
Schema and Database Evolution in the 02 Object
Database System

Fabrizio Ferrandina
Thorsten Meyer
Roberto Zicari

Guy Ferran
JoElle Madec

J . W. Goet he-Universit& 02 Technology
FB 20, Robert Mayer Stra8e 11-15 7, Rue du Part de Clagny

60054 Frankfurt am Main, Germany 78000 Versailles, France

Abstract

When the schema of an object-oriented database sys-
tem is modified, the database needs to be changed in
such a way that the schema and the database remain
consistent with each other. This paper describes the
algorithm implemented in the new forthcoming release
of the 02 object database for automatically bringing the
database to a consistent state after a schema update has
been performed. The algorithm, which uses a deferred
strategy to update the database, is a revised and extended
version of the screening algorithm first sketched in [7].

1 Introduction

When the schema of an object-oriented database system
is modified, the database needs to be changed in such a
way that the schema and the database remain consistent
with each other. The decision how to change the database
is mainly an application-specific issue. This paper focuses
on two aspects of the new release of the 02 system. The
first one is how the designer specifies the way objects
in the database have to be updated as a consequence of
a (or a series of) schema modification(s). The second
aspect covers the specifications of the data structures and
the algorithm used by 02 for automatically bringing the

Pew&&on to copy without fee all OT part of this material is gpanted
provided that the copies are not made OP distkbuted for direct com-
mercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is
by permission of the Very Large Data Base Endowment. To copy
otherwise, OT to republish, requires a fee and/or special permission
from the Endowment.

Proceedings of the 21th VLDB Conference
Ziirich, Switzerland, 1995

database to a consistent state after a schema update has
been performed.

The algorithm uses a deferred strategy to update the
database, and it is a revised and extended version of the
screening algorithm first sketched in [7].

Choosing to implement database updates ‘as deferred
updates poses some interesting implementation problems
when ensuring the correctness of the implementation as
it will be explained in the rest of the paper.

1.1 The 02 Database System and How to
Change its Schema

The main structure of an 02 schema consists of a set of
classes related by inheritance and/or composition links.
An 02 schema contains the definition of types, functions,
and applications, while an 02 base groups together ob-
jects and values which are created to conform to a schema.

An object has an identity, a value, and a behavior de-
fined with its methods. Objects are class instances and
values are type instances. A given object can be shared
(referenced) by several entities (an entity is either an ob-
ject or a value). By default, objects and values created
during program execution are not persistent. To become
persistent, an entity must be directly or indirectly at-
tached to a name, i.e., a persistent root belonging to the
schema.

A class definition consists of a type definition and a
set of methods. A type is defined recursively from atomic
types (integer, boolean, char, string, real, . ..). classes, and
constructors (tuple, set, list, . ..). Methods are coded us-
ing the 0#2 or the C++ language which allows to express
manipulations on persistent as well as non-persistent en-
tities.

In 02, encapsulation is provided at different levels.
First, properties (attributes and methods) are private to
their class by default. Programs are encapsulated into

170

applications. Finally, encapsulation is provided at the
schema level as elements of a schema cannot be used
by another schema. In order to increase reusability,
02 provides an import/export mechanism.

Schema modifications can be performed in 02 either
in an incremental way using specific primitives (e.g.
by adding or deleting attributes in a class) or by re-
defining the structure of single classes as a whole [12].
The 02 schema manipulation primitives available in the
02 product are briefly presented below [12, 191:

1. creation of a new class

2. modification of an existing class

3. deletion of an existing class

4. renaming of an existing class

5. creation of an inheritance link between two classes

6. deletion of an inheritance link between two classes

7. creation of a new attribute

8. modification of an existing attribute

9. deletion of an existing attribute

10. renaming of an existing attribute

No matter how a class is modified, 02 performs only
those schema modifications that keeps the schema consis-
tent [5].

The rest of the paper is structured as follows: in Sec-
tion 2 we present from a user perspective how to define
and use conversion functions as a means to instruct the
system on how to change objects in the database as a
consequence of a schema change. In addition to updating
objects as a consequence of a schema change, 02 allows
to modify the structure of individual objects by mov-
ing them from one class to another independently from
any schema change. This is described in Section 2.3 as
object migration. Implementation details on conversion
functions are given in Section 3 and 4. In particular,
in Section 3.1 we illustrate the problems of implement-
ing conversion functions, and in Section 3.2 we present
the data structures used in the implementation. The de-
tailed algorithm for implementing conversion functions as
deferred database updates is presented in Section 4. In
Section 5 we review relevant related work and compare
our approach with existing ones. Finally, in Section 6, we
present the conclusions.

2 Database Updates in 02

In this section we describe the functionalities that have
been added in the new release of 02 for automatically
updating the database after a schema has been modified.

The semantics of updating the database after a schema
change depends on the application(s) which use(s) the
schema. The basic mechanism to update the database

is very simple: the designer has the possibility to pro-
gram so called conversion functions which are associated
to modified classes in the schema and define how objects
have to be restructured. If no conversion functions are
provided by the designer, the system provides default con-
version functions where no programming is required. In-
stead, default transformation rules are applied to objects
of modified classes.

Similar concepts to user-defined database conversion
functions can be found in GemStone[3], ObjectStore[l3],
OTGen[lO], whereby Versant [18] and Itasca [9] offer fea-
tures that are similar to default conversion functions only.
The definition and modality of use of conversion functions
is explained in Sections 2.1 and 2.2.

The main design issue when implementing database
(user-defined or default) conversion functions, is &en
such functions have to be executed, that is when the
database has to be brought up to a consistent state wrt.
the new schema.

We had two possible strategies to choose [6, 71: an im-
mediate strategy, where objects in the database are up-
dated in any case as soon as the schema modification is
performed, and a deferred strategy, where objects are up-
dated only when they are actually used. The two above
strategies have advantages and disadvantages [6, 71; in
O2 we have supported both strategies and gave the de-
signer the possibility to select the one which is most ap-
propriate for his/her application domains. The imple-
mentation details are presented in Sections 3 and 4.

2.1 Default Database Transformations

In this section we describe what we called default data-
base conversion functions. If no user-defined conversion
functions are specified (see Section 2.2), the system trans-
forms the objects in the database using default transfor-
mation rules. When a class in the schema is modified, the
system compares each attribute of the class before and af-
ter the modification of the class and transforms the values
of the object attributes according to the default rules as
followsi :

An attribute defined in a class before its modification
and non present in the class after the modification
(i.e. a deleted attribute) is ignored.

An attribute which is not present in a class before its
modification and present after its modification (i.e. a
new attribute) is initialized with default initial values
(i.e. 0 for an integer attribute, nil for an attribute
referring to a class, etc.).

An attribute present in both the class before the
change and after the change is transformed according
to the rules in Table 1.

‘Note that, in 02, after a class modification has been performed,
two attributes are considered the same attribute if they have the
same name.

171

set

lUPlC3

class-name

In the table, attribute initial type refers to the type of an
attribute before the class modification, whereas attribute
final type refers to the type of the same attribute after the
modification of the class. If, for instance, an attribute of
a class is declared of type real (the attribute initial type),
and after a schema modification its type is transformed to
integer (the attribute final type), a C cast is applied which
truncates the real value. For those attributes where an
empty entry appears in Table 1, the system initial value
for the final type is used.

Let us consider a simple example, the schema
Car-showroom which we suppose has been defined at time

to:

schema creation at time t0:

create schema Car-showroom;

class Vendor type tuple (name: string,
address: tuple (city : string,

street : string,
number : real),

sold-cars: list(Car))
end;

class Car type tuple (name: string,
price : real,
horse-power : integer)

end;

Assume we only have one object in the database for
class Vendor, with values: name = “Volkswagen”; ad-
dress = tuple(city: “Frankfurt”, street: “Goethe”, num-
ber: 5.0); sold-cars = list([l]: Golfid, [2]: Passatid, [3]:
Corradoid); where Golfid, Passatid, Corradoid are ref-
erences to Car objects.

Suppose at time tl the class Vendor in the schema is
modified as follows:

initialize the modified attribute
with the system initial value of
the attribute final type

the value remains
unchanged

the transformation is done using
a C cast or a C library function

the transformation depends on
the domains of the constructors
and is obtained recursively

the fields of the tuple are trans-
formed individually in the same
way as attributes of a class

if the final type is a super&w of
the initial type the value remains
unaltered; otherwise nil

Table 1: Attribute default conversion.

In the modified class Vendor, the type of the attribute
address is now a tuple where the tuple field city has been
deleted, and the tuple field number has become an integer
instead of a real. Moreover, the attribute sold-cars is now
a set instead of a list.

Since no user-defined conversion function is associ-
ated to the modified class Vendor, a default conversion
function is applied. The object of class Vendor in the
database is then automatically converted as follows: the
attribute name keeps the value “Volkswagen”, the tu-
ple field number of attribute address is transformed from
5.0 to 5, and the attribute value of sold-cars becomes
the set(Golfid, Passatid, Corradoid), i.e. without order
among values.

2.2 User-Defined Conversion Functions in 02

The schema designer can override the default database
transformations by explicitly associating user-defined
conversion functions to the class just after its change in
the schema.

In this case, the update to a class in the schema is per-
formed in two phases. The first phase is the update to the
class, i.e. using schema updates primitives. This phase is
called class modification phase. The second phase is when
user-defined conversion function(s) are associated, i.e. de-
fined and compiled, to the modified class(es). This second

172

phase is called conversion functions definition phase.

We show the definition of user-defined conversion func-
tions using the previous example. Assume at time
t2 the schema designer decides to delete the attribute
horse-power in class Car, but to retain the information
by adding the attribute kW in class Car instead. This
can be done as follows:

schema modification at time t2:

begin modification in class Car;
delete attribute horse-power;
create attribute kW : integer;
conversion functions;
conversion function mod_kW (old : tuple(name:string, price:real,

horse-power:real)) in class Car
1

1;
self->kW = round(old.horse-power I 1.36);

end modification;

Two schema update primitives for class Car are
used after the command begin modif ication in class
Car. The command conversion function associates the
user-defined conversion function mod&W to class Car af-
ter the change. In the body of the conversion function,
“-9 returns the attribute value of an object. The input
parameter old of the conversion function refers to a tuple
value conforming to the type of class Car before the mod-
ification has been performed. The variable self refers
to an object of class Car after its modification. In the
conversion function the transformation is not defined for
all the attributes of class Car but only for the attribute
kW. This is because a default transformation is executed
in any case on objects before a user-defined conversion
function is executed. This simplifies the writing of user-
defined conversion functions. In the example, there is no
need to write trivial transformations such as:

self->name = old.name,
self->price = old.price.

These transformations are performed by the default con-
versions.

The command conversion functions is optional. If
not present, the system transforms the database us-
ing default transformations instead. The command end
modif ication specifies the end of the class(es) transfor-
mation. Conversion functions are logically executed at
the end of a modification block. The real execution time
of the conversion functions depends on the implementa-
tion strategy chosen as it will be described in Sections 3
and 4.

Suppose now the attribute sales is added to the class
Vendor at time ts (see schema modification at time t3

shown in the next column).
At time ts class Vendor has been modified as a whole

with the primitive modify class instead of using the
primitive create attribute sales in class Vendor.
The user-defined conversion function associated to class

schema modification at time t3:

begin modification in class Vendor;
modify class Vendor type tuple (name: string,

address: tuple (street : string,
number : integer),

sold-cars: set(Car),
sales : real)

end;
conversion functions;
conversion function compute-sales (old : tuple(

name:string,
address: tuple (street : string, number : interger),
sold-cars: set(Car))) in class Vendor

{
02 Car c;
for (c in oldsold-cars) {

self-xsales += c->price;]
1;
end modification;

Vendor stores in sales the sales turnover for the vendor.
We should note in the example the difference between

the conversion function mod-kW associated to Car at
time tz and the conversion function compute-sales asso-
ciated to Vendor at time t3 . For the first one the value
of the “updated” object is computed using only values
locally defined to the object. The second conversion func-
tion instead uses the value of objects belonging to another
class in the schema.

In [7] we have classified the above conversion functions
as follows:

l Simple conversion functions, where the object trans-
formation is performed using only the local infor-
mation of the object being accessed (the conversion
function mod-k W defined at time tz).

l Complex conversion functions, where the object
transformation is performed using objects of the
database other than the current object being ac-
cessed (the conversion function compute-sales de-
fined at time t3).

This is an important distinction when implementing
conversion functions as we will see in Sections 3 and 4.

Suppose we make a final schema modification at time
t4 by deleting the attribute price in class Car:

schema modification at time tl:

delete attribute price in class Car;

At time t4 we did not associate any user-defined con-
version function to class Car. The default conversion is
then used for the transformation of the objects.

In Figure 1 we show a graphical representation of
the schema modifications performed on the two classes.
Classes connected by a solid arrow mean a modification
has been performed on them, the label on the arrow in-
dicate the presence of default or user-defined conversion
functions.

173

I to ! tl !t2 / t3

Figure 1: Schema evolution until time t4.

j 14 time

The designer in 02 has the possibility to specify the
execution time for conversion functions. In particular,
02 offers a command to execute conversion functions im-
mediately, as follows:

transform database;
After the database transformation is completed, all ob-

jects in the database conform to the last schema defini-
tion. The default implementation modality for the exe-
cution of conversion functions is the deferred approach as
described in Section 4.

So far, we have seen how objects of a class are updated
as a consequence of a class modification using conversion
functions. It is also possible in 02 to update objects by
migrating them to other classes in the schema. This is
addressed in the next section.

2.3 User-Defined Object Migration Functions

Object migration refers to the possibility for an individual
object to change its class during its lifetime. 02 offers
two ways to migrate objects, i) either a single object can
change its class, or ii) an entire class extension (or a part
of it) can be migrated to another class.

We start looking at the first possibility and then we
consider class extensions.

We have defined a system method migrate0 associ-
ated to the root class Object which, when invoked for a
particular object, allows the object to migrate from its
class to any of its subclasses (if any). In the method
migrate () , the name of the target subclass must be given
as an input parameter. We considered migration of ob-
jects to subclasses only, to avoid the possibility of run-
time type errors if objects were allowed to migrate freely
to any class in the schema.

Notwithstanding this limitation, this feature is partic-
ularly useful especially when: i) .a new class is added to
the schema and the existing objects of the class’ super-
classes need to be moved “down” to the new class, ii) a
class is deleted and objects of that class must be retained
by migrating them to subclasses.

The other possibility is to migrate an entire class ex-
tension (or a part of it) to other subclasses by means of
a so called migration function.

The use of migration functions is explained using our
example. Suppose at time t5 the designer creates a new
class Sport-car in the Car-showroom schema. After the
creation of the class, he/she wants to migrate powerful
cars, i.e. those cars with power kW >= 100, from class
Cur to class Sport-car. This can be achieved as follows:

L

schema modification at time t5:

class Sport-car inherit Car
type tuple (speed : integer)

end;

migration function migrate-cars in class Car
I

if (self->kW >= 100)
self->migrate(“Sport-car”);

The migration function migrate-cars is associated to
class Car. In the body of the migration function the sys-
tem method migrate is called to migrate each object sat-
isfying the selection condition to the subclasses Sport-car.

The example shows the importance of having object
migration when new classes are added to the schema. Let
us consider the case of the deletion of a class. Suppose
the designer wants to delete class Car, but retain some
of the objects in the database by moving them to an-
other class. By creating class Sport-car and migrating
Cur objects to it, if the designer deleted class Cur from
the schema, he/she would lose only part of the objects,
namely the ones whose attribute kW is lower than 100.
Without migration there had been no chance to retain
any object of class Car.

As in the case of conversion functions, migration func-
tions can be executed either with an immediate or a
deferred modality. By default, 02 uses a deferred ap-
proach for the migration of objects. It is however possible
to migrate objects immediately by explicitly calling the
transform database schema command. More on this in
Sections 3 and 4.

174

3 The Implementation of Database Up-
dates in O2

02 supports both the immediate and the deferred
database transformation. However, the basic principle
we followed whem we implemented the mechanism for
database updates is the following: whatever transforma-
tion strategy is chosen for implementing a database trans-
formation, there should be no difference for the schema
designer as far as the result of the execution of the con-
version functions is concerned [7]. From the above prin-
ciple we derived the notion of correctness of a deferred
database transformation, as first introduced in [7] and
formally defined in [6]. A correct implementation of a
deferred database transformation satisfies the following
criteria:

The result of a database transformation implemented
with a deferred modality is the same as if the transforma-
tion were implemented with an immediate modality.

The formal proof of correctness for the algorithm we
will present in Section 4 is given in [6].

3.1 Deferred vs. Immediate Updates

In this section we present the data structures used
in 02 for supporting immediate and deferred database
transformations. Since in 02 the immediate database
transformation is implemented using the deferred one, in
the rest of the section we will mainly concentrate on the
implementation details for deferred database transforma-
tions.

In Section 2.2 we have made the distinction between
simple and complex conversion functions. The reasons for
that is that implementing complex conversion functions
for a deferred database transformation requires special
care [7]. To explain why, consider in our usual example
two objects v of class Vendor and c of class Car con-
forming to the respective class definitions at time t2 (see
Figure 1). Object v refers to c through the attribute
sold-cars. If object c were accessed by an application at
time t,, with t4 < t,, the system would transform the
object to conform to its last class definition deleting the
attribute price from it. If, at time tb, with t, < tar ob-
ject v is accessed, v will be restructured as well and its
new value will be computed by applying the conversion
function compute-sales.

The problem is that compute-sales accesses object c
via the attribute price. But c now does not have any-
more all the information required for the transformation
of v because it has lost the attribute price when it was
transformed at time t,. In this special case, the execution
of compute-sales would result in a run-time type error. In
general, using default values as described in Section 2.1
for the restructured object v does not solve the problem,
as it could result in an incorrect database transformation.

Let us consider again the database at time t2 and as-
sume the immediate database transformation had been
used to transform objects v and c. If at time t3 the system
had transformed the object v immediately by executing
the conversion function compute-sales, no run-time type
error would have occurred because at time t3 the object
c accessed by the conversion function would have had the
attribute price. The deletion of price at time t4 would
therefore not affect the execution of previously defined
conversion functions. This is the correct transformation
of the database.

In Section 3.2 we will present in detail the data struc-
tures and in Section 4 the algorithm used in 02 for im-
plementing simple and complex conversion functions us-
ing deferred database updates which guarantees a correct
database transformation. The basic idea is to physically
retain the deleted or the modified information in the ob-
ject in a so called screened part. This implementation
strategy is commonly known with the name of sween-
ing [I]. Applications running against the database do not
have access to the screened information, but conversion
functions, instead, have access to the screened informa-
tion in order to perform a correct database transforma-
tion.

When some information is deleted and/or modified in
the schema, it is only screened out, but not physically
deleted in the database. When, for instance, a deletion
of an attribute (or a change in the type which would corre-
spond to a deletion and an addition of the same attribute)
is performed, the update is not physically executed on
the object structure but simply a different representation
of the object is presented to applications. Using screen-
ing, 02 manages the different representations of an ob-
ject, one representation visible to applications and one
representation visible to conversion functions only.

3.2 Data Structures

The physical format of an object, i.e. as it is internally
stored in the database, contains two parts: the object
header and the object value, the value itself being com-
posed of an existing value and a screened value (see Fig-
ure 2).

cls: M-class tid: integer existing value screened value

object header object value

Figure 2: Structure of an 02 object.

The object value part is used for storing values that
reside within the object, such as attribute values. The
object header contains, among other info, the identifier
of the object’s class descriptor (~1s) and the type entry
identifier (t id) according to which format the object itself
is stored. Each of these two can be viewed as somewhat
special fields in the physical format of the object.

The main principle in the implementation of deferred

175

updates is to keep track of the evolution of the schema.
The O2 schema manager manages a persistent symbol
table containing schema components such as class defi-
nitions, type definitions, etc..

A simple integer variable called schema state is asso-
ciated to each schema. The schema state is incremented
every time a class in the schema undergoes a change.

All components of a schema are internally maintained
as meta-objects. Each class in the schema is internally
represented by a class descriptor which can be considered
as an instance of the 02 class Meta-class illustrated in
Figure 3.

L :lass Meta-class type tuple (

sch : integer, /’ schema-id where the class is defined ‘I
name : string, /’ name of the class ‘I
visib : char, I’ access mode = public, read, private ‘/
type : Meta-type, I’ type of the class ‘/
properties : list (Meta-property), I’ attributes and methods ‘I
parents : list (Meta-class), r direct superclasses ‘I
children : list (Meta-class), I’ all subclasses ‘/
ancestors : list (Meta-class). I’ all superclasses ‘I
ispartof : list (Meta-class), I’ classes with a component of this class ’

cur-tid : integer, I’ current tid of this class ‘I
history : list (Meta-history-entry), I’ type history of this class */

eno;

I

J

Figure 3: The Meta-class definition for describing classes
in the schema.

The class Meta-class contains all the information re-
lated to a class, i.e. its name, its type, its visibility (pri-
vate vs. public), the list of its parents classes, etc.. In
particular, to implement a deferred database transforma-
tion, each class descriptor contains a field cur-tid which
is used for testing whether an object in the database con-
forms to the last class definition in the schema or not.
Another important information in the class descriptor is
stored in the field history, the list of history entry de-
scriptors containing the information of the class as it was
defined “in the past”.

A history entry descriptor can be considered as an in-
stance of the class Meta-history-entry (see Figure 4) and
contains the following fields:

l the type entry identifier tid, a simple integer num-
ber, which helps in identifying to which entry an ob-
ject of the class belongs to. When a class undergoes
a change, the schema state is assigned to the tid,

l the type type which corresponds to the type of the
class visible by applications,

l the type ex-type which corresponds to the extended
type of the class including the screened information,

l the entry struct which contains a list of property
entry descriptors,

l a field cf which contains a reference to a conversion
function descriptor that is used to convert objects to

conform to a subsequent entry in the history,

l a field mf which contains a reference to a migration
function desCTiptOT that is used to migrate objects
to conform to the appropriate entry in the history of
a subclass’.

A property entry descriptor belonging to the struct
list of a history entry descriptor can be considered as an
instance of the class Meta-property-entry (see Figure 4).
It contains the following information:

l the pid of the attribute; the reason for using such an
identification is that the external name of a property
can be changed without affecting the identity of a

prop W,

l the schstate, i.e the state of the schema when the
attribute has been created. The information (pid,
sch-state) identifies an attribute in a non ambiguous
way.

l the off set of the attribute, i.e. the physical position
of the attribute in the object itself,

l the type of the attribute,

l the status of an attribute indicating whether the
given attribute can be accessed by both application
and conversion functions (in this case the value is set
to ecisting), or by conversion functions only (in this
case the value is set, to screened).

The last two components of a history entry descrip-
tor, cf and mf, are the descriptors of a conversion and a
migration function which can be considered as instances
of the classes Meta-conversion and Meta-migration (see
Figure 4). In a conversion function descriptor, the field
next-state indicates to which entry in the class history
the conversion function stored as a binary file in the field
function is supposed to transform objects. The same ap-
plies for a migration function descriptor. The schstate
field indicates the state of the schema when the migration
function has been associated to the class. The schstate
information is used by the system to determine to which
history entry of a subclass an object has to be migrated’.

Recall the example we presented in Section 2. Figure 5
illustrates the class descriptor of Car after the migration
function migrate-cars has been defined at time t5.

The field cur-tid of the class is equal to 5 and corre-
sponds to the schema state just after the migration func-
tion migrate-cars has been associated to the class. The
field history points to a list of four history entry descrip-
tors, whereby the one with tid = 0 identifies the original
class information when it has been created at time to.
The following history entry descriptors identify the infor-
mation of the class after each class modification or after

% Section 4 we describe how 02 infers the history entry in the
target class when executing a migration function.

176

class Meta-history-entry type tuple (class Meta-property-entry type tuple (
tid : integer,

class Meta-conversion type tuple (class M&-migration type tuple (
pid : integer, next-state : integer,

type : Me&type, sch-state : integer, function
sch-state : integer,

: Meta-blnay) function :
ex-type : Meta-type, offset : integer,

M&-binary)
end;

struct : list(Meta-property-entry),
end:

type
cf : Meta_conversion, status

: Me&-type,
: (existing, screened))

mf : Meta-migration) end;
end;

Figure 4: The meta-definitions for the different descriptors in the class history.
class descripror property entry descriptors

history entry descriptors

migration function descriptor ~onvwsion ‘““dim descrl,,to,

Sch-stat*
,““di”

9

next_s,ate
f”“cmn

F
RligratCXVS rm~kv/

Figure 5: Descriptor of class Cur along with its history.

the association of a migration function to the class. For
reasons of readability, we show only the struct informa-
tion related to the first history entry descriptor whose tid
= 5. The field struct points to the list of property entry
descriptors belonging to the class. The first two property
entry descriptors refer to attributes in the class which
are visible by application. This can be recognized by the
value “existing” in the status field. The last two prop-
erty entry descriptors refer to screened attributes visible
by conversion functions only. It is important to note that
screened attributes are physically stored always after vis-
ible attributes, i.e. their offset in the chunk of memory
representing an object is always greater than the one of
a visible attribute.

The conversion function descriptor for mod-kW and
the migration function descriptor for migrate-cars are as-
sociated to the appropriate history entry descriptors.

4 The Deferred Database Update Algo-
rithm

We first introduce some definitions. The most recent en-
try in a class history is called current history entry. An
entry in a class history is called input relevant if this entry
holds a conversion or a migration function. The current
history entry is defined as input relevant as well. From
now on, the class descriptor of a class X is referred to as
X-desc.

When a new class X is created, the schema manager
of 02 instantiates a class descriptor with the appropriate
information, i.e. the name of the class, the list of parent
and ancestor classes in the hierarchy, etc.. In particular,
the field cur-tid is initialized with the schema state as-
sociated to the schema and a first entry is created in the

history of the class.
After a modification is performed on a class X, the

schema state is incremented and a new entry in the class
history is created for the modified class X and for all of
its subclasses which have effectively undergone a modi-
fication. The newly created entry becomes the current
history entry and its tid is initialized with the schema
state. For those subclasses where no modification have
taken place (e.g. because an attribute has been added to
X which is already present in its subclasses), no new en-
try in the class history is created. If a conversion function
is associated to the class modification, the schema man-
ager instantiates and initializes a conversion function de-
scriptor and assigns it to the cf field of the history ent,ry
descriptor which chronologically precedes the current his-
tory entry. The function field of the conversion function
descriptor contains a pointer to the binary code of the
conversion function. The field next-state contains the
tid of the current history entry.

The same happens for a migration function. When a
migration function is associated to a class X, the schema
state is incremented and a new entry in the history of X
is created. The newly created entry becomes the current
history entry and its tid is initialized with the schema
state. The schema manager instantiates and initializes
a migration function descriptor which is then assigned
to the mf field of the history entry descriptor which
chronologically precedes the current history entry. The
function field of the migration function descriptor con-
tains a pointer to the binary code of the migration func-
tion. The field schstate contains the tid of the current
history entry.

4.1 Basic Deferred Update Algorithm

The algorithm used by 0s when an object o of class X
is accessed by an application is the Deferred Update
Algorithm shown in Figure 6.

The algorithm first checks whether an object conforms
to its last class definition in the schema. If yes, the object
can be used by the application which accessed it without
being first transformed. If not, 0s identifies the appro-
priate history entry descriptor in the history of class X to
which object o conforms to. Three alternatives are then
possible: i) the history entry descriptor contains a migra-
tion function which implies a possible migration of o to a
subclass of X, ii) the history entry descriptor contains a
conversion function which implies that o must be restruc-

177

,

Deferred Update Algorithm

while (o-Aid C> o-As-Aid) do I’ 0 is not in current format ‘/
for (X-his-desc in o-As->history where X-his-desc-Aid == o-Aid:

(break]; I’ find the history entry descriptor to which o conforms ‘I

if (X-his-desc->mf <> nil) then I’ a migration function has to be applied *I
apply the migration function X-his-desc->mf->function;

if (object o has not been migrated) then
modify the tid of the object to correspond to the tid
belonging to the chronologically following entry;

endif;
else I’ a default or user-defined conversion function has to be applied ‘,

copy the value of o in a variable old; I’ old is used by the cf’s ‘I
if (X-his-desc->cf <> nil) then I’ an user-defined cf has to be applied “1

restructure o to conform to the entry in the history whose
tid corresponds to X-his-desc->cf.next-state;
apply the default conversion function;
apply the conversion function X-his-desc->cf->function;
o-Aid = X-his-desc->cf.ne&state;

else I’ a default cf has to be applied ‘I
restructure o to conform to the next input relevant entry in
the class history; I” entry with a migr. or user-def. conv. function l /
apply the default conversion function;
update the tid to correspond to the one found in the
next input relevant entry;

endif;
endif;

endwhile;

Figure 6: The deferred update algorithm.

tured to conform to a more recent entry in the history of
class X, iii) the history entry contains neither a conversion
nor a migration function; object o must be restructured
and reinitialized using a default conversion function to
conform to the next input relevant entry in the history.
Note that, due to how class descriptors are maintained
by 02, no entry will ever contain both a conversion and
a migration function.

4.2 Implementing Complex Conversion Func-
tions

The deferred update algorithm presented before works
fine if only simple conversion functions have been defined
when evolving the schema. In case of complex conversion
functions, instead, the transformation of objects accessed
by complex conversion functions must be stopped before
reaching the state corresponding to the current history
entry to avoid database inconsistencies or run-time type
errors [7].

Suppose that a complex conversion function cf associ-
ated to a history entry with t id = i of a class X trans-
forms objects of that class to conform to a history entry
with tid = j, where j > i. If other objects are accessed
by cf, their transformation should not be propagated up
to the current history entry, but it must be stopped at a
history entry which is the one visible by the conversion
function cf at the time it was defined. The concept of
visibility is modeled by the tid’s attached to each entry

in the history of a class.

The nth history entry of a class Y in the schema is
visible by cf if:

Y-desc ->history[n]->tid <= j
and the chronologically subsequent entry (if any)

Y-desc ->history[n-I]->tid > j

where history[nl indicates the nth history en-
try descriptor in the history list of a class and
history Cn-II indicates the entry that chronologically
follows history [n] 3.

In order to stop the transformation of objects to the
visible history entry 02 maintains a stack associated to
each application. Before the execution of an application
or of a conversion function, the system pushes in the stack
the appropriate entry number signaling up to which entry
in the history an object has to be transformed (the actual
schema state for the application, or a smaller number for
a conversion function). This number is removed from the
stack after the execution of a conversion function or the
execution of an application.

The correctness of the deferred update algorithm has
formally been demonstrated in [6].

Reconsider the example in Section 2.2 where the com-
plex conversion function compute-sales accesses objects
of class Car to perform the computation of the vendor’s
turnover. Since the conversion function compute-sales is
supposed to transform objects of class Vendor to conform
to the history entry with tid = 34, the schema manager
of 02 pushes the value 3 on the stack. When an object
c of class Car is accessed by the conversion function, c
is transformed to conform to the history entry visible by
compute-sales, i.e. the one with tid = 2.

4.3 Implementing Object Migration

If an object o conforming to the history entry descriptor
of class X with tid = i has to migrate to a target class
Y due to the presence of a migration function descrip-
tor, the deferred update algorithm executes the migration
function stored in the mf field of the history entry descrip-
tor. When migrating an object, the schema manager of
O2 must decide to which history entry of the target class
Y a migrated object has to conform to. This is not nec-
essarily the current history entry of Y because between
the definition of the migration function and its execution,
class Y might have been changed. The schema manager
of Oz identifies the history entry of the target class Y as
the one whose tid j is the greatest satisfying the condi-
tion j <= s, whereby s is the value stored in the field
s&-state of the migration function descriptor, i.e. the

$It might happen that objects accessed by a cf have a tid 2 j.
In this ca.se no transformation is triggered on them because they
are already containing the information needed by cf.

4After the modification of class Vendor at time TV, the schema

state is equal to 3.

178

state of the schema at the time the migration function
has been defined.

AS shown in Section 2.3, the real migration of an object
is performed by the execution of the system’s method
migrate which is called within a migration function.

The method migrate, when executed on an object o
which has to migrate from class X to class Y, is respon-
sible for the following:

l copy the value of o in a variable old;

l find the appropriate target history entry where o has
to be migrated;

l restructure o to conform to the target history entry
of class Y;

l perform the default transformation on o using the
information present in old;

l update the class identifier cls in the header of o to
be the one of the target class;

l update the type identifier tid in the header of o to
be the one of the target history entry of class Y;

4.4 Implementing Class Deletions

So far, we discussed how to transform objects in the
database when a class in the schema has been modified.
Another important issue is how 02 implements a class
deletion.

Basically, when using the deferred database transfor-
mation, there is no way to control when objects are ac-
cessed by applications, i.e. when conversion functions are
effectively executed. In particular, the execution of a
complex conversion function might require the informa-
tion of objects whose class has been deleted in the schema.
Further, since migration of objects is implemented using
a deferred modality as well, objects of a deleted class can
be migrated to subclasses of the deleted class.

To accomplish a deferred database transformation
when classes are deleted in the schema, the deletion of
a class is not physically performed, but classes are only
screened out from being used by applications. Only con-
version and migration functions are allowed to access the
information of screened classes. If class Car were deleted
from the schema Carshowroom5, the schema manager of
Or. would only set the field visib of the class descriptor
to “deleted”. This would imply that conversion functions
accessing objects of class Car can still read the informa-
tion needed for the transformation.

4.5 Optimization Issues

There is no need to screen all deleted classes but only
those ones whose objects might be accessed by complex

5Note that in the current version of 02 only leaf classes can be
deleted. To delete class Car would therefore imply to first remove
the link with its subclass Sport-car.

conversion functions or by migration functions. There-
fore, 02 internally maintains a so called dependency graph
associated to each schema which allows the schema man-
ager to understand when deleted classes have to be
screened. The dependency graph is defined as follows:

Definition: The dependency graph G is a tuple
(V, E), extended by a labeling function I : (V x V) + A.
V is a set of class-vertices, one for each class in the
schema. E is a set of directed edges (v,w) V, w E V.
A is a set of attribute names and the special value “mf”
which identifies a migration function. An edge (w, w) in-
dicates that there exists at least one complex conversion
function associated to class w which uses the value of ob-
jects of class w or that a migration function is associated
to class v which migrates objects to class w. The func-
tion Z(V,W] returns the names of the attributes of class v
used by conversion functions associated to class w and/or
“mf’ if objects have to be migrated to class w.

Evolution of the schema implies changing the depen-
dency graph associated to the schema. By looking at the
dependency graph it is possible to identify when classes
have to be screened due to a definition of a complex con-
version function or a migration function.

The use of the graph is shown with our usual example,
the car-showroom schema. In Figure 7 the evolution of
the dependency graph for the schema ~aT-showToom from
time to till time t5 is illustrated. The conversion func-
tion defined at time ti uses only local defined attributes,
therefore no edge appears in the graph. At time ts, the
edge is added to the graph because of the definition of
the complex conversion functions compute-sales. At time
ts, a new edge is added to the dependency graph due to
the definition of the migration function migrate-cars.

! ,p”ceJ [fp”cc, (~Pncc~ bar

to 12 t3 t4 ts

Figure 7: Evolution of the dependency graph of schema
Car-showroom

The dependency graph has to be checked by the system
in the following cases: i) a class is modified along with
a complex conversion function, ii) a class is deleted from
the schema, iii) a migration function is associated to a
class. If, for instance, class vendor is deleted from the
schema, the schema manager of 02 recognizes that there
is no outgoing arrow for class Vendor in the dependency
graph and therefore the class can be really removed along
with its extension.

If no space optimization is taken into account when
using screening, i.e. if the information is never deleted in
the objects, the size of the database risks to grow contin-

179

uously.
The schema manager of Oz optimizes it by physi-

cally delete the information in those objects which will
never be accessed by any complex conversion function.
This can be easily obtained by checking the dependency
graph. Objects of classes which do not have any out-
going arrow in the dependency graph should not con-
tain screened attributes because no conversion function
will ever use them. Objects of classes which have an
outgoing arrow in the dependency graph contain only
screened attributes whose name appears to be returned
by the labeling function associated to the arrow. More-
over, every time the immediate database transformation
is launched, 02 transforms all the objects to conform to
the last schema definition. After the transformation, the
system deletes the edges in the dependency graph and
therefore the screened part can be dropped from all the
objects in the database. As a consequence of the imme-
diate database transformation, all histories of the class
descriptors are updated to contain only one history entry,
namely the current history entry with the information of
the class as visible by applications.

4.6 Implementing Immediate Database Updates

In 02, the immediate database transformation is im-
plemented using the algorithm defined for the deferred
database transformation. When the designer specifies the
schema command:

transform database;
the schema manager of 02 launches an internal tool which
is responsible to access all objects in the database which
are not up to date. When accessed, objects are trans-
formed according to the algorithm defined for the deferred
database transformation.

The tool follows basically two strategies for accessing
objects which are not up to date. If class extensions are
maintained by the systems, extensions of updated classes
have to be iterated to access all objects of that class.
If extensions are not maintained by the system, the tool
accesses objects in the database starting from appropriate
roots of persistence and following the composition links
between objects.

As already mentioned, after an immediate database
transformation, the dependency graph is updated. Fur-
ther, the history of all classes is deleted and the deleted
part of screened objects is dropped.

5 Related Work

Not all available ODBSs provide the feature of adapt-
ing the database after a schema modification has been
performed [15, 161. For those that do it, they differ

‘Note that 02 does not automatically maintain extensions asso-
ciated to classes. It is the responsibility of the designer to inform
the system if extensions are to be kept or not.

from each other in the approach followed for updating
objects. Some commercial systems support the possibil-
ity to define object versions to evolve the database from
one version to another, examples are Objectivity [14] and
GemStone [3]. Objectivity does not provide any tool to
automatically update the database, besides providing ob-
ject versions. The designer has to write a program which
reads the value old-val of objects of the old version, com-
putes the new value new-val and assigns it to the corre-
spondent objects of the new version. The program can
be written in order to transform the database both im-
mediately and lazily. Gemstone, instead, provides a flex-
ible way for updating object instances. It provides de-
fault transformation of objects and the possibility to add
conversion methods to a class. Conversion methods can
update objects either in groups (for instance the whole
extension of a class) or individually. The transforma-
tion of the database is performed in a deferred mode but
manually, i.e. objects are transformed on demand only
when applications call the transformation methods. The
problems pointed out in this paper do not occur when
versioning is used because objects are never transformed,
but a new version is created instead. Therefore the infor-
mation for the transformation of an object can always be
found in its correspondent old version.

On the other hand, the majority of the existing com-
mercially available systems do not use versioning for up-
dating the database. Applications can run on top of the
schema as defined after the last modification. Instances
are converted either immediately or lazily. Objectstore
[13] makes use of the immediate database transformation.
So called transformation functions, which override the de-
fault transformation, can be associated to each modified
class. Objects are not physically restructured, but a new
object (conforming the definition of the modified class) is
created instead. The transformation function reads the
value in the old object and assigns it (after having made
some modification on it) to the new object. All references
to the object have to be updated in order to point to the
newly created object. This technique resembles the one
used by those systems providing versions, the only differ-
ence being that, after the transformation, the old objects
are discarded. Deferred transformation of objects is pro-
vided in systems like Itasca [9] and Veersant [18]. They
both do not provide the user with flexible conversion func-
tions like the one presented in the paper. Instead, they
have the possibility to override a default transformation
assigning new constant values to modified or added at-
tributes of a class.

Among research prototype systems, Avance [2],
CLOSQL [ll], and Encore [17] all use object versioning.
Orion [l] uses a deferred approach where deletion of at-
tributes is filtered. Information is not physically deleted,
but it is no more usable by applications. No conversion
functions are provided to the schema designer.

180

In summary, if we consider those database systems us-
ing a deferred database transformation, then no one is
currently offering conversion functions like the one pre-
sented in this paper.

Updating the database using only default transforma-
tion of objects is clearly not flexible and powerful enough.

6 Conclusions and Future Work

In this paper we have discussed how the new release of the
02 object database has been enhanced to offer an auto-
matical database modification mechanism after a schema
change. 02 supports both the immediate database and
the deferred database transformation, whereby the de-
ferred transformation is used by default. We have de-
scribed how 02 transforms objects by means of default
transformation rules and by means of user-defined con-
version functions. We also described how to associate
migration functions to classes in order to move objects
“down” in the class hierarchy. Object migration is suit-
able both when new classes are added to the schema
which are more appropriate classes for existing objects,
and to retain objects in the database when classes are
deleted from the schema. Finally, we presented the
data structures used by 02 for implementing the deferred
database transformation and the algorithm used by the
system to transform objects to conform to their last class
definition to be properly accessed by applications.

We are currently evaluating the performance of the
algorithm proposed in this paper and the ones defined
in [7] using the 007 benchmark [4]. We are defining an
appropriate benchmark for analyzing the performance of
immediate vs. deferred database updates [8].

Acknowledgments

The work presented in this paper is partially supported
by the Goodstep project funded by the Commission of
the European Communities under the ESPRIT III pro-
gramme.

References

[l] J. Banerjee, W. Kim, H. Kim, and H. Korth. Seman-
tics and Implementation of Schema Evolution in Object-
Oriented Databases. In Proc. of ACM SIGMOD Conf.
on Management of Data, San Francisco, CA, May 1987.

[2] A. Bjornerstedt and S. Britts. Avance: an Object Man-
agement System. In Proc. of OOPSLA, San Diego, CA,
September 1988.

[3] R. Bretl, D. Maier, A. Otis, J. Penney, B. Schuchardt,
J. Stein, E. H. Williams, and M. Williams. The Gem-
Stone Data Management System. In W. Kim and F. H.
Lockovsky, editors, Object-Oriented Concepts, Databases
and Applications, chapter 12. ACM Press, 1989.

[4] M. J. Carey, D. J. Dewitt, and J. F. Naughton. The
CC7 Benchmark. In Proc. ACM SIGMOD Conf., pages
12-21, Washington, DC, USA, May 1993.

[5] C. Delcourt and R. Zicari. The Design of an In-
tegrity Constaint Checker (ICC) for an Object-Oriented
Database System. In Proc. European Conf. on Object-
Oriented Programming (ECOOP), number 512 in Lec-
ture Notes in Computer Science, Geneve, Switzerland,
July 1991. Springer.

[6] F. Ferrandina, T. Meyer, and R. Zicari. Correctness of
Lazy Database Updates for an Object Database System.
In Proc. of the 6th Int’l Workshop on Persistent Object
Systems, Tarascon, France, September 5-9, 1994.

[7] F. Ferrandina, T. Meyer, and R. Zicari. Implementing
Lazy Database Updates for an Object Database System.
In Proc. of the 20th Int’l Conf. on Very Large Databases,
pages 261-272, Santiago, Chile, September 12-15, 1994.

[8] F. Ferrandina, T. Meyer, and R. Zicari. Lazy Database
Updates Algorithms: a Performance Analysis. Technical
report, J.W. Goethe Universitiit, 1995. In preparation.

[9] Itasca Systems, Inc. Itasca Systems Technical Report
Number TM-92-991. OODBMS Feature Checklist. Rev
1.1, December 1993.

[lo] B. S. Lerner and A. N. Habermann. Beyond Schema
Evolution to Database Reorganization. In Proc. of
the ACM Conj. on Object-Oriented Programming: Sys-
tems, Languages and Applications (OOPSLA) and Proc.
of the European Conj. on Object-Oriented Programming
(ECOOP), pages 67-76, Ottawa, Canada, October 21-25,
1990.

[ll] S. Monk and I. SommerviIIe. A Model for Version-
ing Classes in Object-Oriented Databases. In Proc. of
the 10th British National Conf. on Databases, Aberdeen,
Scotland, July 1992.

[12] 0s Technology. The 02 User Manual, Version 4.5,
November 1994.

[13] Object Design Inc. ObjectStore User Guide, Release 9.0,
chapter 10, December 1993.

[14] Objectivity Inc. Objectivity, User Manual, Version 2.0,
March 1993.

[15] J. E. Richardson and M. J. Carey. Persistence in the E
language: Issues and Implementation. Software - Prac-
tice and Experience, 19(12):1115-1150, December 1989.

[16] B. Schiefer. Supporting Integration & Evolution with
Object-Oriented Views. FZI-Report 15/g& Jtiy 1993.

[17] A. H. Skarra and S. B. Zdonik. Type Evolution in an
Object-Oriented Database. In !&river and Wegner, ed-
itors, Research Directions in Object-Oriented Program-
ming, pages 393-416. MIT Press, Cambridge, MA, 1987.

[18] Versant Object Technology, 4500 Bohannon Drive Menlo
Park, CA 94025. Versant User Manual, 1992.

[19] R. Zicari. ‘A Framework for Schema Updates in an
Object-Oriented Database System. In F. BanciIhon,
C. Delobel, and P. Kane&&is, editors, Building an Ob-
ject Oriented Database System - The Story ojOa. Morgan
Kaufmann, San Mateo, CA, 1992.

181

