
Bypassing Joins in Disjunctive Queries* 

Michael Steinbrunnt Klaus Peithnert Guido Moerkottet Alfons Kernpert 

‘Uuiversitit Passau 
FakultKt fiir Mathematik und Informatik 
Lehrstuhl fiir Dialogorientierte Systeme 

94030 Passau, Germany 
(lastname)Qdb.fnai.uni-passau.de 

Abstract 

The bypass technique, which was formerly restricted 
to selections only [KMPS94], is extended to join oper- 
ations. Analogous to the selection case, the join op- 
erator may generate two output streams-the join re- 
sult and its complement-whose subsequent operator 
sequence is optimized individually. By extending the 
bypass technique to joins, several problems have to 
be solved. (1) An algorithm for exhaustive generation 
of the search space for bypass plans has to be devel- 
oped. (2) The search space for bypass plans is quite 
large. Hence, partial exploration strategies still result- 
ing in sufficiently efficient plans have to be developed. 
(3) Since the complement of a join can be very large, 
those cases where the complement can be restricted to 
the complement of the semijoin have to be detected. 
We attack all three problems. Especially, we present 
an algorithm generating the optimal bypass plan and 
one algorithm producing near optimal plans exploring 
the search space only partially. 

As soon as disjunctions occur, bypassing results in 
savings. Since the join operator is often more expen- 
sive than the selection, the savings for bypassing joins 
are even higher than those for selections only. We give 
a quantitative assessment of these savings on the ba- 
sis of some example queries. Further, we evaluate the 
performance of the two bypass plan generating algo- 
rithms. 
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1 Introduction 

Since the early stages of relational database devel- 
opment, query optimization has received a lot of at- 
tention. Consequently, this attention has recently 
shifted to so-called “next-generation” database sys- 
tems [FMV93]. [Fre87, GD87, Loh88] made rule-based 
query optimization popular, which was later adopted 
in the object-oriented context, as e.g., [OS90, KM90, 
CD92]. Many researchers have worked on optimizer 
architectures that facilitate flexibility: [Bat86, GD87, 
BMG93, GM931 are proposals for optimizer genera- 
tors; [HFLP89, BG92] described extensible optimizers 
in the extended relational context; [MDZ93, KMP93] 
proposed architectural frameworks for query optimiza- 
tion in object bases. 

Besides these works on optimizer architectures, op- 
timization strategies for both traditional and “next- 
generation” database systems are being developed. 
[LMS94] ’ t d m ro uces a technique for moving predicates 
across query components, where a component consti- 
tutes, for instance, a view definition. [HS93] deals 
with the optimal placement of predicates within the 
query graph. The authors pointed out that the or- 
dering of the selection predicate evaluation is partic- 
ularly important in the presence of expensive condi- 
tions. These may occur in relational systems in the 
form of nested subqueries and, in extended relational 
and object-oriented systems additionally in the form 
of user-defined functions. [HS93]‘s work is based on or- 
dering the conditions in a sequence according to their 
relative selectivity and evaluation cost. This approach 
yields the optimal evaluation sequence for conjunctive 
selection predicates [MS79]. 

However, it is striking that in all these works the 
optimization of disjunctive query predicates tends to 
be neglected. The traditional approaches transform 
a query predicate (i.e., either selection or join pred- 
icate) into a normal form (namely, conjunctive or 
disjunctive normal form), thus reducing the problem 

228 



to the common, purely conjunctive case: either dis- 
junctions are considered atomic within a single con- 
junction (conjunctive normal form, for instance in 
System R [SAC+79]) or the predicate is subdivided 
into several conjunctive streams that are optimized 
separately (disjunctive normal form, e.g., [BGW+81, 
KTY82, OS90, Mur881). 

In this paper, we show that both approaches fail to 
exploit a vast optimization potential, because a suffi- 
ciently fine tuned adaptation to a particular query’s 
characteristics cannot be done that way. The bypass 
technique fills the gap between the achievements of 
traditional query optimization and the theoretical po- 
tential, In this technique, specialized operators are 
employed that yield the tuples that fulfll the operator’s 
predicate and the tuples that do not on two different, 
disjoint output streams. This gives the opportunity of 
performing an individual, “customized” optimization 
for both streams. Bypass optimization used to be re- 
stricted to selections [KMPS94], but is now enhanced 
in order to permit join operations yielding two output 
streams as well. This extension requires the develop- 
ment of algorithms for generating bypass plans. Since 
Hellerstein speculates in [He1941 that a well-working 
heuristic solution for placing selections in the presence 
of join operations might be hard to obtain (or even im- 
possible), we propose two “building-block algorithms” 
which are comparable to algorithms based on dynamic 
programming. We present an algorithm generating the 
optimal bypass plan and another one producing near 
optimal plans exploring the search space only partially. 
Another problem that has to be addressed is the reduc- 
tion of the bypass join’s high total result cardinality 
(namely equal the Cartesian product of its operands) 
by semijoins whenever possible. 

In Section 2, the idea of join bypassing and its supe- 
riority to traditional techniques is illustrated by means 
of an example query. Section 3 goes into different con- 
struction methods for evaluation plans, and Section 4 
provides a quantitative performance analysis of the 
generated plans with respect to its traditional coun- 
terparts. Section 5 concludes the paper. 

2 Why Bypassing Joins? 

2.1 Example Query 

In order to illustrate the potential savings, let us con- 
sider the following example query from the domain of 
a book shop database. The underlying schema con- 
sists of five object types, namely Book, Work, Pub- 
lisher, Order and Person. The attributes of these ob- 
ject types are: 

Book [work: Work, publisher: Publisher, 
stock: integer] 

Work [ author: Person, title: string] 

Publisher [ pname: string, paddress: string] 

Order [customer: Person, book: Book, 
quantity: integer] 

Person [name: string, first: string, 
address: string] 

A Work is written by an author (a Person) and bears 
a title, that, if published by a Publisher, makes up 
a Book. A Work may be publiihed by more than 
one Publisher (e.g., diierent publishers for hard cover 
and paperback versions). The purchase of a Book.re- 
quires an Order, which involves a customer (a Per- 
son, too) and comprises a certain quantity. Note that 
even though this schema is designed for an object- 
oriented database system similar to’the ODMG stan- 
dard [Cat94], the application of the bypassing tech- 
nique described below is definitely not limited to this 
kind of systems, but can also be used in conventional 
relational and extended relational database systems 
without any modification. 

Based on this schema, we might state the follow- 
ing query-formulated in an object-oriented extension 
of SQL [KM941 and resembling OQL [Cat94]- that 
retrieves particularly “interesting” authors and their 
works: 

select distinct 
w.author.name, w.author.first, w.title 

from w in Work, o in Order, p in Publisher 
where (o.book.work.author = o.customer and 

w = o.book.work) 
Or 

(o.quantity > o.book.stock and 
w = o.book.work) 

Or 

w.author.address = p.paddress 

The query predicate’s disjuncts have the following 
meaning: 

l disjunct (0. book. work. author = oxustomer and 
w = o.book.work) selects authors that buy the 
books they have written themselves, 

l (o.quantity > o.book.stock and w = o.book.work) 
determines orders for a book with a quantity ex- 
ceeding the number in stock, and 

l (w.author.address = p.paddress) selects authors 
that publish themselves (assuming that this is the 
case if they share their address with a publisher). 
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Abbreviating the four atomic conditions within the 
query’s selection predicate in the following way: 

Ccustomer(o) as (o.book.work.author = o.customer), 
F+(w,o) as (w = o.book.work), 

guantity(o) as (o.quantity > o.book.stock), and 
C addrew ( as w.author.address = p.paddress), 

the result of the query can be expressed as the set: 

{ w E Work 1 30 E Onler,p E Publisher: 

c customer (0) A Cwotk (w, 0) v 
c quantity (0) A Cwork (W, 0) V Caddress (W,P) } (1) 

The generated query evaluation plans are (logical) al- 
gebraic expressions dealing with relations. There is 
one scan operator (scan) loading the objects of a par- 
ticular type extension (or tuples of a relation) into a 
main memory buffer. Furthermore, our algebra is re- 
stricted to projection ?r, selection cr, join W, semi-join # 

and >Q, cross product x and two union operators (f 

and u) with and without duplicate elimination, re- 
spectively. Due to this restricted set of operators that 
comprises the about lowest common denominator for 
any relational or object-oriented database system, our 
results are not limited to a particular data model. The 
transformation of the logical into physical (executable) 
operators is not the topic of this paper. However, we 
will mention how indices and (physical) join methods 
can be applied. 

2.2 Evaluation Plan Alternatives 

In this section, we shall show the benefits of bypass 
evaluation plans by means of the example query stated 
above. Figure 1 depicts the optimal bypass evaluation 
plan for the query. The role of the if-statement is 
twofold: first, the result can be presented very quickly 
in case at least one of the base relations is empty, and 
second, it ensures conformance to the SQL semantics 
for a query of this kind (cf. [Mur88]). For comparison 
purposes, the optimal evaluation plans that are based 
on the conjunctive normal form (CNF) and the dis- 
junctive normal form (DNF) of the query predicate, 
respectively, are shown as well (Figure 2 and 3). The 
latter two approaches are the prevailing strategies in 
existing database systems for dealing with predicates 
in general and disjunctive predicates in particular. 

However, comparing the average evaluation cost fig- 
ures for these three alternatives shows that the two 
“classic” strategies are not capable of computing the 
query result with costs as low as the bypass plan’s 
(16,000 units). A closer look at the three evaluation 
plans will reveal the reason for the differences. Please 

if Publisher = 8 or Work = 0 or Order = 0 

then Result = 0 

else Result = 

u 

scan(P~bliaher) ecan(Work) scan(Order) 

Figure 1: Optimal (Bypass) plan for example query 
Average cost: 16,000 units 

note that in this section, we shall give just the results of 
the cost calculations according to our cost model. The 
cost model itself and a sample application (namely, for 
the bypass plan) is provided in [SPMK94]. 

The bypass evaluation plan starts on the left-hand 
side with the semijoin operation Mc,,~~-,, of Publisher 
and Work and the selection (TC,~,,~~,~ of Order on the 
right-hand side. Tuples satisfying Cod&s8 are certain 
to be elements of the result set, hence they may by- 
pass the other operation nodes of the evaluation plan. 
A similar reasoning applies to the two selection opera- 
tions on the right-hand side: satisfying either Cg,,,,,.,tity 
or Ccustomer suffices in order to qualify for further 
processing. The merge union node 6 reunites these 
two streams and, in turn, provides one of the semi: 
join’s (KcWO,) input streams. The second input stream 
consists of all the tuples that do not satisfy the al- 
ready mentioned other semijoin Xcoddrr,,. The output 

of ko* is the second of the two (disjoint) subsets 
that make up the query’s result. It can be noted as 
the main characteristic of bypass evaluation plans that 
enhanced selection and join. operators are employed 
which do not merely provide those tuples that sat- 
isfy the operation’s predicate, but those that do not 
as well. The resulting two tuple streams are. necessar- 
ily disjoint, which makes expensive duplicate eliminat- 
ing union operators dispensable, Subsequently, each 
of these two streams undergoes an individual, “cus- 
tomized” optimization process which entails the very 
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X \ 

/\ \ 
scan( Publisher) scan( Work) scan(Order) 

Figure 2: CNF plan for example query 
Average cost: 1,460,130 units 

efficient query evaluation plans-in contrast to tra- 
ditional techniques. The plans derived by the tradi- 
tional techniques are depicted in Figure 2 (CNF) and 3 
(DNF). Both CNF- and DNF-based evaluation plans 
are common approaches for evaluating predicates in 
join and selection operations. 

Let us first turn to the CNF-based evaluation plan 
in Figure 2. CNF-based plans employ a limited kind 
of bypassing within Boolean factors (for instance, 
if Caddms in the join predicate of Figure 2’s plan 
turns out to be true, evaluation of Cworn: is bypassed) 
and between Boolean factors (if the Boolean factor 
C &dm8a V Cwork turns out to be false, evaluation of 
C address v Cquclntity V Ccuatomar is not carried out). 
Hence, CNF-based plans are a proper subset of bypass 
evaluation plans: every CNF-based plan can be ex- 
pressed as a bypass plan, but not vice versa. However, 
being the optimal CNF-based evaluation plan for the 
example query, Figure 2 suggests that the conjunctive 
noMd f0MI-J (nmely, (Caddres8 v Cwork) A (Caddress v 

C quantity V Ccuatomer)) is probably not the construc- 
tion base of choice for disjunctive queries. The di- 
vision into Boolean factors requires joining of all re- 
lations involved in the query before the first selec- 
tion takes place. If there are more than two rela- 
tions, Cartesian products are unavoidable. This fact 
is reflected in the CNF-based plan’s average evalua- 
tion cost of 1,460,130 units, almost ninety times the 
cost of the equivalent bypass plan. The join opera- 
tion is the biggest contributor, due to high input car- 
dinalities. This figure already takes into account the 
implicit bypassing expressed by the CNF-plan as well 
as caching of condition evaluation results. It is strik- 
ing that no cost-reducing semijoin can be employed, 

if Publisher = 0 or Work = 0 or Order = 0 

then Result = 0 

else Result = f 

oCcustomer aCquantity 

v 
scan(Order) 

acan(Publisher) ecan(Work) 

Figure 3: DNF plan for example query 
Average cost: 22,175 units 

rk 

because attributes from both of the join’s input rela- 
tions are needed further on. Clearly, CNF-based query 
evaluation plans cannot be the answer to our problem, 
although they work quite well for queries without joins. 

In contrast, DNF-based plans are much more ca 
pable of dealing with disjunctive queries, as Figure 3 
shows.’ As the main difference compared to CNF- 
based plans, the “cloning” of tuple streams can be 
noted. For each of the disjuncts of the DNF (the query 
has already been stated as DNF, cf. equation (1) on 
page 3), a separate tuple stream is generated. The 
resulting plan is far less expensive to evaluate than 
the CNF-based plan, but with 22,175 units it still 
comes short of the bypass plan (in terms of saved 
cost) by about 6,000 units. The reason for this short- 
coming is chiefly the need to eliminate duplicates in 
the final union operation and the fact that a condi- 
tion has to be evaluated repeatedly for a given tu- 
ple (namely, once for each stream). A predicate 
like a A (c V d V e) illustrates this phenomenon: be- 
cause the DNF is (a A c) V (a A d) V (u A e), condition a 
would appear in each of the three streams, and the 
higher condition a’s relative cost were, the more ap- 
parent the DNF approach’s weakness would be. 

Our cost model does not consider indices and phys- 
ical properties such as sorting, since in our opinion 
this would not lead to additional insight. The pres- 
ence of indices does not tip the scale in favour of 
the traditional evaluation techniques; consider, for in- 
stance, the bypass plans (Figure 1) and the two con- 

‘By the name reasoning aa for bypass plana (Figure l), we 
need to first teat whether any of the argument relations is empty. 
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ventional plans (Figures 2 and 3). A hash index on 
Pub1isher.paddre.w can be exploited by an index semi- 
join in the bypass plan as well as in the DNF-based 
plan, but not in the CNF-based plan. In addition, only 
the bypass plan and the DNF-based plan can easily use 
a sort-merge implementation of the second join opera- 
tor (semijoin on Cwork ). There is only one scenario- 
two indices on Order using the complex predicates 
c quantity and Ccustomer as filters-where the bypass 
plan might be slightly inferior to the DNF-based plan. 

From these considerations the conclusion can be 
drawn that the bypass technique is a universally appli- 
cable strategy that combines the advantages of both 
CNF- and DNF-based approaches and avoids their dis- 
advantages: neither duplicate elimination nor caching 
is required for bypass evaluation plans to work. 

3 Constructing Evaluation 
Plans 

In this section, we shall outline two algorithms that 
generate bypass plans with joins, and-for compari- 
son purposes-the traditional construction algorithms. 
Their working principles will be explained by means of 
the example query from Section 2.1, equation (1). For 
convenience, we repeat the query predicate below. 

C customer (0) A Cwork (w, 0) v 

c quantity (0) A Cwotk (w, 0) v 

Caddress @“VP) 

3.1 Bypass Plans 

Before we start, we make some definitions. First; 
substituting a condition Ci by the constant “true” 
(“false”) is denoted as gc+true (gCi:=fdse). For in- 
stance, gcl:=true = CzACsforg=CrhCzAC$. 

The second definition introduces the notion of a bun- 
dle with a control function: Let ei, e2, . . . , e, be some 
algebraic expressions, g be a Boolean function, and C 
be a condition of g. Then, 

ug (el x - . - x e,) = 

~gc:=tru. (el x --a x uc(ei) x se- x e,) Cl 

~!JC:=f*I.. (el x --. x u,c(ei) x e-m x e,) (2) 

holds if ei binds the free variable(s) of C and 

ug(el x .-a x e,) = 

flga=tru. (el x . - - X ei WC ej X --a X e,) Cl 

~gc:=r.1.. (el x e-m X ei Wyc ej X *** X e,) (3) 

holds if ei and ej together bind the free variables of C. 

Recall that 6 denotes the union operator that needs 

not perform duplicate elimination, as duplicates can- 
not occur here. For the description of the construc- 
tion algorithms, we shall use the more convenient no- 
tation {ei , . . . , en}g for the expression os(er x-q. x e,). 
We call {ei , . . . , en}g a bundle with control function g. 
Employing this notation, equation (2) can be written 
as 

{e1 ,... ,enjg = 

{el,... , flc(ei), . . . , en~gc:=tru. U 
{el,... 7 ~-c(Q), - - - , en)gC:=,a,.. (4) 

and equation (3) as 

{el, ...,en}g = 

62, . . . , ei WC ej,. . . 7 4gC:=tru. 6 

@l ,... ,ei W,c ej ,... 9 enh7-h (5) 

For a query ns(R1 xv - - x &), the following algorithms 
start with the initial bundle {RI,. . . , &}g and apply 
equation (4) or (5) repeatedly until a set of bundles 
with control functions g’ = true or g’ = false is ob- 
tained. This construction method builds up the query 
evaluation plans step by step in a bottom up fashion. 
In this respect, our optimizing technique is similar to 
the very well-known’ dynamic programming approach 
of [SAC+791 which orders joins starting from the en- 
tire scan-operations-as we do. A subsequent example 
will illustrate our approach. 

FIX The first algorithm is called “FIX” since it in- 
tegrates the conditions Cl, C2, . . . , C,, of the entire 
selection predicate in a FIXed order. An exhaus- 
tive search of all possible orders leads to the solu- 
tion of “FIX.” Let us consider the example: First, 
there is a single bundle consisting of the scan opera- 
tors and the entire selection predicate as control func- 
tion ({scan(Publisher), scar&( work), scan( Order)} is 
denoted as {P, W, 0)): 

{P, w 01 
(C~~,f~~~~(O)AC~~(W,O)VC~u~ntify(O)ACvlorL(W,O)V 

C.ddn,,(W,p)) 

Now, the conditions Caddmss, Cquantity , Ccustomer 
and &,rk (in exactly this order) are moved into 
the bundle. After the first step, the introduction of 
c =d&s8, the following two bundles are obtained: 

i [; ;C.ddrw W), 0)tru.e b 

-‘Caddrew w)F ‘1 
(Ce”rton.r(o)ACuo~(W,O)V 

C quontity(O)ACworh (w90)) 

The first of these two bundles does not need further 
consideration, because the control function ‘true” in- 
dicates that tuples in this bundles are elements of the 
result set. 
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The next condition to be incorporated is Cg,,anti~y. 
As a result, the second bundle is split into two, which 
makes a total of three bundles so far: 

w bddm,, wj, ohrue G 

g: 
+%dd,w w)Y uCguon,ity (o)k&“,O) ’ 
lcoddrras WI, g~Cqumatitv (O)}~cu,to~rr(~)/\~tuo*(~r~) 

The third condition from our list is C cus omer* t After 
its introduction, one bundle bears the control function 
“false” and can thus be discarded (its tuples are certain 
not to be elements of the result set). 

it' W-Caddme w), ~C~u.nt(ty(')}C~onC(W,O) ' 

$l 

~Caddrrm W))~Csu,tom.r(b'Csu.nlity(o))}C~uork(WrO) ' 

yCaddvers W P b~Ceu,toner (a~Cquontit,(o)) IfalSe 

Now there are two bundles with the same control func- 
tion. They can be merged into a single bundle; this 
operation yields: 

up w -C.ddm,, w) ? 

( uCqmmri*v (0) fi ~ccwromrr (~~C~"."*ily(0)))}Cr.~(U),O) 

And finally, after introducing the last condition CWO&, 
two true- and one false-bundle remain. 

The two true-bundles are led together by a merge 

union 6 resulting in the optimal evaluation plan in 
Figure 1. Note that we can omit the cartesian prod- 
uct with 0 (= Order) if we assure that there is at least 
one element in this extension. Thus, for generating an 
efficient query evaluation plan we can employ Mura- 
likrishna’s idea [Mur88] of applying an if-statement; 
this is already reflected in Figure 1. 

The only .remaining difference to Figure 1, the kind 
of join nodes employed, will be discussed in Section 3.2 
below. If a bundle consists of more than one expression 
which binds variables interesting for the outcome of 
the query, a cross product of the expressions will be 
applied before performing the union. 

For a selection predicate with n conditions, the 
“FIX” strategy has to consider n! permutations as can- 
didates for the optimal fixed order bypass evaluation 
plan. 

OPT The “FIX” strategy as described above con- 
structs evaluation plans where the conditions’ evalua- 
tion order is the same for all possible paths from the 
first stage (relation scan) to the final stage (union of 
all disjoint streams). In other words, the evaluation 
order is always determined for the entire evaluation 
plan. 

However, sometimes it is advantageous to construct 
evaluation plans where the evaluation orders are not 
determined globally, but independently for each pos- 
sible path a tuple might take from the first to the last 
stage. For instance, it may be the best solution to pur- 
sue the evaluation order Cr , Cz, Cs if Cr = true for 
a particular tuple, but Cr , C’s, Cs in case Cr = false. 
This is the way the strategy “OPT” works: the order 
in which atomic conditions are introduced into bun- 
dles is chosen for each bundle independently. Thus, 
the search space examined by “OPT” is considerably 
larger: up to (n - 0)’ alternatives have to be consid- 
ered in the first step, (n - 1)2 in the second step, and 
(n-k+l)sL-l in the lcth step, resulting in a ivorst-case 
total of l-J:=, (n - i + 1)2’-’ instead of a total of n! (as 
for “FIX”) evaluation plan candidates, but in contrast 
to “FIX ,” “OPT” is certain to come up with the opti- 
mal bypass evaluation plan. However, our quantitative 
assessment indicates that in almost all practical cases 
“FIX” generates the optimal evaluation plan, although 
it considers fewer alternatives. 

3.2 Semijoins 

One open issue concerning both algorithms (“FIX” 
and “OPT”) remains to be discussed: the introduc: 
tion of semijoins. In the final evaluation plan for the 
example query (cf. Figure l), both jom,operators are 
replaced by semijoins. This last step in the construc- 
tion of the evaluation will now be discussed. A semi- 
join Rr KC R2 is defined as: 

RI KcR2 = (t-1 E RI j3r2 E Rz:C(r~,rz)} 

Therefore, the cardinality of RI Kc R2 is bounded by 
the cardinality of RI instead of the cardinality of the 
cartesian product RI x R2 as in ordinary join oper- 
ations. This property makes the semijoin especially 
well suited for bypass evaluation plans: since the false- 
output from a join operation is needed as well as the 
true-output, a total of IRl] tuples have to be processed 
for a semijoin node, but /RI x R2 ] = ~RI I.IR2 ] tuples for 
a join node. Note, that the semijoin effect can berap- 
plied for the true- and the false-output independently 
of each other. 

Because the evaluation cost depends heavily on the 
number of tuples processed, it is obvious that join 
operators ought to be replaced by semijoin operators 
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(cf., e.g., [Bry89]) h w enever possible. In Figure 1, both 
joins could be replaced since none of the attributes 
from the respective second operand were needed in 
later stages of the evaluation plan. Fortunately, intro- 
ducing semijoins into bypass plans is rather straight- 
forward: we choose the “cheapest operator combina- 
tion” of >Q, D< and W for the two output streams de- 
pending on the set of attributes needed further on. 

3.3 Traditional Plans 

For comparison purposes, we also implemented the two 
traditional approaches that are based on normal forms. 
Since these approaches are well-known [JK84] we shall 
only sketch them. 

CNF For the CNF approach, the entire selection 
predicate is transformed into the Conjunctive Normal 
Form (CNF), and each disjunct of this normal form 
is regarded as a Boolean factor. Then, a two-phase 
optimization is performed-ordering the Boolean fac- 
tors and ordering the conditions within the Boolean 
factors. 

However, as shown for the running example (Sec- 
tion 2.2), the CNF approach is likely to lead to 
plans that produce intermediate results of enormous 
cardinality-a source of high costs. Furthermore, 
particular conditions may appear in more than one 
Boolean factor, which makes caching indispensable 
if repeated evaluation of those conditions is to be 
avoided. That is especially true for “expensive” condi- 
tions [HS93, He194]. Anyway, the optimal CNF-based 
evaluation plan cannot possibly perform better than 
the optimal bypass plan, since the set of CNF-plans is 
a proper subset of the set of bypass plans. 

DNF For the DNF approach, the entire selection 
predicate is transformed into the Disjunctive Normal 
Form (DNF), and each conjunct of this normal form 
is regarded as a Boolean factor. Then, each Boolean 
factor is independently optimized by ordering selec- 
tions [MS79], ordering joins [KBZ86], and ordering se- 
lections into join orderings [HS93]. 

However, the derived evaluation plans contain non- 
disjoint tuple streams that must be united by union 
operators that eliminate duplicates (unlike the special- 
case “merge” union operators for disjoint operands 
that can be employed in bypass plans). Furthermore, 
exactly as for the CNF approach, conditions may be 
evaluated more than once for a given tuple (namely, if 
they appear in more than one stream). 

4 Quantitative Assessment 

The quantitative assessment described in this section 
compares the bypass evaluation technique with the 
conventional techniques based on a normal form on 
one hand, and the optimization algorithms “OPT” and 
“FIX” on the other hand. In order to carry out these 
comparisons, two parameters have to be varied: the 
queries and the profile of the object base. 

The queries are specified as Boolean functions with 
sets of projections which are, in turn, subsets of the 
extensions involved. The profile of the object base is 
expressed as a set of so-called basic values. These basic 
values comprise the cardinalities of the object exten- 
sions (relations), the selectivities of the conditions and 
the conditions’ evaluation cost per invocation. 

In this section, the optimization potential of the by- 
pass evaluation technique with respect to conventional 
techniques is determined first. Because of the lack of a 
standardized query benchmark, only simple queries are 
used, which is, in our opinion, sufficient for the purpose 
of this comparison. But in order to fully appreciate the 
performance of the two bypass optimization flavours 
“OPT” and “FIX,” generating more complex queries 
is imperative. Based on a particular object base pro- 
file, we generate a large set of different queries of that 
kind to be optimized. 

4.1 Optimizing a very simple function 

In the first benchmark series, we want to examine the 
following two questions: 

l What is the impact of the basic values, i.e., the 
database profile? 

l Which optimization potential is obtained by ap- 
plying the bypass evaluation technique-even for 
a simple query? 

For that, we optimized the function 

C&l) v (C2(9-2) A J( P1,~)) for rr E Rr and rz E R2 

with projection on attributes only of RI choosing 89 
diierent settings of the basic values. But, before we 
outline the experimental results, a closer look at the 
Boolean functions reveals us the following possibilities 
for optimizations: 

1. The expression Cz(rz) A J(ri, rz) can be bypassed 
by objects satisfying Cr(ri). 

2. The condition Cr(rr) can also be bypassed; how- 
ever, in this case the join J(ri, rz) and the condi- 
tion Cz(rz) have to be evaluated before Ci(r.1). 
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Condition Selectivity Factor Cost/Invocation 

Psi, 

Table 1: Default Values of Ci(ri) V (C~(Q) AJ(q, r-2)) 

3. The join J(ri, r2) can be transformed into a semi- 
join if the condition Cz(rg) is applied before the 
join. 

4. The inputs of J(ri,rz) can be reduced to those 
objects r-1 which do not satisfy Ci (rr) and those 
objects rz which satisfy C&(Q), respectively. 

The conventional evaluation techniques fail at least in 
one of these points. For example, the DNF-based plans 
can bypass neither Cz(rz) A J(rr, ~2) nor Ci (~1). And, 
since both Boolean factors of the conjunctive normal 
form select Ri as well as R2, the CNF-based plans 
cannot take advantage of semijoins. Let us quanti- 
tatively assess these shortcomings of the conventional 
evaluation techniques. 

In the following diagrams (Figure 4-6), the two quo- 
tients CNF/OPT and DNF/OPT are depicted-we 
omit the quotient FIX/OPT since for this simple func- 
tion “FIX” always computes the optimal plan, hence 
the quotient always equals 1.0. We varied the invoca- 
tion costs and the selectivity factors of the conditions 
and the cardinalities of the extensions. All parameters 
except the varied one are set to default values which 
are depicted in Table 1. 

Varying the cost values of Ci(r1) and Cz(rz) re- 
sults in the diagrams of Figure 4. The CNF-based 
optimization cannot transform the join J(ri,rz) into 
a semijoin. This will lead to more than four times 
higher evaluation costs if the query is not dominated 
by high cost values of Ci(ri) or Cz(rz). The DNF- 
based optimization is not able to bypass the condition 
Ci(ri)-a fact which is less important for low eval- 
uation cost values of Cr. However, if the cost value 
of Ci(ri) exceeds 10,000, the optimal bypass plan ap- 
plies the expression C&(Q) A J(ri, r-2) before Ci(r1) 
which yields approximately 15% better performance. 
Bypassing Cz(r2)AJ( rl, rz) will even yield 100% better 
performance if the query’s evaluation costs are domi- 
nated by the join or by high evaluation costs of Cz(rz). 

The bypass effect is increased by a high selectivity 
factor of Ci(ri), which is demonstrated in the left- 
hand side diagram of Figure 5. The higher this sel- 

ectivity factor is, the more objects of RI can bypass 
the join and the better the bypass plan performs with 
respect to conventional plans. The diagram on the 
right-hand side of Figure 5 shows another interesting 
behavior. The CNF-based optimization cannot apply 
C2(r2) as a restriction on R2, since its Boolean factor 
also contains Ci(ri). If the selectivity factor of Cz(rz) 
is low, it results in a low input cardinality of the join 
in DNF-based and in bypass plans. Hence, these plans 
are about ten times more efficient than the equivalent 
CNF-based evaluation plan. 

There is no impact of the cardinalities; the plots of 
the quotients CNF/OPT and DNF/OPT are almost 
straight lines parallel to the s-axis. Therefore, these 
diagrams are not shown. 

4.2 Optimizing pure disjunctive joins 

The second benchmark series assesses the benefits of 
bypassing joins in a disjunctive “star query”, i.e., the 
join graph of the query forms a star. Especially, the 
DNF-based evaluation plans cannot exploit the bypass 
effect in queries with disjunctively connected joins, 
since these plans evaluate all disjuncts independently 
of each other. 

We optimized the Boolean functions fs, fi, . . . , fa 
which are recursively defined as follows: 

f0 = Jo(v0) 

fi = fi-1 V Ji(Ty7.i) for 1 5 i 5 9 

where T, TO, . . . . r-9 are bound to R, &, . . . , &, 
respectively. As setup, we took one large extension 
(cad(R) = 10,000) and some small joining extensions 
(cad(&) = 200; 0 < i 5 9). The costs of the joins are 
always 10 and the selectivity factors are always 0.01. 

The results of this benchmark are depicted in Fig- 
ure 6. For this kind of queries, the CNF-based plans 
are inordinately bad, since they have to generate, the 
cross product of all involved extensions. But also, 
the DNF-based plans are extremely bad because of 
the inability of bypassing: the evaluation costs of 
the optimal DNF-based plans are between 77% and 
771% worse than the optimal bypass plans’ costs for 
1 5 5 5 9? i.e., from two to ten joins. 

4.3 Comparison of OPT and FIX 

The third benchmark series evaluates the quality of 
“FIX” -in comparison with “OPT.” For that, we took 
four extensions with cardmality 10, 100, 1000, and 
10000. For choice for the randomly generated Boolean 
functions, there were one restriction per extension, and 
two joins per pair of extensions. The cost values and 
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Figure 4: Impact of the conditions’ cost values 

r 

Varying selectivity factor of Ci 

1 

l- 

0 0.1 02 0.3 0.4 s.31ectMtyolc~0 0.5 0.7 0.8 0.9 1 

Varying selectivity factor of Cz 

Figure 5: Impact of the conditions’ selectivity factors 

the selectivity factors of the conditions were also ran- 
domly chosen within a given range. The range of the 
cost values was [1,30000], and the selectivity ranges 
were [0.1,0.5] for the restrictions and [0.0001,0.5] for 
the joins. 

As Boolean function, we took up to five conditions 
from the restrictions and the joins and connected them 
by and/or randomly. As projections, we took a ran- 
dom number of the extensions which are involved in 
the chosen Boolean function. In this manner, we gen- 
erated 100 queries and optimized them by “FIX” and 
“OPT.” 

In total, “FIX” was only 2% worse than “OPT.” 
But, in order to obtain a better idea of the quality of 
“FIX” we subdivided the queries according to the quo- 
tients FIX/OPT. We counted the number of queries 
and we determined the average of the quotients of gen- 
erated alternatives between “FIX” and “OPT” within 
the intervals [l,l], (l,l.Ol], (1.01,1.05], (1.05,1.2], 
(1.2,2], and (2,oo). The results are depicted in Ta- 
ble 2. According to the third row in Table 2, “OPT” 
considered only about twice as many alternatives than 
“FIX,” a figure that is far lower than the worst case 

Figure 6: Impact of the number of joins 

ny.‘=,(n - i + 1)2i-1/n! (cf. Section 3). The reason 
is that a bundle’s control function, once reduced to 
“true” or “false,” does not need to be considered fur- 
ther, which effectively prunes the search space. To 
summarize, we note that “FIX” computed the opti- 
mal evaluation plan for 90% of the queries, although 
it considered on the average only ,about one half of 
OPT’s search space. 
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cost Number of Alternatives considered References 
FIX/OPT queries FIX/OPT 

1Lll 90 0.48 
(i,l.dl] 2 0.67 

(1.01,1.05] 2 0.44 

“il”“;:;“’ 

(ih 

3 3 0.51 0.47 

0 0.00 

Table 2: Comparison between OPT and FIX 

5 Conclusion 

In this paper, we introduced the new join bypass eval- 
uation technique, a technique that is especially well 
suited for disjunctive queries in any kind of database 
system, be it relational, extended relational or object- 
oriented. The bypass technique is founded on special- 
ized selection and join operators that distribute the 
respective input set into two output sets. One of the 
output sets contains the tuples that satisfy the selec- 
tion or join predicate, the other those that do not. 

In order to employ these operators in so-called by- 
pass evaluation plans, we introduced two possible con- 
struction methods named “FIX” and “OPT” and com- 
pared the generated plans with those derived by tra- 
ditional techniques, namely based on the conjunctive 
or disjunctive normal form. The quantitative assess- 
ment confirmed the presumption that the bypass tech- 
nique as an evaluation method that does not per- 
form superfluous computations is superior to the tradi- 
tional methods employed in current database systems. 
Although the cost reductions that can be achieved 
depend on the particular shape of the query predi- 
cates, the relative cost of their conditions and the da- 
tabase profile, it turned out that bypass evaluation 
plans never performed worse than traditional plans, 
but much better in the vast majority of cases-as much 
as an order of magnitude. 

Since it has been surmised that heuristic-based pred- 
icate placement might be hard in principle even for 
pure conjunctive selection predicates [He194], we pro- 
posed another approach which composes the predi- 
cates of a query to an evaluation plan step by step. 
A similar approach works well in the System R opti- 
mizer [SAC+791 for determining a join order, and the 
algorithms OPT and FIX are an extension of this idea 
for disjunctive queries with bypass evaluation. 
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