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Abstract

Semi-structured documents (e.g. journal arti-
cles, electronic mail, television programs, mail
order catalogs, ...) are often not explicitly
typed; the only available type information
is the implicit structure. An explicit type,
however, is needed in order to apply object-
oriented technology, like type-specific meth-
ods.

In this paper, we present an experimental vec-
tor space classifier for determining the type of
semi-structured documents. Our goal was to
design a high-performance classifier in terms
of accuracy (recall and precision), speed, and
extensibility.

Keywords: file classification, semi-
structured data, object, text, and image
databases.

1 Introduction

Novel networked information services [ODL93], for ex-
ample the World-Wide Web, offer a huge diversity of
information: journal articles, electronic mail, C source
code, bug reports, television listings, mail order cata-
logs, etc. Most of this information is semi-structured.
In some cases, the schema of semi-structured informa-
tion is only partially defined. In other cases, it has
a highly variable structure. And in yet other cases,
semi-structured information has a well-defined, but
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unknown schema [Sch93]. For instance, RFC822 e-
mail follows rules on how the header must be con-
structed, but the mail body itself is not further re-
stricted.

The ability to deal with semi-structured informa-
tion is of emerging importance for object-oriented
database management systems, storing not only nor-
malized data but also text or images. However, semi-
structured documents are often not explicitly typed
objects. Instead they are, for instance, data stored as
files in a file system like UNIX. This makes it difficult
for database management systems to work with semi-
structured data, because they usually assume that ob-
Jects have an explicit type.

Hence, the first step towards automatic processing
of semi-structured data is classification, i.e., to assign
an explicit type to them [Sal89]. A classifier explores
the implicit structure of such a document and assigns
it to one of a set of predefined types {e.g. document
categories, file classes, ...) [GRW84, Hoc94]. This type
can then be used to apply object-oriented techniques.
For example, type-specific methods can be triggered to
extract values of (normalized and non-normalized) at-
tributes in order to store thein in specialized databases
such as an object-oriented database for complex struc-
tured data, a text database for natural language text,
and an image database for pictures.

Such a classifier plays a key role in the Rufus sys-
tem [SLS193], where the explicit type of a file, assigned
by the classifier, is used to trigger type-dependent ex-
traction algorithms. Based on this extraction, Rufus
supports structured queries that can combine queries
against the extracted attributes as well as the text of
the original files. In general, a file classifier is neces-
sary for any application that operates on a variety of
file types and seeks to take advantage of the (possibly
hidden) document structure. '

Classifying semi-structured documents is a chal-
lenging task [GRW84, Sal89]. In contrast to fully
structured data, their schema is only partially known
and the assignment of a type is often not clear. But
as opposed to completely unstructured information,
the analysis of documents can be guided by partially
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a consequence, much better performing classifiers can
be achieved. However, neither the database nor the
information retrieval community have come up with
comprehensive solutions to this issue.

In this paper, we present a high performance classi-
fier for semi-structured data that is based on the vector
space model [SWY75]. Based on our experiences with
the Rufus system, we define high performance as:
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e Accuracy. The classifier must have an extremely
low error rate. This is the primary goal of any
classifier. For example, to be reliable for file clas-
sification an accuracy of more than 95% must be
achieved.

o Speed. The classifier must be very fast. For exam-
ple, to be able to classify files fed by an informa-
tion network, classification time must be no more
than 1/10 of a second.

o FExtensibility. The classifier must easily be exten-
sible with new user-defined classes. This is im-
portant to react to changing user demands. The
ability of quick and incremental retraining is cru-
cial in this context.

The remainder of the paper is organized as follows.
In Section 2, we review the basic technology of our
experimental vector space classifier and compare the
accuracy of several implementation alternatives. In
Section 3, we introduce a novel confidence measure
that gives important feedback about how certain the
classifier is after classifying a document. In Section
4, we show that finding a good schema is crucial for
the classifier’s performance. We present techniques for
selecting distinguishing features. In Section 5, we com-
pare the vector space classifier with other known clas-
sifier technologies, and conclude in Section 6 with a
summary and outlook.

2 An Experimental Vector Space Clas-
sifier

In this section, we introduce our experimental vector
space classifier (VSC) system. The goal was to build
an extremely high-performance classifier, in terms of
accuracy, speed, and extensibility for the classification
of files by type. UNIX was considered as a sample
file system. The classifier examines a UNIX file (a
document) and assigns it to one of a set of predefined
UNIX file types (classes). To date, the classifier is able
to distinguish the 47 different file types illustrated in
Figure 1. These 47 types were those that were readily
available in our environment. Note that the classifier
presented here can be generalized to most non-UNIX
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that are unique and novcl in our partlcular implemen-
tation.

VSCs are created for a given classification task in
two steps:

1. Schema definition. The schema of the classifier
is defined by describing the names and features
of all the classes one would like to identify. The
features, say f1 ... fm, span an m-dimensional fea-
ture space. In this feature space, each document
d can be represented by a vector of the form
vqg = (ag,...,ay) where coefficient a; gives the
value of feature f; in document d.

no

Classtfier iraining. The classifier is trained with
training data — a collection of typical documents
for each class. The frequency of each feature f;
in all training documents is determined. For each
class ¢;, a centroid v,; = (@1, . .., @y ) is computed,
whose coefficients @; are the mean values of the
extracted features of all training documents for
that class.

Given a trained classifier with centroids for each
class, classification of a document d means finding the
“most similar” centroid v, and assigning d to that class
¢. A commonly used similarily measure is the cosine
metric [vR79]. It defines the distance between docu-
ment d and class centroid ¢ by the angle o between
the document vector and the centroid vector, that is,

Vd * Ve

sim(d,c) = cosa = —— .
(4.9 Foallee]

Building centroids from training data and using the
sitnilarity measure allows for very fast classification.
To give a rough idea, an individual document can be
classified by our system in about 40 milliseconds on an
IBM RISC System/6000 Model 530H. In Section 2.2,
we will compare the accuracy of the cosine metric with
common alternatives..

2.1 Defining the Classifier’s Schema

A feature is some identifiable part of a document that
distinguishes between document classes. For example,
a feature of LATEX files is that file names usually
have the extension “.tex” and that the text frequently
contains patteris like “\begin{...}".

Features can either be boolean or counting. Boolean
features simply determine whether or not a feature oc-
curred in the document. Counting features determine
how often a feature was detected. They are useful to
partially filter out “noise” in the training data. Con-
sider for example C'SOURCE files, having a lot of curly
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Figure 1: Class hierarchy of the experimental file classifier

braces. Many other file types have curly braces too,
but only a few. Hence, counting this feature instead of
just noting its presence would differentiate CSOURCE
files from others.

In the remainder of this paper, we assume boolean
features only. Using counting features is part of future
work. In general, counting features in a VSC must be
normalized before using, like proposed for example by
the non-binary independence model [YMP89].

To define the schema of the file classifier, four dif-
ferent types of features are supported. They can be
used to describe patterns that characterize file types:

e A filenames feature specifies a pattern that is
matched against the name of a file;

e A firstpats feature specifies a pattérn that is
matched against the first line of a file;

o A restpats feature specifies a pattern that is
matched against any line of a file;

o An extract feature specifies that there exists an
extraction function (e.g. a C program) to deter-
mine if the feature is present.

The feature types filenames, firstpats, and
restpats are processed by a pattern matcher. For
performance reasons, this is a finite state machine spe-
cially built from the classifier schema. Patterns can ei-
ther be string literals or regular expressions. The reg-
ular expressions supported are similar to the regular
expressions of the UNIX “ed” command. The feature
type extract is used to define file properties that can-
not be described by regular expressions. For instance,
extract features can be programmed to check whether
a document is an executable file or a directory.

Any feature can be defined as must, which means
that its occurrence is mandatory. If such a feature is
not present in a given file, the file cannot be a member
of that class. Notice that the converse is not true: the
presence of a must feature does not force a type match.

Example 1:  Figure 2 shows an excerpt of a sam-
ple classifier schema, defining classes for POSTSCRIPT
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pictures, LATEX documents, MHFOLDER directories,
and CoMPRESS files.

A filenames feature specifies that names of
PosTScRIPT files usually end with the extension
“.ps”, names of LATEX files with “.tex”, and names
of CoMPRESS files with “.2” or “.Z". They are all de-
fined as regular expressions, as indicated by the key-
word “regexp”.

A firstpats feature is defined for POSTSCRIPT
files. It is a regular expression, saying that the first
lines of these files always begin with “%!”. This pat-
tern is given with a must keyword, l.e., it must be
present in POSTSCRIPT files.

restpats features specify that POSTSCRIPT files
usually contain the two string literals “,EndComments”
and “%4Creator” and that LATEX files often con-
tain the string literals “\begin{”, “\end{”, or
“{document}”.

Extraction functions exist for classes MHFOLDER
and COMPRESS. Notice, that the implementation
of extraction functions is not part of the classifier
schema. However, by naming convention, they are
implemented by C functions called “ex_MHFolder”
and “ex_Compress” respectively. For example,
“ex_Compress” searches for a file checksum and
“ex_MHFolder” opens the directory and looks for mail
files. <O

Finding appropriate features for each class is crucial
to the accuracy of a classifier [Jam85]. This has been
verified by our experiments. For example, to define
the 47 classes of the UNIX file classifier, a total of 206
features were carefully specified. We come therefore
back to the issue of feature selection in Section 4.

2.2 Alternative Similarity Metrics

Diverse similarity metrics are proposed in the litera-
ture. For example, [vR79] describes Asymmetric, Co-
sine, Dice, Euclidian, Jaccard, and Overlap distance.
Table 1 summarizes our extensive classifier perfor-
mance experiments. Experiments involved choosing
random subsets from a collection of 26MB of sample



PostScript { LaTeX
filenames {
“\.ps$" regexp

{
filenames {
"\.tex$" regexp

} }
firstpats { restpats {
""%!" regexp must "\begin{"
} "\end{"
restpats { "{document}"
"%EndComments" }
"%Creator:" }
}
} Compress {
extract
MHFolder { filenames {
extract “\. [2Z]18$" regexp

Figure 2: Sample classifier schema

data for training and then for performance testing. To
find the closest centroid, the distance between docu-
ment d and centroid ¢ was alternatively measured with
the above six common distance metrics (dj, ¢; means
the j-th coefficient of the vector d or ¢ respectively).!

Best and most reliable accuracy has been achieved
using the cosine as similarity measure in our VSC. A
promising alternative though is the asymmetric mea-
sure. It captures the inclusion relations between vec-
tors, i.e., the more that properties of d are also present
in e, the higher the similarity. Dice, Jaccard, and
Overlap metrics give lower accuracy for our purposes.
Surprisingly very low results have been achieved by
Euclidian distance.

The bottom line of this evaluation is that the classi-
fier’s accuracy could not have been improved by choos-
ing a different distance measure. In the following sec-
tion we discuss a way of getting feedback about the
classifier’s confidence which can, in turn, be used to
improve the accuracy of the classifier.

1The accuracy of a classifier is measured for a particular class
C as [JonT1]

objects of C' assigned to C
total objects of C

recall(C) =

objects of C' assigned to C

recision(C) = - .
P (©) total objects assigned to C'
To measure a classifier as a whole, we use the arithmetic mean
of recall or precision over all classes. Notice that every object is
classified into exactly one class (no unclassified or double clas-
sified objects). The E-value [vVR79)

2 precision recall
E-value = —m—n——
precision 4 recall

is a single measure of classifier accuracy that combines and
equally weights both, recall and precision.

2

3 The Confidence Measure

Independent of which similarity measure is chosen,
closeness to a centroid is not a very useful indicator
of the classifier’s confidence in its result. Hence, we
introduce the following novel measure that gives im-
portant feedback on how sure the classifier is about a
result.

Definition. The confidence of an assignment of doc-
ument d to class ¢; is defined as

e | d, ;) — si ,Ci
confidence(d, ¢;) def sim(d, ¢;) — sim(d, ;)

sim(d, ¢;)

with ¢; the closest centroid and ¢; the second closest
centroid.

The confidence is the ratio of the similarity of the
closest and second closest centroid over the similarity
of the file and the closest centroid.? The following
example illustrates how the confidence measure works.

Example 2: Consider two centroids ¢; and ¢z, having
both the same distance from a given document d, i.e.
sim{d, ¢;) = sim(d,¢;). Classification as one or the
other class is therefore completely arbitrary.

However, if these centroids are very close to the
document, the similarity alone suggests a very good
classification result, which is not correct. The true
situation is reflected by the confidence, which gives a
very low value, namely 0. o

The confidence measure can be used to tell whether
the classifier probably misclassified a document. The

2The confidence measure can be generalized to take into ac-
count the n closest centroids. In this paper however, we use the
closest and second closest centroids only.
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Table 1: Alternative similarity metrics

distance metric sim(d, ¢) recall | precision | E-value
1. Cosine I—c‘ilﬁ;fl = cosq 0.97 0.97 0.97

R Z_min(dj , €5)
2. Asymmetric —Lz—d——— 0.94 0.95 0.95
3. Di e 0.94 0.93 0.94
3. Dice S+

dc
4. Jaccard 5 E T ST 0.94 0.93 0.94
. dc q

5. Overlap Yy 4, Yo 0.93 0.90 0.91
6. Euclidian 2o (di —¢j)? 0.69 0.87 0.77

higher the confidence value, the higher the classifier’s
certainty and therefore the higher the probability that
the file is classified correctly.

Figure 3 shows the distribution of the confidence
for a sample classifier. Each dot represents one of the
~2500 test files. The (logarithmic) x-axis shows the
classifier’s confidence in assigning a test file to a file
type. The y-axis is separated into two areas, the lower
one for correctly classified files and the upper one for
incorrectly classified files. Both areas have one row for
each of the 47 file types.

This distribution illustrates the tendency of cor-

rectly classified files to have a confidence around 0.7

and the incorrectly classified files around 0.07. One
can make use of that to alert a human expert, that is,
to apply the following algorithm: choose a confidence
threshold ©; classify document d, resulting in a class ¢
with confidence v; if vy < © then ask a human expert
to approve the classification of document d as class c.

Figure 4 illustrates how much feedback can be de-
rived from the confidence measure. Assumes a given
confidence threshold © (vertical line), such that the
user has to approve the classification if a file is classi-
fied with a smaller confidence.

The dotted curve shows the percentage of test files
for which the assumption is true that they are clas-
sified correctly if classified with a confidence above
threshold © and classified incorrectly otherwise. If,
for example, the threshold O is set to 0.1, then about
94% are classified correctly if their confidence is above
0.1 and incorrectly otherwise (see dotted line hitting
threshold).

The solid curve shows the percentage of test files
that were classified with a confidence below ©. With
© = 0.1, about 10% of the files are presented to the
user for checking (see solid curve hitting the thresh-
old). These were shown to a human expert. Note that
about 5% of the files had a confidence of 0. These
files were equidistant from 2 centroids indicating that
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the classifier had to make an arbitrary choice between
them.

Finally, the dashed curve shows the percentage of
test files that were classified correctly even though they
have a confidence below threshold ©. These are the
files where the classifier “annoyed” the user for no good
reason. With © = 0.1, only 30% of the presented files
were actually classified correctly (see dashed line hit-
ting the threshold). Thus, using the confidence mea-
sure, a user had to touch 10% of all files, of which
in fact 70% were classified incorrectly. The classifier’s
overall recall could therefore be improved by 7% with-
out bothering the user too much.

In this classifier, © = 0.1 provides a maximum accu-
racy (dotted line) while providing a reasonable number
of files for the user’s consideration while maintaining
a modest “annoyance” level.

3.1 Classifier Training Strategies

The confidence measure’s primary use is to detect mis-
classified documents. This not only improves the clas-
sifier’s performance, but also proved to be useful for
other purposes. In this section, we concentrate on us-
ing the confidence measure to speed up classifier train-
ing. Quick (re)training is an ability that is crucial for
any classifier, especially for extensibility, as we will see
later.

To train the classifier, a human expert has to pro-
vide a reasonable number of documents that are typ-
ical of each class. The first questions is: how much
training data is required for it to perform well? Pre-
liminary experiments showed that a surprisingly small
set of training data produces a sufficiently accurate
classifier. In Figure 5, the solid line shows the perfor-
mance (E-value) of a classifier built with different sizes
of training data.

For example, a classifier trained with only one doc-
ument per class has average E-value of 0.89. The same
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classifier with 5 training documents has average E-
value of about 0.96, with 10 documents about 0.97,
and with 20 documents (~1000 total) nearly 0.98.

In the experiments discussed in the remainder of
this paper, we use (unless stated otherwise) training
data sets with an average of ~17 documents per class
(total ~800 documents = ~26 MBytes). These data
sets have randomly been selected as subsets of a large
collection of training documents. On an IBM RISC

System/6000 Model 530H, training the experimental

file classifier takes about 50 seconds, with this amount
of training data. For evaluating the classifier’s perfor-
mance randomly selected data is used that is always
disjoint from the training data. '

Though it shows that only little training data is re-
quired, the second question is: what are good training
documents and how can they be found. One common
way is to use an incremental training strategy, where
the classifier is initially trained with few (one or two)
documents of training data for each class. Then the
classifier is run on unclassified test documents. A hu-
man expert manually classifies some of them and adds
them to the training data. After about 20 documents
have been added to the training data, the classifier is
retrained with the extended training set.

The crucial parameter of this strategy is whether
the correctly or the incorrectly classified docuinents
should be added to the training data set. We actu-
ally used a third approach and added those documents
to the training data for which the classifier was least
confident about the classification, i.e., the confidence
measure was below a given threshold. The final incre-
mental training algorithm is illustrated in the follow-
ing:

step 1:
train an initial classifier with Ny
documents per class;
step 2:
while the classifier’s performance is
insufficient
and a user is willing to classify
documents do
classify document using current
classifier;
if confidence was below a certain threshold
then
classify document by user and
add it to training data set;
if N; training documents have
been added then
retrain the classifier with new
training set;
end
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Incremental training is very efficient when adding
the least confident documents to the training data set.
Consider again Figure 5: the dashed line shows the
classifier’s performance using the incremental training
strategy, as opposed to training the classifier with ran-
domly selected data, all at once (solid line). An initial
classifiers was built with Ny = 2 training documents
per class (~100 documents in total), which resulted in
an E-value of about 0.94. In five iterations, Ny = 20
documents per iteration were incrementally added to
the training data.

To achieve a classifier of E-value 0.96, one iteration
was necessary. Notice, that at this point of time, only
a total of 120 training documents were used, compared
to 250 needed documents if training with random data
in one step. After five iterations we already achieved
0.98 and used only 200 training documents, compared
to 1,000 if trained with random data in one step (cf.
Figure 5).

The incremental training algorithm is similar to the
uncertainty strategy proposed by [LG94]. However,
the number of files needed by their strategy is signif-
icantly larger than ours {(up to 100,000 documents),
because they are doing semantic full textual analysis
of all the words in the documents. In contrast, we
look for a few syntactic patterns and can get enough
randomness in 10 files.

4 Feature Selection

Finding good features is crucial for a classifier’s per-
formance. However, it is a difficult task that can not
be automated.

On one hand, features must identify one specific
class and should apply as little as possible to other
classes. This is easy for classes that can be identi-
fied by examining files for matching string literals, like
e.g., FrameMaker documents, or GIF pictures. But
it 1s difficult for classes that are very similar, like dif-
ferent kinds of electronic mail formats, e.g. RFC822
mail, Usenet messages, MBox folders. It may also be
a problem for textual files containing mainly natural
language and having only few commonalities.

On the other hand, there must be enough features
to identify all kinds of files of a particular class. This
causes a problem, if classes can only be described by
very general patterns or can take alternative forms,
like for instance word processors having different file
saving formats. In these cases, it is advisable to ei-
ther define completely different classes or to combine
features together.

In this section, we present techniques to analyze and
improve the schema of a classifier. These techniques
help a human expert choose good features. To reveal



the results in advance, we managed to improve a clas-
sifier’s performance from an average E-value of 0.86 to
0.94, just by optimizing the schema.

4.1 Distinguishing Power

The most important property of features is how precise
they identify one particular class. Thus, good features
can be separated from bad features in how distinguish-
ing they are, i.e., the number of classes they match.

We use the variation of feature coeflicients over all
centroids to measure how distinguishing features are.
Consider vector f; = (ai1,...,@n), where a;; is the
coefficient of feature f; in centroid ¢; (1 <i<m,1<
j < n). This vector represents the feature’s distribu-
tion over classes. Assuming normal distribution, we
define:

Definition. The distinguishing power of feature f; is
defined as

2
. s
dist—power( f;) def —_
a
2 — 1S (g — @2 ;
where s* = 15370 (aij —@)° is the variance and

— 157 o
a= ijl a;; is the mean.

This definition of distinguishing power values both,
low variance and low mean. It ranges from 0 to 1.
For an optimal feature that has all coefficients a;; =
0 except for one that is 1, the variance s? is equal
to its mean @. Hence, the distinguishing power of a
perfect feature is 1. For a worst-case feature that has
a uniform distribution over all classes (and @ # 0), the
variance, and therefore the distinguishing power, is 0.
The higher dist—power( f;) is, the more distinguishing
is feature f;.

illustrates distin-
Fea-

class

»

Example 3: Figure 6
guishing power for two sample features.
ture “Shellscript__set_” is defined for
SHELLSCRIPT and searches for string literal “ set
This feature matches many different classes to a low
degree, which is reflected in a very low distinguishing
power (0.1978).

Feature “RFC822_"From:” is defined for class
RFC822 (an e-mail format) and searches for lines be-
ginning with “From:”. This feature has a much better
distinguishing power (0.7742). It selects fewer classes,
most of them to a high degree. Notice that this feature
now identifies a group of four classes that are similar
(e-mail like).

An example of a perfect feature (distinguishing
power 1.0) is feature “CHeader_.h$” (not shown in
Figure 6), a regular expression looking for file names

ending with “.h”. Its coeflicients are 1 for class
CHEADER and 0 for all others. <&

In general, feature analysis can be performed in two
different ways. These approaches are complementary:

o the analyzer scans human generated features and
identifies those with poor distinguishing power;

¢ the analyzer scans all training documents and pro-
poses features with high distinguishing power.

A human expert is necessary in both cases. Ultimately,
the expert must decide whether to include a proposed
feature into a schema, change an existing feature’s def-
inition in order to make it more specific, delete a fea-
ture, or keep it as it is. It is difficult to automate this
task. Some features must be included although they
are not very distinguishing, for instance, those that
are the only feature of a top-level class in the hier-
archy (TEXT, BINARY, DIRECTORY, SYMLINK). On
the other hand, regular expression patterns, for exam-
ple, may contain an error that cannot be detected and
corrected automatically.

To illustrate feature analysis, the experimental file
VSC was built using a non-optimized schema with
about 200 features, created by a user with moderate
experience in using the classifier. This classifier had
an average E-value of 0.86.

Subsequent feature analysis showed that only about
15% of these features identified exactly one type (dist-
power = 1), 10% did not match any type at all, and
more than 50% had dist-power < 0.5. Based on this
feature analysis, the schema was optimized. Patterns
were changed to make features more specific and syn-
tax errors that caused features to fail to identify any
class were corrected. A new classifier was built with
this improved schema. The average E-value increased
to 0.94, just from using the optimized schema.

4.2 Combining Features

Some file types have the property that documents of
these classes match a highly varying number of fea-
tures (e.g. ScripT, TROFFME, YAcc, CSOURCE).
Some documents match 20 to 30 features, whereas oth-
ers only 1 or 2. Even if the 1 or 2 features are a subset
of the 20 to 30 features, the classifier performs poorly
for these classes, because it can only be trained to
properly recognize one of the two styles of documents.
One approach would be to define two different
classes to cover the two styles. However, it proved to
be extremely difficult to define the schemas for the two
separated classes and to separate the training data.
A better solution is combining several features
fiv..., fm into one feature. The new feature is built
as a regular expression f = f1|...|fn, connecting the
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Figure 6: Distinguishing power of features

original features via “or” patterns. There are two ways
to combine the features of a given class together:

o Combintng “disjoint” features. The first way is to
combine “disjoint” features that never (less than a
given amount of the time) appear together. Con-
sider as an example file types with two different
initialization commands where only one of which
appears at the beginning of the file.

o Combining “duplicate” features. The second way
is to combine “duplicate” features, that is, fea-
tures that always (more than a given amount
of the time) appear together, but do not ap-
pear often (in more than a given amount of the
files). For example, patterns “argc” and “argv”
in CSOURCE. The second limitation allows the
classifier to keep the really good features like
““Received” and “~From” which appear in all
RFC822 files, but it will combine “argc” and
“argv” which only sometimes occur in CSOURCE
files.

The algorithm for combining features looks as fol-
lows (choosing 80% as the threshold to combine fea-
tures and 60% for the number of files duplicate features
should not appear in has given the best results):

foreach class ¢; (i = 1...n) of the schema do
step 1:
m = number of features of class ¢;;
F = features {fi,..., fm} of class c;
P(F) = the powerset of F,
without the empty set;
step 2:
train the classifier:
scan all training documents of class ¢;
for feature occurrences;
foreach s € P(F) do
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occ(s) = percentage of training
documents of class ¢;
where features s occur together;
end
step 3:
find features to be combined:
while m > 1 do
foreach s € P(F) with m features do
if (avg;e oce(s)/oce(f) < 0.20)
or ((avg;c,occ(s)/oce(f) > 0.80)
and oce(s) < 0.60)
then
combine features in s;
remove all sets from P(F)
containing any of the
features in s;
end
m— —;
end
end

The algorithm works class by class and combines only
features that are defined within the same class, that
is, features from different classes are never combined
together.3

In step 1, the algorithm computes P(F) as the set
of all possible subsets of features {fi,..., fm} for the
current class ¢;. In step 2, the classifier is trained
by classifying a large number of documents (~40 - 50
per class). While scanning training documents, the
algorithm remembers for each of the feature combina-
tions s € P(F} the percentage of documents in which
this combination occurred. In step 3, the algorithm
searches features to be combined. It tries to combine
as many features as possible and starts therefore with
the largest feature combination having all m features.
If the combination {ulfills one of the “disjoint” or “du-

¥In the current experimental classifier, feature combination
runs on restpats features only.



plicate” occurrence conditions, all features of the set
s are removed from the schema and replaced by one
new feature that combines them as described above.
All sets are removed from P(F') containing any of the
features from s, because maximum combination was
already achieved for these features. If all feature com-
binations of this size m have been processed, m is
decremented and the algorithm tries to combine the
remaining feature combinations of the smaller size.
Running feature combination on the restpats of
the alrcady optimized schema of the previous section,
combined 37 disjoint features into 14 new features and
58 duplicate features into 20 new ones. Just by auto-
matic feature combination, the classifier’s performance
has been improved from an overall E-value of 0.94 to
now 0.96. In detail, the recall of file type TROFFME
has been increased by 9.1% combining 7 into 2 fea-
tures, YAcc by 7.1% combining 2 into 1 feature and
SCRIPT by 6.2% combining 38 into 13 features.

5 Comparison of other Classifier Tech-
nologies

There are diverse technologies for building classifiers.
Decision tables are very simple classifiers that deter-
mine according to table entries what class to assign to
an object. The UNIX “file” command is an example
of a decision table based file classifier. It scans the
/etc/magic file, the decision table, for matching val-
ues and returns a corresponding string that describes
the file type. Decision tree classifiers construct a tree
from training data, where leaves indicate classes and
nodes indicate some tests to be carried out. CART
[BFOS84] or C4.5 [Qui93] are well known examples of
generic decision tree classifiers. Rule based classifiers
create rules from training data. R-MINI [Hon94] is an
example of a rule based classifier that generates dis-
junctive normal form (DNF) rules. Both, decision tree
and rule classifiers, usually apply pruning heuristics to
keep these trees/rules in some minimal form. Discrim-
inant analysis (linear or quadratic) is a well known
basic statistical classification approach [Jam85].

To rate our experimental vector space classifier, we
built alternative file classifiers using quadratic discrim-
inant analysis, decision tables, the decision tree system
C4.5, and the rule generation approach R-MINI. Ta-
ble 2 summarizes the conducted experiments. The in-
tent of this table is to give a rough overview of how
the different techniques compare on the file classifica-
tion problem and not to present detailed performance
numbers (“+” means an advantage and “-” means a
disadvantage of a particular classifier technology).

Speed. Training and classification using quadratic
discriminant analysis is very slow because extensive
computations must be performed. All other classi-
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fier technologies provide fast training and classifica-
tion. The vector space classifier simply needs to com-
pute angles between the document vector and all cen-
troids. For example, on an IBM RISC System /6000
model 530H, an individual document is classified by
the experimental classifier in about 40 milliseconds,
on average. The other classifier technologies (except
of discriminant analysis) proved a similar speed.

Accuracy. Quadratic discriminant analysis and
decision tables did not achieve our accuracy require-
ments. They had error rates up to 30%. All other clas-
sifier technologies proved much lower error rates. The
C4.5 file classifier showed error rates from 2.6 to 5.0%
misclassified files. The R-MINI file classifier showed
error rates from 2.6 to 4.9%. The vector space clas-
sifier had 2.1 to 3.1% error rates. Hence, all three
technologies have approximately the same range of er-
rors.

Extensibility. A classifier is usually trained with
a basic set of general classes. However, this basic class
hierarchy must be extensible. Users want to define
and add specific classes according to their personal
purposes. Extensibility of a classifier is therefore cru-
cial for many applications. In order to add classes
to a classifier, a user must provide class descriptions
(schema) and training data for the new classes. Train-
ing documents of the existing classes must be available
too. This “old” training data is necessary because new
classes must be trained with data for existing classes
as well.

Vector space classifiers are highly suited for exten-
sibility purposes. Consider as an example a classi-
fier with existing classes c1,...,¢, and existing fea-
tures fi,..., f;. Assume this classifier is extended with
new classes ¢p,...,cn (h = g + 1) and new features
Jis.o oo fm (k= 74+ 1). After extension, the fealure-
centroid matriz A of the classifier, where each coeffi-
cient a,, shows the value of feature y in the centroid
of class &, looks as follows:

i § f .. fm

Ll ]
E al a;j s Ay ... Qim Ve,
, s
1 . ll
A= |i :
Vgt gy | gk cee Ogm vc,
Qp1 ... Qpj Qpg ... Gpm Vep
L Gn1 ... Gnj Qpg Anm J Ve,

The upper-left (dashed) sub-matrix of A shows the
existing feature centroid matrix. To add new classes,
these existing centroid coeflicients need not be recom-
puted. The feature-centroid matrix can incrementally
be extended with coeflicients for newly added classes.



Table 2: Different Classifier Technologies

Quad. | Decision | Decision DNF Vector

Discr. Tables Trees Rules Space

Analysis (C4.5) | (R-MINI) | Model
Speed - + + + +
Accuracy - - + + +
Extensibility - - - - +

The lack of extensibility of discriminant analysis,
decision table/tree and rule classifiers is the most dra-
matic difference. In contrast to vector space classifiers,
extending this kind of classifiers with new user-specific
classes demands rebuilding the whole system (tables,
trees, or rules) from scratch, that is, it requires com-
plete reconstruction of the classifier. Incremental, ad-
ditive extension is not possible.

6 Conclusion and Outlook

High accuracy, fast classification, and incremental ex-
tensibility are the primary criteria for any classifier.
The experimental VSC for assigning types to files pre-
sented in this paper fulfills all three requirements.

We evaluated different similarity metrics and
showed that the cosine measure gives best results. A
novel confidence measure was introduced that detects
probably misclassified documents. Based on this con-
fidence measure, an incremental training strategy was
presented that significantly decreases the number of
documents required for training, and therefore, in-
creases speed and flexibility. The notion of distin-
guishing power of features was formalized and an algo-
rithm for automatic combining disjoint and duplicate
features was presented. Both techniques increase the
classifier’s accuracy again. Finally, we compared the
VSC with other classifier technologies. It revealed that
using the vector space model gives highly accurate and
fast classifiers while it provides at the same time ex-
tensibility with user-specific classes.

The file classifier can be seen as a component of ob-
ject. text, and image database management systems.
There is recently an increasing interest in merging the
functionality of database and file systems. Several pro-
posals have been made, showing how files can benefit
from object-oriented technology.

Christophides et al. [CACS94] describe a map-
ping from SGML documents into an object-oriented
database and show how SGML documents can benefit
from database support. Their work is restricted to this
particular document type. It would be interesting to
see how easily it can be extended to a rich diversity of
types by using our classifier.

Consens and Milo [CM94] transform files into a
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database in order to be able to optimize queries on
those files. Their work focuses on indexing and op-
timizing. They assume that files are already typed
before reading, for example, by the use of a classifier.

Hardy and Schwartz [HS93] are using a UNIX file
classifier in Essence, a resource discovery system based
on semantic file indexing. Their classifier determines
file types by exploiting naming conventions, data, and
common structures in files. However, the Essence clas-
sifier is decision table based (similar to the UNIX “file”
command) and is therefore much less flexible and tol-
erant.

The file classifier can also provide useful services in a.
next-generation operating system environment. Con-
sider for instance a file system backup procedure that
uses the classifier to select file-type-specific backup
policies or compression/encryption methods.

Experiments have been conducted using the classi-
fier for language and subject classification. Whereas
language classification showed encouraging results,
this technology has its limitations for subject classi-
fication. The reason is that the classifier works mainly
by syntactical exploration of the schema, but subject
classification must take into account the semantics of
a document.

We are currently working on making the classifier
extensible even without the requirement of training
data for existing classes. We are also investigating the
classification of structurally nested documents. A file
classifier is being developed that is, for example, able
to recognize Postscript pictures in electronic mail or C
language source code in natural text documents. Use
of this classifier to recognize, and take advantage, of a
class hierarchy is an item for future work.
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