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Abstract 

This paper studies the impacts of work- 
file disk allocation and data striping on the 
performance of concurrent mergesorts in a 
multiprocessor database system. We exam- 
ine through detailed simulations an approach 
where workfile disks are logically partitioned 
into equal-sized groups and an arriving sort 
job selects one group to do the mergesort. 
The results show that (1) without data strip- 
ing, the best performance is achieved by using 
the entire workfile disks as a single partition 
if there are abundant workfile disks (or sys- 
tem workload is light); (2) however, if there 
are limited workfile disks (or system workload 
is heavy), the workfile disks should be parti- 
tioned into multiple groups and the optimal 
partition size is workload dependent; (3) data 
striping is beneficial only if the striping unit 
size is properly chosen. 

1 Introduction 

One of the most time-consuming operations in query 
processing is the sorting of a large table (relation), 
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which typically uses an external sort or mergesort. 
A mergesort involves two phases: sorting phase and 
merge phase. During the sorting phase, tuples in a re- 
lation are first sorted into multiple ~~172s according to 
a certain sort key [Knu73]. These initial sorted runs 
are referred to in this paper as the input runs of a 
merge job. The input runs are temporarily stored on 
the workfile disks, which are external working spaces 
of a database system. During the merge phase, the 
input runs of a merge job are read into the buffer from 
the workfile disks, merged and then the merged data 
are written back to workfile disks in the final sorted 
order, referred to as the output pun of the merge job. 
The disks for the output run may or may not be the 
same disks used for the input runs, depending on the 
total number of workfile disks. 

As coupling multiple microprocessors to form a 
high performance machine becomes popular, more and 
more multiprocessor systems have been used for data- 
base query processing [sys94, RMW93]. In this paper, 
we study the performance of concurrent mergesorts 
in a multiprocessor database system where multiple 
workfile disks are shared by the processors. In con- 
current mergesorts, the allocation of workfile disks to 
a sort job can have a significant performance impact. 
In order to achieve better load balancing among the 
disks, we want the runs of each mergesort to be spread 
evenly among all the disks. However, by sharing the 
disks, the progress of a mergesort can be blocked by a 
different mergesort due to an I/O interference on the 
same disk. 

Unlike the interference in general file system I/O’s 
where the requests are generally homogeneous in size 
and random in access pattern, the workfile disk I/O in- 
terference in concurrent mergesorts is unique and can 
be rather severe. Since multiple disks can be fetching 
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the input runs in parallel and only one disk is writing 
the output run, many relatively large sequential write 
requests can be continuously issued to the same disk 
during the merge phase. If a read request from an- 
other job is issued to the same disk, it can be blocked 
for a very long time. Once one of the read requests 
gets blocked during a merge phase, the entire merge 
process gets blocked even though other read requests 
have been serviced by other workfile disks. Notice 
that this problem cannot be solved simply by giving 
a higher priority to read requests over write requests 
because buffer size is limited. Once write requests get 
delayed, data waiting to be written to the disks start to 
accumulate in the buffer, leaving little space available 
for read requests. As a result, the merge process can 
also be blocked (more details on the implementation of 
concurrent mergesorts will be provided in Section 3). 

In order to contain interference between different 
sort jobs, the concept of logical partitioning of work- 
file disks is introduced to assign a sort job to one of 
the partitions. This would eliminate the interference 
among jobs assigned to different partitions. However, 
it may limit the load balancing capability of the sys- 
tem as a sort job can only spread its runs among the 
disk in one partition. (Note that the best load bal- 
ancing can be achieved by simply assigning each run 
to the currently least loaded workfile disk. But, the 
I/O interference between different jobs cannot be ef- 
fectively controlled.) Since disk array systems have 
become popular [RB89, PGK88, SGM86], we also ex- 
amine the impact of data striping on the performance 
of concurrent mergesorts. With data striping, the con- 
tinuously issued large sequential write requests, which 
are previously on the same disk, can now be spread 
among multiple disks. Therefore, the blocking time 
can be substantially reduced. 

Detailed simulations are conducted to evaluate the 
performance of concurrent mergesorts. We study the 
impact of partition size on the overall sort response 
time and assume that no data striping is used. Namely, 
each input run is stored on one disk. However, since 
the length of the output run of a mergesort is the sum 
of those of its input runs, we assume that the output 
run is partitioned into multiple segments and spread 
among multiple disks. Each segment of the output 
run is assumed to be about the size of one of its input 
runs. The results show that, without data striping, the 
best performance is achieved by using a single parti- 
tion consisting of all workfile disks if there are abun- 
dant workfile disks (or the system workload is low). 
However, in disk-limited cases (or the system work- 
load is high), better performance can be achieved by 
using multiple partitions of workfile disks and the op- 
timal partition size is workload dependent. We also 
examine the impact of data striping on the average 

sort response time. The results show that data strip- 
ing may not help the sort response time because data 
striping creates more small I/O requests and thus may 
substantially increase disk seek times and waste disk 
bandwidth. Data striping is beneficial only if the strip- 
ing unit size is properly chosen. 

There exist many papers that mainly focus on 
the performance of the merge phase of an external 
sort [Knu73, AV88, DBBW83, ID90, KB85, PV92, 
Sa189]. However, most of these papers have only dealt 
with a single merge job in a single system, and have 
not considered the interactions of concurrent merges in 
a multiprocessor system. There are also existing work 
related to allocating buffer space for general relational 
database queries [NFSSl, FNS91, CD85, YC93, SSSS]. 
However, their emphases were mostly different from 
ours and again they did not study the run placement 
and disk allocation problems. The run placement is- 
sue in a single system was addressed in [WYT94] and 
the buffer allocation and thrashing control issues were 
considered in [WYT93]. But the sharing of workfile 
disks by multiple processors as well as the disk alloca- 
tion strategy were not studied. As will be shown later 
on, the performance of concurrent merges in a mul- 
tiprocessor database system depends to a very large 
degree on the disk allocation strategy. 

The rest of the paper is organized as follows. Sec- 
tion 2 presents the logical partitioning approach to 
workfile disk allocation. Section 3 describes the sys- 
tem model. Section 4 describes the simulation model 
and its implementation. Section 5 then presents the 
performance results from the simulations. 

2 Workfile disk allocation 

In this section, we describe the workfile disk allocation 
strategies for performing concurrent mergesorts in a 
multiprocessor system. Fig. 1 shows the system archi- 
tecture where 8 workfile disks are shared by 4 proces- 
sors. Each processor has its own buffer for performing 
the mergesorts. Sort jobs are assumed to arrive inde- 
pendently at each processor. During the sorting phase, 
the data to be sorted, stored in other data disks not 
shown in Fig. 1, are fetched into the buffer, sorted into 
runs, and then written each run to one of the workfile 
disks (or multiple disks, if data striping is used). After 
the sorting phase, these runs are fetched back to the 
buffer, merged and then written back to the workfile 
disks. 

The disk allocation strategy determines the way the 
workfile disks are used by a sort job. In this paper, we 
study a logical partitioning approach to disk alloca- 
tion. The workfile disks are logically partitioned into 
groups of equal size. Each sort job selects one group 
that is least loaded and uses the group of disks to do 
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Figure 1: System architecture. 

the mergesort. 
In order to have better load balancing, runs should 

be distributed evenly among all the disks. Namely, the 
entire workfile disks are viewed as a single partition, 
Fig. 2 shows an example of one partition. Assume that 
there are two sort jobs J and K currently being ex- 
ecuted. Each job has 5 runs after the sorting phase, 
denoted by J.0, . . ., J.4 and K.0, . . ., K.4, respectively. 
The output runs of J and K are denoted by Jz and 
Kz, respectively. Because the length of Jz is the sum 
of J.0, -.., 5.4, we assume that it is partitioned into 
multiple segments, denoted by Jz.0, . . ., 52.4, with 
each segment about the size of one of its input runs. 
The output run is spread among multiple disks. Note 
that even though the output run Jz is placed on multi- 
ple disks, at any instant during the merge phase, there 
is only one disk that is actively performing the I/O for 
this output run. Similarly, during the sorting phase, 
there is only one disk that is actively writing for an 
input run. Moreover, none of the disks used for the 
output run is active during the sorting phase. As a 
result, we place the input runs of all the mergesorts in 
a round-robin fashion and the first segment of the out- 
put run of a mergesort job is placed right next to the 
disk that is used for its last input run. For example, 
in figure 2 the first input run of job K and the first 
segment of the output run of job J are both placed 
right next to the one for 5.4, the last input run of job 
J. 

Even though using a single partition can achieve the 
best load balancing among workfile disks, it can cre- 
ate severe I/O interference between different sort jobs. 
For example, in Fig. 2 job J can be blocked waiting 
for a read I/O from the disk storing run 5.2 because 
the disk is currently serving a write I/O request from 
job K. As will be explained in more detail in Sec- 
tion 3, write requests are batched requests consisting 
of substantially larger amount of data than each read 

J.0 J.l J.2 J.3 J.4 Jz.0 Jz.1 Jz.2 

Jz.3 Jz.4 K.0 K.l K.2 

K.3 K.4 Kz.0 Kz.1 Kz.2 Kz.3 Kz.4 

Figure 2: Logical partitioning of workfile disks: one 
partition. 

request. Many such write requests may be issued con- 
tinuously to the same disk. If the read request from 
job J is blocked, it can be blocked for a long time. 
Once this read is blocked, job J is blocked because 
it cannot proceed without the data. Note that this 
problem cannot be solved simply by giving a higher 
priority to read requests because data of the output 
run will start accumulating in the buffer, leaving little 
space for the read requests. So, the merge process can 
also be blocked. Such an I/O interference problem is 
unique in the context of concurrent mergesorts in a 
multiprocessor system. 

However, the average sort performance may be im- 
proved if the workfile disks are partitioned into mul- 
tiple groups and each sort job chooses one group to 
perform the sorting. Fig. 3 shows an example of par- 
titioning the workfile disks into two groups. In this 
case, jobs J and K use a different group and thus I/O 
interference from these two jobs is eliminated. How- 
ever, in general there may be some disk groups that 
are not being used for sorting at some point in time 
while other groups are overloaded. For instance, job K 
may not be active until job J is almost done in Fig. 3. 
As a result, during the execution of job J, only 4 disks 
are actively used. Contention may be created among 
the 4 active disks even though the other 4 disks are 
idle, resulting in unbalanced resource utilization. 

Note that besides the severe blocking between dif- 
ferent jobs, there may also be some self-blocking. But, 
the self-blocking of a read I/O by a write I/O from the 
same job, such as a read I/O for J.0 and a write I/O 
for 52.3 in Fig. 2, is substantially less severe because 
without the data read from J.0, there is no further 
data to be written for Jz.3. Thus, the time for self- 
blocking is only limited. But, it can be very long if the 
blocking occurs between different jobs. 
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J.0 J.l J.2 J.3 K.0 K.l K.2 K.3 

J.4 Jz.0 Jz.1 Jz.2 K.4 Kz.0 Kz.1 Kz.2 

Jz.3 Jz.4 Kz.3 Kz.4 

Figure 3: Logical partitioning of workfile disks: two 
partitions. 

3 The system model 

In this section, we describe the process of completing 
a mergesort job at one processor. Jobs are assumed 
to arrive independently at each processor. The data 
to be sorted are stored in separate data disks and are 
not shown in Fig. 1. A mergesort starts with a sorting 
phase where data are prefetched from the data disks 
into the buffer and a tournament tree-like algorithm is 
used to generate intermediate sorted runs. We assume 
that there is little queueing delay on the data disks 
that store the original relation to be sorted as they 
are well balanced [Wo189]. However, we model the 
workfile disks in detail. The intermediate sorted runs 
are written to the workfile disks one at a time. If data 
striping is not used, a run is written onto one disk. If 
data striping is used, depending on the striping unit 
size it may be spread among multiple disks. After the 
entire data are sorted into runs, the sorting phase ends 
and the merge phase begins. 

To merge n input runs, at least the n active pages 
(the pages currently being merged), one from each in- 
put run, have to be in the buffer of that processor. 
These active buffer pages are pinned in the buffer and 
cannot be replaced until unpinned after the data are 
depleted by the merge process. The process of locat- 
ing the active page of a run in a buffer is referred to 
as a GetPage. When one of the active pages is de- 
pleted, a GetPage request is issued for the next page 
from the same run. If a page is already in the buffer, 
then the buffer page is pinned and the merge process 
continues. If not, a synchronous read is issued and the 
merge process enters into a wait state until the read 
I/O is completed. 

Prefetching is used to speed up the fetching of data 
both in the sorting phase and in the merge phase. The 
number of pages prefetched from each disk in an I/O 

request is referred to as the prefetch quantity (PFQ). 
(We assume that a page is 4K bytes.) A prefetch re- 
quest is issued after a prefetch triggering page becomes 
active and is located in the buffer. A prefetch trigger- 
ing page is the page whose page number is a multiple 
of the current PFQ. For example, if PFQ is 8, then 
pages 0, 8, 16, . . . are prefetch triggering pages. When 
page 8 becomes active and is located in the buffer, a 
prefetch request for pages 16-23 is issued. To facilitate 
prefetching, extra buffer space is needed. For exam- 
ple, if n runs are to be merged in the merge phase, 
2 x n x PFQ pages of space are needed in a buffer. In 
the simulations, we assumed PFQ can be 1, 2, 4, or 
8 for the merge phase but PFQ is fixed at 32 for the 
sorting phase, similar to IBM’s DB2 [Ten92]. (The 
setting of PFQ during the merge phase is discussed in 
Appendix A.) The PFQ for the merge phase must be 
smaller because there may be n prefetch I/O’s execut- 
ing simultaneously for each job. On the other hand, 
for the sorting phase there is only one prefetch request 
for each job. 

In addition to prefetching on reads, the I/O effi- 
ciency can also be improved by deferring and batch- 
ing the disk write requests. This is referred to as the 
deferred write, in contrast to the synchronous write 
where the write request must be completed before 
any further processing of the mergesort can be con- 
tinued. During both the sorting and merge phases, 
dirty pages are generated in the buffer, similar to IB- 
M’s DB2 [TG84]. The buffer manager at each proces- 
sor maintains a deferred write queue for the output 
of each ongoing sorting and merge and an LRU chain 
linking all the buffer pages. An asynchronous write 
request is issued when a certain number of dirty pages 
have been generated for a job. The number of dirty 
pages written out in each asynchronous write I/O is 
referred to as the deferred write quantity (DWQ). In 
this paper, we use 32 as the DWQ for both the sorting 
and merge phases. 

At each processor, a merge job is scheduled for ex- 
ecution if enough buffer space is available (details of 
the scheduling of merge jobs are provided in Appendix 
A). Buffer availability affects the PFQ which in turn 
affects the disk I/O s. Tables 1 and 2 summarize the 
notation and definitions for the workload and system 
parameters, respectively. The number in the paren- 
theses at the end of a definition is the default value 
used in the simulation if not otherwise specified. 

4 The simulation model 

Here we outline the simulation model. The default 
values used in the simulation are given in Table 1 if 
not otherwise specified. 

A discrete event-driven simulator consisting of four 
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Table I: Workload parameters. 

Notation Definition (Default values) 

x sort job arrival rate at each proces- 
sor, Poisson interarrival time distribu- 
tion (0.015 jobs/set) 

R mean base relation size, uniform distri- 
bution between R/2 records and 3R/2 
records (200,000 records) 

; 
record size (512 bytes) 
tournament tree size (512 pages) 

f filtering factor, i.e., percentage of qual- 
ifying records in the base relation for 
sorting (0.4) 

L input run length (1024 pages) 

PFQ prefetch quantity, can be 1, 2, 4, or 8 
for the merge phase (8 pages) and 32 

1 ~~~ iforthesortingphase . 1 
maximum prefetch quantity at one 
processor for the merge phase (8) 
deferred write quantity (32 pages) 

Table 2: System parameters. 

Notation Definition (Default values) 

B buffer size at each processor (40,000 

pages) 
D total number of workfile disks 
N total number of processors (4) 
P total number of partitions 

M CPU MIPS (40) 

c&t-up CPU cost for initiating an I/O request, 
such as a synchronous read, a prefetch, 
an asynchronous write, and a synchro- 
nous write (5,000 instructions) 
the CPU cost for generating a dirty 

CPU cost for managing the page ta- 
ble when a GetPage is a buffer hit (100 

major components was developed. The first ma- 
jor component is a detailed buffer manager for each 
processor maintaining the LRU chain and the deferred 
write queues as described in Section 3. It tracks the 
status of each buffer page, whether it is pinned, un- 
pinned, or not yet referenced. We explicitly model the 
buffer component because buffer availability affects the 
merge scheduling algorithm (see Appendix A) and the 
PFQ, which in turns affects workfile disk contention. 
Insufficient buffer can result in smaller PFQ (i.e., more 
reads) and more frequent writes. 

The second major component implements a job con- 
trol algorithm. When a new job arrives, its input runs 
and output run are assigned to the disks in a logical 
partition. (Input runs are placed in each logical par- 
tition in a round-robin fashion, see Fig. 2.) Then it 
is scheduled for sorting. After the sorting phase, it is 
scheduled for merge if possible (see Appendix A for 
details on scheduling algorithms). If not, it waits on 
the allocation queue of that processor. 

The third major component implements the sort- 
ing and merge process. For the sorting process, data 
are prefetched from the data disks storing the origi- 
nal relation, sorted and written to the workfile disks 
as intermediate sorted runs using deferred writes. The 
merge process depletes the active pages from each of 
the input runs and generates dirty pages in the buffer. 
After an active page is depleted, a GetPage for the 
next page of the same run is issued. If found in the 
buffer, the page is pinned and the merge process re- 
sumes. Otherwise, the merge process is blocked and 
waits until the page is read in from disk. 

The fourth major component implements the disks. 
Each disk maintains a request queue and services the 
I/O requests FCFS. When data striping is used, multi- 
ple disk I/O requests may be issued to different work- 
file disks according to the striping unit size. Even when 
data striping is not used, the output run is still parti- 
tioned into multiple segments with each segment the 
similar size as that of an input run. Thus, it is equiva- 
lent to a striping size of an input run. In this paper, we 
assume that the average size of an input run is twice 
the size of the tournament tree size [IDgO], and all the 
input runs are of equal size. 

The CPU service times are constants that corre- 
spond to the CPU MIPS rating ( M MIPS) and the 
specific instruction pathlengths given in Table 2, in- 
cluding Cmergc for generating a dirty page, Csetsup 
for initiating a read or write I/O request (both syn- 
chronous and asynchronous), and Cmgm for pinning a 
page. The I/O service time (not including the queu- 
ing time) is estimated as follows. If the previous I/O 
request and the current I/O request are both for the 
same run, then there is no seek time for this request. 
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Thus, the service time for this I/O request is 

Zatenq + Zmf c,. x Nt,,mf er. (1) 

However, if the current I/O request is for a different 
run, then a seek time is added to the service time for 
this request. Thus, it becomes 

Here, Tseek, Tlatency and TtranSfe,. are the average disk 
seek time, average latency time and average transfer 
time per page, respectively, and Ntrcmsfer is the num- 
ber of pages transferred. 

The mergesort request arrival process at each 
processor is assumed to be Poisson with rate X. Each 
request contains a certain number of records and each 
record contains a fixed number (512 bytes) of data. 
The number of records for a sort job is assumed to be 
uniformly distributed between R/2 and 3R/2, where 
R is the average number of records. Since there is 
typically a qualifying clause in a sort query, a filtering 
factor is used to reduce the number of records quali- 
fying for sorting. After the sorting phase, the sort key 
values are assumed to be uniformly distributed among 
all the input runs. 

5 Simulation results 

In this section, we present the performance studies 
of concurrent mergesorts. First we examine in detail 
the impact of logical partition size on the average re- 
sponse time under the condition that data striping is 
not used for the input runs. Then we examine the 
impact of striping unit size and the combined impact 
of data striping and logical partitioning. Various sen- 
sitivity analyses were conducted for different parame- 
ters. However, we only show a subset of the results in 
this section as they demonstrate similar messages. For 
all the performance figures shown in the following sub- 
sections, the default value for the number of processors 
N is 4, the buffer size B at each processor is 40,000 
pages, and the relation size is 200,000 records, which 
is equivalent to 10 intermediate runs after the sorting 
phase. Other default workload and system parameter 
values are provided in Tables 1 and 2. 

In all the simulation results reported in this paper, 
confidence intervals were obtained (but not shown on 
the graphs) using the method of batch means [Lav83]. 
Assuming independence of the estimates derived from 
each batch, confidence intervals were computed. For 
most cases, the estimated confidence intervals are very 
tight, except at very high levels of disk utilization. 
Nevertheless, the 90% confidence interval is consis- 
tently within 10% of the point estimates for all the 
data-points shown. 
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Figure 4: Performance impact of total number of work- 
file disks. 

5.1 Performance impact of logical partitioning 

Fig. 4 shows the average response time of a mergesort 
for three different numbers of partitions, 1, 2 and 4, 
for various workfile disks. There are four processors in 
the system, thus we limit the number of partitions to 
4. For the purpose of comparison, we also show the 
case of fixed assignment with 4 partitions, where each 
processor uses a fixed partition for the entire simula- 
tion. As shown in this figure, the fixed assignment per- 
forms the worst compared with all other cases where 
a mergesort can be dynamically assigned to the least 
loaded logical partition. This is due to load imbal- 
ance in the case of fixed assignment. In general, the 
performance improves as the number of workfile disks 
increases. Most importantly, the performance is bet- 
ter for a larger logical partition size (or smaller number 
of partitions) if the number of workfile disks is large 
enough. This is indicated in the cases for D = 16, 20 
and 24 disks in Fig. 4. However, the reverse is true 
if the number of workfile disks is small, as indicated 
for the case of D = 8 disks in Fig. 4. This is due 
to the fact that I/O interference from different merge- 
sorts can be overcome by the benefits of increased load 
balance if there is enough workfile disks. But if the 
number of workfile disks is small, the benefits of load 
balance may not be significant enough to overcome the 
disadvantages of increased I/O interference. Thus, for 
disk-limited cases, it is better to partition the workfile 
disks into multiple logical partitions. 

Note that for a given workload there is a minimum 
requirement for the total number of workfile disks and 
for the size of a logical partition. Below such a mini- 
mum requirement, the system cannot operate in a nor- 
mal condition. The cases for only 4 total workfile disks 
are therefore not shown in Fig. 4. For the rest of this 
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401 I I I I I I I 
0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018 

Sort jobs arrival rates 
(D = 6 disks; no data striping) 

40 
0.008 0.012 0.016 0.020 0.024 0.028 0.032 0.036 

Sort jobs arrival rates 
(D = 16 disks; no data striping) 

Figure 5: Performance impact of logical partitioning 
for a disk-limited case. 

paper, the performance data are obtained under the 
assumption that the system has reasonably sufficient 
workfile disks. 

To further examine the impact of logical partition- 
ing, we look at various rates of sort job arrivals under 
two different disk capacities. The first one is with a 
total of 8 workfile disks and the second one with 16 
disks. The &disk case represents a disk-limited case 
while the 16-disk case represents a disk-abundant case. 
Fig. 5 shows the performance of three different parti- 
tioning policies. For the case of P = 1, the entire 8 
disks is fully shared by all the coming sort jobs. For 
the case of P = 4, the 8 disks are partitioned into 4 
groups, each with 2 disks, and an incoming sort job 
chooses the least loaded group to perform its merge- 
sort. As shown in this figure, different partition sizes 
behave differently as the arrival rate increases. For the 
cases where the system workload is very low, the pol- 
icy of P = 1 is the best. As the workload increases, 
the policy of P = 2 becomes better than that of P = 1. 
But, as the system workload continues to increase, the 
policy of P = 4 becomes better than that of P = 2. 
This again demonstrates the trade-off between I/O in- 
terference and load balancing. 

Fig. 6 shows the performance of the three partition- 
ing policies (i.e., P = 1,2 and 4) for the case of D = 16 
disks. Similar to Fig. 5, it shows that full sharing is 
in general better when the system workload is low and 
partitioning into multiple groups is better when the 
system workload is high. Note that the performance 
of P = 2 in Fig. 6 is close to the worst of the three cases 
for the entire range of arrival rates. But, in Fig. 5, it is 
close to the best of the three cases. Thus, the proper 
partition size is workload dependent. 

From Fig, 5 and 6, it suggests that in order to 
achieve consistent good response times for concurrent 
mergesorts, it may be beneficial to implement an adap- 

Figure 6: Performance impact of logical partitioning 
for a disk-abundant case. 

tive logical partitioning approach, where the partition 
size changes as the workload changes. A simplified 
version of this adaptive approach can use only either 
P = 1 or P = N partitions, where N is the total num- 
ber of processors. When the system workload is low, 
P = 1 is used. But as the system workload reaches 
a threshold, it can change to P = N. Certainly this 
threshold for changing P is workload dependent. 

5.2 Performance impact of data striping 

In this section, we examine the impact of data striping 
on the response times of concurrent mergesorts. Note 
that data are striped across all the disks in each logical 
partition. In order to facilitate maximum parallelism 
for prefetching the input runs during the merge phase, 
the striped data blocks of various runs are placed in 
a staggered manner [B+94]. Fig. 7 shows an example 
of data placement. For example, run 0 of job J starts 
from workfile disk 0 and run 1 of job J starts from 
disk 1. Thus, the second striping block of run J-0 is 
placed on the same disk as the first striping block of 
run J.l. Namely, block J.O.l and block J.1.0 are both 
placed on disk 1. 

Depending on the striping unit size (or block size), 
an I/O request from the sorting job may result in mul- 
tiple smaller I/O requests to the disks. For instance, if 
the striping unit size is 4 pages then a prefetch request 
of 8 pages will generate 2 independent I/O requests 
each of 4 pages to two different disks. An asynchro- 
nous write of 32 pages will generate 8 independent 
write I/O’s of 4 pages each to 8 different disks. So, 
data striping increases the total number of disk I/O’s 
as compared with no striping. It increases the disk 
utilization because each I/O, no matter big or small, 
usually requires a seek time and seek time dominates 
an I/O response time. 

Increasing the number of smaller I/O’s certainly 
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Average disk utilization (D=8) 

J.O.0 J.O.l J.0.2 J.0.3 J.0.4 J.0.5 . . . 

J.l.0 J.l.l J.1.2 J.1.3 J.1.4 J.1.5 . . . 

J.2.0 J.2.1 J.2.2 . . . 

J.O.0: the first striping block of run 0 of job J 

J.l .l: the second striping block of run 1 of job J 

Figure 7: Data placement with data striping. 
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Figure 8: Impact of striping size on response time. 

has a negative impact on the sort performance be- 
cause disk utilization is increased. However, if there is 
enough disks, smaller I/O’s can be more evenly spread 
to the disks, better balancing the workload. More im- 
portantly, data striping can also reduce the long block- 
ing time because the batched sequential writes can be 
spread among multiple disks. Thus, there are bene- 
fits to be gained by data striping. To understand the 
performance impact of data striping, we also studied 
two cases, one with D = 8 and the other with D = 16 
disks. 

Fig. 8 and 9 show the average response times and 
their corresponding average disk utilizations for vari- 
ous striping sizes, ranging from 8 to 1024 pages, for the 
case of D = 8 disks. Note that for the case of striping 
size of 1024 pages, there is no striping for the input 
runs because an input run is 1024 pages long. Never- 
theless, the output run is partitioned into multiple of 
1024-page segments (i.e., striped every 1024 pages). In 

6 16 32 64 126 256 512 1024 

Striping unit size 

Figure 9: Impact of striping size on disk utilization. 

general, striping does provide some performance im- 
provement if the striping size is not smaller than 16 
pages. However, if the striping size is 8 pages, the 
performance become significantly worse with striping 
than without striping. This can be clearly explained 
by the corresponding disk utilization graphs. Disk uti- 
lizations start to increase significantly as the striping 
size becomes smaller than 32. For the case of striping 
size of 8 pages, the disk utilization goes as high as 85% 
for the case of P = 1. This is because 32 is the de- 
ferred write quantity, i.e., an asynchronous write I/O 
is issued for every 32 dirty pages in a deferred write 
queue. For a striping unit size smaller than 32, mul- 
tiple smaller I/O requests are generated for writes. A 
large number of smaller I/O’s require more disk seek 
times and hence waste useful disk bandwidth, even 
though utilization is higher. 

6 Summary 

In this paper, we examined an approach to logical par- 
titioning of workfile disks for concurrent mergesorts in 
a multiprocessor database system. A detailed simula- 
tor was developed and extensive simulations were con- 
ducted to study and compare the performance of con- 
current mergesorts for different logical partition sizes 
with and without data striping. The results show that, 
without data striping, it is best to use a single parti- 
tion approach if there are abundant disks, i.e., the sys- 
tem is lightly loaded. However, if the system is disk- 
limited (i.e., system load is generally high), then it is 
beneficial to partition the workfile disks into multiple 
groups and assign a mergesort job to the least loaded 
group. Moreover, data striping can improve the overall 
performance only if the striping size is properly cho- 
sen. If the striping size is too small, data striping can 
make the overall performance worse. Finally, with a 
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proper striping size, the best performance is generally 
achieved by using the entire workfile disks as a single 
logical partition. 
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Appendix A: Scheduling merge jobs 

A merge job can take multiple steps to complete de- 
pending upon the buffer availability. For example, to 
merge 16 input runs, one can accomplish the task in 
one step by merging all 16 runs in one step. Alter- 
natively, due to buffer limitation or other constraints, 
one can first merge 8 of the sorted runs to produce 
an intermediate output run, and then merge the re- 
maining 8 sorted runs with the intermediate output 
run. Multiple step merges are undesirable as portions 
of the data are scanned multiple times. To minimize 
the response time, both the PFQ and the number of 
steps determined by the I/O parallelism have to be 
considered [WYT93]. Although for a single merge sort 
some optimal trade-off may be devised, in a concur- 
rent mergesort environment further complexity arises 
from the buffer contention among the multiple merge 
requests which can be of very different sizes. Note 
that the PFQ for the merge phase used by the buffer 
manager in this paper is assumed to be a system wide 
quantity, similar to IBM’s DB2 [TG84]. It may be ad- 
justed by system load, but cannot be tuned for each 
merge request separately. 

Since it is generally undesirable to complete a merge 
in multiple steps, in this paper, we assume that each 
merge job is completed in a single step. For a merge 
job, a scheduling algorithm (or run allocation algo- 
rithm) is first executed to decide whether or not this 
job can be scheduled for execution. The scheduler 
maintains the total number of runs, &located, allo- 
cated so far for merge and decides whether or not a 
merge can be scheduled based on the following crite- 
ria. Let Pm,, be the maximum PFQ allowed for the 
merge phase. We define round2(y, Pm,,) as a func- 
tion that rounds y down to the nearest number that 
is an integer power of 2, but less than or equal to 
P maz if y 2 1; roundJ(y, Pmaz) = 0 if y < 1. For 
instance, round2(0,8) = 0, round4(5,8) = 4, and 
round2(15,8) = 8. If R+ runs are requested by a 
merge job, then it is schedulable if 

round4 (C2 x (R.ilf4iad + &)) 7 p-4 L 11 (3) 

have to be reduced since more runs are allocated. The 
system-wide PFQ for merge changes using the follow- 
ing formula: 

B 
PFQ’ = round2( 2 x R, 9 Prim), (4) 

allocated 

where Rkllocated is the total number of runs allocated 
after the merge job is scheduled and PFQ’ is the new 
PFQ. In this paper, Pm,, for merge is assumed to 
be 8. Based on Equation 4, PFQ for merge can be 
1, 2, 4 or 8. (Note that the use of an integer power 
of 2 as a possible value of PFQ is similar to IBM’s 
DB2 [Ten92].) Th e schedulability criterion expressed 
in Equation 3 simply says that so long as the new 
PFQ is at least 1 then the merge job can be scheduled. 
Otherwise, it waits. 

where B is the buffer size. If not schedulable, the 
merge job simply waits. After a new merge job is 
scheduled for execution, PFQ for the merge phase may 
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