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Abstract 

We have built a multidatabase system to sup- 
port a financial application that stores histor- 
ical data used by traders to identify trends 
in the market. The application has an up- 
date rate (append-only) of 500 inserts per sec- 
ond and also has sub-second response require- 
ments for queries. A typical query requests 
between 100-1000 records. In this paper we 
define the characteristics of the application, 
the multidatabase system we used to support 
the applications and the extensions we made 
in t.he application to achieve the required func- 
tionality and performance. 

1 Introduction 

Financial applications require access to both real-time 
and historical data. Historical data is defined over an 
interval. The data in an interval can be all of the real- 
time data over that interval or a summary of the data 
over the interval. Historical data is used by traders in 
analysis and charting to identify trends in the market. 

The real-time data concerning equities, bonds, op- 
tions, mutual funds and currencies originates at var- 
ious stock exchanges and brokerage houses. It is 
sent over multiple real-time feeds, MarketFeed [6] and 
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Ticker [7] that can deliver data in compressed form 
at the rate of 56 Kilobits per second (Kbps) or 19.2 
Kbps. The data is sent is on per instrument basis. An 
instrument is identified as an entity that has a price 
and is capable of being traded. All issues on exchanges 
are identified as instruments. The data for an instru- 
ment that is sent over a real-time feed could be the 
price of the instrument, bid or ask for the instrument, 
option price for the instrument or an actual trade for 
an instrument. 

We have implemented a multidatabase system [13, 
5, 1, 4, 3, 8, lo] that supports tracking and retrieval 
of historical data. The system is part of a larger 
project, the Platform [2], that provides access to real- 
time data, historical data and value-added calculations 
(user-defined or programmed) over the different types 
of data. 

Storage and retrieval of historical data poses inter- 
esting database problems: most of the data is append- 
only, the arrival rate of the data is very high (greater 
than 500 ticks per second), there is a burst of data at 
every endpoint of any interval that is being tracked, 
consistency of the data is serializability on <time, 
instrument> pair, retrieval is typically for greater than 
100 records and for the most recent intervals, distribu- 
tion of data per database is based on load balancing, 
and most queries are simple selects. 

The diversity of our requirements precluded use of 
any proposed or existing multidatabase. We did not 
need ACID properties for our applications. We used 
main memory to improve performance when durabil- 
ity was not needed. We did not require global serializ- 
ability and in some cases, did not even need local seri- 
alizability. Our consistency criteria were application- 
defined. 

This application incorporated fundamentally differ- 
ent DBMS’s into a multidatabase to exploit the unique 
attributes of each DBMS, while presenting the ap- 
pearance of a single entity to users. The application 
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benefited from the strengths of each DBMS, as each 
DBMS’s traded performance for functionality to a dif- 
ferent extent. For instance, we used a main memory 
DBMS for performance and an Indexed Sequential File 
Manager for persistent storage in the presence of rare 
updates. Our multidatabase system ‘cooperated’ with 
the application to meet the performance and consis- 
tency requirements of the application. 

The rest of this paper is organized as follows: Sec- 
tion 2 describes the model and requirements. Section 
3 describes the application architecture including the 
functionality implemented by the application and the 
multidatabase system. In the next section, we describe 
how we met application requirements by using both 
the multidatabase system and the application compo- 
nents. The last section is the conclusion. 

2 Model and Requirements 

The fundamental architecture of the Platform uses the 
producer/consumer model. A producer is a generator 
and exporter of data feeds, and a consumer is an im- 
porter and user of data feeds. A process or a set of 
processes may be a producer or a consumer or be both 
a consumer and producer. The historical data appli- 
cation (History Engine) is both a consumer and pro- 
ducer. It consumes data from the real-time feeds and 
delivers data over an interval to consumers (traders) 
or other producer/consumers. 

An individual Platform may have one or several 
sites. The history engine and the multidatabase sys- 
tem may be distributed across several sites of the Plat- 
form. In Figure 1, we show the architecture of the 
Platform. The real-time feeds can deliver compressed 
data at the rate of 56 Kilobits per second (Kbps) or 
19.2 Kbps. Data coming from the real-time feeds are 
ticks, baselines, or correction. A tick is either a trade 
of an instrument, a bid for an instrument or a ask for 
an instrument. A baseline is a message received when 
a significant event such as an exchange open or close 
occurs. It is the image of an instrument that consists 
of the instrument name, type and current price. A cor- 
rection is a message to correct an erroneous tick. The 
Platform is currently capable of handling 500 ticks a 
second. 
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The History Engine is also required to handle 500 
ticks a second. The universe of instruments consists 
of 500,000 instruments. The updates for instruments 
generally follow a 90-10 rule. 10% of the instruments 
are ‘hot’, i.e., 90% of the updates are for 10% of the 
instruments. The History Engine tracks data over the 
following interval: ticks, 1 minute, 5 minutes, 1 hour, 
daily, weekly, monthly and annually. The data for ticks 
is simply price and volume coming off the real-time 
feeds. This is true for both trades and quotes. For 

any other interval besides ticks, the data is a sum- 
mary consisting of 

open, close, high, low, volume, tickcount 

for that interval. The summary data is calculated from 
the ticks that come off the feeds. Users can request 
data based on a particular interval or a summary over 
a particular interval. 

User requests are not restricted to the intervals that 
are tracked. A user request can be for any interval. To 
request historical data, a user requests by instrument 
name, interval, start time and end time. There is a 
utility program that allows ending times to be in the 
future. Users can request inventory of available histor- 
ical data or the actual historical data. The inventory 
table of available data is replicated in a memory res- 
ident database for fast access. The inventory table is 
replicated across all the sites of the History Engine. 

Users can also request creation of historical data 
based on patterns. The request with patterns can be 
for instruments that match the pattern both in the 
present and in the future. For instance, a user can 
request (for present and in the future) that historical 
data for an instrument with the pattern ‘IBM%’ be 
created . Subsequently, when a new option on IBM is 
created ’ the History Engine should ‘track’ it. 

A stock split specifies a ratio that determine the 
equivalent value of the stock. For instance, a stock 
split of 2 for 1 means that 2 new shares are equal to 
1 old share. In other words, the price of the stock is 
halved. The History Engine is also required to keep 
track of any stock splits and return data to users ad- 
justed or unadjusted for stock splits. 

2.1 Transaction Types and Consistency 

In the History Engine, two types of update transac- 
tions that which have different properties and need 
different notions of consistency. 

Distributed Transaction 

In the History Engine, the distributed transaction 
updates a replicated table: the inventory table. 
These transactions have to be serialized. For the 
inventory table, we use distributed certification as 
in [l]. Distributed certification ensures that the 
local orders are compatible with a global serial 
order [lo]. 

Append Only 

For each instrument, appends have to be serial- 
izable in <instrument, timestamp> order. The 

1 All options based on IBM have ‘IBM’ as the prefix. 
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Figure 1: Platform Architecture 

timestamp is generated by the source, the ex- 
changes. These transactions are dependent only 
on instrument and timestamp for that instrument. 
Transactions for different instruments are commu- 
tative. 

To maintain the serializability in <instrument, 
timestamp>, we guarantee that a single instru- 
ment will reside in a single database and insert 
a new batch of ticks after the previous batch has 
been committed to the database. An optimiza- 
tion for both insertion and retrieval is given in a 
later section. 

3 Application Architecture 

The functionality of storing and retrieving financial 
data is divided between the Database Access Layer 
(DBAL) and History Engine components. DBAL 
implements relational, multidatabase semantics using 
several types of commercial DBMS’s and provides lo- 
cation transparency for all Platform data, a uniform 
API to all DBMS’s, atomic commitment of distributed 
transactions and enforcement of global consistency. 
The History Engine performs extensions and perfor- 
mance optimizations based upon the unique semantics 

of managing historical data. 

3.1 Multidatabase F’unctionality 

DBAL enables access to several different databases via 
a uniform API: a relational database (InterBase)TM 

a main memory database (Smallbase) [14], and an 
~SAM file system (C-Tree) TM . The ISAM file system 
provides a subset of database semantics. Each DBMS 
offers a different mix of functionality versus perfor- 
mance. All database operations are syntactically de- 
fined via a SQL-like language, although the semantics 
of each operation is limited by the functionality of the 
target DBMS. For example, an application would view 
an ISAM file as a relation via DBAL. However, com- 
plex relational operations, such as a join, would fail on 
ISAM files, because the operation is not supported by 
the file system. For our application, we do not need 
joins across databases and we did not implement a 
distributed join. The following data manipulation op- 
erations are defined: select, update, insert and delete. 
Data definition operations are create database, delete 
database, create table, delete table. Transaction man- 

T”InterBase is a trademark of Borland International. 
T”C-aee is a trademark of FairCorn. 
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agement functions are start transaction, commit and 
abort. 

Data is exchanged between DBAL and the applica- 
tion in attribute/value pair format (ie. attribute-name 
= value). For example, a tuple from the history 
inventory relation would be represented as “Instru- 
mentName=‘IBMEquity’, Start=1/1/70, Interval=‘1 
Day’ ” . 

Location transparency is provided by a single global 
namespace encompassing all sites and databases. 
Since we require that a relation name be unique across 
the entire Platform, an application can query a table 
without knowing the site or database in which it is lo- 
cated. A transaction can span multiple databases on 
different sites; two phase commit is used to guarantee 
atomicity. 

In addition, DBAL supports user defined triggers. 
A trigger is a rule that consists of event, condition and 
action. Triggers in databases often are expressed by 
rules [ll, 15, 121 defined using languages such as rela- 
tional query languages and object-oriented languages 
[ll]. Supported events are changes (insert, update, 
delete) to particular attributes of a relation. The con- 
dition consists of a conjunction of one or more equality 
expressions or a NULL expression that is always eval- 
uated as true. DBAL supports user notification of the 
detected event. We do not support database opera- 
tions as triggered actions. 

3.2 History Engine Implementation 

The History Engine isolates the application from the 
particulars of the database model used to store histor- 
ical data by defining the concept of a history track. 
A track is identified by instrument name, time of the 
first and last stored interval, and the duration of each 
interval. The History Engine maps from track schema 
to the relational schema that it created in DBAL and 
vice versa. Applications access historical data exclu- 
sively by reference to track definition. 

The History Engine is organized into the following 
discrete components to perform the task of accumu- 
lating summary data and interfacing with applications 
and the database. In Figure 2, we show the architec- 
ture of the History Engine. 

l Tracker 

The Tracker provides the interface between the 
real time feeds and the history engine. Upon sys- 
tem startup, the Tracker will register for delivery 
of real time data for each of the instruments that 
are currently tracked. 

l Time/Data Compression (TDC) 

The TDC library incorporates data from the real 
time data feeds (via the Tracker) into the interval 

summaries for the current time interval. Upon 
completion of an interval, the summary will be 
written to the database and supplied as input to 
larger time intervals. For example, a five minute 
interval will be formed from the data in the ip- 
eluded one minute intervals. 

Data Manager (DM) 

The DM library interfaces with DBAL to read and 
write tracks and inventory and performs transla- 
tion from the History Engine schema to database 
schema and vice versa. DM provides a level of 
abstraction from the specifics of the particular 
DBMS being used. 

Local History Server (LHS) 

LHS accepts requests for history tracks and inven- 
tory stored on the local Platform. LHS forwards 
requests to DM and returns data to the applica- 
tion. 

Remote History Server (RHS) 

FU-IS provides an interface to history servers that 
may be accessed via wide-area networks. 

Only a single instance of the following component 
resides on a Platform: 

b 

3.3 

Global Tracking Manager (GTM) 

GTM selects a Tracker to accept ticks for a partic- 
ular instrument based on dual criteria: load bal- 
ancing across all Platform sites and maintaining 
consistency of all tracks for the instrument being 
placed. 

DBAL Implementation 

The implementation of DBAL uses several different 
types of processes (Client, Agent and Server) interact- 
ing within and across Platform sites. Client processes 
can access the databases by calling functions in the 
DBAL run-time library, which forward database re- 
quests to Agent processes to be executed. A single 
Server process performs resource allocation on each 
site. In Figure 3, we show the DBAL architecture. 

l Agent 

Agents execute database operations on behalf of 
Clients. Each Agent is linked to the run-time li- 
brary of a particular DBMS and only executes re- 
quests for that DBMS. A fixed number of Agent 
processes are forked during system startup and 
are assigned to one Client at a time on a need 
basis. 
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DBAL 

Figure 2: History Engine Architecture 

When a Client requests access to a particular 
database, UNIXTM Inter-Process Communica- 
tions will be used to link the Client and Agent pro- 
cess. Each Client’s request is translated into the 
particular syntax of the target DBMS and DBMS 
output is translated to attribute/value pair for- 
mat. 

An individual Agent performs transaction man- 
agement for local transactions and interacts with 
the coordinator as part of the two-phase commit 
protocol for transactions across multiple DBMS%. 

0 Server 

One Server process resides on each site. The 
Server forks the Agent processes during system 
startup, manages the assignment of Agents to 
Clients and maintains DBAL meta-data. 

The meta-data consists of relations describing 
each Platform database, relation, client and au- 
thorization. Each server stores a persistent copy 
of meta-data for local data; when a remote server 
is restarted, the meta-data is transferred to that 
site. Any changes to the meta-data is broadcast 
to all servers. The meta-data is used to authorize 
all Clients’ requests and locate an agent process 
to execute the request. If a local agent is required, 
the Server will notify the selected Agent to con- 
nect to the Client. When the necessary Client is 
remote, a message is sent to the Server on that 
site to request assignment of the Agent. 

0 Client 

Clients may transparently access multiple, dis- 
tributed databases via a uniform API by call- 
ing the DBAL run-time library. The library does 

T”UNIX is a trademark of XOPEN. 

not access any database directly, but it forwards 
database requests to Agent processes. In addition, 
the library interacts with the Server to authorize 
Client’s requests and locate Agents for those re- 
quest. 

The library coordinates transactions across multi- 
ple databases using two-phase commit. Coordina- 
tion requires interacting with all Agents partici- 
pating in the distributed transaction to guarantee 
that all local transaction conclude consistently. 

The DBAL library supports multiple threads, us- 
ing the DCE threads package. Therefore, several 
client threads may access the database concur- 
rently by individual DBAL connections. Each 
thread executes a separate transaction and is as- 
signed a different agent process. 

0 Triggers 

Triggers are implemented by a Trigger Handling 
Daemon located on each site. Each handler main- 
tains persistent data defining each trigger and 
each client registered to receive notification that 
the trigger fired. Upon startup, this data is read 
and kept in main storage. 

Each change to the database is forwarded to the 
Trigger Daemon from the Agent executing the 
change. Agents also forward the completion sta- 
tus of each transaction: commit or abort. If the 
change matches one of the defined rules, a noti- 
fication message will be queued until the trans- 
action commits. If the transaction aborts, the 
message will be discarded. Since a trigger con- 
dition cannot span multiple sites, no coordination 
between Daemons is required. 

Trigger definitions are structured to minimize 
evaluation time. Rules are organized in a hier- 
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archy of modification type, table name, condi- 
tional expression and trigger identifier. Within 
each level of the hierarchy, data is maintained in 
collating sequence. Therefore, changes that will 
not fire a trigger may be discarded at the earli- 
est possible time. When a particular expression 
is used to define multiple triggers, that expression 
need only be evaluated once for all triggers. 

4 Problem Resolution and Extensions 2. Insert Batching 

The multidatabase system aided us in building the ap- 
plication. However, we had to add extensions both to 
the multidatabase system and the application to ade- 
quat,ely meet functionality and performance. 

To handle the heavy update rate, 500 updates (in- 
serts) a second and to have the ability to retrieve 
1000 points of an instrument with sub-second re- 
sponse, we had to put intelligence in the applica- 
tion to aid the DBMS in placement of the data. 
Recall, that each update (insert) may be for a dif- 
ferent instrument. 

1. Consistency using Load Balancing 

Global serializability for the append-only transac- 
tions is not needed because of our algorithm for 
load balancing and insertion order. Our notion of 
correctness for an instrument is serializability on 
<instrument, timestamp> pair. We ensure this 
consistency is maintained by always inserting in- 
struments in timestamp order. 

We also guarantee that a single instrument will 
not be spread across multiple databases. We 
achieve this by requiring creation of a history 
track to follow a protocol. A particular track is 

sent to a specific tracker and database based on 
the following rules: 

(a) If a tracker has an existing track for the in- 
strument in the request, then assign that 
tracker to ‘track’ the new request. 

(b) If no tracker has an existing track for the 
instrument in the request, then choose a 
tracker with the least load. 

If the DBMS clustered indices and wrote in place, 
then the update rate may be too slow since the 
DBMS may have to write to 500 distinct blocks. If 
the DBMS buffered the ticks and wrote blocks to 
disk, then the retrieval rate may be too slow since 
the DBMS may have to access many blocks. If the 
DBMS wrote to a write-ahead log and applied the 
ticks to the appropriate disk block, then it is pos- 
sible that spikes may occur in the read/write rate 
since in the financial environment, a slow update 
rate may not occur for a whole day. 
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As the ticks arrive, we buffer them in memory. We 
actually insert the ticks in the memory resident 
database. The ticks are written to disk based on 
two rules. 

(4 The tick count of an instrument reaches a 
pre-determined value. All records for this in- 
strument are written to the disk as a trans- 
action to place them on a few disk blocks. 
This mechanism is used for instruments that 
are ‘hot’. Recall that a ‘hot’ instrument is in 
the 10% of instruments for which 90% of the 
updates occur. 

(b) A timer expires. All instruments that have 
not been written to disk since the last timer 
expiration are written to disk. This mecha- 
nism is used for instruments that have few 
ticks. 

The application will execute all queries for an 
instrument both against the memory resident 
database and the disk database. 

3. Triggers for Future Patterns 

Users can request creation of a track by giving 
patterns for instrument names. The request can 
be for all instruments that currently match the 
pattern or all instruments that match the pattern 
now or in the future. Patterns can consist of a 
wildcard suffix. A typical example is a request for 
instruments that match the pattern ‘IBM%’ now 
and in the future. All options that are based on 
IBM have ‘IBM’ as the prefix. 

To accomplish creation of inventory on future pat- 
terns, a trigger as implemented in DBAL is de- 
fined. When a new instrument is created match- 
ing the the pattern, a notification is sent to GTM 
which in turn creates the track.2 

4. InterDay versus IntraDay 

To achieve performance gains by reducing con- 
flicts on instrument and disk or database re- 
sources, we separate interday data from intraday 
data. At the end of a trading day, we move the 
data for that day to a separate database that is 
within the scope of DBAL. This database will be 
used mostly for reads since all inserts are done for 
a particular day. 

Updates can be applied to the previous day’s 
database since corrections can occur but correc- 
tions for a previous day are quite infrequent. 

2All instruments are listed in a separate database that is part 
of DBAL but beyond the scope of this paper. 

5. 

5 

We 

Time versus Space Tradeoff 

Most requests are for standard intervals like ticks, 
1 minute, 5 minute hourly, daily and so on. We 
support creation of tracks only for the standard 
intervals. We have defined tables for these stan- 
dard intervals and can access them directly. 

However, users can request any intervals when 
they query the data. We have routines that can 
build a track for any requested for any requested 
interval from the standard intervals. Requests for 
non-standard intervals like 7.5 minutes have to 
calculated by going through a filter when the re- 
quest is executed. 

Conclusion 

have built a multidatabase system to support an 
application that has requirements for sub-second re- 
sponse requirements for queries that require 100-1000 
points of data and had an update rate (append-only) 
of 500 inserts per second. The update rate peaks at 
the endpoints of intervals. We have also incorporated 
a memory-resident database for performance. 

We had two different notions of consistency both 
defined by the application requirements. One was 
for the replicated table and another was for instru- 
ments. We used the knowledge of the application for 
the data in the instrument table (via load balancing) 
and distributed certification for the replicated table. 
Although distributed certification may be slow, we 
only need it when an inventory track is created or 
deleted. It is not needed for the append-only updates 
or large datasets for queries. These are restricted to a 
single database and in some cases, the request can be 
satisfied from the memory-resident database. 

Currently, the system is operational on a UNIX 
environment supporting two disk-resident databases, 
InterBase and C-tree. We also have Smallbase as 
a memory-resident database in DBAL. The DBAL 
server, DBAL agents and the history processes are 
UNIX processes. The history processes are threaded 
and make multiple connections to DBAL. The pro 
cesses communicate via shared memory on the same 
site and via sockets across sites. 

The requirements for performance optimization 
emerged during the development cycle. Initially, we 
were under the assumption that load balancing may 
be enough to solve the performance problem since data 
was distributed across multiple sites. However, if we 
wrote a single transaction to disk every second with 
500 inserts within the transaction and each insert be- 
longing to a unique instrument, then a retrieval for 
1000 points of an instrument may have to access 1000 
blocks. We had to use clustering in memory to opti- 
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mize the placement of updates. We have to analyze 
the performance of our clustering algorithm. 

We found triggers to be extremely useful in creation 
of tracks for future inventories. Without triggers, we 
would have to implement a process that monitored in- 
strument creation and did pattern matching. In the 
future, we need to be able to allow users to create 
inventory baaed on predicates. We also need to ex- 
plore the use of triggers to do automatic roll-ups from 
smaller to larger intervals. 

We need to evaluate the performance of the whole 
system. This includes the cost of a transaction in 
memory, the cost of distributed certification and the 
cost of a query going across multiple sites because of 
the load balancing we used. We need to also look into 
the notion of synthetic securities, i.e. a security com- 
posed of multiple securities and analyze how load bal- 
ancing and consistency are effected. 

Aside from performance, we need to introduce re- 
covery for the entire system. Currently, we recover 
from a tick log that is maintained both by Platform 
processes and the originating Exchanges. We need to 
explore the correctness of the database and the histori- 
cal data when the real-time feeds are down, a database 
crashes or a particular site is unavailable. We also need 
to explore dynamic load balancing of history tracks 
(when a tracker or site goes down) and its effect on 
correctness as well as performance. 
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