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Abstract 

When the schema of an object-oriented database sys- 
tem is modified, the database needs to be changed in 
such a way that the schema and the database remain 
consistent with each other. This paper describes the 
algorithm implemented in the new forthcoming release 
of the 02 object database for automatically bringing the 
database to a consistent state after a schema update has 
been performed. The algorithm, which uses a deferred 
strategy to update the database, is a revised and extended 
version of the screening algorithm first sketched in [7]. 

1 Introduction 

When the schema of an object-oriented database system 
is modified, the database needs to be changed in such a 
way that the schema and the database remain consistent 
with each other. The decision how to change the database 
is mainly an application-specific issue. This paper focuses 
on two aspects of the new release of the 02 system. The 
first one is how the designer specifies the way objects 
in the database have to be updated as a consequence of 
a (or a series of) schema modification(s). The second 
aspect covers the specifications of the data structures and 
the algorithm used by 02 for automatically bringing the 
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database to a consistent state after a schema update has 
been performed. 

The algorithm uses a deferred strategy to update the 
database, and it is a revised and extended version of the 
screening algorithm first sketched in [7]. 

Choosing to implement database updates ‘as deferred 
updates poses some interesting implementation problems 
when ensuring the correctness of the implementation as 
it will be explained in the rest of the paper. 

1.1 The 02 Database System and How to 
Change its Schema 

The main structure of an 02 schema consists of a set of 
classes related by inheritance and/or composition links. 
An 02 schema contains the definition of types, functions, 
and applications, while an 02 base groups together ob- 
jects and values which are created to conform to a schema. 

An object has an identity, a value, and a behavior de- 
fined with its methods. Objects are class instances and 
values are type instances. A given object can be shared 
(referenced) by several entities (an entity is either an ob- 
ject or a value). By default, objects and values created 
during program execution are not persistent. To become 
persistent, an entity must be directly or indirectly at- 
tached to a name, i.e., a persistent root belonging to the 
schema. 

A class definition consists of a type definition and a 
set of methods. A type is defined recursively from atomic 
types (integer, boolean, char, string, real, . ..). classes, and 
constructors (tuple, set, list, . ..). Methods are coded us- 
ing the 0#2 or the C++ language which allows to express 
manipulations on persistent as well as non-persistent en- 
tities. 

In 02, encapsulation is provided at different levels. 
First, properties (attributes and methods) are private to 
their class by default. Programs are encapsulated into 
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applications. Finally, encapsulation is provided at the 
schema level as elements of a schema cannot be used 
by another schema. In order to increase reusability, 
02 provides an import/export mechanism. 

Schema modifications can be performed in 02 either 
in an incremental way using specific primitives (e.g. 
by adding or deleting attributes in a class) or by re- 
defining the structure of single classes as a whole [12]. 
The 02 schema manipulation primitives available in the 
02 product are briefly presented below [12, 191: 

1. creation of a new class 

2. modification of an existing class 

3. deletion of an existing class 

4. renaming of an existing class 

5. creation of an inheritance link between two classes 

6. deletion of an inheritance link between two classes 

7. creation of a new attribute 

8. modification of an existing attribute 

9. deletion of an existing attribute 

10. renaming of an existing attribute 

No matter how a class is modified, 02 performs only 
those schema modifications that keeps the schema consis- 
tent [5]. 

The rest of the paper is structured as follows: in Sec- 
tion 2 we present from a user perspective how to define 
and use conversion functions as a means to instruct the 
system on how to change objects in the database as a 
consequence of a schema change. In addition to updating 
objects as a consequence of a schema change, 02 allows 
to modify the structure of individual objects by mov- 
ing them from one class to another independently from 
any schema change. This is described in Section 2.3 as 
object migration. Implementation details on conversion 
functions are given in Section 3 and 4. In particular, 
in Section 3.1 we illustrate the problems of implement- 
ing conversion functions, and in Section 3.2 we present 
the data structures used in the implementation. The de- 
tailed algorithm for implementing conversion functions as 
deferred database updates is presented in Section 4. In 
Section 5 we review relevant related work and compare 
our approach with existing ones. Finally, in Section 6, we 
present the conclusions. 

2 Database Updates in 02 

In this section we describe the functionalities that have 
been added in the new release of 02 for automatically 
updating the database after a schema has been modified. 

The semantics of updating the database after a schema 
change depends on the application(s) which use(s) the 
schema. The basic mechanism to update the database 

is very simple: the designer has the possibility to pro- 
gram so called conversion functions which are associated 
to modified classes in the schema and define how objects 
have to be restructured. If no conversion functions are 
provided by the designer, the system provides default con- 
version functions where no programming is required. In- 
stead, default transformation rules are applied to objects 
of modified classes. 

Similar concepts to user-defined database conversion 
functions can be found in GemStone[3], ObjectStore[l3], 
OTGen[lO], whereby Versant [18] and Itasca [9] offer fea- 
tures that are similar to default conversion functions only. 
The definition and modality of use of conversion functions 
is explained in Sections 2.1 and 2.2. 

The main design issue when implementing database 
(user-defined or default) conversion functions, is &en 
such functions have to be executed, that is when the 
database has to be brought up to a consistent state wrt. 
the new schema. 

We had two possible strategies to choose [6, 71: an im- 
mediate strategy, where objects in the database are up- 
dated in any case as soon as the schema modification is 
performed, and a deferred strategy, where objects are up- 
dated only when they are actually used. The two above 
strategies have advantages and disadvantages [6, 71; in 
O2 we have supported both strategies and gave the de- 
signer the possibility to select the one which is most ap- 
propriate for his/her application domains. The imple- 
mentation details are presented in Sections 3 and 4. 

2.1 Default Database Transformations 

In this section we describe what we called default data- 
base conversion functions. If no user-defined conversion 
functions are specified (see Section 2.2), the system trans- 
forms the objects in the database using default transfor- 
mation rules. When a class in the schema is modified, the 
system compares each attribute of the class before and af- 
ter the modification of the class and transforms the values 
of the object attributes according to the default rules as 
followsi : 

An attribute defined in a class before its modification 
and non present in the class after the modification 
(i.e. a deleted attribute) is ignored. 

An attribute which is not present in a class before its 
modification and present after its modification (i.e. a 
new attribute) is initialized with default initial values 
(i.e. 0 for an integer attribute, nil for an attribute 
referring to a class, etc.). 

An attribute present in both the class before the 
change and after the change is transformed according 
to the rules in Table 1. 

‘Note that, in 02, after a class modification has been performed, 
two attributes are considered the same attribute if they have the 
same name. 
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set 

lUPlC3 

class-name 

In the table, attribute initial type refers to the type of an 
attribute before the class modification, whereas attribute 
final type refers to the type of the same attribute after the 
modification of the class. If, for instance, an attribute of 
a class is declared of type real (the attribute initial type), 
and after a schema modification its type is transformed to 
integer (the attribute final type), a C cast is applied which 
truncates the real value. For those attributes where an 
empty entry appears in Table 1, the system initial value 
for the final type is used. 

Let us consider a simple example, the schema 
Car-showroom which we suppose has been defined at time 

to: 

schema creation at time t0: 

create schema Car-showroom; 

class Vendor type tuple (name: string, 
address: tuple ( city : string, 

street : string, 
number : real), 

sold-cars: list( Car )) 
end; 

class Car type tuple (name: string, 
price : real, 
horse-power : integer ) 

end; 

Assume we only have one object in the database for 
class Vendor, with values: name = “Volkswagen”; ad- 
dress = tuple(city: “Frankfurt”, street: “Goethe”, num- 
ber: 5.0); sold-cars = list([l]: Golfid, [2]: Passatid, [3]: 
Corradoid); where Golfid, Passatid, Corradoid are ref- 
erences to Car objects. 

Suppose at time tl the class Vendor in the schema is 
modified as follows: 

initialize the modified attribute 
with the system initial value of 
the attribute final type 

the value remains 
unchanged 

the transformation is done using 
a C cast or a C library function 

the transformation depends on 
the domains of the constructors 
and is obtained recursively 

the fields of the tuple are trans- 
formed individually in the same 
way as attributes of a class 

if the final type is a super&w of 
the initial type the value remains 
unaltered; otherwise nil 

Table 1: Attribute default conversion. 

In the modified class Vendor, the type of the attribute 
address is now a tuple where the tuple field city has been 
deleted, and the tuple field number has become an integer 
instead of a real. Moreover, the attribute sold-cars is now 
a set instead of a list. 

Since no user-defined conversion function is associ- 
ated to the modified class Vendor, a default conversion 
function is applied. The object of class Vendor in the 
database is then automatically converted as follows: the 
attribute name keeps the value “Volkswagen”, the tu- 
ple field number of attribute address is transformed from 
5.0 to 5, and the attribute value of sold-cars becomes 
the set(Golfid, Passatid, Corradoid), i.e. without order 
among values. 

2.2 User-Defined Conversion Functions in 02 

The schema designer can override the default database 
transformations by explicitly associating user-defined 
conversion functions to the class just after its change in 
the schema. 

In this case, the update to a class in the schema is per- 
formed in two phases. The first phase is the update to the 
class, i.e. using schema updates primitives. This phase is 
called class modification phase. The second phase is when 
user-defined conversion function(s) are associated, i.e. de- 
fined and compiled, to the modified class(es). This second 
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phase is called conversion functions definition phase. 

We show the definition of user-defined conversion func- 
tions using the previous example. Assume at time 
t2 the schema designer decides to delete the attribute 
horse-power in class Car, but to retain the information 
by adding the attribute kW in class Car instead. This 
can be done as follows: 

schema modification at time t2: 

begin modification in class Car; 
delete attribute horse-power; 
create attribute kW : integer; 
conversion functions; 
conversion function mod_kW (old : tuple(name:string, price:real, 

horse-power:real)) in class Car 
1 

1; 
self->kW = round( old.horse-power I 1.36 ); 

end modification; 

Two schema update primitives for class Car are 
used after the command begin modif ication in class 
Car. The command conversion function associates the 
user-defined conversion function mod&W to class Car af- 
ter the change. In the body of the conversion function, 
“-9 returns the attribute value of an object. The input 
parameter old of the conversion function refers to a tuple 
value conforming to the type of class Car before the mod- 
ification has been performed. The variable self refers 
to an object of class Car after its modification. In the 
conversion function the transformation is not defined for 
all the attributes of class Car but only for the attribute 
kW. This is because a default transformation is executed 
in any case on objects before a user-defined conversion 
function is executed. This simplifies the writing of user- 
defined conversion functions. In the example, there is no 
need to write trivial transformations such as: 

self->name = old.name, 
self->price = old.price. 

These transformations are performed by the default con- 
versions. 

The command conversion functions is optional. If 
not present, the system transforms the database us- 
ing default transformations instead. The command end 
modif ication specifies the end of the class(es) transfor- 
mation. Conversion functions are logically executed at 
the end of a modification block. The real execution time 
of the conversion functions depends on the implementa- 
tion strategy chosen as it will be described in Sections 3 
and 4. 

Suppose now the attribute sales is added to the class 
Vendor at time ts (see schema modification at time t3 

shown in the next column). 
At time ts class Vendor has been modified as a whole 

with the primitive modify class instead of using the 
primitive create attribute sales in class Vendor. 
The user-defined conversion function associated to class 

schema modification at time t3: 

begin modification in class Vendor; 
modify class Vendor type tuple (name: string, 

address: tuple ( street : string, 
number : integer), 

sold-cars: set( Car ), 
sales : real ) 

end; 
conversion functions; 
conversion function compute-sales (old : tuple( 

name:string, 
address: tuple ( street : string, number : interger), 
sold-cars: set( Car ))) in class Vendor 

{ 
02 Car c; 
for (c in oldsold-cars) { 

self-xsales += c->price; ] 
1; 
end modification; 

Vendor stores in sales the sales turnover for the vendor. 
We should note in the example the difference between 

the conversion function mod-kW associated to Car at 
time tz and the conversion function compute-sales asso- 
ciated to Vendor at time t3 . For the first one the value 
of the “updated” object is computed using only values 
locally defined to the object. The second conversion func- 
tion instead uses the value of objects belonging to another 
class in the schema. 

In [7] we have classified the above conversion functions 
as follows: 

l Simple conversion functions, where the object trans- 
formation is performed using only the local infor- 
mation of the object being accessed (the conversion 
function mod-k W defined at time tz). 

l Complex conversion functions, where the object 
transformation is performed using objects of the 
database other than the current object being ac- 
cessed (the conversion function compute-sales de- 
fined at time t3). 

This is an important distinction when implementing 
conversion functions as we will see in Sections 3 and 4. 

Suppose we make a final schema modification at time 
t4 by deleting the attribute price in class Car: 

schema modification at time tl: 

delete attribute price in class Car; 

At time t4 we did not associate any user-defined con- 
version function to class Car. The default conversion is 
then used for the transformation of the objects. 

In Figure 1 we show a graphical representation of 
the schema modifications performed on the two classes. 
Classes connected by a solid arrow mean a modification 
has been performed on them, the label on the arrow in- 
dicate the presence of default or user-defined conversion 
functions. 
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I to ! tl !t2 / t3 

Figure 1: Schema evolution until time t4. 

j 14 time 

The designer in 02 has the possibility to specify the 
execution time for conversion functions. In particular, 
02 offers a command to execute conversion functions im- 
mediately, as follows: 

transform database; 
After the database transformation is completed, all ob- 

jects in the database conform to the last schema defini- 
tion. The default implementation modality for the exe- 
cution of conversion functions is the deferred approach as 
described in Section 4. 

So far, we have seen how objects of a class are updated 
as a consequence of a class modification using conversion 
functions. It is also possible in 02 to update objects by 
migrating them to other classes in the schema. This is 
addressed in the next section. 

2.3 User-Defined Object Migration Functions 

Object migration refers to the possibility for an individual 
object to change its class during its lifetime. 02 offers 
two ways to migrate objects, i) either a single object can 
change its class, or ii) an entire class extension (or a part 
of it) can be migrated to another class. 

We start looking at the first possibility and then we 
consider class extensions. 

We have defined a system method migrate0 associ- 
ated to the root class Object which, when invoked for a 
particular object, allows the object to migrate from its 
class to any of its subclasses (if any). In the method 
migrate () , the name of the target subclass must be given 
as an input parameter. We considered migration of ob- 
jects to subclasses only, to avoid the possibility of run- 
time type errors if objects were allowed to migrate freely 
to any class in the schema. 

Notwithstanding this limitation, this feature is partic- 
ularly useful especially when: i) .a new class is added to 
the schema and the existing objects of the class’ super- 
classes need to be moved “down” to the new class, ii) a 
class is deleted and objects of that class must be retained 
by migrating them to subclasses. 

The other possibility is to migrate an entire class ex- 
tension (or a part of it) to other subclasses by means of 
a so called migration function. 

The use of migration functions is explained using our 
example. Suppose at time t5 the designer creates a new 
class Sport-car in the Car-showroom schema. After the 
creation of the class, he/she wants to migrate powerful 
cars, i.e. those cars with power kW >= 100, from class 
Cur to class Sport-car. This can be achieved as follows: 

L 

schema modification at time t5: 

class Sport-car inherit Car 
type tuple ( speed : integer ) 

end; 

migration function migrate-cars in class Car 
I 

if ( self->kW >= 100 ) 
self->migrate( “Sport-car” ); 

The migration function migrate-cars is associated to 
class Car. In the body of the migration function the sys- 
tem method migrate is called to migrate each object sat- 
isfying the selection condition to the subclasses Sport-car. 

The example shows the importance of having object 
migration when new classes are added to the schema. Let 
us consider the case of the deletion of a class. Suppose 
the designer wants to delete class Car, but retain some 
of the objects in the database by moving them to an- 
other class. By creating class Sport-car and migrating 
Cur objects to it, if the designer deleted class Cur from 
the schema, he/she would lose only part of the objects, 
namely the ones whose attribute kW is lower than 100. 
Without migration there had been no chance to retain 
any object of class Car. 

As in the case of conversion functions, migration func- 
tions can be executed either with an immediate or a 
deferred modality. By default, 02 uses a deferred ap- 
proach for the migration of objects. It is however possible 
to migrate objects immediately by explicitly calling the 
transform database schema command. More on this in 
Sections 3 and 4. 
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3 The Implementation of Database Up- 
dates in O2 

02 supports both the immediate and the deferred 
database transformation. However, the basic principle 
we followed whem we implemented the mechanism for 
database updates is the following: whatever transforma- 
tion strategy is chosen for implementing a database trans- 
formation, there should be no difference for the schema 
designer as far as the result of the execution of the con- 
version functions is concerned [7]. From the above prin- 
ciple we derived the notion of correctness of a deferred 
database transformation, as first introduced in [7] and 
formally defined in [6]. A correct implementation of a 
deferred database transformation satisfies the following 
criteria: 

The result of a database transformation implemented 
with a deferred modality is the same as if the transforma- 
tion were implemented with an immediate modality. 

The formal proof of correctness for the algorithm we 
will present in Section 4 is given in [6]. 

3.1 Deferred vs. Immediate Updates 

In this section we present the data structures used 
in 02 for supporting immediate and deferred database 
transformations. Since in 02 the immediate database 
transformation is implemented using the deferred one, in 
the rest of the section we will mainly concentrate on the 
implementation details for deferred database transforma- 
tions. 

In Section 2.2 we have made the distinction between 
simple and complex conversion functions. The reasons for 
that is that implementing complex conversion functions 
for a deferred database transformation requires special 
care [7]. To explain why, consider in our usual example 
two objects v of class Vendor and c of class Car con- 
forming to the respective class definitions at time t2 (see 
Figure 1). Object v refers to c through the attribute 
sold-cars. If object c were accessed by an application at 
time t,, with t4 < t,, the system would transform the 
object to conform to its last class definition deleting the 
attribute price from it. If, at time tb, with t, < tar ob- 
ject v is accessed, v will be restructured as well and its 
new value will be computed by applying the conversion 
function compute-sales. 

The problem is that compute-sales accesses object c 
via the attribute price. But c now does not have any- 
more all the information required for the transformation 
of v because it has lost the attribute price when it was 
transformed at time t,. In this special case, the execution 
of compute-sales would result in a run-time type error. In 
general, using default values as described in Section 2.1 
for the restructured object v does not solve the problem, 
as it could result in an incorrect database transformation. 

Let us consider again the database at time t2 and as- 
sume the immediate database transformation had been 
used to transform objects v and c. If at time t3 the system 
had transformed the object v immediately by executing 
the conversion function compute-sales, no run-time type 
error would have occurred because at time t3 the object 
c accessed by the conversion function would have had the 
attribute price. The deletion of price at time t4 would 
therefore not affect the execution of previously defined 
conversion functions. This is the correct transformation 
of the database. 

In Section 3.2 we will present in detail the data struc- 
tures and in Section 4 the algorithm used in 02 for im- 
plementing simple and complex conversion functions us- 
ing deferred database updates which guarantees a correct 
database transformation. The basic idea is to physically 
retain the deleted or the modified information in the ob- 
ject in a so called screened part. This implementation 
strategy is commonly known with the name of sween- 
ing [I]. Applications running against the database do not 
have access to the screened information, but conversion 
functions, instead, have access to the screened informa- 
tion in order to perform a correct database transforma- 
tion. 

When some information is deleted and/or modified in 
the schema, it is only screened out, but not physically 
deleted in the database. When, for instance, a deletion 
of an attribute (or a change in the type which would corre- 
spond to a deletion and an addition of the same attribute) 
is performed, the update is not physically executed on 
the object structure but simply a different representation 
of the object is presented to applications. Using screen- 
ing, 02 manages the different representations of an ob- 
ject, one representation visible to applications and one 
representation visible to conversion functions only. 

3.2 Data Structures 

The physical format of an object, i.e. as it is internally 
stored in the database, contains two parts: the object 
header and the object value, the value itself being com- 
posed of an existing value and a screened value (see Fig- 
ure 2). 

cls: M-class tid: integer existing value screened value 

object header object value 

Figure 2: Structure of an 02 object. 

The object value part is used for storing values that 
reside within the object, such as attribute values. The 
object header contains, among other info, the identifier 
of the object’s class descriptor (~1s) and the type entry 
identifier (t id) according to which format the object itself 
is stored. Each of these two can be viewed as somewhat 
special fields in the physical format of the object. 

The main principle in the implementation of deferred 
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updates is to keep track of the evolution of the schema. 
The O2 schema manager manages a persistent symbol 
table containing schema components such as class defi- 
nitions, type definitions, etc.. 

A simple integer variable called schema state is asso- 
ciated to each schema. The schema state is incremented 
every time a class in the schema undergoes a change. 

All components of a schema are internally maintained 
as meta-objects. Each class in the schema is internally 
represented by a class descriptor which can be considered 
as an instance of the 02 class Meta-class illustrated in 
Figure 3. 

L :lass Meta-class type tuple ( 

sch : integer, /’ schema-id where the class is defined ‘I 
name : string, /’ name of the class ‘I 
visib : char, I’ access mode = public, read, private ‘/ 
type : Meta-type, I’ type of the class ‘/ 
properties : list (Meta-property), I’ attributes and methods ‘I 
parents : list (Meta-class), r direct superclasses ‘I 
children : list (Meta-class), I’ all subclasses ‘/ 
ancestors : list (Meta-class). I’ all superclasses ‘I 
ispartof : list (Meta-class), I’ classes with a component of this class ’ 

cur-tid : integer, I’ current tid of this class ‘I 
history : list (Meta-history-entry), I’ type history of this class */ 

eno; 

I 

J 

Figure 3: The Meta-class definition for describing classes 
in the schema. 

The class Meta-class contains all the information re- 
lated to a class, i.e. its name, its type, its visibility (pri- 
vate vs. public), the list of its parents classes, etc.. In 
particular, to implement a deferred database transforma- 
tion, each class descriptor contains a field cur-tid which 
is used for testing whether an object in the database con- 
forms to the last class definition in the schema or not. 
Another important information in the class descriptor is 
stored in the field history, the list of history entry de- 
scriptors containing the information of the class as it was 
defined “in the past”. 

A history entry descriptor can be considered as an in- 
stance of the class Meta-history-entry (see Figure 4) and 
contains the following fields: 

l the type entry identifier tid, a simple integer num- 
ber, which helps in identifying to which entry an ob- 
ject of the class belongs to. When a class undergoes 
a change, the schema state is assigned to the tid, 

l the type type which corresponds to the type of the 
class visible by applications, 

l the type ex-type which corresponds to the extended 
type of the class including the screened information, 

l the entry struct which contains a list of property 
entry descriptors, 

l a field cf which contains a reference to a conversion 
function descriptor that is used to convert objects to 

conform to a subsequent entry in the history, 

l a field mf which contains a reference to a migration 
function desCTiptOT that is used to migrate objects 
to conform to the appropriate entry in the history of 
a subclass’. 

A property entry descriptor belonging to the struct 
list of a history entry descriptor can be considered as an 
instance of the class Meta-property-entry (see Figure 4). 
It contains the following information: 

l the pid of the attribute; the reason for using such an 
identification is that the external name of a property 
can be changed without affecting the identity of a 

prop W, 

l the schstate, i.e the state of the schema when the 
attribute has been created. The information (pid, 
sch-state) identifies an attribute in a non ambiguous 
way. 

l the off set of the attribute, i.e. the physical position 
of the attribute in the object itself, 

l the type of the attribute, 

l the status of an attribute indicating whether the 
given attribute can be accessed by both application 
and conversion functions (in this case the value is set 
to ecisting), or by conversion functions only (in this 
case the value is set, to screened). 

The last two components of a history entry descrip- 
tor, cf and mf, are the descriptors of a conversion and a 
migration function which can be considered as instances 
of the classes Meta-conversion and Meta-migration (see 
Figure 4). In a conversion function descriptor, the field 
next-state indicates to which entry in the class history 
the conversion function stored as a binary file in the field 
function is supposed to transform objects. The same ap- 
plies for a migration function descriptor. The schstate 
field indicates the state of the schema when the migration 
function has been associated to the class. The schstate 
information is used by the system to determine to which 
history entry of a subclass an object has to be migrated’. 

Recall the example we presented in Section 2. Figure 5 
illustrates the class descriptor of Car after the migration 
function migrate-cars has been defined at time t5. 

The field cur-tid of the class is equal to 5 and corre- 
sponds to the schema state just after the migration func- 
tion migrate-cars has been associated to the class. The 
field history points to a list of four history entry descrip- 
tors, whereby the one with tid = 0 identifies the original 
class information when it has been created at time to. 
The following history entry descriptors identify the infor- 
mation of the class after each class modification or after 

% Section 4 we describe how 02 infers the history entry in the 
target class when executing a migration function. 
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class Meta-history-entry type tuple ( class Meta-property-entry type tuple ( 
tid : integer, 

class Meta-conversion type tuple ( class M&-migration type tuple ( 
pid : integer, next-state : integer, 

type : Me&type, sch-state : integer, function 
sch-state : integer, 

: Meta-blnay ) function : 
ex-type : Meta-type, offset : integer, 

M&-binary ) 
end; 

struct : list(Meta-property-entry), 
end: 

type 
cf : Meta_conversion, status 

: Me&-type, 
: ( existing, screened ) ) 

mf : Meta-migration ) end; 
end; 

Figure 4: The meta-definitions for the different descriptors in the class history. 
class descripror property entry descriptors 
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Figure 5: Descriptor of class Cur along with its history. 

the association of a migration function to the class. For 
reasons of readability, we show only the struct informa- 
tion related to the first history entry descriptor whose tid 
= 5. The field struct points to the list of property entry 
descriptors belonging to the class. The first two property 
entry descriptors refer to attributes in the class which 
are visible by application. This can be recognized by the 
value “existing” in the status field. The last two prop- 
erty entry descriptors refer to screened attributes visible 
by conversion functions only. It is important to note that 
screened attributes are physically stored always after vis- 
ible attributes, i.e. their offset in the chunk of memory 
representing an object is always greater than the one of 
a visible attribute. 

The conversion function descriptor for mod-kW and 
the migration function descriptor for migrate-cars are as- 
sociated to the appropriate history entry descriptors. 

4 The Deferred Database Update Algo- 
rithm 

We first introduce some definitions. The most recent en- 
try in a class history is called current history entry. An 
entry in a class history is called input relevant if this entry 
holds a conversion or a migration function. The current 
history entry is defined as input relevant as well. From 
now on, the class descriptor of a class X is referred to as 
X-desc. 

When a new class X is created, the schema manager 
of 02 instantiates a class descriptor with the appropriate 
information, i.e. the name of the class, the list of parent 
and ancestor classes in the hierarchy, etc.. In particular, 
the field cur-tid is initialized with the schema state as- 
sociated to the schema and a first entry is created in the 

history of the class. 
After a modification is performed on a class X, the 

schema state is incremented and a new entry in the class 
history is created for the modified class X and for all of 
its subclasses which have effectively undergone a modi- 
fication. The newly created entry becomes the current 
history entry and its tid is initialized with the schema 
state. For those subclasses where no modification have 
taken place (e.g. because an attribute has been added to 
X which is already present in its subclasses), no new en- 
try in the class history is created. If a conversion function 
is associated to the class modification, the schema man- 
ager instantiates and initializes a conversion function de- 
scriptor and assigns it to the cf field of the history ent,ry 
descriptor which chronologically precedes the current his- 
tory entry. The function field of the conversion function 
descriptor contains a pointer to the binary code of the 
conversion function. The field next-state contains the 
tid of the current history entry. 

The same happens for a migration function. When a 
migration function is associated to a class X, the schema 
state is incremented and a new entry in the history of X 
is created. The newly created entry becomes the current 
history entry and its tid is initialized with the schema 
state. The schema manager instantiates and initializes 
a migration function descriptor which is then assigned 
to the mf field of the history entry descriptor which 
chronologically precedes the current history entry. The 
function field of the migration function descriptor con- 
tains a pointer to the binary code of the migration func- 
tion. The field schstate contains the tid of the current 
history entry. 

4.1 Basic Deferred Update Algorithm 

The algorithm used by 0s when an object o of class X 
is accessed by an application is the Deferred Update 
Algorithm shown in Figure 6. 

The algorithm first checks whether an object conforms 
to its last class definition in the schema. If yes, the object 
can be used by the application which accessed it without 
being first transformed. If not, 0s identifies the appro- 
priate history entry descriptor in the history of class X to 
which object o conforms to. Three alternatives are then 
possible: i) the history entry descriptor contains a migra- 
tion function which implies a possible migration of o to a 
subclass of X, ii) the history entry descriptor contains a 
conversion function which implies that o must be restruc- 
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, 

Deferred Update Algorithm 

while (o-Aid C> o-As-Aid ) do I’ 0 is not in current format ‘/ 
for ( X-his-desc in o-As->history where X-his-desc-Aid == o-Aid: 

( break ]; I’ find the history entry descriptor to which o conforms ‘I 

if (X-his-desc->mf <> nil) then I’ a migration function has to be applied *I 
apply the migration function X-his-desc->mf->function; 

if (object o has not been migrated) then 
modify the tid of the object to correspond to the tid 
belonging to the chronologically following entry; 

endif; 
else I’ a default or user-defined conversion function has to be applied ‘, 

copy the value of o in a variable old; I’ old is used by the cf’s ‘I 
if (X-his-desc->cf <> nil) then I’ an user-defined cf has to be applied “1 

restructure o to conform to the entry in the history whose 
tid corresponds to X-his-desc->cf.next-state; 
apply the default conversion function; 
apply the conversion function X-his-desc->cf->function; 
o-Aid = X-his-desc->cf.ne&state; 

else I’ a default cf has to be applied ‘I 
restructure o to conform to the next input relevant entry in 
the class history; I” entry with a migr. or user-def. conv. function l / 
apply the default conversion function; 
update the tid to correspond to the one found in the 
next input relevant entry; 

endif; 
endif; 

endwhile; 

Figure 6: The deferred update algorithm. 

tured to conform to a more recent entry in the history of 
class X, iii) the history entry contains neither a conversion 
nor a migration function; object o must be restructured 
and reinitialized using a default conversion function to 
conform to the next input relevant entry in the history. 
Note that, due to how class descriptors are maintained 
by 02, no entry will ever contain both a conversion and 
a migration function. 

4.2 Implementing Complex Conversion Func- 
tions 

The deferred update algorithm presented before works 
fine if only simple conversion functions have been defined 
when evolving the schema. In case of complex conversion 
functions, instead, the transformation of objects accessed 
by complex conversion functions must be stopped before 
reaching the state corresponding to the current history 
entry to avoid database inconsistencies or run-time type 
errors [7]. 

Suppose that a complex conversion function cf associ- 
ated to a history entry with t id = i of a class X trans- 
forms objects of that class to conform to a history entry 
with tid = j, where j > i. If other objects are accessed 
by cf, their transformation should not be propagated up 
to the current history entry, but it must be stopped at a 
history entry which is the one visible by the conversion 
function cf at the time it was defined. The concept of 
visibility is modeled by the tid’s attached to each entry 

in the history of a class. 

The nth history entry of a class Y in the schema is 
visible by cf if: 

Y-desc ->history[n]->tid <= j 
and the chronologically subsequent entry (if any) 

Y-desc ->history[n-I]->tid > j 

where history[nl indicates the nth history en- 
try descriptor in the history list of a class and 
history Cn-II indicates the entry that chronologically 
follows history [n] 3. 

In order to stop the transformation of objects to the 
visible history entry 02 maintains a stack associated to 
each application. Before the execution of an application 
or of a conversion function, the system pushes in the stack 
the appropriate entry number signaling up to which entry 
in the history an object has to be transformed (the actual 
schema state for the application, or a smaller number for 
a conversion function). This number is removed from the 
stack after the execution of a conversion function or the 
execution of an application. 

The correctness of the deferred update algorithm has 
formally been demonstrated in [6]. 

Reconsider the example in Section 2.2 where the com- 
plex conversion function compute-sales accesses objects 
of class Car to perform the computation of the vendor’s 
turnover. Since the conversion function compute-sales is 
supposed to transform objects of class Vendor to conform 
to the history entry with tid = 34, the schema manager 
of 02 pushes the value 3 on the stack. When an object 
c of class Car is accessed by the conversion function, c 
is transformed to conform to the history entry visible by 
compute-sales, i.e. the one with tid = 2. 

4.3 Implementing Object Migration 

If an object o conforming to the history entry descriptor 
of class X with tid = i has to migrate to a target class 
Y due to the presence of a migration function descrip- 
tor, the deferred update algorithm executes the migration 
function stored in the mf field of the history entry descrip- 
tor. When migrating an object, the schema manager of 
O2 must decide to which history entry of the target class 
Y a migrated object has to conform to. This is not nec- 
essarily the current history entry of Y because between 
the definition of the migration function and its execution, 
class Y might have been changed. The schema manager 
of Oz identifies the history entry of the target class Y as 
the one whose tid j is the greatest satisfying the condi- 
tion j <= s, whereby s is the value stored in the field 
s&-state of the migration function descriptor, i.e. the 

$It might happen that objects accessed by a cf have a tid 2 j. 
In this ca.se no transformation is triggered on them because they 
are already containing the information needed by cf. 

4After the modification of class Vendor at time TV, the schema 

state is equal to 3. 

178 



state of the schema at the time the migration function 
has been defined. 

AS shown in Section 2.3, the real migration of an object 
is performed by the execution of the system’s method 
migrate which is called within a migration function. 

The method migrate, when executed on an object o 
which has to migrate from class X to class Y, is respon- 
sible for the following: 

l copy the value of o in a variable old; 

l find the appropriate target history entry where o has 
to be migrated; 

l restructure o to conform to the target history entry 
of class Y; 

l perform the default transformation on o using the 
information present in old; 

l update the class identifier cls in the header of o to 
be the one of the target class; 

l update the type identifier tid in the header of o to 
be the one of the target history entry of class Y; 

4.4 Implementing Class Deletions 

So far, we discussed how to transform objects in the 
database when a class in the schema has been modified. 
Another important issue is how 02 implements a class 
deletion. 

Basically, when using the deferred database transfor- 
mation, there is no way to control when objects are ac- 
cessed by applications, i.e. when conversion functions are 
effectively executed. In particular, the execution of a 
complex conversion function might require the informa- 
tion of objects whose class has been deleted in the schema. 
Further, since migration of objects is implemented using 
a deferred modality as well, objects of a deleted class can 
be migrated to subclasses of the deleted class. 

To accomplish a deferred database transformation 
when classes are deleted in the schema, the deletion of 
a class is not physically performed, but classes are only 
screened out from being used by applications. Only con- 
version and migration functions are allowed to access the 
information of screened classes. If class Car were deleted 
from the schema Carshowroom5, the schema manager of 
Or. would only set the field visib of the class descriptor 
to “deleted”. This would imply that conversion functions 
accessing objects of class Car can still read the informa- 
tion needed for the transformation. 

4.5 Optimization Issues 

There is no need to screen all deleted classes but only 
those ones whose objects might be accessed by complex 

5Note that in the current version of 02 only leaf classes can be 
deleted. To delete class Car would therefore imply to first remove 
the link with its subclass Sport-car. 

conversion functions or by migration functions. There- 
fore, 02 internally maintains a so called dependency graph 
associated to each schema which allows the schema man- 
ager to understand when deleted classes have to be 
screened. The dependency graph is defined as follows: 

Definition: The dependency graph G is a tuple 
(V, E), extended by a labeling function I : (V x V) + A. 
V is a set of class-vertices, one for each class in the 
schema. E is a set of directed edges (v,w) V, w E V. 
A is a set of attribute names and the special value “mf” 
which identifies a migration function. An edge (w, w) in- 
dicates that there exists at least one complex conversion 
function associated to class w which uses the value of ob- 
jects of class w or that a migration function is associated 
to class v which migrates objects to class w. The func- 
tion Z(V,W] returns the names of the attributes of class v 
used by conversion functions associated to class w and/or 
“mf’ if objects have to be migrated to class w. 

Evolution of the schema implies changing the depen- 
dency graph associated to the schema. By looking at the 
dependency graph it is possible to identify when classes 
have to be screened due to a definition of a complex con- 
version function or a migration function. 

The use of the graph is shown with our usual example, 
the car-showroom schema. In Figure 7 the evolution of 
the dependency graph for the schema ~aT-showToom from 
time to till time t5 is illustrated. The conversion func- 
tion defined at time ti uses only local defined attributes, 
therefore no edge appears in the graph. At time ts, the 
edge is added to the graph because of the definition of 
the complex conversion functions compute-sales. At time 
ts, a new edge is added to the dependency graph due to 
the definition of the migration function migrate-cars. 

! ,p”ceJ [ fp”cc, ( ~Pncc~ bar 

to 12 t3 t4 ts 

Figure 7: Evolution of the dependency graph of schema 
Car-showroom 

The dependency graph has to be checked by the system 
in the following cases: i) a class is modified along with 
a complex conversion function, ii) a class is deleted from 
the schema, iii) a migration function is associated to a 
class. If, for instance, class vendor is deleted from the 
schema, the schema manager of 02 recognizes that there 
is no outgoing arrow for class Vendor in the dependency 
graph and therefore the class can be really removed along 
with its extension. 

If no space optimization is taken into account when 
using screening, i.e. if the information is never deleted in 
the objects, the size of the database risks to grow contin- 
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uously. 
The schema manager of Oz optimizes it by physi- 

cally delete the information in those objects which will 
never be accessed by any complex conversion function. 
This can be easily obtained by checking the dependency 
graph. Objects of classes which do not have any out- 
going arrow in the dependency graph should not con- 
tain screened attributes because no conversion function 
will ever use them. Objects of classes which have an 
outgoing arrow in the dependency graph contain only 
screened attributes whose name appears to be returned 
by the labeling function associated to the arrow. More- 
over, every time the immediate database transformation 
is launched, 02 transforms all the objects to conform to 
the last schema definition. After the transformation, the 
system deletes the edges in the dependency graph and 
therefore the screened part can be dropped from all the 
objects in the database. As a consequence of the imme- 
diate database transformation, all histories of the class 
descriptors are updated to contain only one history entry, 
namely the current history entry with the information of 
the class as visible by applications. 

4.6 Implementing Immediate Database Updates 

In 02, the immediate database transformation is im- 
plemented using the algorithm defined for the deferred 
database transformation. When the designer specifies the 
schema command: 

transform database; 
the schema manager of 02 launches an internal tool which 
is responsible to access all objects in the database which 
are not up to date. When accessed, objects are trans- 
formed according to the algorithm defined for the deferred 
database transformation. 

The tool follows basically two strategies for accessing 
objects which are not up to date. If class extensions are 
maintained by the systems, extensions of updated classes 
have to be iterated to access all objects of that class. 
If extensions are not maintained by the system, the tool 
accesses objects in the database starting from appropriate 
roots of persistence and following the composition links 
between objects. 

As already mentioned, after an immediate database 
transformation, the dependency graph is updated. Fur- 
ther, the history of all classes is deleted and the deleted 
part of screened objects is dropped. 

5 Related Work 

Not all available ODBSs provide the feature of adapt- 
ing the database after a schema modification has been 
performed [15, 161. For those that do it, they differ 

‘Note that 02 does not automatically maintain extensions asso- 
ciated to classes. It is the responsibility of the designer to inform 
the system if extensions are to be kept or not. 

from each other in the approach followed for updating 
objects. Some commercial systems support the possibil- 
ity to define object versions to evolve the database from 
one version to another, examples are Objectivity [14] and 
GemStone [3]. Objectivity does not provide any tool to 
automatically update the database, besides providing ob- 
ject versions. The designer has to write a program which 
reads the value old-val of objects of the old version, com- 
putes the new value new-val and assigns it to the corre- 
spondent objects of the new version. The program can 
be written in order to transform the database both im- 
mediately and lazily. Gemstone, instead, provides a flex- 
ible way for updating object instances. It provides de- 
fault transformation of objects and the possibility to add 
conversion methods to a class. Conversion methods can 
update objects either in groups (for instance the whole 
extension of a class) or individually. The transforma- 
tion of the database is performed in a deferred mode but 
manually, i.e. objects are transformed on demand only 
when applications call the transformation methods. The 
problems pointed out in this paper do not occur when 
versioning is used because objects are never transformed, 
but a new version is created instead. Therefore the infor- 
mation for the transformation of an object can always be 
found in its correspondent old version. 

On the other hand, the majority of the existing com- 
mercially available systems do not use versioning for up- 
dating the database. Applications can run on top of the 
schema as defined after the last modification. Instances 
are converted either immediately or lazily. Objectstore 
[13] makes use of the immediate database transformation. 
So called transformation functions, which override the de- 
fault transformation, can be associated to each modified 
class. Objects are not physically restructured, but a new 
object (conforming the definition of the modified class) is 
created instead. The transformation function reads the 
value in the old object and assigns it (after having made 
some modification on it) to the new object. All references 
to the object have to be updated in order to point to the 
newly created object. This technique resembles the one 
used by those systems providing versions, the only differ- 
ence being that, after the transformation, the old objects 
are discarded. Deferred transformation of objects is pro- 
vided in systems like Itasca [9] and Veersant [18]. They 
both do not provide the user with flexible conversion func- 
tions like the one presented in the paper. Instead, they 
have the possibility to override a default transformation 
assigning new constant values to modified or added at- 
tributes of a class. 

Among research prototype systems, Avance [2], 
CLOSQL [ll], and Encore [17] all use object versioning. 
Orion [l] uses a deferred approach where deletion of at- 
tributes is filtered. Information is not physically deleted, 
but it is no more usable by applications. No conversion 
functions are provided to the schema designer. 
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In summary, if we consider those database systems us- 
ing a deferred database transformation, then no one is 
currently offering conversion functions like the one pre- 
sented in this paper. 

Updating the database using only default transforma- 
tion of objects is clearly not flexible and powerful enough. 

6 Conclusions and Future Work 

In this paper we have discussed how the new release of the 
02 object database has been enhanced to offer an auto- 
matical database modification mechanism after a schema 
change. 02 supports both the immediate database and 
the deferred database transformation, whereby the de- 
ferred transformation is used by default. We have de- 
scribed how 02 transforms objects by means of default 
transformation rules and by means of user-defined con- 
version functions. We also described how to associate 
migration functions to classes in order to move objects 
“down” in the class hierarchy. Object migration is suit- 
able both when new classes are added to the schema 
which are more appropriate classes for existing objects, 
and to retain objects in the database when classes are 
deleted from the schema. Finally, we presented the 
data structures used by 02 for implementing the deferred 
database transformation and the algorithm used by the 
system to transform objects to conform to their last class 
definition to be properly accessed by applications. 

We are currently evaluating the performance of the 
algorithm proposed in this paper and the ones defined 
in [7] using the 007 benchmark [4]. We are defining an 
appropriate benchmark for analyzing the performance of 
immediate vs. deferred database updates [8]. 
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