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Abstract 

Declustering is a well known strategy to 
achieve maximum I/O parallelism in multi- 
disk systems. Many declustering methods 
have been proposed for symmetrical disk sys- 
tems, i.e, multi-disk systems in which all disks 
have the same speed and capacity. This 
work deals with the problem of adapting such 
declustering methods to work in heteroge- 
neous environments. In such environments 
there are many types of disks and servers with 
a large range of speeds and capacities. We 
deal first with the case of perfectly declustered 
queries, i.e., queries which retrieve a fixed pro- 
portion of the answer from each disk. 

We propose an algorithm which determines 
the fraction of the dataset which must, be 
loaded on each disk. The algorithm may be 
tailored to find disk loading for minimal re- 
sponse time for a given da.tabase size, or to 
compute a system profile showing the optimal 
loading of the disks for all possible ranges of 
database sizes. 
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The methods proposed here are general and 
can be used in conjunctCon with most known 
symmetric declustering methods. 

1 Iutroduction 

Declustering methods have gained a lot of attention 
recently as a technique to enhance I/O parallelism 
[l, 2, 4, 5, 3, 61. The idea is to distribute the data 
among 1% parallel disks so that data which is likely to 
be requested together by a query is allocated to differ- 
ent disks. The speed-up is achieved due to the fact 
that each disk has to access only a fraction of the 
answer. Proposed declustering methods differ from 
each other in the way in which they decompose the 
data among the disks. Methods based on hashing 
techniques, error-correcting codes, hilbert curves and 
lattice-ba.sed decomposition have all appeared in re- 
cent research literature. 

In symmetrical systems where the disks have sim- 
ilar transfer rates and capacities, the maximum I/O 
speed-up is achieved if the response to a typical query 
is balanced across the disks, i.e. each of the n disks 
accesses approximately the same fraction, l/n, of the 
answer. To our knowledge, all of the research work 
on declustering focuses on symmetrical systems and 
therefore each of the decomposition algorithms men- 
tioned above allocates the same volume of data to each 
disk. 

However, many applications have to use existing 
platforms and hardware configurations a.nd therefore 
need to decluster the data over a network of heteroge- 
neous disks and servers. The various disks in the sys- 
t,em may differ in their transfer rates, seek times and 
their capacities. Furthermore, the servers to which 
these disks are connected may have different speeds. 
As we will show later, server speeds may affect our so- 
lution as a slower server may limit the effective com- 
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Figure 1: Declustering for terra.in visua.lization appli- 
cation 

bined transfer rate achievable by the disks connected 
to it. 

In fact, this work was motivated by an application 
where we needed to design an Image Server in which 
we store a collection of aerial photographs of an area of 
interest for the purpose of terrain visualization. The 
photographs are partitioned into tiles of some stan- 
dard size (typically 256 by 256 pixels) which are then 
declusterd on a system consisting of several servers 
each connected to a number of parallel disks. Users 
can trace a path of flight thru the terrain on the screen 
of a SGI workstation connected to the servers, all tiles 
intersecting this path must be fetched quickly from the 
disks to allow continuous visualization. Currently, t,he 
system runs on a network of three t(o six servers each 
connected to a number of disks with different capaci- 
ties and speeds (See Figure 1). As an example of the 
kind of heterogeneity we are facing, the Image Server 
will be using a variety of disks such as the Seagate Bar- 
racuda and the Elite 2 whose speeds range between 1 
to 3 MB/s, and servers ranging from a Sun Spare 10 
model 41 and 51 to Dee Alpha machines. The ob- 
served server speed ratio of the Spa.rc and the Alpha 
machines are approximately 1:2. 

In [l] more details of the actual declusterization 
method are given. In developing declusterization 
st,rategies for the Image Server, we discovered that 
symmetric declusterization is not optimal due to the 
heterogeneity of our hardware devices and subse- 
quently developed the general declustering algorithm 
described here. 

In this paper we do not, devise a new declusteriza- 

tion method but rather show how to adapt any declus- 
terization method to work efficiently in heterogeneous 
environments. The method we propose here is espe- 
cially suitable for declusterization of video and audio 
data as queries for such data types usually require large 
amounts of data that are accessed sequentially and can 
be easily declustered perfectly [7]. 

We present algorithms which determine the optimal 
ratio of data allocation to the various disks, taking 
into account all the above mentioned constraints. We 
then consider the realistic scenario in which the pro- 
portion of the data requested from each disk follows 
some multinomial distribution based on the fraction 
of the database stored on each disk. 

The paper is organized as follows: In Section 2 we 
present some preliminary results on systems without 
any disk capacity constraints. In Section 3 we present 
our solution for maximizing system bandwidth subject 
to capacity constraints. In Section 4 we present our 
most, general algorithm which shows how to implement 
all the previous results in an environment where disks 
are connected t,o different servers with their own band- 
width constraints. In Section 5 we analyze the case in 
which the request proportions follow some probabilis- 
tic distribution. Section 6 contains a discussion about 
the implementation of our algorithm and an example 
of the results produced by it on a typical system. Fi- 
nally, Section 7 contains some conclusions and discus- 
sion of future work. Table 1 lists all the major nota- 
tions used in this paper, most of which have not been 
introduced yet. 

2 Declustering for maximal bandwidth 
without capacity constraints 

In order to illustrate the concepts, let us consider a 
simple example in which we wish to store a dataset 
of size 1 GB on 2 disks with transfer rates of 3 and 2 
MB/s respectively. Let us assume no capacit*y con- 
straints are present (i.e. each disk has a capacity 
greater than 1 GB), and that future queries on this 
dataset request perfectly declustered chunks of data 
so that, for every query the amount of data rea.d off 
disk i is proportional to the fraction of the dataset 
residing on disk i. 

We note that, the response time of a query is equal 
to the time it takes for the last byte to arrive, i.e., 
we need to wait, for all disks to complete the trans- 
fer their portion of the answer. If we decluster this 
dataset symmetrically (i.e. 0.5 GB on each disk), a 
query requesting a chunk of 100 MB will retrieve 50MB 
from each disk. The response time for this query will 
be ma,x(F, y) = 25 seconds. On the other hand, if 
we allocate 0.6GB on the fast, disk and 0.4GB on the 
slower one, the query will access (based on these pro- 

111 



Notation Meaning 

F 
The number of disks in the System 
The usable capacity of disk i 

ai The capacity actually stored in disk 
i for this request 

Bi The bandwidth (transfer rate) of 
disk i 

c The total amount of data requested 
to be stored 

B The desired retrieval bandwidth 
T The retrieval time constraint (= 

C/B) 
B Opt The optimal (i.e. maximal) retrieval 

bandwidth 
T opt The optimal (i.e. minimal) retrieval 

time (= C/B,t) 

; 
The number of servers in the System 
The set of disks in server i II 
The bandwidth of server j 
The current amount of data in server 

Table 1: List of all notations llsed in this paper 
portions) on the average 6OMB from the fast disk and 
40MB from the slow disk resulting in an expected re- 
sponse time of max( 9, y) = 20 seconds. 

Note that even in symmetric declustering schemes, 
it is quite possible that the actual observed response 
time for a query will be slower than the promised one 
due to the fact that the portion of the dataset re- 
quested by the query may not be perfectly declustered 
across the disks. In the non-symmetric case an addi- 
tional complication may arise due to fluctuations in the 
ratios retrieved from each disk around their expected 
values. We will deal with these issues in Section 5. 

In this section, we define a minimal response time 
declustering scheme to be a scheme which achieves 
minimal expected response time (i.e. maximal band- 
width) for perfectly declustered queries. Note 
that assuming all queries are perfectly declustered is 
especially true for video and audio data, where queries 
always access a continuous stream of data, and are 
almost always perfectly declustred. In the absence 
of capacity constraints, the above example illustrates 
the following principle summarized under proposition 
1 (the proof is very simple and therefore omitted). 

PROPOSITION 2.1 Assuming that ~11 disks are infinite 
in capacity, and that C amount of data needs to be 
stored in a disk system containing n disks with aver- 
uge transfer rates (i.e. bandwidths) of B1, Bz, . . , B,. 
The optimul declustering scheme that minimizes the 
response time for perfectly declustered query requests, 

should have the amount of data stored on each disk (a;) 
be proportional to the bandwidth of each disk (Bi). In 
other words, the amount of data ai stored on disk i 
should be: 

ai=Cx 
=;:I Bk 

Note that this algorithm and the ones discussed in 
the following sections, will only determine a decluster- 
ing ratio among the disks. In order to adapt a given 
symmetric declusterization strategy to follow the allo- 
cation ratios produced by our algorithm, we need to 
have each real disk be represented by multiple virtual 
disks. Considering the previous example where the de- 
termined declustering ratio is 3:2. We need to trans- 
form this initial problem into one with 3 + 2 = 5 sym- 
metric virtual disks and apply the symmetric declus- 
terization method to a problem with 5 virtual disks. 
We then collect the data that has been declustered to 3 
of these virtual disks, and load them into the first real 
disk, and collect the data from the other 2 virtual disks 
and load them into the second real disk. The ques- 
tion of how to choose the 3 virtual disks which should 
be loaded on the same real disk is application depen- 
dent and can usually be chosen to preserve maximum 
declusterizat(ion. Also note that in order to use the 
above method we need to have integer ratios, where as 
the declustering ratios determined by our algorithms 
are usually real numbers. This should not present a 
big problem though, since it is fairly easy to come up 
with good integer ratios based on real number ratios, 
with some small error introduced in the process. 

3 Declustering for maximal bandwidth 
with capacity constraints 

3.1 An example 

Next we consider the more practical system in which 
each disk has some finite capacity of Ci, and discuss 
how to decluster with capacity constraints. As an ex- 
ample, consider the following problem: Assume we 
need to store a dataset of 2.5 GB in a system, with 
3 disks, disk 1 can store 1 GigaByte and has a average 
transfer rate of 3 MB/s, disk 2 can store 2 GB and 
has a average transfer rate of 2 MB/s, and disk 3 can 
store 3 GB and has a average transfer rate of 1 MB/s. 
This system is illustrated in Figure 2. As we showed 
in the previous section, without considering disk ca- 
pacity limitations, we should always decluster data on 
this disk system in a 3:2:1 ratio (proportional to the 
speed of the 3 disks). This would result in an average 
transfer rate of 3 + 2 + 1 = 6 MB/s beiug observed by 
the whole system. The question is whether this trans- 
fer rate can be achieved with the capacity constraint#s 
we have introduced. As the following discussion shows 
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Figure 2: A disk system containing 3 heterogeneous 
disks 

this rate is not achievable and finding the ma.ximum 
achievable rate and optimal allocation is not trivial. 

The first thing we need to realize is that in order 
for any subset to be retrieved at a transfer rate of 6 
MB/s, we specifically need to be able to retrieve the 
entire dataset (2.5 GB) in 2500/6 = 416.66 seconds 
from all 3 disks, ever though most queries only ask 
for a portion of the dataset. By observing this con- 
straint and the disk capacity constraints we note that, 
we are allowed to place at most 1 GB on disk 1 (ca- 
pacity constraint), 833.33 MB on disk 2 (transfer rate 
constraint) and 416.67 MB (transfer rate constraint) 
on disk 1. The total is less than 2.5 GB and thus 6 
MB/s is not achievable, but this st,ill leaves us clue- 
less as to what kind of a distribution would result in a 
maximized retrieval bandwidth and what that band- 
width would be. For this particular problem, it turns 
out that the optimal solution is to place 1 GB on disk 
1, 1 GB on disk 2, and 0.5 GB on disk 3, which would 
result in a maximized bandwidth of 5 MB/s. In the 
following subsection, we will show an algorithm that 
can help us find this optimal solution. 

3.2 The algorithm 

The problem in its more general form can be described 
as follows: We are required to load a dataset of C 
MBytes on a system of n disks with each disk i having 
a capacity of C; MB and a transfer rate Bi MB/s, 
suc.h that the overall bandwidth B of the system is 
maximized. 

We not,e that the bandwidth of the syst,em is a func- 
tion of the individual transfer ra.tes of the disks and the 

amount of data each of them needs to transfer. Clearly, 
under any feasible solution, the volume of data ,ai, al- 
located to each disk should satisfy: 

First let us consider how we can determine whether 
a given level of system bandwidth B is achievable. In 
order for this bandwidth to be achieved, the entire 
dataset of size C must be retrievable in T = C/B time. 
This implies that disk i should hold at most T x Bi MB 
of data. Of course, we also have the constraint that at 
most Ci MB of data can be put on disk i. Thus, we 
define the function: 

f(i, T) = min(T x Bi, Ci) 

which indicates the maximum amount of data that can 
be stored on disk i, subject to the retrieval time con- 
straint of T. 

Define the total volume of data that can be stored 
on the system subject to the time constraint T as 

n 

g(T) = ~.fW) 
i=l 

PROPOSITION 3.1 The maximal bandwidth, Bopt, 
achievable in, th,e system satisfies: 

c = @opt) 

where 
C 

To,t = - 
B opt 

PROOF: Let Bopt be the maximal bandwidth we are 
looking for, and Top, = C/Bopt. If g(Topt) is larger 
than C, it would mea.11 that an allocation could still be 
found with B larger than Bopt thus implying that Bopt 
is not the maximal bandwidt,h. If g(Topt) is smaller 
than C, it would mean it is infeasible. Thus it must 
be true that g(Topt) = C 0 

Due to the fact tha.t g contains a function f which 
uses the min function, an inverse function for g does 
not exist, and thus a closed form solution for Bopt does 
not exist. The most efficient way to find Bopt , would be 
to perform a binary search on different bandwidths B. 
For each bandwidth B that we try, if g(C/B) > C, 
then B is too small and needs to be increased, if 
g(C/B) < C, then B is too large and needs to be de- 
creased. We keep on iterating this search until g(C/B) 
is sufficiently close to C, at which point B will be suf- 
ficiently close to Bopt. At this termination time, we 
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simply set the amount of data, ai, we store in each 
disk to be f(i, C/B). 

The MaxBandwidth-Algorithm listed below con- 
tains a more formal description of the above algorithm. 
MaxBandwidth-Algorithm: 

1. Compute B,,,, the highest possible bandwidth 
as &a, = C;=‘=, Bi 

2. Using a binary search procedure between 0 and 
B ,,,(15 find a value B that satisfies 0 < Ig(T)--Cl < 
6 where c is some predetermined acceptable small 
error, and T = C/B. At this point, we should 
also have 1 B - B,+ 1 < 6 for some small 6 that is 
a function of 6. 

3. Load the ith disk with ai equal to f(i, C/B) 

As a final note about this algorithm we note that 
theoretically speaking, we can terminate the binary 
search, whenever the remaining range of possible B’s 
to search for, is such that, whether f(i,T) is T x Bi 
or Ci is completely determined for all i. At this point, 
a closed form solution can be obtained since an in- 
verse function for f exists for this range of B on all 
i. From a practical point of view, however, the im- 
plementation is much simplified by letting the binary 
search continue to the point where the desired preci- 
sion of B is obtained. The complexity of the algorithm 
is O(nlogz *) which is really not that important, 
since the running time of this algorithm is negligible 
(less than a second) compared to the time it takes to 
load a dataset into a disk system. 

3.3 Optimal loading for varying database sizes 

In some cases the database size is not known apriori 
and the designer needs a “System Profile” which indi- 
cates how to optimally load the data on the disk sys- 
tem for each feasible database size. We can compute 
an optimal loading scheme for varying database sizes 
by using the following procedure whose correctness is 
based directly on Proposition 2.1. The procedure uses 
iterations where in each iteration more the amount of 
data loaded increases while the system transfer rate 
decreases. This continues until we fill all the capaci- 
ties of our disks. 

Given any portion of the database, X, which is still 
unloaded on the disks, and given a subset U consisting 
of Ic disks (of the n initial disks) with remaining unused 
capacity, we will try to load as much as we can on U 
observing the “proportionality” principle which says 
that the fraction of data loaded on each disk of U 
must be proportional to the speed of that disk (within 
U). The system transfer rate achieved for the loaded 
portion is CieV Bi. Observing the “proportionality” 
principle, we may not be able to load all of X due 
to one or more disks reaching their capacity Cl, these 
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are what we call the bottleneck disks. Each iteration 
is completed when one or more bottleneck disks are 
identified. 

We note that by the above principle, if we load a 
database of size X on the system, the amount loaded 
on the ith disk must satisfy 

B, 
B moo x X 5 Ci where B,,, = CIcu Bi. From this 

it follows that X 5 2 x B,,, for all i. Therefore if 
the Ifh disk is a bottl:neck it must satisfy 

2 = Min;Ev{Ci/B;}. 
At this point we iterate the procedure with U con- 

sisting of the remaining non-bottleneck disks and X 
consisting of the remaining unloaded portion of the 
database. The remaining capacity of each disk is of 
course adjusted with the amount loaded on it in the 
previous round. 

More formally this is described in the following al- 
gorithm. 

MaxBandwidth-Algorithm with varying 
Database: 
Given a databse of size X, a set of disks U 
Do While X > 0, and at least one Ci > 0 in U 

1. 

2. 

3. 

4. 

5. 

6. 

Compute B,,, = B,,, = &, & 

Compute % for each disk in U 

Find Mini{Ci/Bi}, call it Min(U), and the disks 
which achieve it BottleNeck 

Load each disk in U with the correct proportion 
of Min(U) x B,,, 

Reduce each Ci in U to Ci minus the allocated 
proportion for this disk 

Set U = U - Bottleneck(U) and X = X - (IV1 x 

Min(U)) 

EndDo 

As an example assume, we have three disks with 
relative bandwidths 5,2,1 and relative capacities 2,4,3 
(for simplicity we omit units as only the proportions 
are relevant). The maximal size database we can load 
is 9. The first disk becomes a bottleneck in the first 
iteration where we load 2, .8 and .4 on the disks re- 
spectively to maintain the proportions, the combined 
bandwidth is 8 and remaining capacities are 0,3.2 and 
2.6. At this point 3.2 were loaded. In the next iter- 
ation, the two remaining disks must be loaded with 
proportions 2:l. We can show that 4.8 can now be 
loaded with one disk receiving 3.2 and the other 1.6. 
The combined bandwidth at this point drops to 3. We 
finally load the remaining 1 on the slowest disk at 
which point the system bandwidth drops to 1. The 



bandwidth for any loaded dat,abase size between 0 t,o 
9 can be computed using the above allocations. 

We observe that all disks of the same type, i.e., 
same speed and capacity will become bottlenecks at 
the same iteration. Therefore, the algorithm will need 
in O(n’) time where n is the number of different disk 
types in the system. 

4 Server Bandwidth 

In this section, we discuss the complicated issues that 
arise when the disks are distributed among multiple 
servers that have bandwidth restrictions themselves. 
The assumption is that each disk is located within 
some server, and each server (which can contain mul- 
tiple disks) has a limitation on its retrieval band- 
width, possibly because of limited bandwidth on its 
bus, memory, or even CPU. One can view this problem 
as just adding another layer of bandwidth restrictions 
on groups of disks. The extra layer does not necessar- 
ily have to come from the existence of servers. It could 
also come from bandwidth limitations on the disk con- 
troller, system bus, or network hub. In fact, it is quite 
possible that within a disk system, there are several 
layers of bandwidth restrictions that are imposed on 
the disks in a hierarchical form. 

In this paper we will only discuss how to handle 
one extra layer, and we will use the term server to 
represent the reason for the extra layer. The reader 
should keep in mind that this solution can be easily 
extended for multiple layers and that the extra layer 
does not have to be due to the existence of servers. 

Let us assume that the n disks are connected to m 
servers, and that Sj represents the set of disks con- 
nected to server j. Let Bj represent the bandwidth of 
server j, and define Cj to be the total capacity that 
we are attempting to place on all disks in Sj (i.e. 
Cj = Cies. Ui). If we now try to come up with an 
allocation that achieves a retrieval bandwidth of B 
(and thus a retrieval time of T = C/B) by putting 
ai = f(i,T) amount of data on disk i, we could run 
into the problem of Cj being larger than T x Bj. This 
means that although the amount, of data stored on 
each disk in server j can be retrieved in time T, server 
j is overflowed with data and cannot keep up with this 
data in order to deliver it all in time T. 

The solution to this problem is to place a total of 
only T x Bj data on all the disks in server j, and to 
do this for every server j that overflows. With this 
solution in mind, we can now redefine the function 
g(T) that describes the total amount of data that can 
be placed in the system, subject to the retrieval time 

constraint of T: 

0’) = 2 s(j, T) 
j=l 

where s(j, T) is the amount of data that can be stored 
in server j, and is defined as: 

s(j, T) = min(T x L$, c f(i, T)) 
IES, 

where f(i, T) is the amount of data that can be stored 
in disk i as defined in the previous section. With this 
new definition of g, we can now compute the amount 
of data that can be placed in a system, subject to 
the retrieval time constraint of T for both disks and 
servers. Thus, the binary search algorithm described 
in the previous section, can still be applied to find the 
maximal bandwidth B,t in which g(C/B,,t) = C. 

5 Probabilistic analysis of heteroge- 
neous declustering 

In this section we describe the declustering process 
where we remove the perfect declustering assump- 
tions. Assuming that we load N records on n disks, 
where ai records are loaded on the ith disk, we note 
that, if Xi is the (random) number of records re- 
quested from disk i by a random transaction, then 
X = (Xl,X2,...,Xn) h as a multinomial distribution 
with parameters (al/N, az/N, . . . . an/N). 

In order to compare different allocations to each 
other we will need some definitions from the theory of 
Majorization. 

Definitions ([S]) 
Notation: Given a vector a = (al, a2, . . . . a,) , rear- 

range the components of this vector in decreasing order 
and denote the rearranged vector as (~(11, ~121, . . . . a[,]), 
with ~1~1 2 apI > . 2 a[,]. 

Majorization: Given two vectors a = (al, a2, . . . . a,) 
and b = (bl, b2, . . . . b,), the vector a is said to be ma- 
jorized by the vector b, written as a <,,, b if: 

Schur Concave Function: A real valued function f 
defined on a set A C R” is Schur Concave if a <,,, b 
on A implies f(u) 5 f(b). 

Smaller in Usual Stochastic Order: A random vari- 
able X is said to be smaller in the usual stochastic 
order tha.n another random variable Y if for all t, 
P(X < t) 2 P(Y 5 t). This ordering will be writ- 
ten as X sJt Y. A consequence of this ordering is 
that, if X & Y , then E(f(X)) 2 E(f(Y)) for all 
non-decreasing real valued functions f and when the 
epectations exist. 
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PROPOSITION 5.1 
([a] ,p. 306) If X = (Xl, X2, . . . . Xn) has a multi- 
nomial distribution with parameter 0 = (e,, e2, . . . . e,), 
then Pe{s < X; 5 t} is a Schur-concave function of 

e,-oo~s~t~co. 

We will first deal with disks with equal speeds and 
different capacities. 

PROPOSITION 5.2 If all disks have equal speeds and 
capacities Cl > Cz... > C,,, and there are a to- 

tal of N records to be placed, with N 5 2 Ci, 
i=l 

then the retrieval time is stochastically minimized 
by placing a,, = min{C,, N/n} in disk n, a,-1 = 
min{C,-1, (N - a,)/(n - 1)) records in disk (n - l), 

.“, aj =min{Cj,(N- 5 ai)/(n-j+l)} in diskj, 
i=j+1 

‘.-, al = (N - F q) records on the jirst disk. 
i=2 

PROOF: Given any allocation of records b = 

(h, bz, . . . . bn), rearrange the given vector b in de- 
creasing order and denote the rearranged vector as 
(b[l], b[z], . . . . b[,]). We claim that: al 5 b[l], al + a2 5 

$11 + $21, . . . . al + a2 + . . . + ai 5 bill + b[z] + . . . + b[;] 

and Fai = Fbi. Because the same number of 
i=l i=l 

records are allocated, 2 ai = 5 bi = N. If C,, > 
i=l i=l 

N/n, then ai = N/n, i = 1,2,3, . . and the claim fol- 
lows immediately. Else, a, = C, (by definition). 

n-l 
Let p = C ai/ 5 bi 5 1. Let b[;l = pb[i], i = 

i=l i=l 
1,2, ..‘, n - 1 and apply the same reasoning to the vec- 
tors, (al, a~, ..a,-~) and (b[l], $21, ..bL,-1]). The claim 
follows by repeated appication of this inductive argu- 
ment . 

This shows that the vector a <m b (see defi- 
nition). As mentioned above, if Xi is the (ran- 
dom) number of records requested from disk i, then 
X = (X1,X2,...,X,) h as a multinomial distribu- 
tion with parameters, (al/N, Q/N, . . . . an/N) and 

(h/N, h/N, . . . . b/N) under the two arrangements. 
Therefore it follows from the above proposition, and 
the definition of a Schur-concave function that 

P(allN,azlN,...,(l,fN)(Xi 5 tl 2 
P(b,/N,b,/N ,..., b,/N){Xi 5 t), -CO < t 5 cW 

This satisfies the definition of stochastic minimiza- 
tion. Cl 

It appears at first glance that the problem with un- 
equal disk speeds can be solved by allocat#ing records 
directly in proportion to the disk speeds. Unfortu- 
nately this need always be the case as shown in our 

analysis and simulation results given below. We can 
prove that allocating more records to a faster disk is 
stochastically optimal (the proof is very tedious and 
omitted here). Here we present two results, the first 
shows that the “intuitive” allocation of records in pro- 
portion to the disk speeds is asymptotically optimal for 
large request sizes. The second gives an approximate 
allocation rule. 

PROPOSITION 5.3 When there are n disks with trans- 
fer rates Bi, i = 1,2, . . . . n, then the allocation of the 
fraction Bi/(Bl + B2 + . . . + B,,) of records to disk i 
is asymptotically optimal as the site of the request N 
increases. 

PROOF: The proof is given for n=2. Assume that the 
allocation of p fraction of records has been made to the 
first disk. Given that the total number of records re- 
quested is N, the distribution of the number of records, 
X, requested from this disk has mean = Np and stan- 
dard deviation = dm. The distribution of the 
number of records requested from the second disk has 
mean N(l - p) but the same standard deviation. As- 
sume that p/B1 - (1 - p)/Bz = E > 0. Then we note 
that: 

(Np/+Blg~N(l - p)/Bz)/fi = efi and p = 
Bl 1 2 

B,+Ba BI+&’ 
From the first of these relations, the difference in 

means of the two random variables, X and (N - X) 
grows asymptotically with N. This implies that the 
maximum of the two random variables X/(Blfi) 
and (N - X)/(Bzfi) asymptotically coincides with 

XIPlfi) ( a rl ‘g orous proof of this fact is omitted, 
but the logic is that both these random variables have 
the same finite standard deviation which does not grow 
with N whereas their means grow apart at the rate of 
a). This in turn implies that: 

E(max(X/B1,(N-X)/Ba) 
.m 

! E(X/BI) 
JR = 

$p = 

fi ; B,- 
BI+& BI+&’ 

Thus the difference in the allocation, c, must be 
made as small as possible. cl 

5.1 An approximate result 

In this section we use the normal approximation to 
the binomial. We first, derive an exact formula for op- 
timally allocating data on two disks of different speeds. 
We then use a simpler formula to derive a general 
heuristic for allocating data on n disks. 

Consider a random variable, X, distributed 
Normally with mean Np and standard deviation 
Jm. Then, 

E(m=4X/&,(N -X)/b)) = 
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+E( (BYfls,) -x ( > 1(X 5 
(BYflgz) II/B2 (1) 

where I(A) is the indicator function of the set 
A. Let a, Oc stand for the standard Normal dis- 
tribution function and its complement. Let 4 de- 
note the standard normal density function. Let (Y = 
NBl/(Bl+Bz), p = Np, and u = ,/w. Then 
the right hand side of (9) can be simplified as: 

N/t& + B2) + (p - ~)(-a( 7)/B2 

This expression can be minimized by using a search 
procedure. A approximate but quicker result can be 
obtained by noting that u is a.lmost invariant for small 
changes in p. Then the expression to be minimized 
can be written as: 

-+‘(-Q(~)/B~+W(~)/BI)+$(~)(&+ 

ik) 

where z is the standard Normal deviate. 

7 = (G(z)/Bz - Qc(z)/B1) 

and 

d2H(z) 
- = (4(z>/B2 + 4(z)/B1) > o dz2 (5) 

Therefore H(z) is minimized by setting the first 
derivative equal to zero, giving : 

l/B2 = @“(z)(l/B~ + 1/B2) e 

@ (&&)) = (B1B;B2) t6) 

This is a “newsboy” type of solution. Equation 6 
shows that when the disk speeds are equal we must 
have cr = Np, otherwise we must always favor the 
faster disk in allocating records, i.e., place more than 
the number proportional to its speed. We summarize 
these results: 

PROPOSITION 5.4 Given two disks with speeds B1 and 
B2 and a request of size N, then the optimal alloca- 
tion under th,e Normal approximation to the binomial 
distribution is given by minimizing Equation (2). An 
approximate solution to this minimization problem can 
be obtained by solving for p in Equation 6 and placing 
p fraction of records on disk 1. 

Remarks: To apply this Proposition, first we need a 
value for N. We can use the average size of the request 
as a proxy for N. Second, when there are many disks, 
how can the allocation be made? We suggest that 
records are at first allocated in proportion to the disk 
speeds. Then iteratively reallocate records using (6) to 
the two fastest disks, the next two fastest and so on. 
Repeat this reallocation procedure until the changes 
in allocation are small. 

The psuedo code for the allocation procedure is 
given below. 

Procedure HEURISTIC: 
Step 0: 

Read number of disks (ndisk), disk speeds (Bi) 
and average number records retrieved (nrec). 
Read tolerance (tol). We assume that, disk speeds 
are ordered as: B1 > B2 > Bs.. > BndiJk 
Set proportions to be allocated on diski as 

= -z(-Q(z)/B2 + Qc(z)/B1) + 4+)($ + $, = B(Z) (3) Pi = (Bl+Bz+q,+Bnd:s~) 
Set error = l.Oe32 
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Step 1: 
Do while (error > tol) 

Step 1.1: 
error = 0.0 

Do i = 1, ndisk-1 
N = (pi + pi+l) * nrec 
bl = Bi 
b> = Bi+I 
Solve for p in (6) using a search procedure 
temp = pi 
pi = p * N/nrec 
pi+1 = (1 - p) * N/nrec 
error = error + ltemp - p;] 1 
enddo 

enddo 

Usually the procedure converges in lo-20 iterations 
of Step 1.1. It can be proved that this procedure will 
eventually stop, (the reason is that the largest allo- 
cation, pl, is monotone increasing). Our experiments 
show that the allocation is rather robust with respect 
to the average size of request N. 

The allocation given by the procedure was tested 
against the proportional allocation using simulation. 
In the simulations, the average size of requests, N, was 
varied between 5 a.nd 100 in steps of 5. For each aver- 
age size N, 10,000 trials were conducted. In each trial, 
a random number M was generated between 0.5*N 
and 1.5*N, where M is the actual size of the request. 
The results of these heuristics are shown in the next 
section. 

The HEURISTIC procedure is easily a.dapted to the 
case when the disk capacities are finite. The HEURIS- 
TIC procedure is called and the allocations are tested 
for feasibility, i.e., whether the allocations can be fit- 
ted into the disks. If the allocation is feasible, we stop, 
else we look at the fastest disk whose allocation vio- 
lates the capacit,y constraint,. We load this disk to its 
capacity, eliminate it from further consideration and 
resolve the problem. The algorithm for handling this 
case is given below: 

Algorithm FINITE 
Step 0: 

Read number of disks (ndisk), disk speeds Bi 
and average number records retrieved (nrec). 
Read tolerance (tol). We assume that disk speeds 
are ordered as:Bl > B2 > Bs.. > Bndisk 
Read the capacity ci, of each disk and the tota. 
number of records to be allocat,ed, NTOT. 
UllOCi is the final alloca.tion, indexi is 
a temporary array, ntot,old = NTOT 
Set indezi = i, i = 1, ndisk 

Step 1: 
call HETJRISTIC and get pi 

Step 2: 

server 1 server 2 sewer 3 ‘_ 
8 MB/s 3 MB/s 3 MB/s 

Figure 3: An example of a 3 server, 7 disk, heteroge- 
neous system 

Do for i = 1, ndisk 
allocindez, = pi * NTOTlntotold 
if(pi * NTOT > cindeZ,) then 
alloc;,dezi = ci,d,,,lntotold 
NTOT = NTOT - cindez, 

doforj=i+l,ndisk 
indezj-l = indezj 
enddo 

ndist = ndisk - 1 
go to Step 1 
endif 

enddo 
stop 

This iterat,ive method can be used with any allocation 
method (i.e., not just HEUILISTIC), by replacing the 
call in Step 1 of the algorithm to a call to the appro- 
priate procedure. Using this logic, we compared the 
allocation under HEURISTIC versus allocation under 
the proportional scheme. Some graphs of the results 
a.re shown in the next section. 

6 Implementation Results 

The above described algorithms have all been imple- 
mented and test,ed to verify their correctness. As an 
example, Figure 4 shows what the maximal achievable 
bandwidth would be as a function of the load request 
size for the 3 server disk system shown in Figure 3. 
Server 1 of the system has a bandwidth of 8 MB/s and 
contains 3 disks, two of which are 1 GB disks with a 
bandwidth of 2 MB/s and the remaining one being a 
2 GB disk wit,h a bandwidth of 3 MB/s. Server 2 has 
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Figure 4: Achievable bandwidth relative to load re- 
quest size 

a bandwidth of 3 MB/s and contains 2 similar disks, 
each capable of holding 2 GB of data with a bandwidth 
of 2 MB/s. Server 3 also has a bandwidth of 3 MB/s 
but contains 2 different disks, one of which is a 3 GB 
disk with a bandwidth of 2 MB/s, and the other being 
a 2 GB disk with a bandwidth of 1 MB/s. In this disk 
system, only server 2 has a smaller bandwidth than 
the combined bandwidth of its disks. Because the t,wo 
disks are of the same size and speed, the effective band- 
width of each disk turns out to be scaled down evenly 
to the point where they add up to the bandwidth of 
the server (i.e. 1.5 MB/s). 

The maximal achievable bandwidth on this disk sys- 
tem (for small request sizes) is 13 MB/s (7 MB/s from 
server 1, and 3 MB/s each from server 2 and 3). When 
the size of the load request grows to 6.5 GB, the two 1 
GB disks in server 1 get saturated and can no longer 
hold any more data. This is the reason for the sudden 
change in the slope of the curve at 6.5 GB. From 6.5 
GB up to 13 GB (the full storage capacity of the sys- 
tem), the curve turns out to be piecewise hyperbola, 
with the intersection points between hyperbolas repre- 
senting the saturation of other disks. In particular, at 
the storage capacity of 8 GB, the 2 GB disk in server 1 
gets saturated, at 12 GB the two 2 GB disks in server 
2 are saturated, and finally at 12.5 GB, the 3 GB disk 
of server 3 gets saturat#ed. Of course, when we finally 
reach 13 GB, the only remaining slow& disk (the 2 
GB disk of server 3) also get,s saturated, and thus no 

Figure 5: Disk speeds; 20,10,5,5 

more data can be placed in the system. 
For the probabilistic method, we show graphs of 

the improvement in allocation resulting from our pro- 
cedure as compared with simply using the determin- 
istic methods. For the test cases shown the improve- 
ment ranges from 8 to 23 percent. In the graphs of 
Example 2 and Example 4 we show the comparison 
for disks with sufficient capacities. Example 2 uses 4 
disks with relative speeds 20,10,5,5 whereas in Exam- 
ple 4 the speeds are 10,5,1,1. The graphs of Example 
3 and Example 5 have finite capacities. The relative 
disk speeds in Example 3 are 20,15,10,7 with capaci- 
ties 400,100,100,100 with a total database size of 600 
,in Example 5 disk speeds are 10,5,1,1 with capacit,ies 
750,200,100,100 with total database size of 1000. 

7 Conclusion 

In this paper we have described algorithms for adapt- 
ing declusterization methods to work in heterogeneous 
distributed environments. The results reported here 
are particularly suitable for systems which store video 
and audio data on pa.rallel disk systems but can be 
used for any environment in which declust,erization is 
desirable such as image data or multidimensional data 
ret,rieved by range queries. The algorithms reported 
here were all implemented and are actually used in an 
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Figure 6: Disk speeds:20,15,10,7 with Capacities 
400,100,100,100 

existing application which declusters image data for 
the purpose of terrain visualization. 

The work reported here can also be used for system 
design purposes. As hardware configurations tend to 
be dynamic, designers may wish to replace disks and 
servers by newer available models. For example, a de- 
signer may wish to find which disks or servers in the 
current system should be upgraded in the most cost- 
effective way to improve system response time. Our 
algorithms provide as a by-product, information about 
the bottleneck disks and servers so that the designer 
can identify these components which are critical. 

To summarize we have shown the following results: 

l For perfectly declustered queries we have an exact 
algorithm to produce optimal allocations. 

l We have provided a stochastically optimal alloca- 
tion scheme for for finite capacity and same speed 
disks. 

. We provide heuristic algorithms for disks with un- 
equal speeds. The theoretical results show that we 
must allocate more than proportionally to faster 
disks. These ideas have been combined into a fast 
procedure for doing the allocation. 

Figure 7: Disk speeds: 10,5,1,1 

l Simulation results show that if disk speeds are 
more unequal, then greater benefit is derived from 
using the allocations from our procedure FINITE 
as opposed to the deterministic algorithm. Re- 
sults also indicate that the benefit is greater when 
the size of the actual requests is small. 

We plan to investigate the possibility of building 
design tools which will be able to select the most, cost- 
effective products from a given list of alternative disks 
and server configurations. Such tools will employ these 
algorithms to determine the bandwidth of a selected 
system. 

Another direction of future research involves some 
interesting probabilistic issues raised by this work, 
such as finding exact bounds on the probability that 
the response time will not deviate from the predicted 
one, based on the assumption that retrieval requests 
are completely random and cannot be perfectly declus- 
tered. 

In the current work we deal with loading one dataset 
at a time on the system. Another issue we are cur- 
rently exploring is tha.t of finding optimal methods 
of loading multiple datasets on the disks where each 
dataset has its own desired bandwidt,h and capacity 
requirements a.s well as an associa.ted zuel:ght that in- 
forms us how important it is to achieve the desired 
bandwidth (or come close to it). 
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Figure 8: Disk Speeds: 10,5,1,1 with capacities 
750,200,100,100 
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