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Abstract 

The transaction concept in computing goes back to the early 
days of computerized data processing. It has developed and 
evolved over the years both in terms of formal theory and 
practical application. This evolutionary process has been 
driven in large part by applications that require transaction- 
like properties. Newly emerging applications include sev- 
eral that involve people in a time-dependent role. The new 
forms of human involvement in transaction processing re- 
quired by these applications are generating new systems- 
level challenges. Likewise, these needs present challenges 
and opportunities from a theoretical standpoint. This talk 
reviews the history of synergy between theory and practice 
in the area of transaction processing, and considers cur- 
rently emerging needs from that perspective. 

1 Introduction 

The transaction concept in the business world pre- 
dates the computer science version of the concept by 
thousands of years. In human interactions, concepts, 
such as that of a transaction, are formalized by the 
legal and legislative processes and enforced by a judi- 
ciary process. In the world of computing, concepts are 
formalized by the theory community (or theoretically- 
inclined systems people), and enforced by the systems 
built by systems engineers and programmers. Just as 
there is some real-world flexibility in law enforcement, 
so there is some flexibility in the way that real sys- 
tems implement formal concepts, and, conversely, some 
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simplification that occurs when implemented ideas are 
abstracted into formal concepts. 

The transaction concept has an extraordinarily in- 
teresting history of synergy between its formalization 
and implementation. This history is interesting in its 
own right as a lesson in the role of theory and prac- 
tice - a lesson of great importance as pressures grow 
for research to be “relevant,” that is, justifiable from a 
business perspective. Furthermore, this history is of in- 
terest as the point from which the transaction concept 
continues to evolve - perhaps to the point where trans- 
actions are no longer really transactions and another 
term may be appropriate. 

2 Historical Perspective 

The transaction concept goes back to the dawn of civi- 
lization, and its presence in the computer science liter- 
ature goes back to the early 1970s [Bjo73, Dav73]. The 
classic papers by members of the System R group at 
the IBM San Jose Research Lab ([EGLT76, GLPT75, 
Gra78], among others) served both to identify a simple, 
yet powerful, specification of the transaction concept 
and to describe a systems-level approach to its imple- 
mentation. 

The fundamental idea of a transaction is based on 
the four “ACID” properties: atomicity, consistency, iso- 
lation, and durability [BHG87, GR93]. Within the 
framework of this concept, research advanced rapidly 
along several fronts. Theoreticians explored the lim- 
its of the model in terms of provably correct con- 
current transaction execution [Pap79, Yan82, Pap86, 
LMWF94]. Alternatives to the approach taken by Sys- 
tem R for managing transactions were explored, in- 
cluding timestamp-based protocols [BG80, Ree83], val- 
idation techniques [KR81], and locking techniques de- 
rived from a graph-based organization of data items 
(such as the tree protocol of [SKSO]). Concurrent with 
the above-cited (and other related) activities, several 



landmark database systems were being built, among 
them System R [CAB+81], Ingres [Sto86], and SDD-1 
[BSJSO]. Extensions to transaction-management tech- 
niques for distributed computer systems were widely 
explored as well (see [CzsuVSl] for details and cita- 
tions). 

Several things are noteworthy about this flurry of 
activity in transaction processing. First is that there 
was concurrent activity among theoreticians, imple- 
mentors, and systems researchers who fit somewhere 
between theory and implementation. Second is that 
the work was done both by academia and industry, with 
the former well-supported by government, and the lat- 
ter producing a large volume of published work. As 
a result, transaction processing rapidly became a well- 
understood field - so much so that a panel session at 
the 1983 VLDB conference was entitled “Concurrency 
Control: Are We Done With Algorithms?” [Pap831 

The death of transaction processing as a field never 
did occur. The success of the transaction concept in 
data-processing applications led to efforts to apply it 
elsewhere, including computer-aided design [KLMP84] 
and other long-duration activities, which were called 
%agas” by Hector Garcia-Molina and Ken Salem 
[GMS87]. These issues and their relation to earlier 
work in transaction processing are discussed succinctly 
in [Gra81]. A basic theme that runs through these 
three papers as well as others appearing around that 
time is the following: The consequences of rigid ad- 
herence to the ACID properties are too draconian for 
these then-new applications, yet there is an appeal to 
the conceptual framework of the transaction abstrac- 
tion that should not be entirely abandoned. 

Early work kept the basic principles of the model in- 
tact, while adding nesting (Mos87, BBG89] or exploit- 
ing commutativity properties of a general set of data- 
base operations (as opposed to simply read and write) 
[Kor83, BR92, Weiss]. 

The key ingredient in applications for which the ACID 
properties are too strict is interaction. Whereas in 
data processing, people prepare transactions and sub- 
mit them for execution, in interactive transactions, 
people provide input while the transaction is running. 
This alone is sufficient to make any transaction long- 
duration from a computer-system perspective. Fur- 
thermore, many of the examples (like the ubiquitous 
travel-reservation example) are of long-duration in hu- 
man terms as well. As a result, waits imposed by con- 
currency control are long-duration waits, and aborts 
may undo large amounts of work. The waiting time 
is not simply that of a waiting process. It may be a 
person (say, a chip designer) waiting for needed data. 
Likewise, an abort may result in a person being told 
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that several minutes (or hours) of work are being un- 
done. This led to the idea that interactive transac- 
tions are really a set of nested cooperative activities 
[BKK85, KKB88]. 

Each instance of work inspired by the limits of the 
transaction model added semantics to the model and, 
using these added semantics, was able to avoid some of 
the ill effects of strict application of the ACID dogma 
[GM83]. Because the set of applications of extended 
transaction models is so broad, a huge variety of pro- 
posals have appeared in the literature. It would be 
too lengthy to summarize them here. A good starting 
point to read about several of these models (includ- 
ing Open Nested Transactions, the ConTract Model, 
the ACTA Model, and Split Transactions) is [Elm92], a 
collection of contributed papers. Other work includes 
the NT/PV Model IKS94], compensating transactions 
[LKSSl], and ASSET [BDG+94]. The work in this area 
has not been only academic. As was the case earlier, 
there has been concurrent and synergistic development 
of concepts in industry and in universities. Among the 
noteworthy practical transaction systems are Camelot 
[EMS911 and Aries [MHL+92]. 

The ACID properties remain as a fundamental prin- 
ciple, but each has evolved in practice: 

Atomic t--f Multi-level 

Consistent I-+ Adequate in a (application- 
specific) semantic sense 

Isolated H Cooperative, Negotiating 

Durable H Predictable, Explainable 

Similar developments, though not necessarily involv- 
ing interactivity, have arisen in multidatabase systems 
[BGMS92]. 

3 The Human Transaction 
Processor 

The recent evolution of the transaction model is a shift 
from machine-oriented concepts to human-oriented 
concepts. The various applications of long-duration, 
interactive transactions studied in the late 1980s in- 
volved transaction-based assistance to human activi- 
ties. Currently, we are witnessing a further evolution 
along this path, with the emergence and growing ac- 
ceptance of workflow systems and groupware systems. 
These systems have many of the features of CAD, CASE, 
and similar applications, but there are several key dif- 
ferences. 



Many of the steps in a workflow system are short, 
but require direct human intervention, as in approval 
of a form, dealing with an exception that has arisen, 
etc. It is thus important to present routine activities in 
a way that people can process them quickly and iden- 
tify exceptions clearly so that they may be given due 
consideration. System action must be influenced by 
real-time considerations. The overall operation of the 
system may depend on the timely processing by a per- 
son of a request. As a result, information routing may 
be dependent on the time of day (e.g., routing infor- 
mation to an ofice in a time zone where it is currently 
normal working hours). Requests sent to a particular 
person may be withdrawn and rerouted if the response 
time is not adequate. Other requests, if not acted upon 
by a deadline, may become obsolete (leading either to 
their deletion or to some sort of compensation). 

The main distinction between the kinds of activities 
discussed above and those studied previously is that 
performance terminology is applied to people rather 
than solely to machines. Indeed what is being op- 
timized is not processor utilization or scare commu- 
nication bandwidth, but rather human efficiency. In 
this environment, the metric of TPS, transactions per 
second, is not the issue. Rather the quantity to be 
maximized is human information transfers per second 
(HITS). “Per second” may seem wrong for human ac- 
tivity. Indeed for such matters as exception handling, 
minutes (or longer) may be more appropriate. But for 
routine approvals of forms, setting meeting times, and 
the like, the time frame is closer to a second than a 
minute. 

The role of the computer system in such an environ- 
ment is to automate where possible, present exceptions 
clearly, maintain audit trails of human responsibility 
(to allow recovery to occur at the human level as well 
as the machine level), and prevent tasks from becom- 
ing “lost” in cyberspace. This is not a simple mat- 
ter of user interfaces. Fancy interfaces - icons, menus, 
use of handwriting, etc. - simplify the use of a system 
framework, but first, there is the issue of the frame- 
work itself. What is needed is a systems model for the 
human as a transaction processor - a model subject 
to performance study, algorithm development, correct- 
ness analysis, etc. The model would include aspects of 
revision-control systems and expert database systems, 
with significant enhancements. 

An example from outside the transaction realm may 
illustrate more clearly why computer system concepts 
do not translate directly to maximization of HITS. Con- 
sider data in a database. It is painstakingly orga- 
nized, indexed, checked against integrity constraints, 
etc. Now consider the paper databases in offices. Some 

are more organized than others, but even the best orga- 
nization is imperfect. A person searching for informa- 
tion in an office will tolerate false starts and occasional 
failures. However, such behavior in a database system 
engenders dissatisfaction. 

People are better at tolerating at least a moder- 
ate level of entropy, as compared with computers, but 
they are much worse at interrupt handling and task 
switching. People are more comfortable with “non- 
traditional” data (diagrams, handwritten data, data 
on paper, etc.) than with traditional database data. 
The state of these non-traditional data stores - includ- 
ing those on paper or in people’s heads - is part of 
real-world consistency constraints. Consistency is diffi- 
cult to define in this context. Even if consistency were 
defined perfectly, it remains necessary to test it on do- 
mains containing various non-traditional forms of data, 
where only approximations are possible1 . 

Whereas disconnection is a mode of failure in dis- 
tributed systems, people operate on “off-line” data rou- 
tinely. This trend will only increase with the growth 
in mobile computing [IK95]. A significant challenge is 
providing people with a single information system en- 
vironment despite the heterogeneous and sometimes- 
disconnected nature of the computing infrastructure. 
Porting old algorithms from the TX&based world to 
the new problem of maximizing HITS is not likely to be 
a promising approach2. 

Let us consider some of the “features” of a human 
transaction processor and the relevance of the ACID 

properties. Generally speaking, all four ACID proper- 
ties are valued, but they are not absolutes. Perhaps 
the next evolution of the ACID properties is something 
like the following3: 

l Atomic - Structured, but flexible 

l Consistent c--f Mostly consistent, with exceptions 
clearly noted 

l Isolated H Cooperative, Negotiated 

l Durable H Auditable trail of responsibility 

lThese observations suggest that the mathematical fields of 
statistics and continuous functions will grow in importance both 
for transaction processing, and for computing in general, relative 
to discrete mathematics. 

2All distributed transactions on off-line data will be of long- 
duration and saga-like. Local transactions on off-line data must 
deal with such peculiarities as total failure (such as a lost or 
physically destroyed laptop computer), lack of processing power 
(paper-based data), etc. 

3Arguably, a completely new set of properties, and not neces- 
sarily four of them, are required. The ACID framework appears 
to be a good starting point, though [Gra81] warns of a version of 
the Peter Principle: “every good idea is generalized to its level 
of inapplicability.” 
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If workflow and groupware are to have their promised 
impact on productivity, it will come from making peo- 
ple more efficient at what, for people, is a natural mode 
of information processing. It most certainly will not 
come from an attempt to make people behave and think 
more like computers (we’ve tried that - it does not 
work). 

4 Concluding Remarks 

The history of transaction-processing research is one of 
great successes in theory and practice. Work in this 
field has had impact on huge markets and changed the 
way people conduct business. However, the “transac- 
tion action” is far from over. There continue to be 
new, financially significant applications that can bene- 
fit from a continued evolution of the transaction con- 
cept. To those actively doing research and/or develop- 
ment, this presents a great opportunity. For those man- 
aging or funding such activity, the historical lessons 
of the rapid progress that can occur from industry- 
university synergy are worth careful consideration. 

Finally, despite the emphasis here on human-level 
transaction processing, it should be noted that the im- 
portance of traditional transaction processing is undi- 
minished in this era of electronic commerce and the 
mass marketing of the Internet. 
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