
Declustering Databases on Heterogeneous Disk Systems*

Ling Tony Chen
Lawrence Berkeley Lab

Berkeley, CA 94720

Doron Rotem
Lawrence Berkeley Lab

Berkeley, CA 94720
and

Department of MIS
San Jose State University

San Jose, California

Sridhar Seshadri
Stern School of Business

New York University

Abstract

Declustering is a well known strategy to
achieve maximum I/O parallelism in multi-
disk systems. Many declustering methods
have been proposed for symmetrical disk sys-
tems, i.e, multi-disk systems in which all disks
have the same speed and capacity. This
work deals with the problem of adapting such
declustering methods to work in heteroge-
neous environments. In such environments
there are many types of disks and servers with
a large range of speeds and capacities. We
deal first with the case of perfectly declustered
queries, i.e., queries which retrieve a fixed pro-
portion of the answer from each disk.

We propose an algorithm which determines
the fraction of the dataset which must, be
loaded on each disk. The algorithm may be
tailored to find disk loading for minimal re-
sponse time for a given da.tabase size, or to
compute a system profile showing the optimal
loading of the disks for all possible ranges of
database sizes.

The support of the Defense Advanced Research Projects
Agency, as well as the support of the Department of Energ-y
under contract DE-AC03-7GSF00098 is gratefully acknowledged.

Permission to copy without fee all OT part of this ,material is
granted provided that the copies WY not made OT distributed JOT
&eel commercial aavantaye, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission oj the Very Lal-ge Data Base
Endowment. To copy otherwise, or to republish, requires a fee
d/oT special permission from the Endowment.

Proceedings of the 21st VLDB Conference
Zurich, Switzerland, 1905

The methods proposed here are general and
can be used in conjunctCon with most known
symmetric declustering methods.

1 Iutroduction

Declustering methods have gained a lot of attention
recently as a technique to enhance I/O parallelism
[l, 2, 4, 5, 3, 61. The idea is to distribute the data
among 1% parallel disks so that data which is likely to
be requested together by a query is allocated to differ-
ent disks. The speed-up is achieved due to the fact
that each disk has to access only a fraction of the
answer. Proposed declustering methods differ from
each other in the way in which they decompose the
data among the disks. Methods based on hashing
techniques, error-correcting codes, hilbert curves and
lattice-ba.sed decomposition have all appeared in re-
cent research literature.

In symmetrical systems where the disks have sim-
ilar transfer rates and capacities, the maximum I/O
speed-up is achieved if the response to a typical query
is balanced across the disks, i.e. each of the n disks
accesses approximately the same fraction, l/n, of the
answer. To our knowledge, all of the research work
on declustering focuses on symmetrical systems and
therefore each of the decomposition algorithms men-
tioned above allocates the same volume of data to each
disk.

However, many applications have to use existing
platforms and hardware configurations a.nd therefore
need to decluster the data over a network of heteroge-
neous disks and servers. The various disks in the sys-
t,em may differ in their transfer rates, seek times and
their capacities. Furthermore, the servers to which
these disks are connected may have different speeds.
As we will show later, server speeds may affect our so-
lution as a slower server may limit the effective com-

110

u SERVER 1

ATM NEWORK

Figure 1: Declustering for terra.in visua.lization appli-
cation

bined transfer rate achievable by the disks connected
to it.

In fact, this work was motivated by an application
where we needed to design an Image Server in which
we store a collection of aerial photographs of an area of
interest for the purpose of terrain visualization. The
photographs are partitioned into tiles of some stan-
dard size (typically 256 by 256 pixels) which are then
declusterd on a system consisting of several servers
each connected to a number of parallel disks. Users
can trace a path of flight thru the terrain on the screen
of a SGI workstation connected to the servers, all tiles
intersecting this path must be fetched quickly from the
disks to allow continuous visualization. Currently, t,he
system runs on a network of three t(o six servers each
connected to a number of disks with different capaci-
ties and speeds (See Figure 1). As an example of the
kind of heterogeneity we are facing, the Image Server
will be using a variety of disks such as the Seagate Bar-
racuda and the Elite 2 whose speeds range between 1
to 3 MB/s, and servers ranging from a Sun Spare 10
model 41 and 51 to Dee Alpha machines. The ob-
served server speed ratio of the Spa.rc and the Alpha
machines are approximately 1:2.

In [l] more details of the actual declusterization
method are given. In developing declusterization
st,rategies for the Image Server, we discovered that
symmetric declusterization is not optimal due to the
heterogeneity of our hardware devices and subse-
quently developed the general declustering algorithm
described here.

In this paper we do not, devise a new declusteriza-

tion method but rather show how to adapt any declus-
terization method to work efficiently in heterogeneous
environments. The method we propose here is espe-
cially suitable for declusterization of video and audio
data as queries for such data types usually require large
amounts of data that are accessed sequentially and can
be easily declustered perfectly [7].

We present algorithms which determine the optimal
ratio of data allocation to the various disks, taking
into account all the above mentioned constraints. We
then consider the realistic scenario in which the pro-
portion of the data requested from each disk follows
some multinomial distribution based on the fraction
of the database stored on each disk.

The paper is organized as follows: In Section 2 we
present some preliminary results on systems without
any disk capacity constraints. In Section 3 we present
our solution for maximizing system bandwidth subject
to capacity constraints. In Section 4 we present our
most, general algorithm which shows how to implement
all the previous results in an environment where disks
are connected t,o different servers with their own band-
width constraints. In Section 5 we analyze the case in
which the request proportions follow some probabilis-
tic distribution. Section 6 contains a discussion about
the implementation of our algorithm and an example
of the results produced by it on a typical system. Fi-
nally, Section 7 contains some conclusions and discus-
sion of future work. Table 1 lists all the major nota-
tions used in this paper, most of which have not been
introduced yet.

2 Declustering for maximal bandwidth
without capacity constraints

In order to illustrate the concepts, let us consider a
simple example in which we wish to store a dataset
of size 1 GB on 2 disks with transfer rates of 3 and 2
MB/s respectively. Let us assume no capacit*y con-
straints are present (i.e. each disk has a capacity
greater than 1 GB), and that future queries on this
dataset request perfectly declustered chunks of data
so that, for every query the amount of data rea.d off
disk i is proportional to the fraction of the dataset
residing on disk i.

We note that, the response time of a query is equal
to the time it takes for the last byte to arrive, i.e.,
we need to wait, for all disks to complete the trans-
fer their portion of the answer. If we decluster this
dataset symmetrically (i.e. 0.5 GB on each disk), a
query requesting a chunk of 100 MB will retrieve 50MB
from each disk. The response time for this query will
be ma,x(F, y) = 25 seconds. On the other hand, if
we allocate 0.6GB on the fast, disk and 0.4GB on the
slower one, the query will access (based on these pro-

111

Notation Meaning

F
The number of disks in the System
The usable capacity of disk i

ai The capacity actually stored in disk
i for this request

Bi The bandwidth (transfer rate) of
disk i

c The total amount of data requested
to be stored

B The desired retrieval bandwidth
T The retrieval time constraint (=

C/B)
B Opt The optimal (i.e. maximal) retrieval

bandwidth
T opt The optimal (i.e. minimal) retrieval

time (= C/B,t)

;
The number of servers in the System
The set of disks in server i II
The bandwidth of server j
The current amount of data in server

Table 1: List of all notations llsed in this paper
portions) on the average 6OMB from the fast disk and
40MB from the slow disk resulting in an expected re-
sponse time of max(9, y) = 20 seconds.

Note that even in symmetric declustering schemes,
it is quite possible that the actual observed response
time for a query will be slower than the promised one
due to the fact that the portion of the dataset re-
quested by the query may not be perfectly declustered
across the disks. In the non-symmetric case an addi-
tional complication may arise due to fluctuations in the
ratios retrieved from each disk around their expected
values. We will deal with these issues in Section 5.

In this section, we define a minimal response time
declustering scheme to be a scheme which achieves
minimal expected response time (i.e. maximal band-
width) for perfectly declustered queries. Note
that assuming all queries are perfectly declustered is
especially true for video and audio data, where queries
always access a continuous stream of data, and are
almost always perfectly declustred. In the absence
of capacity constraints, the above example illustrates
the following principle summarized under proposition
1 (the proof is very simple and therefore omitted).

PROPOSITION 2.1 Assuming that ~11 disks are infinite
in capacity, and that C amount of data needs to be
stored in a disk system containing n disks with aver-
uge transfer rates (i.e. bandwidths) of B1, Bz, . . , B,.
The optimul declustering scheme that minimizes the
response time for perfectly declustered query requests,

should have the amount of data stored on each disk (a;)
be proportional to the bandwidth of each disk (Bi). In
other words, the amount of data ai stored on disk i
should be:

ai=Cx
=;:I Bk

Note that this algorithm and the ones discussed in
the following sections, will only determine a decluster-
ing ratio among the disks. In order to adapt a given
symmetric declusterization strategy to follow the allo-
cation ratios produced by our algorithm, we need to
have each real disk be represented by multiple virtual
disks. Considering the previous example where the de-
termined declustering ratio is 3:2. We need to trans-
form this initial problem into one with 3 + 2 = 5 sym-
metric virtual disks and apply the symmetric declus-
terization method to a problem with 5 virtual disks.
We then collect the data that has been declustered to 3
of these virtual disks, and load them into the first real
disk, and collect the data from the other 2 virtual disks
and load them into the second real disk. The ques-
tion of how to choose the 3 virtual disks which should
be loaded on the same real disk is application depen-
dent and can usually be chosen to preserve maximum
declusterizat(ion. Also note that in order to use the
above method we need to have integer ratios, where as
the declustering ratios determined by our algorithms
are usually real numbers. This should not present a
big problem though, since it is fairly easy to come up
with good integer ratios based on real number ratios,
with some small error introduced in the process.

3 Declustering for maximal bandwidth
with capacity constraints

3.1 An example

Next we consider the more practical system in which
each disk has some finite capacity of Ci, and discuss
how to decluster with capacity constraints. As an ex-
ample, consider the following problem: Assume we
need to store a dataset of 2.5 GB in a system, with
3 disks, disk 1 can store 1 GigaByte and has a average
transfer rate of 3 MB/s, disk 2 can store 2 GB and
has a average transfer rate of 2 MB/s, and disk 3 can
store 3 GB and has a average transfer rate of 1 MB/s.
This system is illustrated in Figure 2. As we showed
in the previous section, without considering disk ca-
pacity limitations, we should always decluster data on
this disk system in a 3:2:1 ratio (proportional to the
speed of the 3 disks). This would result in an average
transfer rate of 3 + 2 + 1 = 6 MB/s beiug observed by
the whole system. The question is whether this trans-
fer rate can be achieved with the capacity constraint#s
we have introduced. As the following discussion shows

112

Disk2

2GB

2 MB/s Disk 3

3GB

1 MB/s

Figure 2: A disk system containing 3 heterogeneous
disks

this rate is not achievable and finding the ma.ximum
achievable rate and optimal allocation is not trivial.

The first thing we need to realize is that in order
for any subset to be retrieved at a transfer rate of 6
MB/s, we specifically need to be able to retrieve the
entire dataset (2.5 GB) in 2500/6 = 416.66 seconds
from all 3 disks, ever though most queries only ask
for a portion of the dataset. By observing this con-
straint and the disk capacity constraints we note that,
we are allowed to place at most 1 GB on disk 1 (ca-
pacity constraint), 833.33 MB on disk 2 (transfer rate
constraint) and 416.67 MB (transfer rate constraint)
on disk 1. The total is less than 2.5 GB and thus 6
MB/s is not achievable, but this st,ill leaves us clue-
less as to what kind of a distribution would result in a
maximized retrieval bandwidth and what that band-
width would be. For this particular problem, it turns
out that the optimal solution is to place 1 GB on disk
1, 1 GB on disk 2, and 0.5 GB on disk 3, which would
result in a maximized bandwidth of 5 MB/s. In the
following subsection, we will show an algorithm that
can help us find this optimal solution.

3.2 The algorithm

The problem in its more general form can be described
as follows: We are required to load a dataset of C
MBytes on a system of n disks with each disk i having
a capacity of C; MB and a transfer rate Bi MB/s,
suc.h that the overall bandwidth B of the system is
maximized.

We not,e that the bandwidth of the syst,em is a func-
tion of the individual transfer ra.tes of the disks and the

amount of data each of them needs to transfer. Clearly,
under any feasible solution, the volume of data ,ai, al-
located to each disk should satisfy:

First let us consider how we can determine whether
a given level of system bandwidth B is achievable. In
order for this bandwidth to be achieved, the entire
dataset of size C must be retrievable in T = C/B time.
This implies that disk i should hold at most T x Bi MB
of data. Of course, we also have the constraint that at
most Ci MB of data can be put on disk i. Thus, we
define the function:

f(i, T) = min(T x Bi, Ci)

which indicates the maximum amount of data that can
be stored on disk i, subject to the retrieval time con-
straint of T.

Define the total volume of data that can be stored
on the system subject to the time constraint T as

n

g(T) = ~.fW)
i=l

PROPOSITION 3.1 The maximal bandwidth, Bopt,
achievable in, th,e system satisfies:

c = @opt)

where
C

To,t = -
B opt

PROOF: Let Bopt be the maximal bandwidth we are
looking for, and Top, = C/Bopt. If g(Topt) is larger
than C, it would mea.11 that an allocation could still be
found with B larger than Bopt thus implying that Bopt
is not the maximal bandwidt,h. If g(Topt) is smaller
than C, it would mean it is infeasible. Thus it must
be true that g(Topt) = C 0

Due to the fact tha.t g contains a function f which
uses the min function, an inverse function for g does
not exist, and thus a closed form solution for Bopt does
not exist. The most efficient way to find Bopt , would be
to perform a binary search on different bandwidths B.
For each bandwidth B that we try, if g(C/B) > C,
then B is too small and needs to be increased, if
g(C/B) < C, then B is too large and needs to be de-
creased. We keep on iterating this search until g(C/B)
is sufficiently close to C, at which point B will be suf-
ficiently close to Bopt. At this termination time, we

113

simply set the amount of data, ai, we store in each
disk to be f(i, C/B).

The MaxBandwidth-Algorithm listed below con-
tains a more formal description of the above algorithm.
MaxBandwidth-Algorithm:

1. Compute B,,,, the highest possible bandwidth
as &a, = C;=‘=, Bi

2. Using a binary search procedure between 0 and
B ,,,(15 find a value B that satisfies 0 < Ig(T)--Cl <
6 where c is some predetermined acceptable small
error, and T = C/B. At this point, we should
also have 1 B - B,+ 1 < 6 for some small 6 that is
a function of 6.

3. Load the ith disk with ai equal to f(i, C/B)

As a final note about this algorithm we note that
theoretically speaking, we can terminate the binary
search, whenever the remaining range of possible B’s
to search for, is such that, whether f(i,T) is T x Bi
or Ci is completely determined for all i. At this point,
a closed form solution can be obtained since an in-
verse function for f exists for this range of B on all
i. From a practical point of view, however, the im-
plementation is much simplified by letting the binary
search continue to the point where the desired preci-
sion of B is obtained. The complexity of the algorithm
is O(nlogz *) which is really not that important,
since the running time of this algorithm is negligible
(less than a second) compared to the time it takes to
load a dataset into a disk system.

3.3 Optimal loading for varying database sizes

In some cases the database size is not known apriori
and the designer needs a “System Profile” which indi-
cates how to optimally load the data on the disk sys-
tem for each feasible database size. We can compute
an optimal loading scheme for varying database sizes
by using the following procedure whose correctness is
based directly on Proposition 2.1. The procedure uses
iterations where in each iteration more the amount of
data loaded increases while the system transfer rate
decreases. This continues until we fill all the capaci-
ties of our disks.

Given any portion of the database, X, which is still
unloaded on the disks, and given a subset U consisting
of Ic disks (of the n initial disks) with remaining unused
capacity, we will try to load as much as we can on U
observing the “proportionality” principle which says
that the fraction of data loaded on each disk of U
must be proportional to the speed of that disk (within
U). The system transfer rate achieved for the loaded
portion is CieV Bi. Observing the “proportionality”
principle, we may not be able to load all of X due
to one or more disks reaching their capacity Cl, these

114

are what we call the bottleneck disks. Each iteration
is completed when one or more bottleneck disks are
identified.

We note that by the above principle, if we load a
database of size X on the system, the amount loaded
on the ith disk must satisfy

B,
B moo x X 5 Ci where B,,, = CIcu Bi. From this

it follows that X 5 2 x B,,, for all i. Therefore if
the Ifh disk is a bottl:neck it must satisfy

2 = Min;Ev{Ci/B;}.
At this point we iterate the procedure with U con-

sisting of the remaining non-bottleneck disks and X
consisting of the remaining unloaded portion of the
database. The remaining capacity of each disk is of
course adjusted with the amount loaded on it in the
previous round.

More formally this is described in the following al-
gorithm.

MaxBandwidth-Algorithm with varying
Database:
Given a databse of size X, a set of disks U
Do While X > 0, and at least one Ci > 0 in U

1.

2.

3.

4.

5.

6.

Compute B,,, = B,,, = &, &

Compute % for each disk in U

Find Mini{Ci/Bi}, call it Min(U), and the disks
which achieve it BottleNeck

Load each disk in U with the correct proportion
of Min(U) x B,,,

Reduce each Ci in U to Ci minus the allocated
proportion for this disk

Set U = U - Bottleneck(U) and X = X - (IV1 x

Min(U))

EndDo

As an example assume, we have three disks with
relative bandwidths 5,2,1 and relative capacities 2,4,3
(for simplicity we omit units as only the proportions
are relevant). The maximal size database we can load
is 9. The first disk becomes a bottleneck in the first
iteration where we load 2, .8 and .4 on the disks re-
spectively to maintain the proportions, the combined
bandwidth is 8 and remaining capacities are 0,3.2 and
2.6. At this point 3.2 were loaded. In the next iter-
ation, the two remaining disks must be loaded with
proportions 2:l. We can show that 4.8 can now be
loaded with one disk receiving 3.2 and the other 1.6.
The combined bandwidth at this point drops to 3. We
finally load the remaining 1 on the slowest disk at
which point the system bandwidth drops to 1. The

bandwidth for any loaded dat,abase size between 0 t,o
9 can be computed using the above allocations.

We observe that all disks of the same type, i.e.,
same speed and capacity will become bottlenecks at
the same iteration. Therefore, the algorithm will need
in O(n’) time where n is the number of different disk
types in the system.

4 Server Bandwidth

In this section, we discuss the complicated issues that
arise when the disks are distributed among multiple
servers that have bandwidth restrictions themselves.
The assumption is that each disk is located within
some server, and each server (which can contain mul-
tiple disks) has a limitation on its retrieval band-
width, possibly because of limited bandwidth on its
bus, memory, or even CPU. One can view this problem
as just adding another layer of bandwidth restrictions
on groups of disks. The extra layer does not necessar-
ily have to come from the existence of servers. It could
also come from bandwidth limitations on the disk con-
troller, system bus, or network hub. In fact, it is quite
possible that within a disk system, there are several
layers of bandwidth restrictions that are imposed on
the disks in a hierarchical form.

In this paper we will only discuss how to handle
one extra layer, and we will use the term server to
represent the reason for the extra layer. The reader
should keep in mind that this solution can be easily
extended for multiple layers and that the extra layer
does not have to be due to the existence of servers.

Let us assume that the n disks are connected to m
servers, and that Sj represents the set of disks con-
nected to server j. Let Bj represent the bandwidth of
server j, and define Cj to be the total capacity that
we are attempting to place on all disks in Sj (i.e.
Cj = Cies. Ui). If we now try to come up with an
allocation that achieves a retrieval bandwidth of B
(and thus a retrieval time of T = C/B) by putting
ai = f(i,T) amount of data on disk i, we could run
into the problem of Cj being larger than T x Bj. This
means that although the amount, of data stored on
each disk in server j can be retrieved in time T, server
j is overflowed with data and cannot keep up with this
data in order to deliver it all in time T.

The solution to this problem is to place a total of
only T x Bj data on all the disks in server j, and to
do this for every server j that overflows. With this
solution in mind, we can now redefine the function
g(T) that describes the total amount of data that can
be placed in the system, subject to the retrieval time

constraint of T:

0’) = 2 s(j, T)
j=l

where s(j, T) is the amount of data that can be stored
in server j, and is defined as:

s(j, T) = min(T x L$, c f(i, T))
IES,

where f(i, T) is the amount of data that can be stored
in disk i as defined in the previous section. With this
new definition of g, we can now compute the amount
of data that can be placed in a system, subject to
the retrieval time constraint of T for both disks and
servers. Thus, the binary search algorithm described
in the previous section, can still be applied to find the
maximal bandwidth B,t in which g(C/B,,t) = C.

5 Probabilistic analysis of heteroge-
neous declustering

In this section we describe the declustering process
where we remove the perfect declustering assump-
tions. Assuming that we load N records on n disks,
where ai records are loaded on the ith disk, we note
that, if Xi is the (random) number of records re-
quested from disk i by a random transaction, then
X = (Xl,X2,...,Xn) h as a multinomial distribution
with parameters (al/N, az/N, an/N).

In order to compare different allocations to each
other we will need some definitions from the theory of
Majorization.

Definitions ([S])
Notation: Given a vector a = (al, a2, a,) , rear-

range the components of this vector in decreasing order
and denote the rearranged vector as (~(11, ~121, a[,]),
with ~1~1 2 apI > . 2 a[,].

Majorization: Given two vectors a = (al, a2, a,)
and b = (bl, b2, b,), the vector a is said to be ma-
jorized by the vector b, written as a <,,, b if:

Schur Concave Function: A real valued function f
defined on a set A C R” is Schur Concave if a <,,, b
on A implies f(u) 5 f(b).

Smaller in Usual Stochastic Order: A random vari-
able X is said to be smaller in the usual stochastic
order tha.n another random variable Y if for all t,
P(X < t) 2 P(Y 5 t). This ordering will be writ-
ten as X sJt Y. A consequence of this ordering is
that, if X & Y , then E(f(X)) 2 E(f(Y)) for all
non-decreasing real valued functions f and when the
epectations exist.

115

PROPOSITION 5.1
([a] ,p. 306) If X = (Xl, X2, Xn) has a multi-
nomial distribution with parameter 0 = (e,, e2, e,),
then Pe{s < X; 5 t} is a Schur-concave function of

e,-oo~s~t~co.

We will first deal with disks with equal speeds and
different capacities.

PROPOSITION 5.2 If all disks have equal speeds and
capacities Cl > Cz... > C,,, and there are a to-

tal of N records to be placed, with N 5 2 Ci,
i=l

then the retrieval time is stochastically minimized
by placing a,, = min{C,, N/n} in disk n, a,-1 =
min{C,-1, (N - a,)/(n - 1)) records in disk (n - l),

.“, aj =min{Cj,(N- 5 ai)/(n-j+l)} in diskj,
i=j+1

‘.-, al = (N - F q) records on the jirst disk.
i=2

PROOF: Given any allocation of records b =

(h, bz, bn), rearrange the given vector b in de-
creasing order and denote the rearranged vector as
(b[l], b[z], b[,]). We claim that: al 5 b[l], al + a2 5

$11 + $21, al + a2 + . . . + ai 5 bill + b[z] + . . . + b[;]

and Fai = Fbi. Because the same number of
i=l i=l

records are allocated, 2 ai = 5 bi = N. If C,, >
i=l i=l

N/n, then ai = N/n, i = 1,2,3, . . and the claim fol-
lows immediately. Else, a, = C, (by definition).

n-l
Let p = C ai/ 5 bi 5 1. Let b[;l = pb[i], i =

i=l i=l
1,2, ..‘, n - 1 and apply the same reasoning to the vec-
tors, (al, a~, ..a,-~) and (b[l], $21, ..bL,-1]). The claim
follows by repeated appication of this inductive argu-
ment .

This shows that the vector a <m b (see defi-
nition). As mentioned above, if Xi is the (ran-
dom) number of records requested from disk i, then
X = (X1,X2,...,X,) h as a multinomial distribu-
tion with parameters, (al/N, Q/N, an/N) and

(h/N, h/N, b/N) under the two arrangements.
Therefore it follows from the above proposition, and
the definition of a Schur-concave function that

P(allN,azlN,...,(l,fN)(Xi 5 tl 2
P(b,/N,b,/N ,..., b,/N){Xi 5 t), -CO < t 5 cW

This satisfies the definition of stochastic minimiza-
tion. Cl

It appears at first glance that the problem with un-
equal disk speeds can be solved by allocat#ing records
directly in proportion to the disk speeds. Unfortu-
nately this need always be the case as shown in our

analysis and simulation results given below. We can
prove that allocating more records to a faster disk is
stochastically optimal (the proof is very tedious and
omitted here). Here we present two results, the first
shows that the “intuitive” allocation of records in pro-
portion to the disk speeds is asymptotically optimal for
large request sizes. The second gives an approximate
allocation rule.

PROPOSITION 5.3 When there are n disks with trans-
fer rates Bi, i = 1,2, n, then the allocation of the
fraction Bi/(Bl + B2 + . . . + B,,) of records to disk i
is asymptotically optimal as the site of the request N
increases.

PROOF: The proof is given for n=2. Assume that the
allocation of p fraction of records has been made to the
first disk. Given that the total number of records re-
quested is N, the distribution of the number of records,
X, requested from this disk has mean = Np and stan-
dard deviation = dm. The distribution of the
number of records requested from the second disk has
mean N(l - p) but the same standard deviation. As-
sume that p/B1 - (1 - p)/Bz = E > 0. Then we note
that:

(Np/+Blg~N(l - p)/Bz)/fi = efi and p =
Bl 1 2

B,+Ba BI+&’
From the first of these relations, the difference in

means of the two random variables, X and (N - X)
grows asymptotically with N. This implies that the
maximum of the two random variables X/(Blfi)
and (N - X)/(Bzfi) asymptotically coincides with

XIPlfi) (a rl ‘g orous proof of this fact is omitted,
but the logic is that both these random variables have
the same finite standard deviation which does not grow
with N whereas their means grow apart at the rate of
a). This in turn implies that:

E(max(X/B1,(N-X)/Ba)
.m

! E(X/BI)
JR =

$p =

fi ; B,-
BI+& BI+&’

Thus the difference in the allocation, c, must be
made as small as possible. cl

5.1 An approximate result

In this section we use the normal approximation to
the binomial. We first, derive an exact formula for op-
timally allocating data on two disks of different speeds.
We then use a simpler formula to derive a general
heuristic for allocating data on n disks.

Consider a random variable, X, distributed
Normally with mean Np and standard deviation
Jm. Then,

E(m=4X/&,(N -X)/b)) =

116

+E((BYfls,) -x (> 1(X 5
(BYflgz) II/B2 (1)

where I(A) is the indicator function of the set
A. Let a, Oc stand for the standard Normal dis-
tribution function and its complement. Let 4 de-
note the standard normal density function. Let (Y =
NBl/(Bl+Bz), p = Np, and u = ,/w. Then
the right hand side of (9) can be simplified as:

N/t& + B2) + (p - ~)(-a(7)/B2

This expression can be minimized by using a search
procedure. A approximate but quicker result can be
obtained by noting that u is a.lmost invariant for small
changes in p. Then the expression to be minimized
can be written as:

-+‘(-Q(~)/B~+W(~)/BI)+$(~)(&+

ik)

where z is the standard Normal deviate.

7 = (G(z)/Bz - Qc(z)/B1)

and

d2H(z)
- = (4(z>/B2 + 4(z)/B1) > o dz2 (5)

Therefore H(z) is minimized by setting the first
derivative equal to zero, giving :

l/B2 = @“(z)(l/B~ + 1/B2) e

@ (&&)) = (B1B;B2) t6)

This is a “newsboy” type of solution. Equation 6
shows that when the disk speeds are equal we must
have cr = Np, otherwise we must always favor the
faster disk in allocating records, i.e., place more than
the number proportional to its speed. We summarize
these results:

PROPOSITION 5.4 Given two disks with speeds B1 and
B2 and a request of size N, then the optimal alloca-
tion under th,e Normal approximation to the binomial
distribution is given by minimizing Equation (2). An
approximate solution to this minimization problem can
be obtained by solving for p in Equation 6 and placing
p fraction of records on disk 1.

Remarks: To apply this Proposition, first we need a
value for N. We can use the average size of the request
as a proxy for N. Second, when there are many disks,
how can the allocation be made? We suggest that
records are at first allocated in proportion to the disk
speeds. Then iteratively reallocate records using (6) to
the two fastest disks, the next two fastest and so on.
Repeat this reallocation procedure until the changes
in allocation are small.

The psuedo code for the allocation procedure is
given below.

Procedure HEURISTIC:
Step 0:

Read number of disks (ndisk), disk speeds (Bi)
and average number records retrieved (nrec).
Read tolerance (tol). We assume that, disk speeds
are ordered as: B1 > B2 > Bs.. > BndiJk
Set proportions to be allocated on diski as

= -z(-Q(z)/B2 + Qc(z)/B1) + 4+)($ + $, = B(Z) (3) Pi = (Bl+Bz+q,+Bnd:s~)
Set error = l.Oe32

117

Step 1:
Do while (error > tol)

Step 1.1:
error = 0.0

Do i = 1, ndisk-1
N = (pi + pi+l) * nrec
bl = Bi
b> = Bi+I
Solve for p in (6) using a search procedure
temp = pi
pi = p * N/nrec
pi+1 = (1 - p) * N/nrec
error = error + ltemp - p;] 1
enddo

enddo

Usually the procedure converges in lo-20 iterations
of Step 1.1. It can be proved that this procedure will
eventually stop, (the reason is that the largest allo-
cation, pl, is monotone increasing). Our experiments
show that the allocation is rather robust with respect
to the average size of request N.

The allocation given by the procedure was tested
against the proportional allocation using simulation.
In the simulations, the average size of requests, N, was
varied between 5 a.nd 100 in steps of 5. For each aver-
age size N, 10,000 trials were conducted. In each trial,
a random number M was generated between 0.5*N
and 1.5*N, where M is the actual size of the request.
The results of these heuristics are shown in the next
section.

The HEURISTIC procedure is easily a.dapted to the
case when the disk capacities are finite. The HEURIS-
TIC procedure is called and the allocations are tested
for feasibility, i.e., whether the allocations can be fit-
ted into the disks. If the allocation is feasible, we stop,
else we look at the fastest disk whose allocation vio-
lates the capacit,y constraint,. We load this disk to its
capacity, eliminate it from further consideration and
resolve the problem. The algorithm for handling this
case is given below:

Algorithm FINITE
Step 0:

Read number of disks (ndisk), disk speeds Bi
and average number records retrieved (nrec).
Read tolerance (tol). We assume that disk speeds
are ordered as:Bl > B2 > Bs.. > Bndisk
Read the capacity ci, of each disk and the tota.
number of records to be allocat,ed, NTOT.
UllOCi is the final alloca.tion, indexi is
a temporary array, ntot,old = NTOT
Set indezi = i, i = 1, ndisk

Step 1:
call HETJRISTIC and get pi

Step 2:

server 1 server 2 sewer 3 ‘_
8 MB/s 3 MB/s 3 MB/s

Figure 3: An example of a 3 server, 7 disk, heteroge-
neous system

Do for i = 1, ndisk
allocindez, = pi * NTOTlntotold
if(pi * NTOT > cindeZ,) then
alloc;,dezi = ci,d,,,lntotold
NTOT = NTOT - cindez,

doforj=i+l,ndisk
indezj-l = indezj
enddo

ndist = ndisk - 1
go to Step 1
endif

enddo
stop

This iterat,ive method can be used with any allocation
method (i.e., not just HEUILISTIC), by replacing the
call in Step 1 of the algorithm to a call to the appro-
priate procedure. Using this logic, we compared the
allocation under HEURISTIC versus allocation under
the proportional scheme. Some graphs of the results
a.re shown in the next section.

6 Implementation Results

The above described algorithms have all been imple-
mented and test,ed to verify their correctness. As an
example, Figure 4 shows what the maximal achievable
bandwidth would be as a function of the load request
size for the 3 server disk system shown in Figure 3.
Server 1 of the system has a bandwidth of 8 MB/s and
contains 3 disks, two of which are 1 GB disks with a
bandwidth of 2 MB/s and the remaining one being a
2 GB disk wit,h a bandwidth of 3 MB/s. Server 2 has

118

6 I I I t I I

6 1 0 9 ill 11 12 13
SieolloadreqWhGB

Figure 4: Achievable bandwidth relative to load re-
quest size

a bandwidth of 3 MB/s and contains 2 similar disks,
each capable of holding 2 GB of data with a bandwidth
of 2 MB/s. Server 3 also has a bandwidth of 3 MB/s
but contains 2 different disks, one of which is a 3 GB
disk with a bandwidth of 2 MB/s, and the other being
a 2 GB disk with a bandwidth of 1 MB/s. In this disk
system, only server 2 has a smaller bandwidth than
the combined bandwidth of its disks. Because the t,wo
disks are of the same size and speed, the effective band-
width of each disk turns out to be scaled down evenly
to the point where they add up to the bandwidth of
the server (i.e. 1.5 MB/s).

The maximal achievable bandwidth on this disk sys-
tem (for small request sizes) is 13 MB/s (7 MB/s from
server 1, and 3 MB/s each from server 2 and 3). When
the size of the load request grows to 6.5 GB, the two 1
GB disks in server 1 get saturated and can no longer
hold any more data. This is the reason for the sudden
change in the slope of the curve at 6.5 GB. From 6.5
GB up to 13 GB (the full storage capacity of the sys-
tem), the curve turns out to be piecewise hyperbola,
with the intersection points between hyperbolas repre-
senting the saturation of other disks. In particular, at
the storage capacity of 8 GB, the 2 GB disk in server 1
gets saturated, at 12 GB the two 2 GB disks in server
2 are saturated, and finally at 12.5 GB, the 3 GB disk
of server 3 gets saturat#ed. Of course, when we finally
reach 13 GB, the only remaining slow& disk (the 2
GB disk of server 3) also get,s saturated, and thus no

Figure 5: Disk speeds; 20,10,5,5

more data can be placed in the system.
For the probabilistic method, we show graphs of

the improvement in allocation resulting from our pro-
cedure as compared with simply using the determin-
istic methods. For the test cases shown the improve-
ment ranges from 8 to 23 percent. In the graphs of
Example 2 and Example 4 we show the comparison
for disks with sufficient capacities. Example 2 uses 4
disks with relative speeds 20,10,5,5 whereas in Exam-
ple 4 the speeds are 10,5,1,1. The graphs of Example
3 and Example 5 have finite capacities. The relative
disk speeds in Example 3 are 20,15,10,7 with capaci-
ties 400,100,100,100 with a total database size of 600
,in Example 5 disk speeds are 10,5,1,1 with capacit,ies
750,200,100,100 with total database size of 1000.

7 Conclusion

In this paper we have described algorithms for adapt-
ing declusterization methods to work in heterogeneous
distributed environments. The results reported here
are particularly suitable for systems which store video
and audio data on pa.rallel disk systems but can be
used for any environment in which declust,erization is
desirable such as image data or multidimensional data
ret,rieved by range queries. The algorithms reported
here were all implemented and are actually used in an

119

0.090000

1

o.ovJooo

Figure 6: Disk speeds:20,15,10,7 with Capacities
400,100,100,100

existing application which declusters image data for
the purpose of terrain visualization.

The work reported here can also be used for system
design purposes. As hardware configurations tend to
be dynamic, designers may wish to replace disks and
servers by newer available models. For example, a de-
signer may wish to find which disks or servers in the
current system should be upgraded in the most cost-
effective way to improve system response time. Our
algorithms provide as a by-product, information about
the bottleneck disks and servers so that the designer
can identify these components which are critical.

To summarize we have shown the following results:

l For perfectly declustered queries we have an exact
algorithm to produce optimal allocations.

l We have provided a stochastically optimal alloca-
tion scheme for for finite capacity and same speed
disks.

. We provide heuristic algorithms for disks with un-
equal speeds. The theoretical results show that we
must allocate more than proportionally to faster
disks. These ideas have been combined into a fast
procedure for doing the allocation.

Figure 7: Disk speeds: 10,5,1,1

l Simulation results show that if disk speeds are
more unequal, then greater benefit is derived from
using the allocations from our procedure FINITE
as opposed to the deterministic algorithm. Re-
sults also indicate that the benefit is greater when
the size of the actual requests is small.

We plan to investigate the possibility of building
design tools which will be able to select the most, cost-
effective products from a given list of alternative disks
and server configurations. Such tools will employ these
algorithms to determine the bandwidth of a selected
system.

Another direction of future research involves some
interesting probabilistic issues raised by this work,
such as finding exact bounds on the probability that
the response time will not deviate from the predicted
one, based on the assumption that retrieval requests
are completely random and cannot be perfectly declus-
tered.

In the current work we deal with loading one dataset
at a time on the system. Another issue we are cur-
rently exploring is tha.t of finding optimal methods
of loading multiple datasets on the disks where each
dataset has its own desired bandwidt,h and capacity
requirements a.s well as an associa.ted zuel:ght that in-
forms us how important it is to achieve the desired
bandwidth (or come close to it).

120

o.oooooO 1 ” ” ” ” ” ” ” ““‘1
5 10152025303540455055606570756065409510

0

Figure 8: Disk Speeds: 10,5,1,1 with capacities
750,200,100,100

References

[l] Ling Tony Ch en and D. Rotem. “declustering ob-
jects for visualization”. In Proceedings of the 19th
VLDB Conference, pages 85-96, 1993.

[2] David J. Dewitt and S. Ghandeharizadeh.
“Hybrid-Range Partitioning Strategy: A New
Declustering Strategy for Multiprocessor Databa.se
Machine”. In Proc. 16th international Conference
on VLDB, pages 481-492, August 1990.

[3] H. C. Du. “Disk Allocation Methods for Binary
Cartesian Product Files”. BIT, 26:138-147, 1986.

[4] C. Faloutsos and P. Bhagwat. “Declustering Using
Fractals” . In Second International Conference on
Parallel and Distributed Computing (PDIS), pages
18-25, January 1992.

[5] F. Faloutsos and D. Metaxas. “Disk Allocation
Methods Using Error Correcting Codes”. IEEE
trans. on Computers, 40(8):907-914, August 1991.

[6] S. Gh an eiarizadeh, I. Ramos, Z. Asad, and d 1
W. Qureshi. “Object Placement in Parallel Hy-
perMedia Systems”. In Proc. 1711~ internntional
Conference on VLDB, pages 243-254, September
1991.

[7] S. Ghandeharizadeh and L. Ramos. “Continu-
ous retrieval of multimedia data using parallelism”.
IEEE Transactions on Knowledge and Data Engi-
neering, 5(4):658-669, August, 1993.

[8] Marshall. A. W. and I. Olkin. “Theory of Ma-
jorization and its Applications”. Academic Press,
Edinburgh, London, 1966.

121

