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Abstract 

Our experience with the SIFT [YGM95] information dissemi- 
nation system (in use by over 7,000 users daily) has identified 
an important and generic dissemination problem: duplicate 
information. In this paper we explain why duplicates arise, 
we quantify the problem, and we discuss why it impairs infor- 
mation dissemination. We then propose a Duplicate Removal 
Module (DRM) for an information dissemination system. The 
removal of duplicates operates on a per user, per document 
basis - each document read by a user generates a request, or 
a duplicate restraint. In wide-area environments, the number 
of restraints handled is very large. We consider the implemen- 
tation of a DRM, examining alternative algorithms and data 
structures that may be used. We present a performance eval- 
uation of the alternatives and answer important design ques- 
tions such as: Which implementation is the best? With “best” 
scheme, how expensive will duplicate removal be? How much 
memory is required? How fast can restraints be processed? 

1 Introduction 

Global information systems are becoming commonplace. 
Convent#ional library systems, such as LOCIS at the 
Library of Congress, allow users to remotely search 
online catalogs for bibliogra.phical information. Electronic 
bulletin boards such as USENET News (Netsnews) (see, 
e.g., [Kro92]) are ever more popular, with millions of 
users and megabytes of daily traffic. Rapidly gaining 
momentum are some wide area information systems, 
such as World-Wide Web [BLCGP92], that allow users 
to search and browse remote file systems, document 
repositories, and even multimedia databases. 

Some systems adopt the information dissemination 
(a.k.a. selective dissemination of information [Sa168], 
information filtering [LT92], alert, routing) model. A 
user subscribes to an information dissemination system 
with a profile that describes his interests. A profile is 
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typically made up of a number of keyword queries. The 
system collects new documents from underlying sources, 
matches them against user profiles, and routes relevant 
information to users. Complementary to traditional 
search mechanisms, information dissemination helps users 
cope with information overload. At Stanford we have set 
up two experimental systems, SIFT-Netnews and SIFT- 
CSTR (SIFT [YGM95] stands for Stanford Information 
Filtering Tool). The former disseminates Netnews articles 
to over 7,000 users world-wide, and the latter delivers 
computer science technical report records to hundreds of 
researchers. ’ Several SIFT servers at other sites are also 
operational or being ported. 

In such global information systems, one of the many 
challenging problems is the proliferation of redundant 
information. Duplicate documents arise for many reasons. 
The foremost is that digital documents can be reproduced 
with extreme ease and at almost no cost. For example, 
in Netnews, a user may cross-post a news article in many 
newsgroups. He may repost it a few days later, again 
to multiple newsgroups. Further, there is no loss in the 
quality of the copies, and thus they can be replicat,ed 
again. For example, a user who has made a copy of the 
article may repost it in yet some other newsgroups or 
channels (e.g., mailing lists). 

By a duplicate, we mean not just an exact copy as 
described above, but in general a document closely sim- 
ilar in content to some other document and not giving 
users any extra information. For example, in traditional 
library catalog system, duplicate bibliographical records 
refering to the same technical reports are very common. 
The reasons leading to the existence of such duplicate 
records are mainly human input errors or inconsisten- 
cies, such as different practice in record creation, trans- 
lation differences, and typographical errors. The tradi- 
tional library community has recognized the problem of 
duplicate detection, especially in systems that provide 
union catalogs merging multiple bibliographical data.bases 
[HR79, Goy87, Rid92, OR093]. 

In modern information systems, documents are not 

‘The reader is encouraged to try out the systems. For WWW 
access, please connect to URL http://sift.stanford.edu. For email 
access, send an email message with the word “help” in the body to 
netnews@ift.stanford.edu or elibQsift.stanford.edu. 
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limited to short, structured bibliographical records, but 
rather full-text documents existing in different media 
types, with complex inter-document relationships among 
them. This rich content gives rise to more sources of 
duplication. One major source is the different media 
formats in which a document may exist. For instance, a 
technical report may be written in UTEX, and converted 
into DVI and postscript. It may also be converted into 
plain text or HTML. The hardcopy may be scanned in as 
images and then converted to text via optical character 
recognition (OCR). All th ese may be made available on- 
line. Another source of duplication is versioning. A 
document may undergo a number of versions in it,s life- 
span. For example, a technical report may have a short 
and a full version. A user, after reading the short version, 
may find the full version a duplicate. 

The existence of redundant information impairs the 
usefulness of information systems. For instance, when 
searching a bibliographical database, the existence of 
duplicate records is undesirable: users find duplicate 
information itsems intermixed in retrieval results hard to 
distinguish. In information dissemination, it is important 
that new information is delivered. If a document is 
delivered to a user, its exact/close copies will certainly 
reach the user over and over again. It is imperative 
that duplicate documents are detected and not delivered. 
In an experiment carried out to investigate the degree 
of duplication in the Netnews articles sent out by SIFT 
(d t ‘1 d S t’ e al e m ec ion 2.3), we found that on average some 
18% of articles received by a user overlap 80% or more 
in content (e.g., number of sentences) with some articles 
seen previously. We believe this is a major drawback 
diminishing the value of the system. Indeed, SIFT users 
have complained about this problem. 

To provide duplicate removal, we realize that individual 
users may have different requirements for duplicate 
elimination. A user, depending on what documents he 
has read previously, ma.y consider a document a duplicate 
while another user does not. He may also want to specify 
how close a document must be to a seen one for it to 
be a duplicate. For example, a user may find an article 
not very interesting and want to remove any duplicate 
more than 70% similar in cont8ent. On the other ha.nd, 
if a user receives an interesting document, he may want 
to remove only identical copies. Thus, the removal of 
duplicates operates on a per user, per document basis 
- each document read by a user generates a request for 
duplicate rem0va.l. We call such a request a duplicate 
restraint. The scale of global information systems makes 
the processing of duplicate restraints challenging. For 
example, in information dissemination, both the number 
of users and the number of incoming documents are large, 
so the number of restraints is very large. In SIFT, some 
80,000 documents are matched against profiles of over 
7,000 users every day; if we keep restraints valid for say 
ten days, we estimate that more than a million restraints 
need to be checked for every incoming document. 

In this paper we study the design of a Duplicate 

Removal Module (DRM) m an information dissemination 
system. In Section 2, we first state our model of an 
information dissemination system and other assumptions. 
We then present a taxonomy of duplica.tes in digital 
documents. We describe the results of a study to quantify 
the duplicate problem in SIFT and to illustrate the 
taxonomy. Partly based on the taxonomy we present the 
desired functionality of a DRM in Section 3. Next we 
consider the implementation of a DRM. There are many 
alternative algorithms and data structures that may be 
used; we describe them in in Section 4. 

One critical concern with copy detection and restraint 
management is its cost: not only do we have to detect the 
duplicates with earlier documents, but, we have t.o keep 
a detailed “history” of what user saw what document 
when. Will all this processing be too expenisve? Will 
the “history” take up unreasonable amounts of space, 
especially given the rates at which document generation 
and subscribers are growing? What DRM scheme is 
best and makes the costs manageable? To answer 
these questions, in Section 5 we present a performance 
evaluation and discuss the trends that our results yield. 
Finally, we conclude in Section 6. 

2 Background 

2.1 Information Dissemination System Model 

Our model of an information disseminat#ion system as- 
sumes a client-server architecture. A client, usually an 
individual user, subscribes to a server with an interest 
profile. The profile is typically made up of a number 
of keyword queries. Each profile has a unique identifier, 
called profileid. Since there is a one-to-one relationship 
between a user and a profile, we sometimes use the word 
“profile” in place of the word “user”; e.g., we say we “send 
a document to a profile” when we actually send the doc- 
ument to the user who has submitted the profile. 

The server collects documents from information sources. 
Each document has an identifier, or doczd. The server 
matches the content of each document against the profiles 
(i.e., the queries). Each profile has a number of associated 
restraints that specify what documents are considered du- 
plicates for the profile. 

2.2 Taxonomy of Duplicates 

Little work has been done t,o classify duplicates existing in 
digital documents. It is important t,o identify what may 
be considered duplicates by a user and consequently what, 
kinds of duplicates should be handled by a DRM. Thus, 
in this section we describe a taxonomy of duplicates. 
We remark that this taxonomy is not just applica.ble to 
dissemination but to search scenarios as well. 

As mentioned above, digital document duplicates are 
not just identical copies that have the exa.ct same 
byte sequence, but rat,her documents that the recipient’ 
thinks do not give him new information. We may 
classify duplicates as intentional duplicates or extensional 
duplicates. 
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2.2.1 Intentional Duplicates 

Two documents are intentional duplicates if their creators 
intended them to be duplicates, even though they may 
differ substantially in content. Below we outline several 
subclass& of intentional duplicates. 

Replication Replication means directly replicating 
a document. For instance, posting the same message 
to multiple newsgroups is an act of replication. 

Indirection Indirection means that a document is 
actually just a reference to another document that is 
of interest. This is an important point: two references 
are duplicates if they refer to the same document, 
even though the references themselves differ in content 
a lot. For instance, bibliographic records written 
in totally different formats (e.g., MARC and RFC- 
1357 [Coh92]) are duplicates if they refer to the same 
document,. For most users, two references to the same 
document should be considered duplicates, but for 
librarians, it may be necessary to distinguish them. 

Versions The same document may have different 
versions. For example, a technical report may be the 
extended abstract of another. Although the content 
of the short version is different from that of the full 
version, a user may find the short version sufficient 
for his information need and regards the full one a 
duplicate. 

Multiple Formats Similarly, a digital document 
may exist in different media types, such as plain text, 
HTML, I&TEX, DVI, postscript, scanned-image, OCR- 
ed text, or certain PC-a.pplication format. They may 
be classified as distinct documents by some users, and 
duplicates by some others. 

Nesting A document can be nested within another. 
For example, a technical report may be an anthology 
of a number of reports. A user, having read the 
anthology, is probably not interested in reading the 
individual reports. In Netnews, a user may include an 
article when composing a response to it. 

Table 1 shows some sample document types and the 
classes of duplicates that may exist in these types. 
A ‘yes’ entry means duplicates of a class may exist 
in the corresponding document type. For example, 
technical reports (refer to the third column) may have 
identical replicas, versions, multiple formats, and nesting 
relationship. Note that, however, indirection duplicates 
are not possible with technical reports. 

2.2.2 Extensional Duplicates 

We may also define duplication solely in terms of the 
textual content of the documents. Two documents are 
identical duplicates if they have the exact same words 
occurring in the exact same sequence. They are partial 
duplicates if portions of their texts contain the exact same 
words occurring in the exact same sequence. We may 

Bibliographical Techmcal 
Dimensmn Records Reports Netnews 
Replication Yes YeS Yes 
Indirection Yes no no 
Version Yes Yes no 
Multiple format yes yes no 
Nesting Yes YeS yes 

Table 1: Classes of Duplicates 

consider text units of different granularities (such as words 
or sentences) and compute the percentage of overlap of 
text units in a pair of documents. 

We call duplicates defined by overlapping content 
extensional duplicates. Note that a pair of extensional 
duplicates should in all reasonable cases be be a pair of 
intentional duplicates, but the converse is not true (i.e., 
two documents with very different content may still be 
intentional duplicates). 

2.3 Duplicates in Netnews 

To quantify the duplicate problem in SIFT, we carried out 
the following study. We first randomly selected a sample 
of 60 SIFT users. We kept track of what documents they 
received over a period of 10 days (from Jan IO to Jan 19, 
1995). Using th ese data, we ran two experiments. 

Experiment 1 

We used the documents collected on January 19 as our 
basis (1,343 distinct documents were matched to the 60 
profiles; a total of 1,486 matchings). We compared them 
against the documents received on previous days. As an 
example, let us look at the comparison against Jan 10 
documents. Consider a matching on Jan 19, say profile 
P receiving document D. For each document E that 
matched P on Jan 10, we computed O(E, D), defined as 
the percentage of sentences in D that are also in E. (The 
Netnews message header is removed before comparison.) 
We recorded the daily highest overlap: 

MJan IO(~, D) = max 
E matches P on Jan 10 

WE, D). 

This number tells us how much of D’s content was 
already seen by P on Jan 10. For the comparison among 
documents on Jan 19, we assumed the user receives 
documents in alphabetical order, and similarly computed 
the highest overlap against previous documents. 

For each matching (P receiving D), we then determined 
its overall highest overlap across all ten days, 

max MJan ;(P, D). 
i=lO,...,lS 

We counted the number of matchings with overall highest 
overlaps in different ranges ((0.0, O.l), [O.l, 0.2), etc.). 
The counts are shown in the last column of Table 2. For 
instance, the number 243 in the box (Overall, 1.0) says 
that there are 243 Jan 19 matchings in which t,he user 
receives a document entirely included in a document he 
received within the previous 10 days. This represents a 
fraction of 243/l, 486 or 16.4% of all matchings. 
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Over January 
-lap 10 11 12 13 14 15 16 17 18 19 

O.,.l) 43 53 55 85 58 36 78 89 58 48 
.1,.2) 26 30 45 37 31 28 21 49 68 39 

5 4 34 
1.5. .Sl 9 ;‘O I65 lt 7 9 ;“8 3i 38 284 73 
[.6,.7> 2 1 1 5 2 3 2 5 19 12 31 Table 3: Results from Experiment 2 of Netnews Duplica- 

tion Study 

Table 2: Results from Experiment 1 of Netnews Duplica- 
tion Study (Total # Matchings is 1,486) 

We also want to know how Netnews duplication 
decreases with time. We thus counted, for each day i, 
the number of daily highest overlaps (hfJan i(P, D) for 
all P-D matchings on Jan 19) in different ranges. The 
results are shown in Table 2. As an example, the number 
43 in box (10, [O.O, 0.1)) sa.ys that there are 43 matchings 
in which the document overlaps between 0 and 10% with 
some document the same user received on Jan 10. Note 
that the numbers from Jan 10 to Jan 19 on a row need 
not add up to the “Overall” number. 

The table gives us a lot of information about duplica- 
tion in Netnews. First, the bottom row contains match- 
ings whose documents are wholy included in some other 
seen document. We manually checked the sample doc- 
uments and found that these are predominantly cross- 
postings or reposts of the same message; i.e., they are 
duplicates of the replication type. Secondly, there are 
quite many overlaps in the range from 0.3 to less than 1.0; 
from the Overall column, approximately 18% of all match- 
ings fall into this range. Manual inspection indicates that 
these are articles in conversational threads, which include 
previous articles entirely or partially; i.e., they are nestsing 
duplicates. 

The rest of the overlaps comes from two sources. The 
first is noise from the copy detection algorithm we used. 
That is, sometimes the same sentence occurs in two 
unrelated documents by chance. This kind of overlaps 
is mainly found in the low overlap range (< 0.1). The 
other source of overlaps comes from the “signatures” in 
Netnews messages. Many users posting articles like to add 
a signature at the end of message. Thus articles written 
by the same user overlap at least in the signature portion. 

Looking at the number of “real” duplicates (with at 
least 30% overlap) across the ten days, we can see 
duplicates become quite infrequent after about ten days. 

Experiment 2 

For each incoming SIFT document, we want to find out 
how many earlier documents overlap with it more than 
lo%, how many overlap more than 20% and so on. This 
is useful for our performance evaluation later. We thus 
took each document from Jan 19 in turn, and counted 
how many documents in the previous 10 days overlapped 
with it at different percentages. We then averaged the 
counts over all Jan 19 documents. The results are shown 

in Table 3. For example, for a document D from Jan 19, 
on average there were 0.41 documents within the previous 
ten days that contained 100% of D. Also note that there 
were on avera.ge 2.03 past documents overlapping D at 
least 30% (“real” duplicates). 

2.4 Copy Detection Blackbox 

Given a pair of documents, we need some t,est to 
determine if they are duplicates. This test is not the 
focus of this paper. Previous work has been done in t,his 
area (e.g., [Rid921 for intentional duplicates, [BDGM95, 
SGM95] for extensional duplicates). Rather, we assume 
the availability of such a mechanism, in the form of a Copy 
Detection Blackbox (CDB). A CDB registers a collection 
of documents. Given a test document D, the blackbox 
returns the registered documents that it judges to be 
duplicates of D. 

For example, given a document D, the output from an 
intentional CDB may be a set {(E, version), (F, format)}, 
meaning that E is a version of D, and F is a duplicate of D 
in a different format. Similarly, for an extensional CDB, 
the output may be a set {(E, 0.8), (F, 0.9)}, meaning that 
D is 80% contained in E, and 90% in F. 

3 Functionality of a Duplicate Removal 
Module (DRM) 

As mentioned in Section 1, whenever a user receives a 
document, a duplicate restraint may be generated. A 
restraint is a tuple 

(profileid P, docid E, definition L, expiration T). 

It specifies that document E matched profile P, and 
because of this, future copies of E (by definition of L) 
should not be sent to P. After date T, the restraint 
is discarded. Below we elaborate on the L and T 
parameters. 

3.1 Setting User Definition of Duplicates 

For a seen document, the user can define what should be 
considered its duplicates by specifying the definition L. 
Depending on what kind of CDB is available, L can be 
used to define either intentional or extensional duplicates. 
For brevity, we focus on the extensional duplicate case 
from this point on. We remark that the our DRM 
implementation schemes and evaluation results present,ed 
later on are still applicable to the intentional duplicate 
case. 
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The user should be able to say that if a document 
D exceeds a certain threshold of overlap against some 
seen document E (the degree of overlap as judged by the 
CDB), then it should be considered a duplicate. That 
is, L(E, D) = (O(E, D) > t): for some 0 < t < 1, and 
some overlap measure 0 used by the CDB. We call the 
threshold t the duplicution threshold. The duplication 
threshold can be set differently for different documents. 
For example, in a Netnews dissemination system, a 
user may set a 100% threshold for for an important 
article (e.g., about a fix to a software bug), so that 
only duplicates that are entirely included in the original 
article are removed. On the other hand, for an article 
that the user does not particularly like (e.g., a recurring 
Call for Participation announcement for an uninteresting 
conference), he may set the threshold to 80%. 

For good performance, the DRM may impose a system- 
wide minimum duplication threshold. As an example, in 
Netnews, it may not make sense to remove any document 
overlapping less than 30% with any seen one. So a 
minimum duplication threshold of 30% may be set. 

3.2 Setting Time Window 

A DRM cannot maintain a duplicate restraint indefinitely, 
otherwise the number of restraints would be unbounded. 
Thus there should be a time window for which a restraint 
is valid, and this time window should correspond to the 
susceptible period of the particular type of document. 

Susceptible period is the period during which duplicates 
may arise and try to enter the system. For instance, 
for bibliographical records this may be a long period, as 
records may be created for different versions of document. 
For Netnews, this period is short: a user may post the 
same message a week later, but it is unlikely that he 
posts it a year later. (Even if he does, he probably has 
a reason and the document should not be considered as 
a duplicate.) For instance, from the data in Table 2, we 
may estimate the susceptible period of Netnews articles 
at 10 days. 

To bound its work load, a DRM should thus impose a 
system-wide maximum time window for which restraints 
are valid. On the other hand, it is desirable for the user 
to specify their own time windows for different restraints, 
within the system-wide maximum time window. For 
documents that keep recurring, the user may specify a 
long period. For others, the user may specify a shorter 
period. 

The registered body of documents in the copy detection 
blackbox should correspond to the time window of the 
valid restraints. One simple way to guarantee this is 
to make sure that the registered documents include all 
documents received by the server within the system-wide 
time window. 

3.3 Default Restraint vs. Individual Restraint 

A user can set the duplication threshold and the time 
window for each document received. However, it is 
bothersome to do this for all documents. So it is desirable 

to have a default duplicate restraint (each user may ha.ve 
his own default restraint). When a match is made, 
the default is automa.tically generated. The user may 
subsequently modify the restraint. 

4 Implementation of a Duplication 
Removal Module (DRM) 

In this section we discuss the implementation of a DRM 
in an information dissemination system. 

4.1 Client vs. Server Processing 

We first ask the question: where should duplicates be 
removed? One option is to perform elimination at, the 
client end. In this case, the server is just responsible 
for matching incoming documents against user profiles 
and routing relevant documents to the users. The user 
restraints are maintained at the client end. As the client 
receives documents, it looks up what documents overlap 
the current one and to what extent. If it turns out the user 
has already received a duplicate of the current document, 
it is not presented to the user. 

Another option is to perform duplicate elimination at 
the server end. The server maintains a database of 
duplicate restraints for all users. When a document 
arrives, the set of profiles that match it by content and 
did not receive a duplicate of the document previously are 
identified. The document is then delivered to the users of 
such profiles. 

The main problem with duplicate elimination at the 
client end is that special client software is needed. We 
believe the user should not need more than electronic-mail 
capability to utilize an information dissemination system. 
We attribute the success of the Stanford SIFT servers to 
the little effort required to use the system. No special 
software other than his own favorite mail reader is needed. 
To add duplicate detection capability at the client side, 
either current mail readers would have to be modified, or 
a new mail reader would have to be developed, distributed 
to the users, and accepted by them; both goals are difficult, 
to achieve in practice. 

Another benefit of server duplicate elimination is the 
reduction in message traffic. In environments where 
copies are common, this can lead to significant savings 
in network traffic. As observed in [YGM95], a major 
performance bottleneck in information dissemina.tion is 
the sending of updates to the users. Even a 10% reduction 
in the number of messages sent out would improve 
performance significantly. Thus, it is advantageous to 
remove redundant information at the server end. 

For the reasons mentioned here, in this paper we focus 
on duplicate elimination at the server end. 

4.2 Document Flow in a Server 

Suppose a document, D, arrives at a server. Conceptu- 
ally, the server has to determine the set of profiles P that 
match D by content. It also has to determine the set 
of profiles & that have seen a duplicate of D previously. 
Then it will send D to the users in the set P - &. 
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PI, P2. P3 ( I LOOKupRE;;;,3;; <F, 0.9, 

INSERTRESTRAINTS 

cP2, D. 0.9,14> 
<P3, D, 0.9,15> UPDATERESTRAINT 

<P2. D. 0.7, 14, 

Figure 1: Document Flow in a Server 

There are of course many different ways to achieve 
the above conceptual description. For example, we may 
process one profile at a time, first determining if D is 
a duplicate for that profile, and if not, determining if it 
matches the profile by content. However, for efficiency, 
during content matching, we should match the document 
against all profiles (using an index of profiles [YGM94a, 
YGM94b]) at th e same time, rather than one profile at 
a time. The one profile at a time scheme, dubbed the 
brute force method in [YGM94a, YGM94b], is found to 
perform orders of magnitude worse than when a profile 
index is used. Given this, only the following processing 
sequence (which is not far from the conceptual picture 
above) makes sense. (1) For an incoming document D, 
we first perform filtering based on its content against all 
profiles. This generates a set of matching profiles P. (2) 
Next we identify a set of documents C that overlap with 
the current document and the percentages of overlap. (3) 
Restraints that have profileids and docids in the Cartesian 
product of P and C are checked to generate a set of profiles 
Q’ that should not receive the document. 

For example, in Figure 1, D is an incoming document. 
We first perform content-based filtering and identify a 
set of matching profiles, P = {Pl, P2, P3). Next, past 
documents that overlap with D are identified by accessing 
the CDB. Suppose E is a document overlapping 80% with 
D, and F overlapping 90%. The output from the CDB 
is {(E,0.8), (F, 0.9)) (hence C = {E, F}). Next user 
restraints with profileids in P and docids in C are retrieved 
from the database of restraints. With {Pl, P2, P3) 
and {E, F}, suppose we retrieve the following restraints: 
(Pl, E, 0.9,tl), (Pl, F, 0.6,tz), (P2, E, 0.9,is) (assuming 
that times tl, tz,t3 make these restraints valid). The 
individual duplication thresholds are then checked. Here 
D is a duplicate for Pl, as it, overlaps more than 60% with 
F. It is not a duplicate to P2 or P3. (Thus &’ = {Pl}.) 
The users for profiles P2 and P3 receive the document. 

At this point, a set of default restraints are inserted 
into the database; say (P2, D, 0.9, id), (P3, D, 0.9, ts). 
Later, suppose the user for P2 reads the document and 
submits a different restraint. The default restraint is then 

modified. 

4.3 Duplicate Removal Module 

The DRM maintains a database of restraints. It per- 
forms the following operations on the restraint database. 
Operation INSERTRESTRAINTS adds a set of restraints to 
the database. It is used after a set of profiles are found 
to match a document, the default restraints are formed 
and are added to the database at the same time. (We 
remark that the set of restraints should have the same 
docid.) Operation UPDATERESTRAINT is invoked to up- 
date a restraint. It is used when a user submits an actual 
elimination restraint and the old default restraint has to 
be modified. Operation LOOKUPRESTRAINTS is used to 
retrieve restraints with some specified profileids and do- 
cids. We may also need the operation PURGE, which is 
invoked to delete all expired restraints from the database. 

The restraint database is at the core of the processing of 
the DRM. Below we look at alternative implementations. 
We have to be able to efficiently identify restraints that 
are relevant for a new document. At the same time 
we have to balance the costs of insertions, updates, and 
purging of restraints. We look at several specialized data 
structures that cater to the workload characteristics of a 
DRM. They will be evaluated in Section 5. 

4.3.1 Main Memory Buffers 

We assume that the restraints are kept on disk, with in- 
dexing or hashing structures constructed to support effi- 
cient lookups. However, for performance, we assume that 
we keep two separate main memory buffers to batch the 
INSERTRESTRAINTS and UPDATERESTRAINT operations, 
called the I-buffer and the U-buffer respectively. 

An INSERTRESTRAINTS operation simply inserts the 
new restraints into the I-buffer. When the buffer is full, 
the restraints are written to disk, and the indexing or 
hashing structures updated. Details vary for each scheme, 
and will be covered in the subsections below. 

Similarly, an UPDATERESTRAINT operation does not 
immediately modify the restraint on disk, but just adds 
the updated restraint t,o the U-buffer. (We assume 
that when updating, the complete modified restraint is 
available; i.e., no partial updates.) In case the restraint 
to be modified is still in the I-buffer and not, written to 
disk yet, UPDATERESTRAINT modifies the main memory 
restraint directly. 

Now a LOOKUPRESTRAINT operation has to check the 
buffers also. It has to first look up the restraints on disk. 
Next the restraints in the U-buffer are checked; if any of 
the restraints retrieved from disk has been modified, it 
is replaced with the buffered version. Finally, the new 
restraints in the I-buffer are also looked up. 

Next we look at several ways to organize the restraint,s 
on disk, using different indexing or hashing structures. 

4.3.2 Indexing on Profileid 

The first option is to build an index on profileids. We 
keep restraints with the same profileid sequentially in one 
list. A mapping takes a profileid to the disk location 
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Figure 2: Indexing on Profileid 

of its list of restraints. As the number of profiles is 
fixed and relatively small, we assume the mapping fits 
in main memory. Figure 2 illustrates this structure with 
an example. 

These lists are constantly being updated, as new 
restraints are added for each profile. Thus, they should 
be updatable incrementally, without the need to read and 
then write an entire list. To efficiently support this, we 
leave some disk space at the end of each list. This way, 
new restraints can simply be added to the allocated space 
at the end of the list. 

An INSERTRESTRAINTS operation adds the restraints 
to the I-buffer. When the buffer is full, we add all 
new restraints to disk. New restraints for each distinct 
profile are appended to the end of its list. (We may 
thus assume that the restraints in a list are sorted by 
insertion times; this is useful in our analysis.) We assume 
that we keep in main memory a pointer to the location of 
the free space for each list. If the allocated extra space 
is not sufficient to hold the new restraint#s, the entire 
list is retrieved. It is compacted, with expired restraints 
removed. New restraints are then appended at the end. If 
that is still not sufficient, then the list is written to a new 
disk location with extra disk blocks added to the end. 
An UPDATERESTRAINT operation just adds the update 
restraint to the U-buffer. When full, we retrieve the list 
for each distinct profileid, scan for the docids, and modify 
the restraints found. 

For a LOOKUPRESTRAINTS operation, we first look up 
the restraints on disk. We retrieve for each profileid its 
list and scan it to find the restraints with the specified 
docids. Next the main memory buffers are checked, as 
described in Section 4.3.1. 

A PURGE operation is a no-op in t,his scheme, as 
purging is performed during inserting. 

4.3.3 Indexing on Docid 

In this scheme, we try to minimize storage and keep 
all restraints contiguously in a file (see Figure 3 for an 
example). Restraints with the same docid are stored 
together. An index is built on the docid, which maps 
a docid to the disk location of its restraints. As the 
number of docids that the restraints reference is large, we 

Figure 3: Indexing on Docid 

assume the index resides on disk. We assume the index 
is implemented as a hash-file. 2 

An INSERTRESTRAINTS invocation adds the restraints 
to the I-buffer. When the buffer is full, we append the 
restraints to the end of they file. Entries for the docids 
are inserted into the index file. For a UPDATERESTRAINT 
operation, the updates are batched. When the buffer is 
full, we access the index file, retrieve the restraints for 
each distinct docid, modify them as needed and writ.e 
them back to disk. 

For this index structure, it is necessary to have a. purge 
operation to get rid of expired restraints. This PURGE 
operation goes through the whole file, compacts it by 
removing expired restraints, and writes it back out. The 
index is updated to reflect the changes in the locations 
of the restraints. We assume that this operation is 
performed periodically. 

For a LOOKUPRESTRAINTS operation, each specified 
docid is looked up against the index in turn to retrieve its 
associated restraints, and those with the specified profiles 
are returned. The main memory buffers are then checked. 

4.3.4 Partitioned Hashing 

In partitioned hashing, a main file stores all the restraints. 
The file is divided into a number of buckets; a bucket is a 
number (.w) of consecutive disk blocks. These buckets are 
arranged into a gp x gd grid. Each bucket is located by 
its coordinates in the grid. A hash function HP hashes 
a profileid to a number 2, 0 < x < gp, and a hash 
function Hd hashes a docid to a number y, 0 < y < gd. 
A restraint with profileid p and docid d is placed in the 
bucket (HP(p), Hd(d)). We thus have a family of hashing 
schemes, configurable by the parameters w, gp, and gd. 
Note that for the degenerate cases (gp = 1 or gd = l), 
we are simply considering hashing on the profileid or t,he 
docid. 

An INSERTRESTRAINTS operation adds new restraints 
to the I-buffer. When it is full, we insert each restraint in 

‘We have also evaluated the option of using a B+tree as the 
index, but this option is not very attractive. The number of docids 
is in general very large and thus the B+tree is very large, making 
both storage and processing costs expensive. 
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turn. We locate the appropriate buckets and read them 
int’o main memory. We insert the restraints. If there is no 
empty slot in a bucket, we remove all expired restraints 
(if any) in it, and insert the restraints. If there is still 
no slot, we insert the restraints into the overflow area. 
Finally, when the whole batch is processed, we write the 
buckets back to disk. 

Similarly, an UPDATERESTRAINT operation adds the 
updated restraint in the U-buffer. When full, we hash on 
the profileids and docids to locate the appropriate buckets 
and read them in. We scan for each restraint, and if it 
is found, we update the restraint. After all restraints are 
processed, we write the buckets back to disk. 

A LOOKUPRESTRAINTS operation is processed as 
follows. We process each docid and profileid pair in turn. 
We ha,sh on the ids to find the bucket. Within the bucket 
we search for the specified restraint and return it if found. 
The main memory buffers are then checked. 

5 Performance Evaluation 

In this section, we present, an analytical performance 
evaluation of the different implementation schemes of 
the restraint database. We answer several important 
design questions, such as: Which scheme performs the 
best, storage-wise and running time-wise, under different 
scenarios? How costly is duplicate removal? How do 
we tune the purging period to obtain best performance? 
What is the impact of some important parameters, such 
as the incoming tra,ffic and the average restraint period? 
Since our goal is to identify a good duplicate removal 
scheme for our operational SIFT server, in our analysis 
we use parameter values derived from SIFT. 

5.1 Performance Model 

We assume there are np profiles. The average number of 
documents received daily is nd. Given a document D, let 
n&p be the average number of past documents within the 
maximum expiration time window that overlap D above 
the minimum duplication threshold (i.e., the expected 
size of set C in Section 4.2). A random document has 
a probability & of matching in content with a random 
profile. A random document has a probability ~4 of 
matching in content with a random profile and not being 
a duplicate to the user of the profile (as determined by 
his valid restraints). 

To model the updating of restraints, we assume that 
a restraint, is updated only once, after the user reads 
the corresponding document. Further, we assume that 
the updates for a user’s restraints arrive within one day 
after the initial insertions, and a user’s updates for one 
day arrive together in a batch. The scenario we are 
depicting is that the user reads the documents he receives 
in one session daily, and during the session, he sends back 
restraint updates. This is of course only one of many 
possible scenarios. We assume t,hat the average fraction 
of restraints that are modified is 6. 

We assume that, the average restraint is valid for tw&,&,w 
days, and ipurge is the parameter that controls how often 

Symbol Base Value Description 

nP 6,200 total # profiles 
nd 80,000 

1 2.03 
avg. # dots received dailv 

ndup 
4 0.00036 1 

a.,. # dots above min d;p threshold 
1 Pr(a random dot matches a random rxof) 

I 6 I 0.8 I Y’f 
. , 

o o matched dots not removed as durJs 
6 0.04 % of restraints updated 

tuJ,ndow 10 avg. restrant penod (m days 
tpurge 5 how often purging is done in days 

2, 1,000 # restraint.s in I-buffer 
zu 1,000 # restraints in U-buffer 

Ud,lk 4 # bvtes for a disk location _ 

~7na.n 4 # bytes for a (main memory) pomter 
UP 4 # bytes for a profid 
‘Jd 32 # bytes for a docid 
ut 2 # bytes for an expiration date 
ur 1 # bytes for a threshold 
Ub 1,024 # bytes in a disk block 
s 15 x 10-j disk seek time + latency (in sec.) 

ii 
u* x 10-6 disk tranfer rate (m sec. per block) 

10 main mem cost / disk storage cost 

Table 4: Model Parameters 

a purge is done to a list/bucket/file; i.e., a list/bucket/file 
is purged every tpurge days. We assume that the I-buffer 
holds zi restraints and the U-buffer holds 2, restraints. 

The size of a profileid is up bytes, that of a docid is 
ud bytes, and the number of bytes to hold a duplication 
threshold and an expiration date a.re u, and tit respec- 
tively. A main memory pointer takes ~,,,i,% bytes and a 
disk pointer take u&k bytes. We assume that the disk 
block size is ub bytes, the disk seek plus latency time is s 
sec., and the disk transfer rate is v sec. per block. 

Table 4 summarizes these paramet,ers, t#ogether with 
others introduced later. The base values of some 
parameters are derived from the SIFT data collected over 
the period Jan 10 - 19, 1995, during the study described in 
Section 2.3. The average number of profiles np was G,200 
and the daily average number of incoming documents nd 
was 80,000. On average 177,000 matchings were made 
per day, so 4 = 177,000/(6,200 x 80,000) = 0.00036. 
We assume the CDB returns duplicates with more than 
30% overlap (“real” duplicates), and from Table 3 we 
obta.in the value of 2.03 for n&p. We set a twindow of 10 
days. Finally, we assume that all 100% duplicates (0.16 of 
all matchings from the Overall column in Table 2), plus 
some partial duplicates are removed, and estimate K at 
0.8. These base values just form a starting point in our 
performance evaluation. We vary the parameter values 
over wide ranges later on. 

5.2 Performance Metrics 

In our performance analysis, we focus on two performance 
metrics. The first concerns the total stora,ge requirements 
for the different schemes. In all schemes, mainly disk 
space is consumed, and so we use the total number of 
disk blocks required as the metric. However, in some 
schemes, substantial main memory is also required. In 
order to have one single storage requirement metric for 
easy comparisons, we introduce a scaling factor, R, which 
is the ratio between the costs of equal amount of ma.in 
memory space and disk space. The storage requirement, 
metric is thus the total disk storage required, plus the 

73 



scaled-up main memory required. One final point is that 
in some schemes, the storage required varies from day to 
day, as the restraints are accumulated and purged. Our 
space metric computes the maximum storage required. 

The second metric compares the total execution times 
required of the different schemes. Since we believe the 
processing time is dominated by disk accesses, we focus 
on I/O time. One intuitive metric we may use is the 
number of disk block accesses. However, this does not 
model sequential vs. random I/OS. Thus, we compare 
instead the expected total I/O time required for each 
scheme in one day. For the PURGE operation, which is 
invoked periodically by some schemes, we compute its 
daily contribution by dividing the total purge time by 
the invocation period. 

5.3 Evaluation Results 

We derive analytical solutions to the storage and I/O 
requirements of the various schemes. Due to spa.ce 
limitations, here we omit the details of the analysis. In 
this subsection we present the performance evaluation 
results. 

We first show the costs of the schemes under the base 
case setting. We then look at the impact on performance 
of the scale of the information dissemination system and 
the extent of the duplication problem. Next we study how 
certain implementation parameters can be tuned for good 
performance. Finally we dicuss how costly is the DRM, 
compared against the CDB and content matching. 

For the base case evaluation, we first look at the results 
for partitioned hashing. Recall that partitioned hashing 
is really a family of schemes, configurable by w, gp, 
and gd (the bucket size and the grid dimensions). The 
parameters are not independent; the product of the three 
should be greater than the number of blocks required 
to store all restraints. Through the analysis and some 
experiments (omitted due to space limitations), we have 
determined that one ‘1U-gp-gd combination works best: 
‘10 = 1, gp = 1, and a large enough gd to adequately hold 
the restraints. This is just hashing on docid. We will thus 
focus on this hashing scheme in the evaluation below. Just 
to understand if this conclusion changes with alternative 
parameter settings, we also consider a partitioned hashing 
scheme, with w = 1, gp = np, and gd set to a value large 
enough to hold all data. 

Table 5 shows the evaluation results using the base 
case values. First of all, apparent from these results is 
that duplicate removal is not very costly; the storage of 
restraints takes 67 to 112 MB, and processing them takes 
a total of a few hours daily for a single dedicated disk. 
Secondly, we note that the total disk storage is the least 
for indexing on docid (67 MB), about 40% less than the 
storage required than the other schemes, while hashing on 
docid requires the least I/O costs, taking a total of 4,116 
sec. (1.14 hours) of I/O time. 

\ Scheme 1 Storage (blocks) 1 I/O time (xc) 1 

1 Indexine on Profileid I 100.411 I 9.709 1 
Index& on Docid l57;093 61574 
Partitioned Hashing 111,600 8,369 
Hashing on Docid 111,600 4,116 

Table 5: Base Case Performance Evaluation Resu1t.s 
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Figure 4: I/O Costs vs. np 

5.3.1 Scale of the Information Dissemination 
System 

Next we study how the scale of the information dissemi- 
nation system impacts the costs of duplicate removal. We 
look at two parameters: np, the number of profiles in the 
system; and nd, the number of arriving documents per 
day. 

As the number of profiles grows the storage costs of 
all schemes expectedly increase (graphs omitted), for 
most parts linearly. Indexing on docid requires the least 
storage space, taking about 120 MB for 20,000 users; its 
rate of growth is lowest, approximately 6 KB/user. The 
other schemes take about 350 MB for 20,000 users, and 
grow at a rate of 17.5 KB/ user approximately. For I/O 
costs (Figure 4), we note that at small number of users, 
indexing on profileid is the best scheme. This is because 
the number of lists accessed by each operation is small. 
As np increases, however, the I/O costs of indexing on 
profileid and partitioned hashing quickly increase. Except 
for small values of np, hashing on docid is the best, 
growing at a rate of 0.12 sec./user. Relating these back 
to SIFT, the user population has been growing at more 
than 500 a month. This translates to a storage increase of 
8.75 MB and an I/O time increase of 60 sec. per month 
for the indexing on docid scheme. 

Based on a January 1993 Netnews readership report 
[ReiSS] and our Jan 1995 study, we estimate the number 
of Netnews articles per day is increasing at a rate of more 
than 2000 articles per month. Figure 5 shows how this 
increase affects performances. As expected, the I/O costs 
increase with volumes of information. Hashing on docid 
performs the best, requiring approximately 0.05 sec. of 

74 



Indexing on Profileid + 

8000 

6000 

4000 

2000 

I 
10000 20000 30000 40000 50000 60000 70000 80000 90000 100000 

Number of Documents Per Day 

Figure 5: I/O Costs vs. nd Figure 7: I/O Costs vs. n&p 

4000 .x x x x x 
X 

3000 
p-’ 

x. x 

2000 ’ 
T 
I 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
Fraction of Non-duplicates 

Figure 6: I/O Costs vs. K 

I/O time per document. The disk space required also 
increases with the number of documents, as the number 
of restraints increases (graphs omitted). Indexing on 
profileid always requires the least storage, taking about 
0.8 I<B/document . 

5.3.2 Extent of the Duplication Problem 

Next we look at how the extent of the duplicate problem 
impacts the costs of duplicate removal. Relevant param- 
eters include K, the fraction of matchings not eliminated 
by duplicate removal, n&p, the average number of past 
documents judged to be duplicates by the copy detection 
black box when given a document, and twindow, the aver- 
age time window of restraints. 

The value of K may change as the occurrences of 
duplicates become less or more frequent, or as users vary 
their duplication thresholds. A K value close to 1 means 
duplicates are rare, or users consider most documents 
non-duplicates (setting high duplication thresholds). A 
small value (close to 0) means duplicates are more 
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common, or users tend to set low duplication thresholds. 
As K increases, the number of documents actually sent 
to users increases, leading to an increase in the number 
of restraints. Thus, in general the storage and I/O costs 
increase with K. In Figure 6, we show the results for the 
I/O cost comparison. We can see that hashing on docid 
is always the best. We remark that in Netnews, K is likely 
to be at the high end. 

The value of n&p may change as the minimum dupli- 
cation threshold allowed by the DRM changes. Refering 
back to Table 3, when only duplication thresholds greater 
than 30% is allowed, n&p is 2.03. However, if we lower 
the allowed limit, say to O%, then nduP would be 10.71. 
Parameter n&p in turn controls the work required of a 
LOOKUPRESTRAINTS operation. For small n&p, hashing 
on docid is the best (Figure 7), as we only have to ac- 
cess a small number of blocks. Indexing on docid is also 
good, for the same reason. Notice that the performance 
of indexing on profileid is independent of n&p. Now when 
n&p is large, the costs of the methods looking up docids 
are higher, making them less attractive than indexing on 
profileid. 

Finally, we look at, the impact of the average time 
window. If the window is long, more restraints are 
kept, and thus both storage and I/O costs increase 
(graphs omitted). The increase in I/O costs is especially 
marked for indexing on profileid. In this scheme, t#he 
list associated with each list become longer, and thus 
retrieving a list takes longer time. On the other hand, for 
indexing on docid, we access restraints for a particular 
docid directly, and the number of blocks accessed for a 
docid does not increase with the time window. Under all 
values oft d tuln 0th studied, hashing on docid still performs 
the best. 

5.3.3 Implementation Parameters 

In the implementation of the DRM, we can control several 
parameters: the purge period, and the two buffer sizes. 
First, our results (not shown) indicate that the storage 
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costs of all schemes increase with longer purge periods, 
as expected. However, there are no substantial savings 
in the I/O costs, except perhaps for hashing schemes 
(Figure 8). For indexing on profileid, the I/O costs even 
increase with longer purge periods. The reason is that, 
although the costs of purging is reduced, the costs for 
the other operations increase as the lists become longer. 
The net result is that I/O costs for indexing on profileid 
increase with longer purge periods. Note that, however, 
having a slightly longer purge period than one day is quite 
beneficial for hashing schemes. 

Next, we look at the impact of the sizes of the main 
memory buffers. In Figure 9, we start with no buffer, 
and then consider an I-buffer of different sizes, up to 
50,000 restraints (2 MB). We truncate the graph to show 
the interesting portion better. We note that the buffer 
only has significant effect on the indexing on profileid 
scheme. As we accumulate the inserted restraints, more 
and more restraints refer to the same profileids. Thus, we 
require fewer I/OS than when we have to insert restraints 
separately for each document sent out. For the I/O cost of 
indexing on docid, there is a big initial drop, but then the 
line stays flat. The initial drop is due to the reduction in 
seeks required to append the new restraints. Yet, having 
a small buffer already reduces the contribution of the seek 
times to an insignifcant level, compared to other I/O 
time components, which are not affected by having the 
buffer. The effect on the hashing schemes is small, as 
the number of distinct docids is not reduced much by 
batching. Similar observations can be made for the U- 
buffer. 

5.3.4 The Costs of Duplicate Removal 

Although here we have not studied in detail the costs 
incurred by the Copy Detection Blackbox (CDB), we can 
provide some high-level comparison to put the DRM costs 
in perspective. In addition, we also compare the DRM 
costs with those of content matching (i.e. the main SIFT 
filtering function). 

Let us assume that the CDB computes the percentage 
of overlapping sentences. We assume it uses hashing for 
its processing [BDGM95]. For each incoming document 
D, the CDB hashes the sentences to their hash values, 
reads the corresponding buckets, and then inserts D’s 
docid into the buckets. Thus two I/OS are required 
for each sentence (assuming no bucket overflow). As 
[BDGM95] shows, randomization techniques can be used 
to substantially reduce the number of sentences hashed. 

Using the documents collected on Jan 19, we estimate 
the number of sentences per document to be 50. With 
randomization, we need to hash on say one-fifth of the 
sentences, thus taking 20 I/OS per document. In a day 
there is a total of 80,000 new documents, but we only 
access the CDB when a document matches some profile. 
We may compute the number of matched documents as 
~(1 - (1 - 4P) (d erivation omitted), or 71,000. Thus 
in a day, it takes a total I/O time of 71,000 x 20 x (15 x 
1O-3 + 1024 x lo-‘j), or 22,800 sec. This is about 5 times 
more I/O effort than for restraint management (DRM). 

For storage, we assume documents are registered for 
a period of 10 days. Each document is hashed to 10 
values on average, so its docid (32 bytes) appears in 
10 buckets. Thus, the number of blocks required is 
[IO x 10 x 32 x 71,000/1024], or 221,875 blocks. This 
is in the same order of magnitude as the storage costs of 
the DRM. 

Finally, for content matching, from our previous work 
[YGM94a] we may estimate the storage cost as 0.125 
block/profile, and the I/O cost as 56 x 10e6 sec./document/- 
profile. Using the base case values, we estimate that a. 
total of 775 blocks of disk space is required, much less 
than the DRM plus CDB storage cost. For the I/O time, 
a total of 28,000 sec. is needed, comparable to the sum 
of the DRM and CDB times. 
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6 Conclusions 

We conclude that the combined DRM and CDB storage 
cost will be significantly higher than that of content 
filtering, and the duplicate removal I/O effort will roughly 
double the amount of work done by a dissemination 
server. While this is certainly non-trivial, we believe 
that the benefit of duplicate-free information is definitely 
worth the extra cost. Furthermore, considering today’s 
hardware costs, the CDB and DRM costs are not that 
expensive. 

Although the CDB and DRM costs are in the same or- 
der of magnitude, the CDB is inherently more expensive. 
We have shown that with an intelligent design, the DRM 
costs can be made tolerable, in spite of the large amounts 
of data that restraints represent. 

In general indexing on the docids of restraints is always 
t,he best scheme for storage, and performs fairly well in 
terms of I/O costs. Hashing on docid is the best for I/O 
costs except when the number of users is small, or when 
the average number of duplicates is large. We also note 
that partitioned hashing do no better than simply hashing 
on docid. 

We conclude that there is no need to have a long 
restraint purge period. For most schemes, a purge 
period of one day is sufficiently; for hashing, it may be 
worthwhile to have a purge period of two days to reduce 
the I/O costs at the costs of higher space requirement. We 
note that batching of restraint insertions and updates is 
in general not very useful. The only cases where savings 
are significant are: (1) batching insertions and updates 
for indexing on profileid; and (2) batching insertions for 
indexing on docid. 

Finally, based on these evaluation results, we have 
identified the desirable setting of the DRM that we are 
going to implement in SIFT. We will set a default time 
window of 10 days and a minimum duplicate threshold 
of 0.3. We will use hashing on docid, with no main 
memory buffers and a purge period of two days. We 
believe that our results could similarly be of use to others 
implementing dissemination services. 
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