
Duplicate Removal in Information Dissemination

Tak W. Yan Hector Garcia-Molina
Department of Computer Science

Stanford University

Stanford, CA 94305

{tyan, hector}@cs.stanford.edu

Abstract

Our experience with the SIFT [YGM95] information dissemi-
nation system (in use by over 7,000 users daily) has identified
an important and generic dissemination problem: duplicate
information. In this paper we explain why duplicates arise,
we quantify the problem, and we discuss why it impairs infor-
mation dissemination. We then propose a Duplicate Removal
Module (DRM) for an information dissemination system. The
removal of duplicates operates on a per user, per document
basis - each document read by a user generates a request, or
a duplicate restraint. In wide-area environments, the number
of restraints handled is very large. We consider the implemen-
tation of a DRM, examining alternative algorithms and data
structures that may be used. We present a performance eval-
uation of the alternatives and answer important design ques-
tions such as: Which implementation is the best? With “best”
scheme, how expensive will duplicate removal be? How much
memory is required? How fast can restraints be processed?

1 Introduction

Global information systems are becoming commonplace.
Convent#ional library systems, such as LOCIS at the
Library of Congress, allow users to remotely search
online catalogs for bibliogra.phical information. Electronic
bulletin boards such as USENET News (Netsnews) (see,
e.g., [Kro92]) are ever more popular, with millions of
users and megabytes of daily traffic. Rapidly gaining
momentum are some wide area information systems,
such as World-Wide Web [BLCGP92], that allow users
to search and browse remote file systems, document
repositories, and even multimedia databases.

Some systems adopt the information dissemination
(a.k.a. selective dissemination of information [Sa168],
information filtering [LT92], alert, routing) model. A
user subscribes to an information dissemination system
with a profile that describes his interests. A profile is

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Very Large Data Base Endowment. To copy
otherwise, OF to republish, requires a fee and/or special permission
from the Endowment.

Proceedings of the 21st VLDB Conference
Ziirich, Switzerland, 1995

typically made up of a number of keyword queries. The
system collects new documents from underlying sources,
matches them against user profiles, and routes relevant
information to users. Complementary to traditional
search mechanisms, information dissemination helps users
cope with information overload. At Stanford we have set
up two experimental systems, SIFT-Netnews and SIFT-
CSTR (SIFT [YGM95] stands for Stanford Information
Filtering Tool). The former disseminates Netnews articles
to over 7,000 users world-wide, and the latter delivers
computer science technical report records to hundreds of
researchers. ’ Several SIFT servers at other sites are also
operational or being ported.

In such global information systems, one of the many
challenging problems is the proliferation of redundant
information. Duplicate documents arise for many reasons.
The foremost is that digital documents can be reproduced
with extreme ease and at almost no cost. For example,
in Netnews, a user may cross-post a news article in many
newsgroups. He may repost it a few days later, again
to multiple newsgroups. Further, there is no loss in the
quality of the copies, and thus they can be replicat,ed
again. For example, a user who has made a copy of the
article may repost it in yet some other newsgroups or
channels (e.g., mailing lists).

By a duplicate, we mean not just an exact copy as
described above, but in general a document closely sim-
ilar in content to some other document and not giving
users any extra information. For example, in traditional
library catalog system, duplicate bibliographical records
refering to the same technical reports are very common.
The reasons leading to the existence of such duplicate
records are mainly human input errors or inconsisten-
cies, such as different practice in record creation, trans-
lation differences, and typographical errors. The tradi-
tional library community has recognized the problem of
duplicate detection, especially in systems that provide
union catalogs merging multiple bibliographical data.bases
[HR79, Goy87, Rid92, OR093].

In modern information systems, documents are not

‘The reader is encouraged to try out the systems. For WWW
access, please connect to URL http://sift.stanford.edu. For email
access, send an email message with the word “help” in the body to
netnews@ift.stanford.edu or elibQsift.stanford.edu.

66

limited to short, structured bibliographical records, but
rather full-text documents existing in different media
types, with complex inter-document relationships among
them. This rich content gives rise to more sources of
duplication. One major source is the different media
formats in which a document may exist. For instance, a
technical report may be written in UTEX, and converted
into DVI and postscript. It may also be converted into
plain text or HTML. The hardcopy may be scanned in as
images and then converted to text via optical character
recognition (OCR). All th ese may be made available on-
line. Another source of duplication is versioning. A
document may undergo a number of versions in it,s life-
span. For example, a technical report may have a short
and a full version. A user, after reading the short version,
may find the full version a duplicate.

The existence of redundant information impairs the
usefulness of information systems. For instance, when
searching a bibliographical database, the existence of
duplicate records is undesirable: users find duplicate
information itsems intermixed in retrieval results hard to
distinguish. In information dissemination, it is important
that new information is delivered. If a document is
delivered to a user, its exact/close copies will certainly
reach the user over and over again. It is imperative
that duplicate documents are detected and not delivered.
In an experiment carried out to investigate the degree
of duplication in the Netnews articles sent out by SIFT
(d t ‘1 d S t’ e al e m ec ion 2.3), we found that on average some
18% of articles received by a user overlap 80% or more
in content (e.g., number of sentences) with some articles
seen previously. We believe this is a major drawback
diminishing the value of the system. Indeed, SIFT users
have complained about this problem.

To provide duplicate removal, we realize that individual
users may have different requirements for duplicate
elimination. A user, depending on what documents he
has read previously, ma.y consider a document a duplicate
while another user does not. He may also want to specify
how close a document must be to a seen one for it to
be a duplicate. For example, a user may find an article
not very interesting and want to remove any duplicate
more than 70% similar in cont8ent. On the other ha.nd,
if a user receives an interesting document, he may want
to remove only identical copies. Thus, the removal of
duplicates operates on a per user, per document basis
- each document read by a user generates a request for
duplicate rem0va.l. We call such a request a duplicate
restraint. The scale of global information systems makes
the processing of duplicate restraints challenging. For
example, in information dissemination, both the number
of users and the number of incoming documents are large,
so the number of restraints is very large. In SIFT, some
80,000 documents are matched against profiles of over
7,000 users every day; if we keep restraints valid for say
ten days, we estimate that more than a million restraints
need to be checked for every incoming document.

In this paper we study the design of a Duplicate

Removal Module (DRM) m an information dissemination
system. In Section 2, we first state our model of an
information dissemination system and other assumptions.
We then present a taxonomy of duplica.tes in digital
documents. We describe the results of a study to quantify
the duplicate problem in SIFT and to illustrate the
taxonomy. Partly based on the taxonomy we present the
desired functionality of a DRM in Section 3. Next we
consider the implementation of a DRM. There are many
alternative algorithms and data structures that may be
used; we describe them in in Section 4.

One critical concern with copy detection and restraint
management is its cost: not only do we have to detect the
duplicates with earlier documents, but, we have t.o keep
a detailed “history” of what user saw what document
when. Will all this processing be too expenisve? Will
the “history” take up unreasonable amounts of space,
especially given the rates at which document generation
and subscribers are growing? What DRM scheme is
best and makes the costs manageable? To answer
these questions, in Section 5 we present a performance
evaluation and discuss the trends that our results yield.
Finally, we conclude in Section 6.

2 Background

2.1 Information Dissemination System Model

Our model of an information disseminat#ion system as-
sumes a client-server architecture. A client, usually an
individual user, subscribes to a server with an interest
profile. The profile is typically made up of a number
of keyword queries. Each profile has a unique identifier,
called profileid. Since there is a one-to-one relationship
between a user and a profile, we sometimes use the word
“profile” in place of the word “user”; e.g., we say we “send
a document to a profile” when we actually send the doc-
ument to the user who has submitted the profile.

The server collects documents from information sources.
Each document has an identifier, or doczd. The server
matches the content of each document against the profiles
(i.e., the queries). Each profile has a number of associated
restraints that specify what documents are considered du-
plicates for the profile.

2.2 Taxonomy of Duplicates

Little work has been done t,o classify duplicates existing in
digital documents. It is important t,o identify what may
be considered duplicates by a user and consequently what,
kinds of duplicates should be handled by a DRM. Thus,
in this section we describe a taxonomy of duplicates.
We remark that this taxonomy is not just applica.ble to
dissemination but to search scenarios as well.

As mentioned above, digital document duplicates are
not just identical copies that have the exa.ct same
byte sequence, but rat,her documents that the recipient’
thinks do not give him new information. We may
classify duplicates as intentional duplicates or extensional
duplicates.

67

2.2.1 Intentional Duplicates

Two documents are intentional duplicates if their creators
intended them to be duplicates, even though they may
differ substantially in content. Below we outline several
subclass& of intentional duplicates.

Replication Replication means directly replicating
a document. For instance, posting the same message
to multiple newsgroups is an act of replication.

Indirection Indirection means that a document is
actually just a reference to another document that is
of interest. This is an important point: two references
are duplicates if they refer to the same document,
even though the references themselves differ in content
a lot. For instance, bibliographic records written
in totally different formats (e.g., MARC and RFC-
1357 [Coh92]) are duplicates if they refer to the same
document,. For most users, two references to the same
document should be considered duplicates, but for
librarians, it may be necessary to distinguish them.

Versions The same document may have different
versions. For example, a technical report may be the
extended abstract of another. Although the content
of the short version is different from that of the full
version, a user may find the short version sufficient
for his information need and regards the full one a
duplicate.

Multiple Formats Similarly, a digital document
may exist in different media types, such as plain text,
HTML, I&TEX, DVI, postscript, scanned-image, OCR-
ed text, or certain PC-a.pplication format. They may
be classified as distinct documents by some users, and
duplicates by some others.

Nesting A document can be nested within another.
For example, a technical report may be an anthology
of a number of reports. A user, having read the
anthology, is probably not interested in reading the
individual reports. In Netnews, a user may include an
article when composing a response to it.

Table 1 shows some sample document types and the
classes of duplicates that may exist in these types.
A ‘yes’ entry means duplicates of a class may exist
in the corresponding document type. For example,
technical reports (refer to the third column) may have
identical replicas, versions, multiple formats, and nesting
relationship. Note that, however, indirection duplicates
are not possible with technical reports.

2.2.2 Extensional Duplicates

We may also define duplication solely in terms of the
textual content of the documents. Two documents are
identical duplicates if they have the exact same words
occurring in the exact same sequence. They are partial
duplicates if portions of their texts contain the exact same
words occurring in the exact same sequence. We may

Bibliographical Techmcal
Dimensmn Records Reports Netnews
Replication Yes YeS Yes
Indirection Yes no no
Version Yes Yes no
Multiple format yes yes no
Nesting Yes YeS yes

Table 1: Classes of Duplicates

consider text units of different granularities (such as words
or sentences) and compute the percentage of overlap of
text units in a pair of documents.

We call duplicates defined by overlapping content
extensional duplicates. Note that a pair of extensional
duplicates should in all reasonable cases be be a pair of
intentional duplicates, but the converse is not true (i.e.,
two documents with very different content may still be
intentional duplicates).

2.3 Duplicates in Netnews

To quantify the duplicate problem in SIFT, we carried out
the following study. We first randomly selected a sample
of 60 SIFT users. We kept track of what documents they
received over a period of 10 days (from Jan IO to Jan 19,
1995). Using th ese data, we ran two experiments.

Experiment 1

We used the documents collected on January 19 as our
basis (1,343 distinct documents were matched to the 60
profiles; a total of 1,486 matchings). We compared them
against the documents received on previous days. As an
example, let us look at the comparison against Jan 10
documents. Consider a matching on Jan 19, say profile
P receiving document D. For each document E that
matched P on Jan 10, we computed O(E, D), defined as
the percentage of sentences in D that are also in E. (The
Netnews message header is removed before comparison.)
We recorded the daily highest overlap:

MJan IO(~, D) = max
E matches P on Jan 10

WE, D).

This number tells us how much of D’s content was
already seen by P on Jan 10. For the comparison among
documents on Jan 19, we assumed the user receives
documents in alphabetical order, and similarly computed
the highest overlap against previous documents.

For each matching (P receiving D), we then determined
its overall highest overlap across all ten days,

max MJan ;(P, D).
i=lO,...,lS

We counted the number of matchings with overall highest
overlaps in different ranges ((0.0, O.l), [O.l, 0.2), etc.).
The counts are shown in the last column of Table 2. For
instance, the number 243 in the box (Overall, 1.0) says
that there are 243 Jan 19 matchings in which t,he user
receives a document entirely included in a document he
received within the previous 10 days. This represents a
fraction of 243/l, 486 or 16.4% of all matchings.

68

Over January
-lap 10 11 12 13 14 15 16 17 18 19

O.,.l) 43 53 55 85 58 36 78 89 58 48
.1,.2) 26 30 45 37 31 28 21 49 68 39

5 4 34
1.5. .Sl 9 ;‘O I65 lt 7 9 ;“8 3i 38 284 73
[.6,.7> 2 1 1 5 2 3 2 5 19 12 31 Table 3: Results from Experiment 2 of Netnews Duplica-

tion Study

Table 2: Results from Experiment 1 of Netnews Duplica-
tion Study (Total # Matchings is 1,486)

We also want to know how Netnews duplication
decreases with time. We thus counted, for each day i,
the number of daily highest overlaps (hfJan i(P, D) for
all P-D matchings on Jan 19) in different ranges. The
results are shown in Table 2. As an example, the number
43 in box (10, [O.O, 0.1)) sa.ys that there are 43 matchings
in which the document overlaps between 0 and 10% with
some document the same user received on Jan 10. Note
that the numbers from Jan 10 to Jan 19 on a row need
not add up to the “Overall” number.

The table gives us a lot of information about duplica-
tion in Netnews. First, the bottom row contains match-
ings whose documents are wholy included in some other
seen document. We manually checked the sample doc-
uments and found that these are predominantly cross-
postings or reposts of the same message; i.e., they are
duplicates of the replication type. Secondly, there are
quite many overlaps in the range from 0.3 to less than 1.0;
from the Overall column, approximately 18% of all match-
ings fall into this range. Manual inspection indicates that
these are articles in conversational threads, which include
previous articles entirely or partially; i.e., they are nestsing
duplicates.

The rest of the overlaps comes from two sources. The
first is noise from the copy detection algorithm we used.
That is, sometimes the same sentence occurs in two
unrelated documents by chance. This kind of overlaps
is mainly found in the low overlap range (< 0.1). The
other source of overlaps comes from the “signatures” in
Netnews messages. Many users posting articles like to add
a signature at the end of message. Thus articles written
by the same user overlap at least in the signature portion.

Looking at the number of “real” duplicates (with at
least 30% overlap) across the ten days, we can see
duplicates become quite infrequent after about ten days.

Experiment 2

For each incoming SIFT document, we want to find out
how many earlier documents overlap with it more than
lo%, how many overlap more than 20% and so on. This
is useful for our performance evaluation later. We thus
took each document from Jan 19 in turn, and counted
how many documents in the previous 10 days overlapped
with it at different percentages. We then averaged the
counts over all Jan 19 documents. The results are shown

in Table 3. For example, for a document D from Jan 19,
on average there were 0.41 documents within the previous
ten days that contained 100% of D. Also note that there
were on avera.ge 2.03 past documents overlapping D at
least 30% (“real” duplicates).

2.4 Copy Detection Blackbox

Given a pair of documents, we need some t,est to
determine if they are duplicates. This test is not the
focus of this paper. Previous work has been done in t,his
area (e.g., [Rid921 for intentional duplicates, [BDGM95,
SGM95] for extensional duplicates). Rather, we assume
the availability of such a mechanism, in the form of a Copy
Detection Blackbox (CDB). A CDB registers a collection
of documents. Given a test document D, the blackbox
returns the registered documents that it judges to be
duplicates of D.

For example, given a document D, the output from an
intentional CDB may be a set {(E, version), (F, format)},
meaning that E is a version of D, and F is a duplicate of D
in a different format. Similarly, for an extensional CDB,
the output may be a set {(E, 0.8), (F, 0.9)}, meaning that
D is 80% contained in E, and 90% in F.

3 Functionality of a Duplicate Removal
Module (DRM)

As mentioned in Section 1, whenever a user receives a
document, a duplicate restraint may be generated. A
restraint is a tuple

(profileid P, docid E, definition L, expiration T).

It specifies that document E matched profile P, and
because of this, future copies of E (by definition of L)
should not be sent to P. After date T, the restraint
is discarded. Below we elaborate on the L and T
parameters.

3.1 Setting User Definition of Duplicates

For a seen document, the user can define what should be
considered its duplicates by specifying the definition L.
Depending on what kind of CDB is available, L can be
used to define either intentional or extensional duplicates.
For brevity, we focus on the extensional duplicate case
from this point on. We remark that the our DRM
implementation schemes and evaluation results present,ed
later on are still applicable to the intentional duplicate
case.

69

The user should be able to say that if a document
D exceeds a certain threshold of overlap against some
seen document E (the degree of overlap as judged by the
CDB), then it should be considered a duplicate. That
is, L(E, D) = (O(E, D) > t): for some 0 < t < 1, and
some overlap measure 0 used by the CDB. We call the
threshold t the duplicution threshold. The duplication
threshold can be set differently for different documents.
For example, in a Netnews dissemination system, a
user may set a 100% threshold for for an important
article (e.g., about a fix to a software bug), so that
only duplicates that are entirely included in the original
article are removed. On the other hand, for an article
that the user does not particularly like (e.g., a recurring
Call for Participation announcement for an uninteresting
conference), he may set the threshold to 80%.

For good performance, the DRM may impose a system-
wide minimum duplication threshold. As an example, in
Netnews, it may not make sense to remove any document
overlapping less than 30% with any seen one. So a
minimum duplication threshold of 30% may be set.

3.2 Setting Time Window

A DRM cannot maintain a duplicate restraint indefinitely,
otherwise the number of restraints would be unbounded.
Thus there should be a time window for which a restraint
is valid, and this time window should correspond to the
susceptible period of the particular type of document.

Susceptible period is the period during which duplicates
may arise and try to enter the system. For instance,
for bibliographical records this may be a long period, as
records may be created for different versions of document.
For Netnews, this period is short: a user may post the
same message a week later, but it is unlikely that he
posts it a year later. (Even if he does, he probably has
a reason and the document should not be considered as
a duplicate.) For instance, from the data in Table 2, we
may estimate the susceptible period of Netnews articles
at 10 days.

To bound its work load, a DRM should thus impose a
system-wide maximum time window for which restraints
are valid. On the other hand, it is desirable for the user
to specify their own time windows for different restraints,
within the system-wide maximum time window. For
documents that keep recurring, the user may specify a
long period. For others, the user may specify a shorter
period.

The registered body of documents in the copy detection
blackbox should correspond to the time window of the
valid restraints. One simple way to guarantee this is
to make sure that the registered documents include all
documents received by the server within the system-wide
time window.

3.3 Default Restraint vs. Individual Restraint

A user can set the duplication threshold and the time
window for each document received. However, it is
bothersome to do this for all documents. So it is desirable

to have a default duplicate restraint (each user may ha.ve
his own default restraint). When a match is made,
the default is automa.tically generated. The user may
subsequently modify the restraint.

4 Implementation of a Duplication
Removal Module (DRM)

In this section we discuss the implementation of a DRM
in an information dissemination system.

4.1 Client vs. Server Processing

We first ask the question: where should duplicates be
removed? One option is to perform elimination at, the
client end. In this case, the server is just responsible
for matching incoming documents against user profiles
and routing relevant documents to the users. The user
restraints are maintained at the client end. As the client
receives documents, it looks up what documents overlap
the current one and to what extent. If it turns out the user
has already received a duplicate of the current document,
it is not presented to the user.

Another option is to perform duplicate elimination at
the server end. The server maintains a database of
duplicate restraints for all users. When a document
arrives, the set of profiles that match it by content and
did not receive a duplicate of the document previously are
identified. The document is then delivered to the users of
such profiles.

The main problem with duplicate elimination at the
client end is that special client software is needed. We
believe the user should not need more than electronic-mail
capability to utilize an information dissemination system.
We attribute the success of the Stanford SIFT servers to
the little effort required to use the system. No special
software other than his own favorite mail reader is needed.
To add duplicate detection capability at the client side,
either current mail readers would have to be modified, or
a new mail reader would have to be developed, distributed
to the users, and accepted by them; both goals are difficult,
to achieve in practice.

Another benefit of server duplicate elimination is the
reduction in message traffic. In environments where
copies are common, this can lead to significant savings
in network traffic. As observed in [YGM95], a major
performance bottleneck in information dissemina.tion is
the sending of updates to the users. Even a 10% reduction
in the number of messages sent out would improve
performance significantly. Thus, it is advantageous to
remove redundant information at the server end.

For the reasons mentioned here, in this paper we focus
on duplicate elimination at the server end.

4.2 Document Flow in a Server

Suppose a document, D, arrives at a server. Conceptu-
ally, the server has to determine the set of profiles P that
match D by content. It also has to determine the set
of profiles & that have seen a duplicate of D previously.
Then it will send D to the users in the set P - &.

70

PI, P2. P3 (I LOOKupRE;;;,3;; <F, 0.9,

INSERTRESTRAINTS

cP2, D. 0.9,14>
<P3, D, 0.9,15> UPDATERESTRAINT

<P2. D. 0.7, 14,

Figure 1: Document Flow in a Server

There are of course many different ways to achieve
the above conceptual description. For example, we may
process one profile at a time, first determining if D is
a duplicate for that profile, and if not, determining if it
matches the profile by content. However, for efficiency,
during content matching, we should match the document
against all profiles (using an index of profiles [YGM94a,
YGM94b]) at th e same time, rather than one profile at
a time. The one profile at a time scheme, dubbed the
brute force method in [YGM94a, YGM94b], is found to
perform orders of magnitude worse than when a profile
index is used. Given this, only the following processing
sequence (which is not far from the conceptual picture
above) makes sense. (1) For an incoming document D,
we first perform filtering based on its content against all
profiles. This generates a set of matching profiles P. (2)
Next we identify a set of documents C that overlap with
the current document and the percentages of overlap. (3)
Restraints that have profileids and docids in the Cartesian
product of P and C are checked to generate a set of profiles
Q’ that should not receive the document.

For example, in Figure 1, D is an incoming document.
We first perform content-based filtering and identify a
set of matching profiles, P = {Pl, P2, P3). Next, past
documents that overlap with D are identified by accessing
the CDB. Suppose E is a document overlapping 80% with
D, and F overlapping 90%. The output from the CDB
is {(E,0.8), (F, 0.9)) (hence C = {E, F}). Next user
restraints with profileids in P and docids in C are retrieved
from the database of restraints. With {Pl, P2, P3)
and {E, F}, suppose we retrieve the following restraints:
(Pl, E, 0.9,tl), (Pl, F, 0.6,tz), (P2, E, 0.9,is) (assuming
that times tl, tz,t3 make these restraints valid). The
individual duplication thresholds are then checked. Here
D is a duplicate for Pl, as it, overlaps more than 60% with
F. It is not a duplicate to P2 or P3. (Thus &’ = {Pl}.)
The users for profiles P2 and P3 receive the document.

At this point, a set of default restraints are inserted
into the database; say (P2, D, 0.9, id), (P3, D, 0.9, ts).
Later, suppose the user for P2 reads the document and
submits a different restraint. The default restraint is then

modified.

4.3 Duplicate Removal Module

The DRM maintains a database of restraints. It per-
forms the following operations on the restraint database.
Operation INSERTRESTRAINTS adds a set of restraints to
the database. It is used after a set of profiles are found
to match a document, the default restraints are formed
and are added to the database at the same time. (We
remark that the set of restraints should have the same
docid.) Operation UPDATERESTRAINT is invoked to up-
date a restraint. It is used when a user submits an actual
elimination restraint and the old default restraint has to
be modified. Operation LOOKUPRESTRAINTS is used to
retrieve restraints with some specified profileids and do-
cids. We may also need the operation PURGE, which is
invoked to delete all expired restraints from the database.

The restraint database is at the core of the processing of
the DRM. Below we look at alternative implementations.
We have to be able to efficiently identify restraints that
are relevant for a new document. At the same time
we have to balance the costs of insertions, updates, and
purging of restraints. We look at several specialized data
structures that cater to the workload characteristics of a
DRM. They will be evaluated in Section 5.

4.3.1 Main Memory Buffers

We assume that the restraints are kept on disk, with in-
dexing or hashing structures constructed to support effi-
cient lookups. However, for performance, we assume that
we keep two separate main memory buffers to batch the
INSERTRESTRAINTS and UPDATERESTRAINT operations,
called the I-buffer and the U-buffer respectively.

An INSERTRESTRAINTS operation simply inserts the
new restraints into the I-buffer. When the buffer is full,
the restraints are written to disk, and the indexing or
hashing structures updated. Details vary for each scheme,
and will be covered in the subsections below.

Similarly, an UPDATERESTRAINT operation does not
immediately modify the restraint on disk, but just adds
the updated restraint t,o the U-buffer. (We assume
that when updating, the complete modified restraint is
available; i.e., no partial updates.) In case the restraint
to be modified is still in the I-buffer and not, written to
disk yet, UPDATERESTRAINT modifies the main memory
restraint directly.

Now a LOOKUPRESTRAINT operation has to check the
buffers also. It has to first look up the restraints on disk.
Next the restraints in the U-buffer are checked; if any of
the restraints retrieved from disk has been modified, it
is replaced with the buffered version. Finally, the new
restraints in the I-buffer are also looked up.

Next we look at several ways to organize the restraint,s
on disk, using different indexing or hashing structures.

4.3.2 Indexing on Profileid

The first option is to build an index on profileids. We
keep restraints with the same profileid sequentially in one
list. A mapping takes a profileid to the disk location

71

Main Memory
Mapping

Lists on Disks Disk
Hash Table

Main File on Disk

Figure 2: Indexing on Profileid

of its list of restraints. As the number of profiles is
fixed and relatively small, we assume the mapping fits
in main memory. Figure 2 illustrates this structure with
an example.

These lists are constantly being updated, as new
restraints are added for each profile. Thus, they should
be updatable incrementally, without the need to read and
then write an entire list. To efficiently support this, we
leave some disk space at the end of each list. This way,
new restraints can simply be added to the allocated space
at the end of the list.

An INSERTRESTRAINTS operation adds the restraints
to the I-buffer. When the buffer is full, we add all
new restraints to disk. New restraints for each distinct
profile are appended to the end of its list. (We may
thus assume that the restraints in a list are sorted by
insertion times; this is useful in our analysis.) We assume
that we keep in main memory a pointer to the location of
the free space for each list. If the allocated extra space
is not sufficient to hold the new restraint#s, the entire
list is retrieved. It is compacted, with expired restraints
removed. New restraints are then appended at the end. If
that is still not sufficient, then the list is written to a new
disk location with extra disk blocks added to the end.
An UPDATERESTRAINT operation just adds the update
restraint to the U-buffer. When full, we retrieve the list
for each distinct profileid, scan for the docids, and modify
the restraints found.

For a LOOKUPRESTRAINTS operation, we first look up
the restraints on disk. We retrieve for each profileid its
list and scan it to find the restraints with the specified
docids. Next the main memory buffers are checked, as
described in Section 4.3.1.

A PURGE operation is a no-op in t,his scheme, as
purging is performed during inserting.

4.3.3 Indexing on Docid

In this scheme, we try to minimize storage and keep
all restraints contiguously in a file (see Figure 3 for an
example). Restraints with the same docid are stored
together. An index is built on the docid, which maps
a docid to the disk location of its restraints. As the
number of docids that the restraints reference is large, we

Figure 3: Indexing on Docid

assume the index resides on disk. We assume the index
is implemented as a hash-file. 2

An INSERTRESTRAINTS invocation adds the restraints
to the I-buffer. When the buffer is full, we append the
restraints to the end of they file. Entries for the docids
are inserted into the index file. For a UPDATERESTRAINT
operation, the updates are batched. When the buffer is
full, we access the index file, retrieve the restraints for
each distinct docid, modify them as needed and writ.e
them back to disk.

For this index structure, it is necessary to have a. purge
operation to get rid of expired restraints. This PURGE
operation goes through the whole file, compacts it by
removing expired restraints, and writes it back out. The
index is updated to reflect the changes in the locations
of the restraints. We assume that this operation is
performed periodically.

For a LOOKUPRESTRAINTS operation, each specified
docid is looked up against the index in turn to retrieve its
associated restraints, and those with the specified profiles
are returned. The main memory buffers are then checked.

4.3.4 Partitioned Hashing

In partitioned hashing, a main file stores all the restraints.
The file is divided into a number of buckets; a bucket is a
number (.w) of consecutive disk blocks. These buckets are
arranged into a gp x gd grid. Each bucket is located by
its coordinates in the grid. A hash function HP hashes
a profileid to a number 2, 0 < x < gp, and a hash
function Hd hashes a docid to a number y, 0 < y < gd.
A restraint with profileid p and docid d is placed in the
bucket (HP(p), Hd(d)). We thus have a family of hashing
schemes, configurable by the parameters w, gp, and gd.
Note that for the degenerate cases (gp = 1 or gd = l),
we are simply considering hashing on the profileid or t,he
docid.

An INSERTRESTRAINTS operation adds new restraints
to the I-buffer. When it is full, we insert each restraint in

‘We have also evaluated the option of using a B+tree as the
index, but this option is not very attractive. The number of docids
is in general very large and thus the B+tree is very large, making
both storage and processing costs expensive.

72

turn. We locate the appropriate buckets and read them
int’o main memory. We insert the restraints. If there is no
empty slot in a bucket, we remove all expired restraints
(if any) in it, and insert the restraints. If there is still
no slot, we insert the restraints into the overflow area.
Finally, when the whole batch is processed, we write the
buckets back to disk.

Similarly, an UPDATERESTRAINT operation adds the
updated restraint in the U-buffer. When full, we hash on
the profileids and docids to locate the appropriate buckets
and read them in. We scan for each restraint, and if it
is found, we update the restraint. After all restraints are
processed, we write the buckets back to disk.

A LOOKUPRESTRAINTS operation is processed as
follows. We process each docid and profileid pair in turn.
We ha,sh on the ids to find the bucket. Within the bucket
we search for the specified restraint and return it if found.
The main memory buffers are then checked.

5 Performance Evaluation

In this section, we present, an analytical performance
evaluation of the different implementation schemes of
the restraint database. We answer several important
design questions, such as: Which scheme performs the
best, storage-wise and running time-wise, under different
scenarios? How costly is duplicate removal? How do
we tune the purging period to obtain best performance?
What is the impact of some important parameters, such
as the incoming tra,ffic and the average restraint period?
Since our goal is to identify a good duplicate removal
scheme for our operational SIFT server, in our analysis
we use parameter values derived from SIFT.

5.1 Performance Model

We assume there are np profiles. The average number of
documents received daily is nd. Given a document D, let
n&p be the average number of past documents within the
maximum expiration time window that overlap D above
the minimum duplication threshold (i.e., the expected
size of set C in Section 4.2). A random document has
a probability & of matching in content with a random
profile. A random document has a probability ~4 of
matching in content with a random profile and not being
a duplicate to the user of the profile (as determined by
his valid restraints).

To model the updating of restraints, we assume that
a restraint, is updated only once, after the user reads
the corresponding document. Further, we assume that
the updates for a user’s restraints arrive within one day
after the initial insertions, and a user’s updates for one
day arrive together in a batch. The scenario we are
depicting is that the user reads the documents he receives
in one session daily, and during the session, he sends back
restraint updates. This is of course only one of many
possible scenarios. We assume t,hat the average fraction
of restraints that are modified is 6.

We assume that, the average restraint is valid for tw&,&,w
days, and ipurge is the parameter that controls how often

Symbol Base Value Description

nP 6,200 total # profiles
nd 80,000

1 2.03
avg. # dots received dailv

ndup
4 0.00036 1

a.,. # dots above min d;p threshold
1 Pr(a random dot matches a random rxof)

I 6 I 0.8 I Y’f
. ,

o o matched dots not removed as durJs
6 0.04 % of restraints updated

tuJ,ndow 10 avg. restrant penod (m days
tpurge 5 how often purging is done in days

2, 1,000 # restraint.s in I-buffer
zu 1,000 # restraints in U-buffer

Ud,lk 4 # bvtes for a disk location _

~7na.n 4 # bytes for a (main memory) pomter
UP 4 # bytes for a profid
‘Jd 32 # bytes for a docid
ut 2 # bytes for an expiration date
ur 1 # bytes for a threshold
Ub 1,024 # bytes in a disk block
s 15 x 10-j disk seek time + latency (in sec.)

ii
u* x 10-6 disk tranfer rate (m sec. per block)

10 main mem cost / disk storage cost

Table 4: Model Parameters

a purge is done to a list/bucket/file; i.e., a list/bucket/file
is purged every tpurge days. We assume that the I-buffer
holds zi restraints and the U-buffer holds 2, restraints.

The size of a profileid is up bytes, that of a docid is
ud bytes, and the number of bytes to hold a duplication
threshold and an expiration date a.re u, and tit respec-
tively. A main memory pointer takes ~,,,i,% bytes and a
disk pointer take u&k bytes. We assume that the disk
block size is ub bytes, the disk seek plus latency time is s
sec., and the disk transfer rate is v sec. per block.

Table 4 summarizes these paramet,ers, t#ogether with
others introduced later. The base values of some
parameters are derived from the SIFT data collected over
the period Jan 10 - 19, 1995, during the study described in
Section 2.3. The average number of profiles np was G,200
and the daily average number of incoming documents nd
was 80,000. On average 177,000 matchings were made
per day, so 4 = 177,000/(6,200 x 80,000) = 0.00036.
We assume the CDB returns duplicates with more than
30% overlap (“real” duplicates), and from Table 3 we
obta.in the value of 2.03 for n&p. We set a twindow of 10
days. Finally, we assume that all 100% duplicates (0.16 of
all matchings from the Overall column in Table 2), plus
some partial duplicates are removed, and estimate K at
0.8. These base values just form a starting point in our
performance evaluation. We vary the parameter values
over wide ranges later on.

5.2 Performance Metrics

In our performance analysis, we focus on two performance
metrics. The first concerns the total stora,ge requirements
for the different schemes. In all schemes, mainly disk
space is consumed, and so we use the total number of
disk blocks required as the metric. However, in some
schemes, substantial main memory is also required. In
order to have one single storage requirement metric for
easy comparisons, we introduce a scaling factor, R, which
is the ratio between the costs of equal amount of ma.in
memory space and disk space. The storage requirement,
metric is thus the total disk storage required, plus the

73

scaled-up main memory required. One final point is that
in some schemes, the storage required varies from day to
day, as the restraints are accumulated and purged. Our
space metric computes the maximum storage required.

The second metric compares the total execution times
required of the different schemes. Since we believe the
processing time is dominated by disk accesses, we focus
on I/O time. One intuitive metric we may use is the
number of disk block accesses. However, this does not
model sequential vs. random I/OS. Thus, we compare
instead the expected total I/O time required for each
scheme in one day. For the PURGE operation, which is
invoked periodically by some schemes, we compute its
daily contribution by dividing the total purge time by
the invocation period.

5.3 Evaluation Results

We derive analytical solutions to the storage and I/O
requirements of the various schemes. Due to spa.ce
limitations, here we omit the details of the analysis. In
this subsection we present the performance evaluation
results.

We first show the costs of the schemes under the base
case setting. We then look at the impact on performance
of the scale of the information dissemination system and
the extent of the duplication problem. Next we study how
certain implementation parameters can be tuned for good
performance. Finally we dicuss how costly is the DRM,
compared against the CDB and content matching.

For the base case evaluation, we first look at the results
for partitioned hashing. Recall that partitioned hashing
is really a family of schemes, configurable by w, gp,
and gd (the bucket size and the grid dimensions). The
parameters are not independent; the product of the three
should be greater than the number of blocks required
to store all restraints. Through the analysis and some
experiments (omitted due to space limitations), we have
determined that one ‘1U-gp-gd combination works best:
‘10 = 1, gp = 1, and a large enough gd to adequately hold
the restraints. This is just hashing on docid. We will thus
focus on this hashing scheme in the evaluation below. Just
to understand if this conclusion changes with alternative
parameter settings, we also consider a partitioned hashing
scheme, with w = 1, gp = np, and gd set to a value large
enough to hold all data.

Table 5 shows the evaluation results using the base
case values. First of all, apparent from these results is
that duplicate removal is not very costly; the storage of
restraints takes 67 to 112 MB, and processing them takes
a total of a few hours daily for a single dedicated disk.
Secondly, we note that the total disk storage is the least
for indexing on docid (67 MB), about 40% less than the
storage required than the other schemes, while hashing on
docid requires the least I/O costs, taking a total of 4,116
sec. (1.14 hours) of I/O time.

\ Scheme 1 Storage (blocks) 1 I/O time (xc) 1

1 Indexine on Profileid I 100.411 I 9.709 1
Index& on Docid l57;093 61574
Partitioned Hashing 111,600 8,369
Hashing on Docid 111,600 4,116

Table 5: Base Case Performance Evaluation Resu1t.s

30000 -

25000 -

t

.c11
+--+-+--+-+-+-.+-~..+..+.+..+.+.+~.

5000 xxxxxxxxxxxxxx
1
I

0 2000 4000 6000 6000 100001200014000160001600020000
Number of Profiles

Figure 4: I/O Costs vs. np

5.3.1 Scale of the Information Dissemination
System

Next we study how the scale of the information dissemi-
nation system impacts the costs of duplicate removal. We
look at two parameters: np, the number of profiles in the
system; and nd, the number of arriving documents per
day.

As the number of profiles grows the storage costs of
all schemes expectedly increase (graphs omitted), for
most parts linearly. Indexing on docid requires the least
storage space, taking about 120 MB for 20,000 users; its
rate of growth is lowest, approximately 6 KB/user. The
other schemes take about 350 MB for 20,000 users, and
grow at a rate of 17.5 KB/ user approximately. For I/O
costs (Figure 4), we note that at small number of users,
indexing on profileid is the best scheme. This is because
the number of lists accessed by each operation is small.
As np increases, however, the I/O costs of indexing on
profileid and partitioned hashing quickly increase. Except
for small values of np, hashing on docid is the best,
growing at a rate of 0.12 sec./user. Relating these back
to SIFT, the user population has been growing at more
than 500 a month. This translates to a storage increase of
8.75 MB and an I/O time increase of 60 sec. per month
for the indexing on docid scheme.

Based on a January 1993 Netnews readership report
[ReiSS] and our Jan 1995 study, we estimate the number
of Netnews articles per day is increasing at a rate of more
than 2000 articles per month. Figure 5 shows how this
increase affects performances. As expected, the I/O costs
increase with volumes of information. Hashing on docid
performs the best, requiring approximately 0.05 sec. of

74

Indexing on Profileid +

8000

6000

4000

2000

I
10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Number of Documents Per Day

Figure 5: I/O Costs vs. nd Figure 7: I/O Costs vs. n&p

4000 .x x x x x
X

3000
p-’

x. x

2000 ’
T
I

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Fraction of Non-duplicates

Figure 6: I/O Costs vs. K

I/O time per document. The disk space required also
increases with the number of documents, as the number
of restraints increases (graphs omitted). Indexing on
profileid always requires the least storage, taking about
0.8 I<B/document .

5.3.2 Extent of the Duplication Problem

Next we look at how the extent of the duplicate problem
impacts the costs of duplicate removal. Relevant param-
eters include K, the fraction of matchings not eliminated
by duplicate removal, n&p, the average number of past
documents judged to be duplicates by the copy detection
black box when given a document, and twindow, the aver-
age time window of restraints.

The value of K may change as the occurrences of
duplicates become less or more frequent, or as users vary
their duplication thresholds. A K value close to 1 means
duplicates are rare, or users consider most documents
non-duplicates (setting high duplication thresholds). A
small value (close to 0) means duplicates are more

30000

25000

20000

15000

10000

5000

0 I I
0 1 2 3 4 5 6 7 8 9 10

Avg. Number of Duplicates Per Document

common, or users tend to set low duplication thresholds.
As K increases, the number of documents actually sent
to users increases, leading to an increase in the number
of restraints. Thus, in general the storage and I/O costs
increase with K. In Figure 6, we show the results for the
I/O cost comparison. We can see that hashing on docid
is always the best. We remark that in Netnews, K is likely
to be at the high end.

The value of n&p may change as the minimum dupli-
cation threshold allowed by the DRM changes. Refering
back to Table 3, when only duplication thresholds greater
than 30% is allowed, n&p is 2.03. However, if we lower
the allowed limit, say to O%, then nduP would be 10.71.
Parameter n&p in turn controls the work required of a
LOOKUPRESTRAINTS operation. For small n&p, hashing
on docid is the best (Figure 7), as we only have to ac-
cess a small number of blocks. Indexing on docid is also
good, for the same reason. Notice that the performance
of indexing on profileid is independent of n&p. Now when
n&p is large, the costs of the methods looking up docids
are higher, making them less attractive than indexing on
profileid.

Finally, we look at, the impact of the average time
window. If the window is long, more restraints are
kept, and thus both storage and I/O costs increase
(graphs omitted). The increase in I/O costs is especially
marked for indexing on profileid. In this scheme, t#he
list associated with each list become longer, and thus
retrieving a list takes longer time. On the other hand, for
indexing on docid, we access restraints for a particular
docid directly, and the number of blocks accessed for a
docid does not increase with the time window. Under all
values oft d tuln 0th studied, hashing on docid still performs
the best.

5.3.3 Implementation Parameters

In the implementation of the DRM, we can control several
parameters: the purge period, and the two buffer sizes.
First, our results (not shown) indicate that the storage

75

Indexing on Profileid +
Indexing on Docid -+--

P?rJiti??ed Hashing -0.-- ., I
9000

I

.-8 .‘...... 0.. B. ._
8000

fl. .-.

7000
..~ f.- _.... + ._... --+ + + + . . . + --+

6000 ._.... + + -+ + + + + ..-... + +

x
x)I x -x x x x

3000 1
1 2 3 4 5 6 7 8 9 10 0 2000 4000 6000 8000 10000

Purge Period I-buffer Size (in Number of Restraints)

Figure 8: I/O Costs vs. tpurge Figure 9: I/O Costs vs. zi

costs of all schemes increase with longer purge periods,
as expected. However, there are no substantial savings
in the I/O costs, except perhaps for hashing schemes
(Figure 8). For indexing on profileid, the I/O costs even
increase with longer purge periods. The reason is that,
although the costs of purging is reduced, the costs for
the other operations increase as the lists become longer.
The net result is that I/O costs for indexing on profileid
increase with longer purge periods. Note that, however,
having a slightly longer purge period than one day is quite
beneficial for hashing schemes.

Next, we look at the impact of the sizes of the main
memory buffers. In Figure 9, we start with no buffer,
and then consider an I-buffer of different sizes, up to
50,000 restraints (2 MB). We truncate the graph to show
the interesting portion better. We note that the buffer
only has significant effect on the indexing on profileid
scheme. As we accumulate the inserted restraints, more
and more restraints refer to the same profileids. Thus, we
require fewer I/OS than when we have to insert restraints
separately for each document sent out. For the I/O cost of
indexing on docid, there is a big initial drop, but then the
line stays flat. The initial drop is due to the reduction in
seeks required to append the new restraints. Yet, having
a small buffer already reduces the contribution of the seek
times to an insignifcant level, compared to other I/O
time components, which are not affected by having the
buffer. The effect on the hashing schemes is small, as
the number of distinct docids is not reduced much by
batching. Similar observations can be made for the U-
buffer.

5.3.4 The Costs of Duplicate Removal

Although here we have not studied in detail the costs
incurred by the Copy Detection Blackbox (CDB), we can
provide some high-level comparison to put the DRM costs
in perspective. In addition, we also compare the DRM
costs with those of content matching (i.e. the main SIFT
filtering function).

Let us assume that the CDB computes the percentage
of overlapping sentences. We assume it uses hashing for
its processing [BDGM95]. For each incoming document
D, the CDB hashes the sentences to their hash values,
reads the corresponding buckets, and then inserts D’s
docid into the buckets. Thus two I/OS are required
for each sentence (assuming no bucket overflow). As
[BDGM95] shows, randomization techniques can be used
to substantially reduce the number of sentences hashed.

Using the documents collected on Jan 19, we estimate
the number of sentences per document to be 50. With
randomization, we need to hash on say one-fifth of the
sentences, thus taking 20 I/OS per document. In a day
there is a total of 80,000 new documents, but we only
access the CDB when a document matches some profile.
We may compute the number of matched documents as
~(1 - (1 - 4P) (d erivation omitted), or 71,000. Thus
in a day, it takes a total I/O time of 71,000 x 20 x (15 x
1O-3 + 1024 x lo-‘j), or 22,800 sec. This is about 5 times
more I/O effort than for restraint management (DRM).

For storage, we assume documents are registered for
a period of 10 days. Each document is hashed to 10
values on average, so its docid (32 bytes) appears in
10 buckets. Thus, the number of blocks required is
[IO x 10 x 32 x 71,000/1024], or 221,875 blocks. This
is in the same order of magnitude as the storage costs of
the DRM.

Finally, for content matching, from our previous work
[YGM94a] we may estimate the storage cost as 0.125
block/profile, and the I/O cost as 56 x 10e6 sec./document/-
profile. Using the base case values, we estimate that a.
total of 775 blocks of disk space is required, much less
than the DRM plus CDB storage cost. For the I/O time,
a total of 28,000 sec. is needed, comparable to the sum
of the DRM and CDB times.

76

6 Conclusions

We conclude that the combined DRM and CDB storage
cost will be significantly higher than that of content
filtering, and the duplicate removal I/O effort will roughly
double the amount of work done by a dissemination
server. While this is certainly non-trivial, we believe
that the benefit of duplicate-free information is definitely
worth the extra cost. Furthermore, considering today’s
hardware costs, the CDB and DRM costs are not that
expensive.

Although the CDB and DRM costs are in the same or-
der of magnitude, the CDB is inherently more expensive.
We have shown that with an intelligent design, the DRM
costs can be made tolerable, in spite of the large amounts
of data that restraints represent.

In general indexing on the docids of restraints is always
t,he best scheme for storage, and performs fairly well in
terms of I/O costs. Hashing on docid is the best for I/O
costs except when the number of users is small, or when
the average number of duplicates is large. We also note
that partitioned hashing do no better than simply hashing
on docid.

We conclude that there is no need to have a long
restraint purge period. For most schemes, a purge
period of one day is sufficiently; for hashing, it may be
worthwhile to have a purge period of two days to reduce
the I/O costs at the costs of higher space requirement. We
note that batching of restraint insertions and updates is
in general not very useful. The only cases where savings
are significant are: (1) batching insertions and updates
for indexing on profileid; and (2) batching insertions for
indexing on docid.

Finally, based on these evaluation results, we have
identified the desirable setting of the DRM that we are
going to implement in SIFT. We will set a default time
window of 10 days and a minimum duplicate threshold
of 0.3. We will use hashing on docid, with no main
memory buffers and a purge period of two days. We
believe that our results could similarly be of use to others
implementing dissemination services.

Acknowledgements

Thanks to Narayanan Shivakumar for his help with the
Netnews duplication study.

References

[BDGM95]

[BLCGP92]

S. Brin, J. Davis, and H. Garcia-Molina.
Copy detection mechanisms for digital docu-
ments. In Proc. ACM SIGMOD Conference,
1995.

T. Berners-Lee, R. Cailliau, J.-F. Groff, and
B. Pollermann. World-Wide Web: The
information universe. Electronic Networking:
Research, Applications, and Policy, 1(2):52-
8, 1992.

[Coh92]

[Goy871

[HR79]

[Kro92]

[LT92]

[OR0931

[ReiSS]

[Rid921

[Sal681

[SGM95]

[YGM94a]

[YGM94b]

[YGM95]

D. Cohen. A Format for E-mailing Biblio-
graphical Records (RFC-1357). Network In-
formation Center, SRI International, Menlo
Park, California, 1992.

P. Goyal. Duplicate record identification
in bibliographic databases. Information
Systems, 12(3):239-42, 1987.

T. Hickey and D. Rypka. Automatic detec-
tion of duplicate monographic records. J.
Libr. Automn, 12(2):126-42, 1979.

E. Krol. The Whole Internet User’s Guide &
Catalog. O’Reilly & Associates, Sebastopol,
California, 1992.

S. Loeb and D. Terry. Editors. Special Sec-
tion on Information Filtering. Communica-
tions of the ACM, 35(12):26-81, 1992.

E. O’Neill, S. Rogers, and W. Oskins. Char-
acteristics of duplicate records in OCLC’s
online union catalog. Library Resources &
Technical Services, 37(1):59-71, 1993.

B. Reid. USENET Readership summary re-
port for January 1993. USENET Newsgroup
news.lists, Feb 8 1993.

M. Ridley. An expert system for quality con-
trol and duplicate detection in bibliographic
databases. Program, 26(1):1-18, 1992.

G. Salton. Automatic Information Organiza-
tion and Retrieval. McGraw-Hill, New York,
1968.

N. Shivakumar and H. Garcia-Molina.
SCAM: A copy detection mechanism for dig-
ital documents. In Proc. 2nd International
Conference in Theory and Practice of Digital
Libraries, 1995.

T.W. Yan and H. Garcia-Molina. Index
structures for information filtering under the
vector space model. In Proc. International
Conference on Data Engineering, pages 337-
47, 1994.

T.W. Yan and H. Garcia-Molina. In-
dex structures for selective dissemination
of information under the boolean model.
ACM Transactions on Database Systems,
19(2):332-64, 1994.

T. Yan and H. Garcia-Molina. Sift - a tool
for wide-area information dissemination. In
Proc. 1995 USENIX Technical Conference,
pages 177-86, 1995.

77

