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Abstract 

Many researchers have investigated the process of 
decomposing transactions into smaller pieces to in- 
crease concurrency. The research typically focuses on 
implementing a decomposition supplied by the database 
application developer, with relatively little attention 
to what constitutes a desirable decomposition and how 
the developer should obtain such a decomposition. In 
this paper, we argue that the decomposition process 
itself warrants attention. A decomposition generates 
a set of proof obligations that must be satisfied to show 
that a particular decomposition correctly models the 
original collection of transactions. We introduce the 
notion of semantic histories to formulate and prove 
the necessary properties. Since the decomposition im- 
pacts not only the atomicity of transactions, but iso- 
lation and consistency as well, we present a technique 
based on formal methods that allows these properties 
to be surrendered in a carefully controlled manner. 

1 Introduction 

Key to the success of the transaction model are 
the atomicity, consistency, and isolation properties. 
Atomicity ensures that either all actions of a trans- 
action complete successfully or all of its effects are ab- 
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sent. Consistency ensures that a transaction when ex- 
ecuted by itself, without interference from other trans- 
actions, maps the database from one consistent state 
to another consistent state. Isolation ensures that no 
transaction ever views the partial effects of other trans- 
actions even when transactions execute concurrently. 

Sometimes performance requirements force a trans- 
action to be decomposed into steps, especially if the 
transaction is long-lived. Consider the simple example 
of making a hotel reservation. The reserve transac- 
tion might ensure there are still rooms vacant, select a 
vacant room that matches the customer’s preferences, 
and record billing information. Since the reserve trans- 
action might last a relatively long time - for example, 
when the customer makes reservations by phone - an 
implementation might force the three steps in the re- 
serve transaction to occur separately. 

Breaking transactions into steps not only sacrifices 
atomicity (since atomicity of the single logical action 
is lost), but impacts consistency and isolation as well. 
Execution of a step may leave the database in an in- 
consistent state, which may be viewed by other trans- 
actions or steps. Thus it is necessary to reason about 
the interleavings of the steps of different transactions. 
Even if the step-by-step decomposition of a single trans- 
action is understood in isolation, reasoning about the 
interleaving of these steps with other transactions, pos- 
sibly also decomposed into steps, is difficult. 

To reason about interleavings, we introduce the no- 
tion of semantic histories which not only list the se- 
quence of steps forming the history, but also convey 
information regarding the state of the database before 
and after execution of each step in the history. We 
identify properties which semantic histories must sat- 
isfy to show that a particular decomposition correctly 
models the original collection of transactions. 

The paper is organized aS follows. Section 2 reviews 
related research. Section 3 presents a motivating ex- 
ample. Section 4 describes our model and applies it to 
the motivating example. Section 5 outlines an imple- 
mentation. Section 6 concludes the paper. 

We adopt the Z specification language [Spi89] for 
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expressing model-based specifications. Z is based on 
set theory, first order predicate logic, and a schema 
calculus to organize large specifications. Knowledge 
of Z is helpful, but not required, for reading this pa- 
per, since we narrate the formal specification in En- 
glish. We explain conventions peculiar to Z as neces- 
sary. Table 1 briefly explains the Z notation used in 
our examples. 

2 Related Work 

Most transaction-oriented models enforce a very low 
level, syntactic notion of consistency, namely serializ- 
ability with respect to read/write conflicts [BHG87]. 
An expansion is the atomic transactions work [Her87, 
HW91, LMWF94, Lyn83, Wei84, Wei88], in which ac- 
cess operations are given by the particular abstract 
data type. We relax the requirement that transactions 
in correct executions histories appear atomic. 

Many researchers have broken transactions into steps 
and developed semantics-based correctness criteria for 
decompositions [AAS93, BR92, F089, GM83, JM87]. 
In [%X92] correctness for chopped-up transactions is 
defined such that any stepwise serial history is equiva- 
lent to a serial history. We disallow some stepwise se- 
rial histories based on semantic considerations. Some 
have weakened the notion of serializability. For exam- 
ple, quasi-serializability defines global correctness for 
transactions distributed over heterogeneous systems 
[DE90]. Researchers have introduced the notions of 
transaction steps, countersteps, allowed vs. prohibited 
interleavings of steps, decomposed databases as well as 
transactions [SLJ88], and implementations in locking 
environments. Our focus is on the front-end activities 
of defining desirable transaction decompositions and 
aiding the developer in deriving such decompositions. 

The idea of specifying transactions with precondi- 
tions and postconditions has been elaborated in the 
NT/PV model [KS94, KS88], which is based on nested 
transactions, multiple versions and explicit predicates. 
A transaction, denoted by (T, P, I, 0), is character- 
ized by the set of subtransactions T of the transac- 
tion, the partial order P among subtransactions, the 
input conditions or preconditions I, and the output 
conditions or postconditions 0. An execution of a 
transaction is correct if it begins in a state that sat- 
isfies the preconditions, the subtransactions execute 
consistently with the partial order, and the state after 
execution satisfies the postconditions. An execution 
of an interleaved set of transactions is NT/PV cor- 
rect if every transaction in the set executes correctly. 
In [KS94, KS88], the application developer has the 
burden of correctly specifying the preconditions and 
postconditions and of determining the partial order of 
subtransactions in a transaction. Our work focuses on 
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?” 
AE$B 
X-Y 
A+B 
A-B 
B-d.4 
APB 
dam A 
ran A 
A@B 
X? 
Z! 
z 
z’ 
LIA 
ZA 

Set of Natural Numbers 
Powerset of Set A 
Cardinality of Set A 
Set Difference 
A Composed with B 
Ordered Pair lz. u‘l \ ~ */ 
Partial Function from A to B 
Partial Injective Function from A to B 
Relation A: Set B Removed from Domain 
Relation A: Range Restricted to Set B 
Domain of Relation A 
Range of Relation A 
Function A Overridden with Functioh B 
Variable z? is an Input 
Variable z! is an Qutput 
State Variable z before an Operation 
State Variable z’ after an Ooeration 
Before and After State of S&ma A 
AA with No Change to State 

Table 1: Z Notation 

a subset of what is covered by the NT/PV model; we 
help the application developer decompose transactions 
into steps and reason about the resulting interleavings. 

The ACTA framework for specifying models of ex- 
tended transactions [CR941 requires extension to ac- 
commodate our work, just as ACTA requires extension 
to accommodate NT/PV [KS94]. Specifically, ACTA 
conditions cannot express preconditions and postcon- 
ditions of transactions in our semantic histories. 

3 The Hotel Database 

We illustrate our ideas with a hotel database ex- 
ample. A Z specification of the example appears in 
figure 1. The hotel database has a set of objects, two 
integrity constraints on these objects, and three types 
of transactions, which we identify and explain below. 

The two types, Guest and Room, enumerate all pos- 
sible guests and all possible hotel rooms, respectively. 
The global variable total is the size of the,hotel. 

In Z states are described with a two-dimensional 
graphical notation called a schema, in which declara- 
tions for the objects in the state appear in the top part 
and constraints on the objects appear on the bottom 
part. Objects in the hotel database are listed in the 
schema Hotel, which defines the state of the hotel. 

The object res is a natural number that records the 
total number of reservations, RM is a partial injection 
that relates guests to rooms, ST is a partial function 
that records the status of each room in Hotel, and 
guest records the set of guests. 

The integrity constraints on the objects in hotel 
database appear in the bottom part of Hotel. There 
are two integrity constraints: 

1. #RM = res. The number of guests who have 
been assigned rooms (the size of the RM func- 
tion) equals the total number of reservations (res). 
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[Guest, Room] 
Status ::= Available 1 Unavailable 
1 total: N 

res : PI; RM : Guest - Room 
guest : IF’ Guest; ST : Room -.+ Status 

RM’ = {g?} 4 RM; guest’ = guest \ {g?} 

Figure 1: Initial Specification of the Hotel Database 

2. dom(ST D {lJnavailable}) = ran RM. The set 
of unavailable rooms (dom(STD { Unavailable})) 
is exactly the set of rooms reserved by guests 
(ran RM). In other words, every unavailable room 
must be associated with some guest. 

The three types of transactions in the hotel database 
are Reserve, Cancel, and Report. Reserve takes as 
input a guest g? and produces as output a room as- 
signment r!. Reserve has a precondition that there 
must be fewer than Ma/ reserved rooms and g? must 
be a new guest. (Our particular example does not 
allow guests to register multiple times). Reserve has 
a postcondition that room r! with status Available is 
chosen, the total number of reservations res is incre- 
mented, the status of r! is changed to Unavailable, the 
ordered pair g? H r! is added to the function RM, and 
g? is added to the set guest. 

Cancel cancels the reservation for guest g?. Cancel 
has a precondition that the g? is in guest. Cancel has 
a postcondition that res is decremented, the status of 
the room assigned to g? is changed to Available, g? is 
removed from the domain of the function RM, and g? 
is removed from the set guest. 

Report has no precondition, and merely produces 
the state components ST and RM as outputs. 

Since the role of initialization is peripheral to our 
analysis, we omit it here. Instead, we assume that the 
database has been initialized in a consistent state. 

4 The Model 

In our model, a database is specified as a (database) 
state, along with some invariants or integrity constraints 
on the state. At any given time, the state is determined 
by the values of the objects in the database. A change 
in the value of a database object changes the state. 
The invariants are predicates defined over the objects 

in the state. A database state is said to be consistent 
if the set of values satisfies the given invariants. 

A transaction is an operation on a database state. 
Associated with each transaction is a set of precon- 
ditions and a set of postconditions on the database 
objects. A precondition limits the database states to 
which a transaction can be applied. For example, a 
Reserve transaction has a precondition that the ho 
tel have at least one room available. A postcondition 
constrains the possible database states after a trans- 
action completes. For example, a Reserve transaction 
has a postcondition that there be some room avail- 
able before the reservation that is unavailable after the 
reservation. Preconditions and postconditions must be 
strong enough so that if a transaction executes on a 
consistent state, the result is again a consistent state. 

Instead of executing a transaction as an atomic unit, 
we break a transaction into steps, and execute each 
step as an atomic unit. The decomposition exploits the 
semantic information associated with the transaction. 
Although such a decomposition process is application 
specific, we identify necessary properties that must be 
satisfied by any valid decomposition. 

Definition 1 [Transaction Decomposition] A de- 
composition of a transaction Ti is a sequence of two 
or more atomic steps < Z’,i, Ti2, . . . , Tin >. In place 
of Ti, these steps are executed in the given order as 
atomic operations on a database state. 

To show that the decomposition has been performed 
correctly, we must check that the steps, when executed 
in the correct sequence and without interference from 
other transactions, model the original transaction. 

One possible composition requirement is that the 
steps in a decomposition be treated exactly as trans- 
actions in the original system, in that the integrity 
constraints must hold after each step. As the decom- 
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Figure 2: A Naive Decomposition 

position below demonstrates, such a requirement is too 
strong in practice. After presenting a naive decomposi- 
tion, we develop a more realistic composition property. 

4.1 A Naive Decomposition of Reserve 

Suppose we break up the Reserve transaction into 
the following three steps. A naive specification of these 
steps is given in figure 2. 

Step 1: Increment the number of reserved rooms (res) 

Step 2: Pick a room with status Available and change 
it to Unavailable. 

Step 3: Add the guest to the set of guests and assign 
the room to the guest. 

The decomposition in figure 2 has a serious flaw 
in that none of the proposed steps, considered by it- 
self, maintains the invariants in Hotel. For example, 
NaiveRl does not maintain the invariant #RM = res 

since NaiveRl increments the value of res, but does not 
alter RM. Formally, the computed preconditions of all 
three steps simplify to false. Execution of any of the 
naive steps leaves the invariants unsatisfied, and other 
transactions are then exposed to the inconsistent state. 
For example, Report may produce an inconsistent out- 
put if executed in a state outside the invariants. 

4.2 Modification of Original Invariants 

The previous example demonstrates that not all de- 
compositions are acceptable. Specifically, a decompo- 
sition may yield steps that leave the database in a state 
in which the invariants are not satisfied. This possi- 
bility is illustrated for the hotel example by the arrow 
labeled NaiveRl in figure 3. Once the invariants are 
violated, the formal basis for assessing the correctness 
of subsequent behavior collapses. 

As noted earlier, one way to solve this problem is to 
allow only those decompositions that have the prop- 
erty that partial executions leave the database state 
consistent. Such an approach is exceedingly restric- 
tive, and so we reject it. In the hotel example, the 
informal description of the steps into which Reserve is 
broken is perfectly satisfactory; what is unreasonable 

is the insistence that the invariants of Hotel hold at 
all intermediate steps. We need a formal model that 
can accommodate the notion that some - but not all 
- violations of the invariants are acceptable. 

Figure 4 illustrates a model that allows inconsis- 
tent states - as defined by the invariants - that are 
nonetheless acceptable. The temporary inconsistency 
introduced by Rl (specified below in figure 5 ) is al- 
lowed, and steps of some other transactions, e.g. Re- 
finedcancel, can tolerate the inconsistency introduced 
by Rl, and so are allowed to proceed. The general 
approach is to modify the original set of invariants 
and decompose transactions such that each step sat- 
isfies the new set of invariants. The model in figure 
4 has many advantages, including greater concurrency 
among steps. We formalize the model as follows. 

Let I denote the original invariants. Let ST de- 
note the set consisting of all consistent states; i.e., 
ST = {ST : ST satisfies I}. A transaction T, al- 
ways operates on a consistent ST E ST. If STi de- 
notes the state after the execution of Ti, then STi is 
also in ST. However, when Ti is broken up into steps 
< Til, Ti2,. . . j Tin >, each step Til is executed a~ an 
atomic operation. If STij represents the partial exe- 
cution of Ti, it is possible that after execution of step 
T,, the,resulting database state ST, no longer satis- 
fies the invariants I and, therefore, lies outside ST. 

In our approach, we define a new set of invariants, 
i, by relaxing the original invariants I. We decom- 
pose each transaction such that execution of any step 
results in a database state that satisfies i; if all the 
steps of a transaction are executed serially on a con- 
sistent initial state, the final state satisfies the original 
set of invariants. Let @ = { S’T : ST satisfies 1). 
The relationship between ST and fi is shown in fig- 
ure 4. Thzinner circle denotes ST ancJ the outer circle 
denotes ST (signifying that ST C ST). The ring de- 
notes the set of all states that satisfy I but not I. The 
important part about figure 4 is that the set of incon- 
sistent but acceptable states is formally identified and 
distinguished from the states that are unacceptable. 
The advantage is that formal analysis can be used to 
investigate activities in !%‘. 

To reason about the correctness of decomposing 
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Set of all database states 

Set of all consistent 
database states but acceptable states 

Figure 3: General classification of database states Figure 4: Database states as classified in our model 

nexKance1 

transactions into steps, and avoid the problems of a From an implementation perspective, the composi- 
naive decomposition, we use auxiliary variables to gen- tion property is similar to requiring that the stepwise 
eralize the invariants. Auxiliary variables are a stan- execution of the steps be view equivalent to that of 
dard method of reasoning about concurrent executions the original transaction. A complicating factor is that 
[OG76], and, in particular, have been applied to the the decomposition may introduce additional database 
problem of semantic database concurrency control [GM83]. objects; the composition property does not limit the 
Since our work focuses more on the decomposition pro- 
cess, we emphasize the role of auxiliary variables. 

In the hotel example, we generalize the invariant 
#RM = res by introducing an auxiliary variable 
to express the fact that number of guests with rooms 
might differ from total reservations by the number of 
reserve transactions in progress. We generalize the 
invariant dom(ST D {Unavailable}) = ran RM by 
introducing another auxiliary variable to express the 
fact that the unavailable rooms might differ from the 
rooms assigned to guests by those rooms selected by 
reserve transactions in progress. Before we show these 
changes to the example, we present two properties that 
a decomposition must possess. We note that the aux- 
iliary variables are introduced for purposes of analysis, 
and are eliminated in our implementation. 

4.3 Composition Property 

With the notion of generalized invariants in place, 
we can state the property relating steps in a decompo- 
sition to the original transaction. We call this require- 
ment the composi2ion property. Formally: 

Composition Property Let T, denote the origi- 
nal transaction and Til, T22, . . . , Tin denote the corre- 
sponding steps. T, and its steps are related as follows: 

Executing the steps T,l, Tz2, . . . , T,, serially on a 
state satisfying the original invariants I, changes the 
original database objects in the same way as executing 
the original transaction Ti on the same state. 

values of these objects. For example, compare Hotel 
in figure 1 with ValidHotel in figure 5. 

4.4 Sensitive Transaction Isolation 

In our model, we allow steps or transactions to see 
database states that do not satisfy the original invari- 
ants (i.e., states in ST - ST). But some transactions 
may output data to users; these transactions are re- 
ferred to as sensitive transactions in [GM83]. We re- 
quire sensitive transactions to appear to have gener- 
ated outputs from a consistent state. 

Sensitive Transaction Isolation Property All 
output data produced by a sensitive transaction Ti 
should have the appearance that it is based on a con- 
sistent state in ST, even though Ti may be running 
on a database state in s^T - ST. 

In our model, we ensure the sensitive transaction 
isolation property by construction. For each sensitive 
transaction, we compute the subset of the original in- 
tegrity constraints, I, relevant to the calculation of 
any outputs. This subset of I is included as an ex- 
plicit precondition for the sensitive transaction. 

4.5 A Valid Decomposition 

In this section, we provide a valid decomposition 
of the hotel database. The problems of the naive de- 
composition are avoided, and the properties identified 
so far hold. After presenting the example, we derive 
additional properties required of valid decompositions. 

To make the invariants more general, we add aux- 
iliary variables and define a new state ValidHotel. We 
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add the auxiliary variable tempreserved, which is a nat- 
ural number, to denote the reservations that have been 
partially processed. We also add the auxiliary variable 
tempassigned, which is a set of rooms, to denote the 
rooms that have been reserved but which have not yet 
been assigned to guests. The invariants are modified 
accordingly. The schema ValidHotel together with the 
modified invariants is shown in figure 5. 

Rl, R2 and R3 are the steps of the reserve transac- 
tion. The steps satisfy the composition property. Al- 
though Reserve is a sensitive transaction, it turns out 
that no additional preconditions are needed to ensure 
that the output r! reflects a consistent state. Space 
limitations preclude proofs of these properties; see the 
appendix of [AJR95]. 

The refined version of the single step Cancel trans- 
action is nearly identical to the unrefined version, ex- 
cept that the auxiliary variables tempassigned and tem- 
preserved are not changed. 

Report is a sensitive transaction, and we establish 
the sensitive transaction isolation property by con- 
struction. Informally, Report transaction outputs val- 
ues of ST and RM. ST and RM involve the orig- 
inal invariant dom(ST D {Unavailable}) = ran RM 
which can be derived from dom( STD { Unavailable}) = 
ran RM U tempassigned if the variable tempassigned 
satisfies tempassigned = 0. The refined version of Re- 
port is shown in figure 5. 

4.6 Semantic Histories 

Since we modify the invariants, several questions 
must be answered. In particular, we would like to 
know if and when the database state returns to a con- 
sistent state. We will answer these questions after we 
give some definitions. 

Definition 2 [History] A history Hover a set of trans- 
actions T = { Tl, T2, . . . , Tm} is a sequence of steps 
< Ti,i,, Ti,j,, . . , Ti,j, >, 1 5 ii, . . . , i, 5 m, Ti,j, is 
astepinT+,l<r<m,l<s<n,suchthat 

1. for each T, E T, a step of T, either appears 
exactly once in H or does not appear at all, 

2. for any two steps Tij, Tlk of some Ti E T, Tij 
precedes Tik in H if Tij precedes Tik in Ti, and 

3. if Tzj E H, then Tlk E H for 1 5 k < j. 

By Condition (l), we ensure that every step of a 
transaction should occur at most once in a history. 
Condition (2) ensures that the order of the steps in 
a transaction is preserved in the history. Condition 
(3) ensures that for every step in a history, all the 
preceding steps in the corresponding transaction are 
present in the history. 

Example 1 < Rl, R3, Report, R2 > is not a history 
as it violates conditions (2) and (3). < Rl, R2, R3, R2 > 
is not a history since it violates condition (1). < Rl, 
Report, R2, R3 > is a history. 0 

To emphasize the fact that we view the database as 
an abstract data type and transactions as operations 
on this abstract data type, we define the term semantic 
history to distinguish it from the term history used in 
database literature (e.g., [BHG87]). 

Definition 3 [Semantic History] A semantic his- 
tory H is a history that is bound to 

1. an initial state, and 

2. the states resulting from the execution of each 
step in H. 

Definition 4 [Complete Execution] An execution 
ofatransaction T,= < T;1,Ti2,...,Tin >inase- 
mantic history His a complete execution if all n steps 
of Ti appear in H. 

Example 2 An execution of the reserve transaction 
will be complete in a history H if all three steps Rl, 
R2, and R3 of reserve appear in H. cl 

Definition 5 [Partial Semantic History] A seman- 
tic history H,, over T is a partial semantic history if 
the execution of some transaction Ti is not complete 
in HP. 

Definition 6 [Complete Semantic History] A se- 
mantic history?H over T is a complete semantic history 
if the execution of each Ti in T is complete. 

4.7 Consistent Execution Property 

Similar to the consistency property for traditional 
databases, we place the following requirement on se- 
mantic histories: 

Consistent Execution Property If we execute a 
complete semantic history H on an initial state (i.e., 
the state prior to the execution of any step in H) that 
satisfies the original invariants I, then the final state 
(i.e., the state after the execution of the last step in 
H) also satisfies the original invariants I. 

Although consistent execution property is definitely 
desirable, it is not enough because it does not capture 
the cumulative effect of each transaction. For a seman- 
tic history to be correct, we require that all interme- 
diate states be in s^T, which is formalized in following 
definitions. Note that the consistency of outputs is en- 
sured by the sensitive transaction isolation property. 

Definition 7 [Correct Partial Semantic History] 
A partial semantic history HP is a correct partial se- 
mantic history if 
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dom(ST D { Unavazlable}) = ran RM u tempasszgned 

A ValidHotel; r! : Room 

ST(r!) = Available 
ST’ = ST $ {r! Y Unavailable} 
tempass~gned’ = tempasszgned u {T!} 
res’ = res; ternpreserved’ = ternpreserved 
guest’ = guest; RM’ = RM I 

g? E guest; res’ = res - 1 
ST’ = ST $ {RM(g?) - Available} 
RM’ = {g?} tl RM; guest’ = guest \ {g?} 
ternpreserved’ = ternpreserved 
tempassigned’ = tempassigned I 

A ValidHotel 

r-es < total; res’ = res + 1 
ternpreserved’ = ternpreserved + 1 
ST’ = ST; RM’ = RM; guest’ = guest 
tempasszgned’ = tempassigned 

A ValzdHotel; g? : Guest; r! : Room 
I 

ternpreserved > 0; r! E tempossigned; g? e guest 
RM’ = RM u {g? c r!}; t-es’ = r-es 

guest’ = guest u {g?}; ST’ = ST 
tempassigned’ = tempassigned \ {r!} 
ternpreserved’ = ternpreserved - 1 I 

Figure 5: A Correct Decomposition for the Hotel Database 

the initial state is in ST, 

all states before a@ after the execution of each 
step in HP are in ST, and 

preconditions for each step are satisfied before it 
is executed. 

Definition 8 [Correct Complete Semantic His- 
tory] A complete semantic history H is a correc2 com- 
plete semantic history if 

Consider step R3. The precondition g? 6 guest of R3 
requires that John not have a existing reservation, but 
it is possible that in the final state in H, John is an ele- 
ment of guest. We may cancel John’s existing reserva- 
tion, thereby allowing the reserve transaction to com- 
plete. First, the precondition of Cancel, g.? E guest, is 
guaranteed to hold if the precondition of R3 does not 
hold. Second, the postcondition of Cancel establishes 
the precondition of R3. Thus the reserve transaction 
for John can complete. 

1. H is a correct partial semantic history, and 4.9 Decomposition with Deadlock 

2. the final state is in ST. 

4.8 Complete Execution Property 

The fourth property which we describe is the com- 
plete execution property. When transactions have been 
broken up into steps, the interleaving of steps may 
lead to deadlock (i.e., a state from which we cannot 
complete some partially executed transaction). The 
complete execution property ensures that deadlock is 
avoided; if a transaction has been partially executed, 
then it can eventually complete. 

In this section, we show that some otherwise plau- 
sible decompositions do not satisfy the complete exe- 
cution property, which is clearly undesirable. To illus- 
trate the possibility, we modify the Hotel database as 
shown in figure 6. 

Complete Execution Property Every partial 
correct semantic history HP is a prefix of some com- 
plete correct semantic history. 

In the example specification, the cancel transaction 
is decomposed into steps Cl and C2. We introduce 
the auxiliary variable tempcanceled which keeps count 
of the cancel transactions that have completed step 
Cl but not step C2. The invariant #RM = res - 
tempreserved in the original ValidHotel is changed to 
#RM = res - tempreserved + tempcanceled. 

In the hotel database suppose we have a partial 
semantic history H where H =< Rl, Report, R2 >. 
where the reserve transaction executes with g? = John. 

Moreover, we introduce a new structure clist which 
keeps track of the guests whose cancellations are in 
progress. The guest whose reservation is being can- 
celed is added to the clist in step Cl and is removed 
from the clist in step C2. We impose an additional 
constraint that a room cannot be reserved for a guest 
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ADeadlockHotel res, ternpreserved, tempcanceled : N 
RM : Guest - Room; ST : Room c Status I 

guest, clist : P Guest; tempassrgned : F’Room 

I #RM = res - ternpreserved + tempcanceled 
dom(ST D { Unavaalable}) = ran RM U tempass%gned 1 

clist’ = cl&u {g?}; ST’ = ST 
tempcanceled’ = tempcanceled + 1 
tempreserued’ = ternpreserved; guest’ = guest 
tempassigned’ = tempasszgned; RM’ = RM I 

-c2 
ADeodlockHotel; g? : Guest 

I 

g? E guest; g? E clist; tempcanceled > 0 
ST’ = ST $ {RM(g?) - Avaalable} 
RM’ = {g?} 4 RM; guest’ = guest \ {g?} 
cl&’ = clast \ (g?}; ?-es’ = 7-a 
tempconceled’ = tempcanceled - 1 
ternpreserved’ = ternpreserved 
tempassigned’ = tempassigned 

I 

res < total; res’ = res + 1; ST’ = ST 
ternpreserved’ = ternpreserved + 1; RM’ = RM 
tempcanceled’ = tempcanceled; clist’ = clist 
tempassagned’ = tempassigned; guest’ = guest I 

tempassigned’ = tempassigned U {r!} 
RM’ = RM; ternpreserved’ = ternpreserved 
tempcanceled’ = tempcnnceled; cl&’ = clist 

ADeadlockHotel; g? : Guest; c! : Room 

ternpreserved > 0; r! $Z ran RM 
g? 6 guest; g? @ clist 
guest’ = guest u {g?}; cl&’ = clist 
RM’ = RM u {g? c r!}; red = res 

ternpreserved’ = ternpreserved - 1 
tempasstgned’ = tempassigned \ {r!} 
tempcanceled’ = tempconceled; ST’ = ST I 

Figure 6: Example Specification Lacking Complete Execution Property 

whose cancellation is in progress; note the precondi- 
tion g? 6 clist in step Res3. The reserve transaction 
is broken into steps Resl, Res2 and Res3, similar to 
Rl, R2 and R3 of the ValidHotel specification. 

Consider the partial history HP =< Cl, Resl, Res2 > 
Let the reserve and cancel transactions in HP have the 
same g. 7 as their input. Also assume that g? # guest. 
We try to complete the reserve and cancel transac- 
tions. Res3 cannot be executed because the precon- 
dition .g? $ clist is not satisfied because step Cl has 
inserted g? in clist. C2 cannot be executed because the 
precondition g? E guest is not satisfied. It is possible 
to execute any number of steps of other transactions, 
but the reserve and cancel transactions in HP still can- 
not complete. 

The deadlock could be avoided by including the in- 
variant clist c guest in DeadlockHotel. Omission of 
this constraint allows the database to enter an unde- 
sirable state where c? E clist A c? 6 guest, from which 
neither Res3 nor C2 can complete. 

5 Implementation 

5.1 Successor Set Mechanism 

Decomposing transactions into steps yields improved 
performance, but the interleaving of these steps must 
be constrained so as to avoid inconsistencies. In the 
decomposition we have given so far, which is based 
on generalizing invariants with auxiliary variables, the 

interleaving is constrained by additional preconditions 
on the auxiliary variables. Although the generalized 
invariants facilitate analysis, it is expensive to imple- 
ment the auxiliary variables and to check the addi- 
tional preconditions. 

To avoid implementing auxiliary variables and to 
avoid checking additional preconditions, we propose 
two mechanisms: a queuing mechanism to ensure that 
steps of a transaction execute in order and a successor 
set mechanism. The specification of a queuing mecha- 
nism is straightforward and, is therefore omitted. 

Although our successor set mechanism is somewhat 
similar to the the notion of compatibility sets in [GM831 
and breakpoint sets in [F089], the semantics of these 
concepts are substantially different. Also, via specific 
decomposition steps and corresp,onding proof obliga- 
tions, we assist the specifier in verifying the correctness 
of successor sets with respect to the original specifica- 
tion; in [F089] and in [GM83], the burden of arguing 
correctness rests entirely with the application devel- 
oper. 

Definition 9 [Successor Set] The successor set of a 
step T;], denoted SC( Tij), is the set of steps that can 
appear after step Tij and before step Ti(,+l) in any 
correct semantic history. 

Example 3 Successor set descriptions are obtained 
by examining the preconditions with auxiliary vari- 
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ables. Some of these preconditions will always be sat- 
isfied if the steps in each transaction are executed in 
order; the queuing mechanism guarantees the satisfac- 
tion of these preconditions. In the hotel example! the 
only remaining precondition with auxiliary variables is 
tempassigned = 0 in RefinedReport. We observe that 
this precondition will always be satisfied as long as. 
RefinedReport is not executed between steps R2 and 
R3 of a reserve transaction. Thus we specify the suc- 
cessor sets as follows. 

2. S’s satisfies the complete execution property. 

Note that since the correct semantic histories of Ss 
might be a proper subset of those of Sr, the complete 
execution property needs to be explicitly verified with 
respect to Ss. 

5.2 Two-Phase Locking Mechanism 
SC(R1) = {Rl, R2, R3, RefinedCancel, RefinedReport} 
SC(R2) = {Rl, R2, R3, RefinedCancel} 

The successor set for Rl includes every other possi- 
ble step; after an Rl any of another Rl, an R2 (of the 
same or of a different reserve transaction), an R3 (of 
a different reserve transaction), a RefinedCancel, or a 
RefinedReport may execute. The successor set for R2 
is more restrictive. RefinedReport $ SC(R2) means 
that the RefinedReport step cannot execute after step 
R2. In other words, RefinedReport is not allowed to 
the see the inconsistencies with respect to the original 
invariants that are introduced by step R2. 

The notions of interleaving described in [FOB91 and 
[GM831 are both implemented in a locking environ- 
ment . Since our interleaving mechanism differs, we 
sketch a two-phase locking implementation of our mech- 
anism. Other implementations are possible, as are var- 
ious optimizations. 

Note that with the queuing mechanism and the suc- 
cessor set description, the auxiliary variables them- 
selves need not be implemented, and all constraints 
on the auxiliary variables may be ignored. 0 

Any complete semantic history generated using suc- 

By treating steps as complete transactions, two- 
phase locking can guarantee that any history is step- 
wise conflict serializable (i.e., conflict serializable with 
steps as primitive operations). However, stepwise se- 
rializability is not sufficient, since some stepwise serial 
histories violate the successor set description. Specif- 
ically, step Tii of one transaction might serialize be- 
tween steps Tkrn and Tk(m+i) of another transaction, 
even if the Tij is not in the successor set of Tkm. 

cessor sets must meet an additional requirement to 
those given in Definition 8: 

Consider every pair of steps Tt3 and T,(i+l) 
of transaction T,. For every step Tkl of a 
different transaction Tk appearing between 
Ttj and Ti(j+l) (if any), Tkr E SC(T,). 

To ensure that the successor set descriptions are 
met, we introduce a control mechanism for dispatch- 
ing of steps to the data manager, which is responsible 
for implementing two-phase locking. We assume that 
the data manager produces an explicit prefix of a se- 
rialization order for all steps that commit. 
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Successor set descriptions are intended to allow the 
removal of predicates that reference auxiliary variables, 
and ultimately the variables themselves. Thus, with 
respect to the specifications given with generalized in- 
variants and auxiliary variables, not all successor set 
descriptions are correct. Informally, a successor set is 
correct with respect to a generalized invariant speci- 
fication if any semantic history generated using suc- 
cessor sets can also be generated by the generalized 
invariant specification. Although desirable, the con- 
verse property does not hold in general since first-order 
logic preconditions have more expressive power than 
the successor set mechanism. Formally, we describe 
correct successor set descriptions with the valid SUC- 

cessor set property: 

Consider a set of steps under the control of the data 
manager. Since the data manager may serialize these 
steps in any order, we require that the concatenation 
of the committed prefix of the serialization order and 
any order of the steps in the data manager follow the 
successor set rules. Additional steps can be submitted 
to the data manager only if doing so maintains this 
constraint. The constraint can be checked by ensuring 
that each active step is an element of the intersection of 
the successor sets of all other active steps and also of all 
committed steps of incomplete transactions. Note that 
completed transactions do not affect the interleaving 
of active transactions. 

6 Conclusion 

In this paper, we have provided the database ap- 
plication developer conceptual tools necessary to rea- 
son about systems in which transactions that ideally 
should be treated as atomic - for reasons of analysis 

Definition 10 [Valid Successor Set Property] A 
specification Sz that employs a successor set descrip- 
tion is valid with respect to specification Si with gen- 
eralized invariants if 

- must instead be treated as a composition of steps - 
for reasons of performance. The developer begins with 
a specification produced via standard formal methods, 
transforms some transactions in the specification into 

1. Any correct semantic history generated by S2 is 
also a correct semantic history generated by Sr. 



steps, and assesses the properties of the resulting sys- 
tem. The formal analysis at each step of this process 
guarantees that the resulting system possesses the de- 
sired properties. 

As we have indicated, the syntactic aspect of the im- 
plementation given in section 5.2 (i.e., stepwise conflict- 
serializability via two-phase locking), is preliminary. 
We anticipate developing a more efficient implementa- 
tion, as was done in [GM831 and [F089]. We also must 
address the problem of reliably transmitting parame- 
ters between steps of a transaction, a problem that is 
considered in [GMS94, WR92]. However, the semantic 
aspects of our implementation have been thoroughly 
addressed. 

We can easily permit ad hoc transactions to be dy- 
namically added in our model, although they will re- 
quire some special intervention. An ad hoc transaction 
could be executed as an atomic, sensitive transaction, 
which means that all integrity constraints relevant to 
the calculation of any output will have to be included 
as explicit preconditions for the transaction (see sec- 
tion 4.4). Alternatively, an ad hoc transaction could 
be included at the successor set stage by simply ex- 
cluding it from all successor set descriptions. Deletion 
of a transaction in our model is somewhat problem- 
atic since deletion may impact the complete execution 
property, which ensures that any transactioh that has 
been partially executed can eventually complete. 

An important question is how well our model scales 
to real-world applications. There are two major issues 
- identification of necessary properties and verification 
of these properties. The paper’s major contribution 
is the identification of necessary properties, such as 
composition, complete execution, valid successor set, 
and so on. If the properties do not hold, the applica- 
tion may behave unexpectedly and undesirably. The 
demonstration of these properties is a separate issue. 
Fortunately, demonstration methods covering a spec- 
trum of formality are possible, depending on the appli- 
cation. Less formal methods trade a degree of assur- 
ance in return for feasibility and ease of use. Possible 
methods are informal argument, inspection, paper and 
pencil proof, and formal machine-level verification. In 
this paper, we have used a specification language ap- 
proach in which the analysis is carried out by hand. 
Researchers are developing Z tools that can automate 
some aspects of our analysis, although at present none 
are industrial-grade tools. 
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