
Using Formal Methods To Reason About Semantics-Based
Decompositions Of Transact ions

Paul Ammann* Sushi1 Jajodiat Indrakshi Rayt
Center for Secure Information Systems &

Department of Information and Software Systems Engineering
George Mason University

Abstract

Many researchers have investigated the process of
decomposing transactions into smaller pieces to in-
crease concurrency. The research typically focuses on
implementing a decomposition supplied by the database
application developer, with relatively little attention
to what constitutes a desirable decomposition and how
the developer should obtain such a decomposition. In
this paper, we argue that the decomposition process
itself warrants attention. A decomposition generates
a set of proof obligations that must be satisfied to show
that a particular decomposition correctly models the
original collection of transactions. We introduce the
notion of semantic histories to formulate and prove
the necessary properties. Since the decomposition im-
pacts not only the atomicity of transactions, but iso-
lation and consistency as well, we present a technique
based on formal methods that allows these properties
to be surrendered in a carefully controlled manner.

1 Introduction

Key to the success of the transaction model are
the atomicity, consistency, and isolation properties.
Atomicity ensures that either all actions of a trans-
action complete successfully or all of its effects are ab-

*Partially supported by National Science Foundation under
grant number CCR-9202270.

tPartially supported by a grant from ARPA, administered
by the Office of Naval Research under grant number N0014-
92-J-4038, by National Science Foundation under grant number
IRI-9303416, and by National Security Agency under contract
number MDA904-94-C-6118.

tPartially supported by a George Mason University Graduate
Research Fellowship Award.

Permission to eopy without fee all OT part of this material
is granted provided that the copies are not made OT distributed
JOT direct commercial advantage, the VLDB copyright notice

and the title of the publication and its date appear, and notice
is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, OT to republish, requires

a jee and/or special permission jvom the Endowment.

Proceedings of the 21st VLDB Conference
Zurich, Switzerland, 1995

Fairfax, VA 22030-4444

sent. Consistency ensures that a transaction when ex-
ecuted by itself, without interference from other trans-
actions, maps the database from one consistent state
to another consistent state. Isolation ensures that no
transaction ever views the partial effects of other trans-
actions even when transactions execute concurrently.

Sometimes performance requirements force a trans-
action to be decomposed into steps, especially if the
transaction is long-lived. Consider the simple example
of making a hotel reservation. The reserve transac-
tion might ensure there are still rooms vacant, select a
vacant room that matches the customer’s preferences,
and record billing information. Since the reserve trans-
action might last a relatively long time - for example,
when the customer makes reservations by phone - an
implementation might force the three steps in the re-
serve transaction to occur separately.

Breaking transactions into steps not only sacrifices
atomicity (since atomicity of the single logical action
is lost), but impacts consistency and isolation as well.
Execution of a step may leave the database in an in-
consistent state, which may be viewed by other trans-
actions or steps. Thus it is necessary to reason about
the interleavings of the steps of different transactions.
Even if the step-by-step decomposition of a single trans-
action is understood in isolation, reasoning about the
interleaving of these steps with other transactions, pos-
sibly also decomposed into steps, is difficult.

To reason about interleavings, we introduce the no-
tion of semantic histories which not only list the se-
quence of steps forming the history, but also convey
information regarding the state of the database before
and after execution of each step in the history. We
identify properties which semantic histories must sat-
isfy to show that a particular decomposition correctly
models the original collection of transactions.

The paper is organized aS follows. Section 2 reviews
related research. Section 3 presents a motivating ex-
ample. Section 4 describes our model and applies it to
the motivating example. Section 5 outlines an imple-
mentation. Section 6 concludes the paper.

We adopt the Z specification language [Spi89] for

218

expressing model-based specifications. Z is based on
set theory, first order predicate logic, and a schema
calculus to organize large specifications. Knowledge
of Z is helpful, but not required, for reading this pa-
per, since we narrate the formal specification in En-
glish. We explain conventions peculiar to Z as neces-
sary. Table 1 briefly explains the Z notation used in
our examples.

2 Related Work

Most transaction-oriented models enforce a very low
level, syntactic notion of consistency, namely serializ-
ability with respect to read/write conflicts [BHG87].
An expansion is the atomic transactions work [Her87,
HW91, LMWF94, Lyn83, Wei84, Wei88], in which ac-
cess operations are given by the particular abstract
data type. We relax the requirement that transactions
in correct executions histories appear atomic.

Many researchers have broken transactions into steps
and developed semantics-based correctness criteria for
decompositions [AAS93, BR92, F089, GM83, JM87].
In [%X92] correctness for chopped-up transactions is
defined such that any stepwise serial history is equiva-
lent to a serial history. We disallow some stepwise se-
rial histories based on semantic considerations. Some
have weakened the notion of serializability. For exam-
ple, quasi-serializability defines global correctness for
transactions distributed over heterogeneous systems
[DE90]. Researchers have introduced the notions of
transaction steps, countersteps, allowed vs. prohibited
interleavings of steps, decomposed databases as well as
transactions [SLJ88], and implementations in locking
environments. Our focus is on the front-end activities
of defining desirable transaction decompositions and
aiding the developer in deriving such decompositions.

The idea of specifying transactions with precondi-
tions and postconditions has been elaborated in the
NT/PV model [KS94, KS88], which is based on nested
transactions, multiple versions and explicit predicates.
A transaction, denoted by (T, P, I, 0), is character-
ized by the set of subtransactions T of the transac-
tion, the partial order P among subtransactions, the
input conditions or preconditions I, and the output
conditions or postconditions 0. An execution of a
transaction is correct if it begins in a state that sat-
isfies the preconditions, the subtransactions execute
consistently with the partial order, and the state after
execution satisfies the postconditions. An execution
of an interleaved set of transactions is NT/PV cor-
rect if every transaction in the set executes correctly.
In [KS94, KS88], the application developer has the
burden of correctly specifying the preconditions and
postconditions and of determining the partial order of
subtransactions in a transaction. Our work focuses on

N
PA

?”
AE$B
X-Y
A+B
A-B
B-d.4
APB
dam A
ran A
A@B
X?
Z!
z
z’
LIA
ZA

Set of Natural Numbers
Powerset of Set A
Cardinality of Set A
Set Difference
A Composed with B
Ordered Pair lz. u‘l \ ~ */
Partial Function from A to B
Partial Injective Function from A to B
Relation A: Set B Removed from Domain
Relation A: Range Restricted to Set B
Domain of Relation A
Range of Relation A
Function A Overridden with Functioh B
Variable z? is an Input
Variable z! is an Qutput
State Variable z before an Operation
State Variable z’ after an Ooeration
Before and After State of S&ma A
AA with No Change to State

Table 1: Z Notation

a subset of what is covered by the NT/PV model; we
help the application developer decompose transactions
into steps and reason about the resulting interleavings.

The ACTA framework for specifying models of ex-
tended transactions [CR941 requires extension to ac-
commodate our work, just as ACTA requires extension
to accommodate NT/PV [KS94]. Specifically, ACTA
conditions cannot express preconditions and postcon-
ditions of transactions in our semantic histories.

3 The Hotel Database

We illustrate our ideas with a hotel database ex-
ample. A Z specification of the example appears in
figure 1. The hotel database has a set of objects, two
integrity constraints on these objects, and three types
of transactions, which we identify and explain below.

The two types, Guest and Room, enumerate all pos-
sible guests and all possible hotel rooms, respectively.
The global variable total is the size of the,hotel.

In Z states are described with a two-dimensional
graphical notation called a schema, in which declara-
tions for the objects in the state appear in the top part
and constraints on the objects appear on the bottom
part. Objects in the hotel database are listed in the
schema Hotel, which defines the state of the hotel.

The object res is a natural number that records the
total number of reservations, RM is a partial injection
that relates guests to rooms, ST is a partial function
that records the status of each room in Hotel, and
guest records the set of guests.

The integrity constraints on the objects in hotel
database appear in the bottom part of Hotel. There
are two integrity constraints:

1. #RM = res. The number of guests who have
been assigned rooms (the size of the RM func-
tion) equals the total number of reservations (res).

219

[Guest, Room]
Status ::= Available 1 Unavailable
1 total: N

res : PI; RM : Guest - Room
guest : IF’ Guest; ST : Room -.+ Status

RM’ = {g?} 4 RM; guest’ = guest \ {g?}

Figure 1: Initial Specification of the Hotel Database

2. dom(ST D {lJnavailable}) = ran RM. The set
of unavailable rooms (dom(STD { Unavailable}))
is exactly the set of rooms reserved by guests
(ran RM). In other words, every unavailable room
must be associated with some guest.

The three types of transactions in the hotel database
are Reserve, Cancel, and Report. Reserve takes as
input a guest g? and produces as output a room as-
signment r!. Reserve has a precondition that there
must be fewer than Ma/ reserved rooms and g? must
be a new guest. (Our particular example does not
allow guests to register multiple times). Reserve has
a postcondition that room r! with status Available is
chosen, the total number of reservations res is incre-
mented, the status of r! is changed to Unavailable, the
ordered pair g? H r! is added to the function RM, and
g? is added to the set guest.

Cancel cancels the reservation for guest g?. Cancel
has a precondition that the g? is in guest. Cancel has
a postcondition that res is decremented, the status of
the room assigned to g? is changed to Available, g? is
removed from the domain of the function RM, and g?
is removed from the set guest.

Report has no precondition, and merely produces
the state components ST and RM as outputs.

Since the role of initialization is peripheral to our
analysis, we omit it here. Instead, we assume that the
database has been initialized in a consistent state.

4 The Model

In our model, a database is specified as a (database)
state, along with some invariants or integrity constraints
on the state. At any given time, the state is determined
by the values of the objects in the database. A change
in the value of a database object changes the state.
The invariants are predicates defined over the objects

in the state. A database state is said to be consistent
if the set of values satisfies the given invariants.

A transaction is an operation on a database state.
Associated with each transaction is a set of precon-
ditions and a set of postconditions on the database
objects. A precondition limits the database states to
which a transaction can be applied. For example, a
Reserve transaction has a precondition that the ho
tel have at least one room available. A postcondition
constrains the possible database states after a trans-
action completes. For example, a Reserve transaction
has a postcondition that there be some room avail-
able before the reservation that is unavailable after the
reservation. Preconditions and postconditions must be
strong enough so that if a transaction executes on a
consistent state, the result is again a consistent state.

Instead of executing a transaction as an atomic unit,
we break a transaction into steps, and execute each
step as an atomic unit. The decomposition exploits the
semantic information associated with the transaction.
Although such a decomposition process is application
specific, we identify necessary properties that must be
satisfied by any valid decomposition.

Definition 1 [Transaction Decomposition] A de-
composition of a transaction Ti is a sequence of two
or more atomic steps < Z’,i, Ti2, . . . , Tin >. In place
of Ti, these steps are executed in the given order as
atomic operations on a database state.

To show that the decomposition has been performed
correctly, we must check that the steps, when executed
in the correct sequence and without interference from
other transactions, model the original transaction.

One possible composition requirement is that the
steps in a decomposition be treated exactly as trans-
actions in the original system, in that the integrity
constraints must hold after each step. As the decom-

220

Figure 2: A Naive Decomposition

position below demonstrates, such a requirement is too
strong in practice. After presenting a naive decomposi-
tion, we develop a more realistic composition property.

4.1 A Naive Decomposition of Reserve

Suppose we break up the Reserve transaction into
the following three steps. A naive specification of these
steps is given in figure 2.

Step 1: Increment the number of reserved rooms (res)

Step 2: Pick a room with status Available and change
it to Unavailable.

Step 3: Add the guest to the set of guests and assign
the room to the guest.

The decomposition in figure 2 has a serious flaw
in that none of the proposed steps, considered by it-
self, maintains the invariants in Hotel. For example,
NaiveRl does not maintain the invariant #RM = res

since NaiveRl increments the value of res, but does not
alter RM. Formally, the computed preconditions of all
three steps simplify to false. Execution of any of the
naive steps leaves the invariants unsatisfied, and other
transactions are then exposed to the inconsistent state.
For example, Report may produce an inconsistent out-
put if executed in a state outside the invariants.

4.2 Modification of Original Invariants

The previous example demonstrates that not all de-
compositions are acceptable. Specifically, a decompo-
sition may yield steps that leave the database in a state
in which the invariants are not satisfied. This possi-
bility is illustrated for the hotel example by the arrow
labeled NaiveRl in figure 3. Once the invariants are
violated, the formal basis for assessing the correctness
of subsequent behavior collapses.

As noted earlier, one way to solve this problem is to
allow only those decompositions that have the prop-
erty that partial executions leave the database state
consistent. Such an approach is exceedingly restric-
tive, and so we reject it. In the hotel example, the
informal description of the steps into which Reserve is
broken is perfectly satisfactory; what is unreasonable

is the insistence that the invariants of Hotel hold at
all intermediate steps. We need a formal model that
can accommodate the notion that some - but not all
- violations of the invariants are acceptable.

Figure 4 illustrates a model that allows inconsis-
tent states - as defined by the invariants - that are
nonetheless acceptable. The temporary inconsistency
introduced by Rl (specified below in figure 5) is al-
lowed, and steps of some other transactions, e.g. Re-
finedcancel, can tolerate the inconsistency introduced
by Rl, and so are allowed to proceed. The general
approach is to modify the original set of invariants
and decompose transactions such that each step sat-
isfies the new set of invariants. The model in figure
4 has many advantages, including greater concurrency
among steps. We formalize the model as follows.

Let I denote the original invariants. Let ST de-
note the set consisting of all consistent states; i.e.,
ST = {ST : ST satisfies I}. A transaction T, al-
ways operates on a consistent ST E ST. If STi de-
notes the state after the execution of Ti, then STi is
also in ST. However, when Ti is broken up into steps
< Til, Ti2,. . . j Tin >, each step Til is executed a~ an
atomic operation. If STij represents the partial exe-
cution of Ti, it is possible that after execution of step
T,, the,resulting database state ST, no longer satis-
fies the invariants I and, therefore, lies outside ST.

In our approach, we define a new set of invariants,
i, by relaxing the original invariants I. We decom-
pose each transaction such that execution of any step
results in a database state that satisfies i; if all the
steps of a transaction are executed serially on a con-
sistent initial state, the final state satisfies the original
set of invariants. Let @ = { S’T : ST satisfies 1).
The relationship between ST and fi is shown in fig-
ure 4. Thzinner circle denotes ST ancJ the outer circle
denotes ST (signifying that ST C ST). The ring de-
notes the set of all states that satisfy I but not I. The
important part about figure 4 is that the set of incon-
sistent but acceptable states is formally identified and
distinguished from the states that are unacceptable.
The advantage is that formal analysis can be used to
investigate activities in !%‘.

To reason about the correctness of decomposing

221

Set of all database states

Set of all consistent
database states but acceptable states

Figure 3: General classification of database states Figure 4: Database states as classified in our model

nexKance1

transactions into steps, and avoid the problems of a From an implementation perspective, the composi-
naive decomposition, we use auxiliary variables to gen- tion property is similar to requiring that the stepwise
eralize the invariants. Auxiliary variables are a stan- execution of the steps be view equivalent to that of
dard method of reasoning about concurrent executions the original transaction. A complicating factor is that
[OG76], and, in particular, have been applied to the the decomposition may introduce additional database
problem of semantic database concurrency control [GM83]. objects; the composition property does not limit the
Since our work focuses more on the decomposition pro-
cess, we emphasize the role of auxiliary variables.

In the hotel example, we generalize the invariant
#RM = res by introducing an auxiliary variable
to express the fact that number of guests with rooms
might differ from total reservations by the number of
reserve transactions in progress. We generalize the
invariant dom(ST D {Unavailable}) = ran RM by
introducing another auxiliary variable to express the
fact that the unavailable rooms might differ from the
rooms assigned to guests by those rooms selected by
reserve transactions in progress. Before we show these
changes to the example, we present two properties that
a decomposition must possess. We note that the aux-
iliary variables are introduced for purposes of analysis,
and are eliminated in our implementation.

4.3 Composition Property

With the notion of generalized invariants in place,
we can state the property relating steps in a decompo-
sition to the original transaction. We call this require-
ment the composi2ion property. Formally:

Composition Property Let T, denote the origi-
nal transaction and Til, T22, . . . , Tin denote the corre-
sponding steps. T, and its steps are related as follows:

Executing the steps T,l, Tz2, . . . , T,, serially on a
state satisfying the original invariants I, changes the
original database objects in the same way as executing
the original transaction Ti on the same state.

values of these objects. For example, compare Hotel
in figure 1 with ValidHotel in figure 5.

4.4 Sensitive Transaction Isolation

In our model, we allow steps or transactions to see
database states that do not satisfy the original invari-
ants (i.e., states in ST - ST). But some transactions
may output data to users; these transactions are re-
ferred to as sensitive transactions in [GM83]. We re-
quire sensitive transactions to appear to have gener-
ated outputs from a consistent state.

Sensitive Transaction Isolation Property All
output data produced by a sensitive transaction Ti
should have the appearance that it is based on a con-
sistent state in ST, even though Ti may be running
on a database state in s^T - ST.

In our model, we ensure the sensitive transaction
isolation property by construction. For each sensitive
transaction, we compute the subset of the original in-
tegrity constraints, I, relevant to the calculation of
any outputs. This subset of I is included as an ex-
plicit precondition for the sensitive transaction.

4.5 A Valid Decomposition

In this section, we provide a valid decomposition
of the hotel database. The problems of the naive de-
composition are avoided, and the properties identified
so far hold. After presenting the example, we derive
additional properties required of valid decompositions.

To make the invariants more general, we add aux-
iliary variables and define a new state ValidHotel. We

222

add the auxiliary variable tempreserved, which is a nat-
ural number, to denote the reservations that have been
partially processed. We also add the auxiliary variable
tempassigned, which is a set of rooms, to denote the
rooms that have been reserved but which have not yet
been assigned to guests. The invariants are modified
accordingly. The schema ValidHotel together with the
modified invariants is shown in figure 5.

Rl, R2 and R3 are the steps of the reserve transac-
tion. The steps satisfy the composition property. Al-
though Reserve is a sensitive transaction, it turns out
that no additional preconditions are needed to ensure
that the output r! reflects a consistent state. Space
limitations preclude proofs of these properties; see the
appendix of [AJR95].

The refined version of the single step Cancel trans-
action is nearly identical to the unrefined version, ex-
cept that the auxiliary variables tempassigned and tem-
preserved are not changed.

Report is a sensitive transaction, and we establish
the sensitive transaction isolation property by con-
struction. Informally, Report transaction outputs val-
ues of ST and RM. ST and RM involve the orig-
inal invariant dom(ST D {Unavailable}) = ran RM
which can be derived from dom(STD { Unavailable}) =
ran RM U tempassigned if the variable tempassigned
satisfies tempassigned = 0. The refined version of Re-
port is shown in figure 5.

4.6 Semantic Histories

Since we modify the invariants, several questions
must be answered. In particular, we would like to
know if and when the database state returns to a con-
sistent state. We will answer these questions after we
give some definitions.

Definition 2 [History] A history Hover a set of trans-
actions T = { Tl, T2, . . . , Tm} is a sequence of steps
< Ti,i,, Ti,j,, . . , Ti,j, >, 1 5 ii, . . . , i, 5 m, Ti,j, is
astepinT+,l<r<m,l<s<n,suchthat

1. for each T, E T, a step of T, either appears
exactly once in H or does not appear at all,

2. for any two steps Tij, Tlk of some Ti E T, Tij
precedes Tik in H if Tij precedes Tik in Ti, and

3. if Tzj E H, then Tlk E H for 1 5 k < j.

By Condition (l), we ensure that every step of a
transaction should occur at most once in a history.
Condition (2) ensures that the order of the steps in
a transaction is preserved in the history. Condition
(3) ensures that for every step in a history, all the
preceding steps in the corresponding transaction are
present in the history.

Example 1 < Rl, R3, Report, R2 > is not a history
as it violates conditions (2) and (3). < Rl, R2, R3, R2 >
is not a history since it violates condition (1). < Rl,
Report, R2, R3 > is a history. 0

To emphasize the fact that we view the database as
an abstract data type and transactions as operations
on this abstract data type, we define the term semantic
history to distinguish it from the term history used in
database literature (e.g., [BHG87]).

Definition 3 [Semantic History] A semantic his-
tory H is a history that is bound to

1. an initial state, and

2. the states resulting from the execution of each
step in H.

Definition 4 [Complete Execution] An execution
ofatransaction T,= < T;1,Ti2,...,Tin >inase-
mantic history His a complete execution if all n steps
of Ti appear in H.

Example 2 An execution of the reserve transaction
will be complete in a history H if all three steps Rl,
R2, and R3 of reserve appear in H. cl

Definition 5 [Partial Semantic History] A seman-
tic history H,, over T is a partial semantic history if
the execution of some transaction Ti is not complete
in HP.

Definition 6 [Complete Semantic History] A se-
mantic history?H over T is a complete semantic history
if the execution of each Ti in T is complete.

4.7 Consistent Execution Property

Similar to the consistency property for traditional
databases, we place the following requirement on se-
mantic histories:

Consistent Execution Property If we execute a
complete semantic history H on an initial state (i.e.,
the state prior to the execution of any step in H) that
satisfies the original invariants I, then the final state
(i.e., the state after the execution of the last step in
H) also satisfies the original invariants I.

Although consistent execution property is definitely
desirable, it is not enough because it does not capture
the cumulative effect of each transaction. For a seman-
tic history to be correct, we require that all interme-
diate states be in s^T, which is formalized in following
definitions. Note that the consistency of outputs is en-
sured by the sensitive transaction isolation property.

Definition 7 [Correct Partial Semantic History]
A partial semantic history HP is a correct partial se-
mantic history if

223

dom(ST D { Unavazlable}) = ran RM u tempasszgned

A ValidHotel; r! : Room

ST(r!) = Available
ST’ = ST $ {r! Y Unavailable}
tempass~gned’ = tempasszgned u {T!}
res’ = res; ternpreserved’ = ternpreserved
guest’ = guest; RM’ = RM I

g? E guest; res’ = res - 1
ST’ = ST $ {RM(g?) - Available}
RM’ = {g?} tl RM; guest’ = guest \ {g?}
ternpreserved’ = ternpreserved
tempassigned’ = tempassigned I

A ValidHotel

r-es < total; res’ = res + 1
ternpreserved’ = ternpreserved + 1
ST’ = ST; RM’ = RM; guest’ = guest
tempasszgned’ = tempassigned

A ValzdHotel; g? : Guest; r! : Room
I

ternpreserved > 0; r! E tempossigned; g? e guest
RM’ = RM u {g? c r!}; t-es’ = r-es

guest’ = guest u {g?}; ST’ = ST
tempassigned’ = tempassigned \ {r!}
ternpreserved’ = ternpreserved - 1 I

Figure 5: A Correct Decomposition for the Hotel Database

the initial state is in ST,

all states before a@ after the execution of each
step in HP are in ST, and

preconditions for each step are satisfied before it
is executed.

Definition 8 [Correct Complete Semantic His-
tory] A complete semantic history H is a correc2 com-
plete semantic history if

Consider step R3. The precondition g? 6 guest of R3
requires that John not have a existing reservation, but
it is possible that in the final state in H, John is an ele-
ment of guest. We may cancel John’s existing reserva-
tion, thereby allowing the reserve transaction to com-
plete. First, the precondition of Cancel, g.? E guest, is
guaranteed to hold if the precondition of R3 does not
hold. Second, the postcondition of Cancel establishes
the precondition of R3. Thus the reserve transaction
for John can complete.

1. H is a correct partial semantic history, and 4.9 Decomposition with Deadlock

2. the final state is in ST.

4.8 Complete Execution Property

The fourth property which we describe is the com-
plete execution property. When transactions have been
broken up into steps, the interleaving of steps may
lead to deadlock (i.e., a state from which we cannot
complete some partially executed transaction). The
complete execution property ensures that deadlock is
avoided; if a transaction has been partially executed,
then it can eventually complete.

In this section, we show that some otherwise plau-
sible decompositions do not satisfy the complete exe-
cution property, which is clearly undesirable. To illus-
trate the possibility, we modify the Hotel database as
shown in figure 6.

Complete Execution Property Every partial
correct semantic history HP is a prefix of some com-
plete correct semantic history.

In the example specification, the cancel transaction
is decomposed into steps Cl and C2. We introduce
the auxiliary variable tempcanceled which keeps count
of the cancel transactions that have completed step
Cl but not step C2. The invariant #RM = res -
tempreserved in the original ValidHotel is changed to
#RM = res - tempreserved + tempcanceled.

In the hotel database suppose we have a partial
semantic history H where H =< Rl, Report, R2 >.
where the reserve transaction executes with g? = John.

Moreover, we introduce a new structure clist which
keeps track of the guests whose cancellations are in
progress. The guest whose reservation is being can-
celed is added to the clist in step Cl and is removed
from the clist in step C2. We impose an additional
constraint that a room cannot be reserved for a guest

224

ADeadlockHotel res, ternpreserved, tempcanceled : N
RM : Guest - Room; ST : Room c Status I

guest, clist : P Guest; tempassrgned : F’Room

I #RM = res - ternpreserved + tempcanceled
dom(ST D { Unavaalable}) = ran RM U tempass%gned 1

clist’ = cl&u {g?}; ST’ = ST
tempcanceled’ = tempcanceled + 1
tempreserued’ = ternpreserved; guest’ = guest
tempassigned’ = tempasszgned; RM’ = RM I

-c2
ADeodlockHotel; g? : Guest

I

g? E guest; g? E clist; tempcanceled > 0
ST’ = ST $ {RM(g?) - Avaalable}
RM’ = {g?} 4 RM; guest’ = guest \ {g?}
cl&’ = clast \ (g?}; ?-es’ = 7-a
tempconceled’ = tempcanceled - 1
ternpreserved’ = ternpreserved
tempassigned’ = tempassigned

I

res < total; res’ = res + 1; ST’ = ST
ternpreserved’ = ternpreserved + 1; RM’ = RM
tempcanceled’ = tempcanceled; clist’ = clist
tempassagned’ = tempassigned; guest’ = guest I

tempassigned’ = tempassigned U {r!}
RM’ = RM; ternpreserved’ = ternpreserved
tempcanceled’ = tempcnnceled; cl&’ = clist

ADeadlockHotel; g? : Guest; c! : Room

ternpreserved > 0; r! $Z ran RM
g? 6 guest; g? @ clist
guest’ = guest u {g?}; cl&’ = clist
RM’ = RM u {g? c r!}; red = res

ternpreserved’ = ternpreserved - 1
tempasstgned’ = tempassigned \ {r!}
tempcanceled’ = tempconceled; ST’ = ST I

Figure 6: Example Specification Lacking Complete Execution Property

whose cancellation is in progress; note the precondi-
tion g? 6 clist in step Res3. The reserve transaction
is broken into steps Resl, Res2 and Res3, similar to
Rl, R2 and R3 of the ValidHotel specification.

Consider the partial history HP =< Cl, Resl, Res2 >
Let the reserve and cancel transactions in HP have the
same g. 7 as their input. Also assume that g? # guest.
We try to complete the reserve and cancel transac-
tions. Res3 cannot be executed because the precon-
dition .g? $ clist is not satisfied because step Cl has
inserted g? in clist. C2 cannot be executed because the
precondition g? E guest is not satisfied. It is possible
to execute any number of steps of other transactions,
but the reserve and cancel transactions in HP still can-
not complete.

The deadlock could be avoided by including the in-
variant clist c guest in DeadlockHotel. Omission of
this constraint allows the database to enter an unde-
sirable state where c? E clist A c? 6 guest, from which
neither Res3 nor C2 can complete.

5 Implementation

5.1 Successor Set Mechanism

Decomposing transactions into steps yields improved
performance, but the interleaving of these steps must
be constrained so as to avoid inconsistencies. In the
decomposition we have given so far, which is based
on generalizing invariants with auxiliary variables, the

interleaving is constrained by additional preconditions
on the auxiliary variables. Although the generalized
invariants facilitate analysis, it is expensive to imple-
ment the auxiliary variables and to check the addi-
tional preconditions.

To avoid implementing auxiliary variables and to
avoid checking additional preconditions, we propose
two mechanisms: a queuing mechanism to ensure that
steps of a transaction execute in order and a successor
set mechanism. The specification of a queuing mecha-
nism is straightforward and, is therefore omitted.

Although our successor set mechanism is somewhat
similar to the the notion of compatibility sets in [GM831
and breakpoint sets in [F089], the semantics of these
concepts are substantially different. Also, via specific
decomposition steps and corresp,onding proof obliga-
tions, we assist the specifier in verifying the correctness
of successor sets with respect to the original specifica-
tion; in [F089] and in [GM83], the burden of arguing
correctness rests entirely with the application devel-
oper.

Definition 9 [Successor Set] The successor set of a
step T;], denoted SC(Tij), is the set of steps that can
appear after step Tij and before step Ti(,+l) in any
correct semantic history.

Example 3 Successor set descriptions are obtained
by examining the preconditions with auxiliary vari-

225

ables. Some of these preconditions will always be sat-
isfied if the steps in each transaction are executed in
order; the queuing mechanism guarantees the satisfac-
tion of these preconditions. In the hotel example! the
only remaining precondition with auxiliary variables is
tempassigned = 0 in RefinedReport. We observe that
this precondition will always be satisfied as long as.
RefinedReport is not executed between steps R2 and
R3 of a reserve transaction. Thus we specify the suc-
cessor sets as follows.

2. S’s satisfies the complete execution property.

Note that since the correct semantic histories of Ss
might be a proper subset of those of Sr, the complete
execution property needs to be explicitly verified with
respect to Ss.

5.2 Two-Phase Locking Mechanism
SC(R1) = {Rl, R2, R3, RefinedCancel, RefinedReport}
SC(R2) = {Rl, R2, R3, RefinedCancel}

The successor set for Rl includes every other possi-
ble step; after an Rl any of another Rl, an R2 (of the
same or of a different reserve transaction), an R3 (of
a different reserve transaction), a RefinedCancel, or a
RefinedReport may execute. The successor set for R2
is more restrictive. RefinedReport $ SC(R2) means
that the RefinedReport step cannot execute after step
R2. In other words, RefinedReport is not allowed to
the see the inconsistencies with respect to the original
invariants that are introduced by step R2.

The notions of interleaving described in [FOB91 and
[GM831 are both implemented in a locking environ-
ment . Since our interleaving mechanism differs, we
sketch a two-phase locking implementation of our mech-
anism. Other implementations are possible, as are var-
ious optimizations.

Note that with the queuing mechanism and the suc-
cessor set description, the auxiliary variables them-
selves need not be implemented, and all constraints
on the auxiliary variables may be ignored. 0

Any complete semantic history generated using suc-

By treating steps as complete transactions, two-
phase locking can guarantee that any history is step-
wise conflict serializable (i.e., conflict serializable with
steps as primitive operations). However, stepwise se-
rializability is not sufficient, since some stepwise serial
histories violate the successor set description. Specif-
ically, step Tii of one transaction might serialize be-
tween steps Tkrn and Tk(m+i) of another transaction,
even if the Tij is not in the successor set of Tkm.

cessor sets must meet an additional requirement to
those given in Definition 8:

Consider every pair of steps Tt3 and T,(i+l)
of transaction T,. For every step Tkl of a
different transaction Tk appearing between
Ttj and Ti(j+l) (if any), Tkr E SC(T,).

To ensure that the successor set descriptions are
met, we introduce a control mechanism for dispatch-
ing of steps to the data manager, which is responsible
for implementing two-phase locking. We assume that
the data manager produces an explicit prefix of a se-
rialization order for all steps that commit.

226

Successor set descriptions are intended to allow the
removal of predicates that reference auxiliary variables,
and ultimately the variables themselves. Thus, with
respect to the specifications given with generalized in-
variants and auxiliary variables, not all successor set
descriptions are correct. Informally, a successor set is
correct with respect to a generalized invariant speci-
fication if any semantic history generated using suc-
cessor sets can also be generated by the generalized
invariant specification. Although desirable, the con-
verse property does not hold in general since first-order
logic preconditions have more expressive power than
the successor set mechanism. Formally, we describe
correct successor set descriptions with the valid SUC-

cessor set property:

Consider a set of steps under the control of the data
manager. Since the data manager may serialize these
steps in any order, we require that the concatenation
of the committed prefix of the serialization order and
any order of the steps in the data manager follow the
successor set rules. Additional steps can be submitted
to the data manager only if doing so maintains this
constraint. The constraint can be checked by ensuring
that each active step is an element of the intersection of
the successor sets of all other active steps and also of all
committed steps of incomplete transactions. Note that
completed transactions do not affect the interleaving
of active transactions.

6 Conclusion

In this paper, we have provided the database ap-
plication developer conceptual tools necessary to rea-
son about systems in which transactions that ideally
should be treated as atomic - for reasons of analysis

Definition 10 [Valid Successor Set Property] A
specification Sz that employs a successor set descrip-
tion is valid with respect to specification Si with gen-
eralized invariants if

- must instead be treated as a composition of steps -
for reasons of performance. The developer begins with
a specification produced via standard formal methods,
transforms some transactions in the specification into

1. Any correct semantic history generated by S2 is
also a correct semantic history generated by Sr.

steps, and assesses the properties of the resulting sys-
tem. The formal analysis at each step of this process
guarantees that the resulting system possesses the de-
sired properties.

As we have indicated, the syntactic aspect of the im-
plementation given in section 5.2 (i.e., stepwise conflict-
serializability via two-phase locking), is preliminary.
We anticipate developing a more efficient implementa-
tion, as was done in [GM831 and [F089]. We also must
address the problem of reliably transmitting parame-
ters between steps of a transaction, a problem that is
considered in [GMS94, WR92]. However, the semantic
aspects of our implementation have been thoroughly
addressed.

We can easily permit ad hoc transactions to be dy-
namically added in our model, although they will re-
quire some special intervention. An ad hoc transaction
could be executed as an atomic, sensitive transaction,
which means that all integrity constraints relevant to
the calculation of any output will have to be included
as explicit preconditions for the transaction (see sec-
tion 4.4). Alternatively, an ad hoc transaction could
be included at the successor set stage by simply ex-
cluding it from all successor set descriptions. Deletion
of a transaction in our model is somewhat problem-
atic since deletion may impact the complete execution
property, which ensures that any transactioh that has
been partially executed can eventually complete.

An important question is how well our model scales
to real-world applications. There are two major issues
- identification of necessary properties and verification
of these properties. The paper’s major contribution
is the identification of necessary properties, such as
composition, complete execution, valid successor set,
and so on. If the properties do not hold, the applica-
tion may behave unexpectedly and undesirably. The
demonstration of these properties is a separate issue.
Fortunately, demonstration methods covering a spec-
trum of formality are possible, depending on the appli-
cation. Less formal methods trade a degree of assur-
ance in return for feasibility and ease of use. Possible
methods are informal argument, inspection, paper and
pencil proof, and formal machine-level verification. In
this paper, we have used a specification language ap-
proach in which the analysis is carried out by hand.
Researchers are developing Z tools that can automate
some aspects of our analysis, although at present none
are industrial-grade tools.

References
[AAS93] D. Agrawal, A. El Abbadi, and Ambuj K. Singh. Con-

sistency and orderability: Semantics-based correctness
criteria for databases. ACM TODS, 18(3):460-486,
September 1993.

[AJRSS] P. Ammann, S. Jajodia, and I. Ray. Using formal meth-
ods to reason about semantics-based decomposition of

[BHG87]

[BR92]

[CR941

[DE901

[F089]

[GM831

[GMS94]

[Her871

[HW91]

[JM87]

[KS881

[KS941

[LMWF94]

[Lyn831

[OG76]

[SLJ88]

[Spi89]

[SSV92]

[Wei84]

[Weiss]

[WRSZ]

transactions. Technical Report ISSE-TR-95-106, ISSE
Dept., GMU. MS 4A4. Fairfax, VA 22180, 1995.

P.A. Bernstein, V. Hadzilacos, and N. Goodman. Con-
currency Control and Recovery in Database Systems.
Addison-Wesley, Reading, MA, 1987.

B. R. Badrinath and Krithi Ramamritham. Semantics-
based concurrency control: Beyond commutativity.
ACM TODS, 17(1):163-199, March 1992.

P. K. Chrysanthis and K. Ramamritham. Synthesis
of extended transaction models using ACTA. ACM
TODS, 19(3):450-491, September 1994.

W. Du and A.K. Elmagarmid. Quasi serializability: A
correctness criterion for global concurrency control in

interbase. In Proc. 16th VLDB, pages 347-355, 1990.

A. A. Farrag and M. T. Ozsu. Using semantic knowledge
of transactions to increase concurrency. ACM TODS,
14(4):503-525, December 1989.

H. Garcia-Molina. Using semantic knowledge for trans-
action processing in a distributed database. ACM
TODS, 8(2):186-213, June 1983.

H. Garcia-Molina and Kenneth Salem. Services for a
workflow management system. Bulletin of the IEEE
Computer Society Technrcal Committee on Data En-
gwzeering, 17(1):40-44, March 1994.

M. Heriihy. Extending multiversion time-stamping pro-
tocols to exploit type information. IEEE Transactions
on Computers, 36(4):443-448, April 1987.

M. P. Herlihy and W. E. Weihl. Hybrid concurrency
control for abstract data types. Journal of Computer
and System Scrences, 43(1):25-61, August 1991.

S. Jajodia and C. Meadows. Managing a replicated file
in an unreliable network. In Proceedings of 3rd IEEE
International Conference on Data Engine&kg, pages
396-404, Los Angeles, CA, February 1987.

H. F. Korth and G. D. Speegle. Formal model of correct-
ness without serializability. In Proceedings oj ACM-
SIGMOD International Conference on Management
of Data, pages 379-386, June 1988.

H. F. Korth and G. Speegle. Formal aspects of con-
currency control in long-duration transaction systems
using the nt/pv model. ACM TODS, 19(3):492-535,
September 1994.

N. Lynch, M. Merritt, W. Weihl, and A. Fekete. Atomic
Transactions. Morgan Kaufmann Publishers, San Ma-
tea, CA, 1994.

Nancy A. Lynch. Multilevel atomicity-A new correct-
ness criterion for database concurrency control. ACM
TODS, 8(4):484-502, December 1983.

S. Owicki and D. Gries. Verifying properties of parallel
programs: An axiomatic approach. Communrcations
of the ACM, 19(5):279-285, May 1976.

L. Sha, J. P. Lehoczky, and E.D. Jensen. Modular con-
currency control and failure recovery. IEEE Transoc-
tions on Computers, 37(2):146-159, February 1988.

J.M. Spivey. The Z Notation: A Reference Manual.
Prentice-Hall, New York, 1989.

Dennis Shasha, Eric Simon, and Patrick Valduriea. Sim-
ple rational guidance for chopping up transactions. In
Proceedings ACM SIGMOD International Conference
on Management of Data, pages 298-307, San Diego,
CA, June 1992.

William E. Weihl. Speci@at:on and Implementation
of Atomic Data Types. PhD thesis, Massachusetts In-
stitute of Technology, Cambridge, MA, 1984.

W.E. Weihl. Commutativity-based concurrency control
for abstract data types. IEEE Transactions on Com-
puters, 37(12):1488-1505, December 1988.

Helmut Wachter and Andreas Reuter. The contract
model. In Ahmed K. Elmagarmid, editor, Database
Transaction Models for Advanced Applications, pages
219-263. Morgan Kauffman, 1992.

227

