combination on the restpats of
the ahcady opt,imized schema, of t&he previous section,
combined 37 disjoint features into 14 new features and
58 duplicate features into 20 new ones. Just by auto-
matic feature combina.tion, the classifier’s performance
has been improved from a.n overall E-value of 0.94 to
now 0.96. In detail, the recall of file type TROFFME
has been increased by 9.1% combining 7 intao 2 fea.-
tures, YACC by 7.1% combining 2 into 1 feature and
SCRIPT by 6.2% combining 38 int,o 13 features.

5 Comparison of other Classifier Tech-
nologies

There a.re diverse tZechnologies for building classifiers.
Decision tables are very simple classifiers that deter-
mine a.ccording to ta.ble entries wha.t cla.ss to assign t,o
an object. The UNIX “file” command is an example
of a decision table based file classifier. It scans the
/etc/magic file, the decision table, for ma,tching val-
ues and ret#urns a corresponding string tl1a.t describes
the file type. Decision. tree classifiers construct, a, tree
from training data, where leaves indicate classes and
nodes indicate some test,s t.o be ca.rried out. CART
[BFOS84] or C4.5 [Qui93] are well known exa,mples of
generic decision tree classifiers. Rule based classifiers
create rules from training data. R-MINI [Won941 is an
example of a rule based classifier that generates dis-
junctive normal form (DNF) rules. Both, decision tree
and rule classifiers, usually apply pruning heuristics to
keep these trees/rules in some minimal form. Discrim-
inant analysis (linea,r or quadra.tic) is a well known
basic statistical classification approach [Ja.m85].

To rate our experimental vector space classifier, we
built alternative file classifiers using quadratic discrim-
inant a.nalysis, decision t,ables, the decision tree system
C4.5, and the rule generation approa,ch R-MINI. Ta-
ble 2 summarizes the conducted experiments. The in-
tent of this table is to give a rough overview of how
the different techniques compa.re on the file classifica-
t,ion problem a.nd not to present, detailed performa.nce
numbers (“+” means an advantage and “-” means a
disadvant,age of a particular classifier technology).

Speed. Training and classifica.tion using qua.dra.tic
discriminant a.nalysis is very slow because extensive
computations must be performed. All ot,her classi-

fier technologies provide fast’ training and classifica-
tion. The vect$or spa.ce classifier simply needs to com-
putme angles bet,ween t,he document vector a.nd all cen-
t,roids. For example, on an IBM RISC Syst,em/BOOO
model 530H, an individual document is classified by
t.he experimental classifier in about 40 milliseconds,
on aver a,ge . The ot,her c.lassifier tec.hnologies (except
of discrimina.nt, analysis) proved a’ similar speed.

Accuracy. Qua.dra.tic discriminant ana.lysis and
decision tables did not a.chieve our accuracy require-
ments. They had error ra,tes up to 30%. All other clas-
sifier t,echnologies proved much lower error rat,es. The
C4.5 file classifier showed error rates from 2.6 t#o 5.0%
misclassified files. The R-MINI file classifier showed
error rates from 2.6 to 4.9%. The vector space clas-
sifier had 2.1 to 3.1% error rates. Hence, a.11 three
t,eclinologies have a.pproximately bhe same range of er-
rors.

Extensibility. A classifier is usually trained wit.11
a basic set of genera.1 classes. However, this basic class
hiera.rchy must be ext,ensible. Users want to define
and add specific classes a.ccording to their personal
purposes. Extensibility of a classifier is t$herefore cru-
cial for ma,ny a.pplica.tions. In order to add classes
t,o a cla.ssifier, a user must provide class descriptions
(schema.) and tra,ining da.ta. for the new classes. Train-
ing documents of the existing cla.sses must be available
too. This “old” tra.ining da.ta is necessary because new
classes must be tra.ined wit,h data for existing classes
as well.

Vector spa.ce cla.ssifiers are highly suited for exten-
sibilit,y purposes. Consider as an example a classi-
fier wit,h existing classes cl, . . . , cg and existing fea-
tures fl , . . . , fj . Assume this classifier is extended with
new classes ch, , . . , cn (h = y + 1) and new features
fk, . . . , frill (h = j + 1). After extension, the feature-
cedroid matrix A of the classifier, where each coeffi-
cient u’.~ shows t.he value of featcure y in t,he centroid
of class 2, looks as follows:

A=

fl ... fj fk . . . fin
r________________- ,I ,
Iall . . . ulna
I .

n1j : alk . .. UC*

: : . . ! :
. :;. . .

. :

;aqt . . . ngj ’ Ugk . . . Uym
L.: ---_----___--_:

2’~~

ah1 . . . ahj Ghk *.. al&In VCh

. .
. : . .

. :

The upper-left (dashed) sub-matrix of A shows the
existing feature centroid ma.trix. To add new cla.sses,
t,hese exist,ing cent,roid coefEcients need not be recom-
put,ed. The fea.ture-cent,roid ma,trix can incremenbally
be ext,ended wit,11 coefficients for newly a.dded classes.

272

Table 2: Different Classifier Technologies

Quad. Decision Decision DNF Vector
Discr. Tables Trees Rules Spxe

hna.lysis (C4.5) (R-MINI) Model

Speed + + + +
Accuracy - + + +
Extensibility - +

The lack of extensibilit,y of discriminant a,nalysis,
decision table/tree and rule classifiers is the most dra-
ma.tic difference. In contrast to vect,or spa.ce classifiers,
extending this kind of classifiers with new user-specific
classes demands rebuilding the whole system (tables,
trees, or rules) from scratch, that is, it requires com-
plete reconstruction of the classifier. Increment*al, ad-
ditive extension is not possible.

6 Conclusion and Outlook

High accuracy, fast classification, and incrementsal ex-
tensibilit,y a.re the primary crit,eria for any classifier.
The experimental VSC for assigning types to files pre-
sented in this paper fulfills a.11 three requirements.

We evaluat,ed different similarity metrics and
showed that the cosine measure gives best, results. A
novel confidence measure was intlrocluced tha,t detects
probably misclassified documents. Based on this con-
fidence measure, an incremental t,ra.ining strategy was
presentsed that significantly decreases the number of
documents required for training, and therefore, in-
creases speed and flexibility. The notion of dist,in-
guishing power of features was formalized and an algo-
rithm for automa.tic combining disjoint and duplicate
features was presented. Both techniques increase the
classifier’s accuracy again. Finally, we compa.red t,he
VSC with other classifier technologies. It revealed that
using the vector space model gives highly a.ccurate and
fast classifiers while it provides a.t the same time ex-
tensibility with user-specific classes.

The file classifier can be seen as a component of ob-
ject. text, and image database mana.gement systems.
There is recent,ly an increasing interest in merging the
functionality of database and file systems. Several pro-
posals have been ma,de, showing how files can benefit,
from object-orienbed t,echnology.

Christophides et al. [CACS94] describe a map-
ping from SGML documents int,o a,u object,-orientled
database and show how SGML documents can benefit
from da.tabase support,. Their work is restricted t,o this
particular document t,ype. It would he int#eresting to
see how easily it can be extended t,o a. rich diversity of
types by using our classifier.

Consens and Milo [CM941 transform files into a.

da,tabase in order t,o be able t,o optimize queries on
those files. Their work focuses on indexing and op-
timizing. They a.ssume t,ha.t files are already typed
before reading, for exa.mple, by the use of a. classifier.

Hardy and Schwa.rt(z [HS93] are using a UNIX file
classifier in Essence, a resource discovery syst,em based
on semant(ic file indexing. Their classifier determines
file types by exploiting naming conventions, data, and
common structures in files. However, the Essence clas-
sifier is decision t,able based (similar to the UNIX “file”
command) and is t,herefore much less flexible and tol-
erant,.

The file classifier can also provide useful services in a.
next-genera.tion opera.ting system environment,. Con-
sider for instance a. file system backup procedure that
uses the classifier to select file-type-specific backup
policies or compression/encryption methods.

Experiments have been conducted using the classi-
fier for language and subject classification. Whereas
language classification showed encouraging results,
this technology has its limitat,ions for subject classi-
fica.tion. The reason is tha.t the classifier works mainly
by synta.ctica.l exploration of the schema, but subject
classifica,tion must take into account the semant,ics of
a document.

We are currently working on making the classifier
ext,ensible even wit,hout the requirement of training
data for existming cla,sses. We are also investigating the
classificat,ion of struct,urally nested documents. A file
classifier is being developed that is, for example, able
to recognize Postscript pictures in electronic mail or C
language source code in na,tural text documents. Use
of this classifier to recognize, and take advantage, of a
class hierarchy is an item for future work.

References

[BFOS84] L. B reiman, J.H. Friedman, R.A. Olshen,
and C.J. Stone. Class$cation and Re-
gression Trees. Wadsworth, Belmont, CA,
1984.

[CACS94] V. Christophicles, S. Abiteboul, S. Cluet,
and M. Scholl. From structured document,s
t,o novel query facilit,ies. In SIGMOD94
[SIG94b].

273

[CM941

[GRW84]

(Hoc941

[Hon94]

[HS93]

[Jam851

[Jon711

[LG94]

[ODL93]

[Qui93]

[Sal891

[S&93]

[SIG94a.]

t,o novel query facilities. In SIGMOD94
[SIG94h].

M.P. Consens and T. Milo. Optimizing
queries on files. In SIGMOD94 [SIG94b].

A. Griffibhs, L.A. Robinson, and P. Willet,t.
Hierarchic a.gglomerative clustering meth-
ods for aut,oma.tic document classification.
Journal of Doc~o~~estnlioi~., 40(3), Septem-
ber 1984.

R. Hoch. Using IR techniques for text clas-
sifica.tion. In SIGIR94 [SIG94a].

S.J. Hong. R-MINI: A heuristic algorithm
for generating minimal rules from exam-
ples. In Proc. of PRICAI-94, August 1994.

D.R. Hardy and M.F. Schwartz. Essence: A
resource discovery system based on seman-
tic file indexing. In Proc. USENIX Winter
Conf., San Diego, CA, January 1993.

M. Ja.mes. Classijication Algorith.ms. John
Wiley & Sons, New York, 1985.

Ii. S. Jones. Alttomatic Keyword Classifi-
cation for In.formation Retrieval. Archon
Books, London, 1971.

D.D. Lewis and W.A. Gale. A sequential
algorithm for tra.ining text classifiers. In
SIGIR94 [SIG94a].

K. Obraczka, P.B. Danzig, and S.-H. Li.
Int,ernet resource discovery services. IEEE
Computer, 2G(9), September 1993.

J.R. Quinlan. C4.5: Program.s for Machine
Learning. Morgan Kaufman, San Mateo,
CA, 1993.

G. Salton. Automatic Text Processillg: The
Transform.ation, An.alysis, and R.etrieval of
Information by Computer. Addison-Wesley,
1989.

P. Schsuble. SPIDER: A multiuser infor-
mation retrieval system for semistructured
and dynamic dat,a. In Proc. 16th Int ‘1 ACh!
SIGIR Conf. on. Research and Developme&
in Information Retrieval, Pittsburg, PA,
June 1993. ACM Press.

Proc. 17th Int ‘1 ACM SIGIR Conf. on
R.esearch and Developmcut in Iufornaa-
lion Retrieval, Dublin, Ireland, July 1994.
Springer.

[SIG94b] Proc. ACM SIG.UOD Int ‘1 Conf. on Man-
ngemeut of Data, Minneapolis, Minnesota,
May 1994. ACM Press.

[SLS+93] K. Sheens, A. Luniewski, P. Schwarz,
J. St.amos, and J. Thomas. The Ru-
fus syst.em: Inform&on organization for
semi-st.ruct*ured da,ta. In Proc. 19th Int’l
Conf. on Very Large Data Bases (VLDB),
Dublin, Irland, August 1993.

[SWY75] G. Sa.lton, A. Wong, a.nd C.S. Yang. A
vect,or space model for automat,ic index-
ing. Clolllmulaicna~olis of ihe ACM, 18(11),
November 1975.

[vR79] C.J. van Rijsbergen. Information Retrieval.
Butt,erworths, London, 1979.

[YMP89] C.T. Yu, W. Meng, a.nd S. Park. A frame-
work for effective retrieval. ACM Trans. on.
Database Systems, 14(2), June 1989.

274

