
Data Compression Support in Databases

Balakrishna R. Iyer
Database Technology Institute

IBM Santa Teresa Lab
San Jose, CA 95161-9023
balaiyer@vnet.ibm.com

Abstract

Computers running database management
applications often manage large amounts of
data. Typically, the price of the I/O sub-
system is a considerable portion of the com-
puting hardware. Fierce price competition
demands every possible savings. Lossless
data compression methods, when appropri-
ately integrated with the dbms, yield sig-
niflcant savings. Roughly speaking, a slight
increase in cpu cycles is more than offset
by savings in I/O subsystem. Various de-
sign issues arise in the use of data compres-
sion in the dbms - from the choice of algo-
rithm, statistics collection, hardware ver-
sus software based compression, location
of the compression function in the overall
computer system architecture, unit of com-
pression, update in place, and the applica-
tion of log’ to compressed data. These are
methodic & y examined and trade-offs dis-
cussed in the context of choices made for
IBM’s DB2 dbms product.

1 Introduction
Lossless compression methods are well known. The
benefits to computer systems running database man-
agement system (dbms) products is particularly signif-
icant because a large portion of the computing system
cost is attributed to the I/O subsystem. We conducted
an informal survey of dbms users, and numerous in-
stances were found where the price of the I/O subsys-
tem exceeded the price of the processors. Amongst
the users surveyed, we found they spent roughly equal

Pewnirrion lo copy without fee all OT part of lhir material is
granted provided fhal the copies art not made or dirlribukd jo+
dirtcl commercial advantage, the VLDB copyright notice and
rht title of the publicalion and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwire, or lo rtpublirh, rtqrirtr a jet
and/or rpteial ptmirrion jrom the Endowmtnl.

Proceedings of the 20th VLDB Conference
Santiago, Chile, 1994

David Wilhite
University of Southern California

Los Angeles, CA 90028
dwilhite@perspolis.usc.edu

amounts on the processors and the I/O subsystem.
Their expectation was that, in the future, costs of the
I/O subsystem would far exceed those of the proces-
sors. Most, if not all of their data was kept uncom-
pressed. They had attempted compressing their data
using application specific software compression but de-
cided against it due to performance degradation in
trial experiments. Another reason for rejecting com-
pression was the increase in application complexity.
How these objections were resolved will be described
in the context of IBM’s DB2 product.

After directing the reader to [GS91] and [Ba85] for
an extensive discussion on the advantages of compres-
sion, we highlight the key benefit, disk savings. It
will be described later in the paper that typical sav-
ings in disk range from 30 to 80% (of that needed to
store uncompressed data). From a multitude of exper-
iments conducted on data obtained from dbms users,
we believe that 50% space savings is a reasonable ex-
pectation for compression. Again referring the reader
to [Ba85] for an extensive discussion of the deterrents
to the use of compression (each of which we address),
we highlight the key inhibitor, cpu costs, in section 2.

The applicability of compression has not gone un-
noticed. In [RK72] an argument is made for dbms to
support compression using the Huffman encoding algo-
rithm [Hu52]. Alsberg [A1751 studied various compres-
sion algorithms that can be viewed as pre-cursors to
modern compression techniques. Alsberg argued both
for several tables to share the same information for
compression, and for independently compressing par-
titions of tables (both of which are features of DB2’s
implementation). Alsberg argued that compression
makes rows smaller, hence more fit on a page, and
this helps maintain clustering. Advantages of preserv-
ing collating sequence through compression, aa it re-
lates to clustering, appears in [TU84]. [LB811 con-
tains a comprehensive analysis of compression based
on technology of its time, raising many issues resolved
in our work. Efficient search and retrieval of com-
pressed data is discussed in [ES80]. A qualitative dis-
cussion of benefits and costs, some compression algo-

695

rithms, and applicability to business applications can
be found in [Se83]. Earlier support of compression in
IBM’s IMS dbms product is described in [Co85]. Com-
pression hardware for Huffman encoding is described
in [RS91]. The argument for applying compression to
columns of a row independent of one another, so they
may be decoded independently, is advanced in [GS91]
along with methods for applying relational operators
to compressed data.

2 Database and Architectural Issues
2.1 Hardware vs. Software Compression

In this section, we will show the impact of compression
on oltp applications using our best estimates of costs
and DB2’s implementation of compression as a model.
We intend to show trends rather than make a spe-
cific prediction on system performance [GS91, RS91].
Based on studies of various implementations, we esti-
mate software compression requires about 15 instruc-
tions per byte, while hardware compression requires
only 1 instruction per byte. We estimate the TPC-
B benchmark transaction [Gr91] to cost roughly 1OOK
instructions. It reads and updates three rows of about
100 bytes each, and inserts a new 100 byte row. A
total of 300 bytes must be decoded while 400 bytes
are encoded. Software compression yields a total cost
of 10.5K cpu instructions, or roughly a 10.5% increase
in cpu cycles. In many cases this is well worth a 50%
savings in disk space.

By their nature, decision support applications scan
more data. As an example, we choose a table scan
that scans all rows, evaluates predicates, and selects
very few. Efficient dbms products can access the adja-
cent row in a table, locate columns and evaluate pred-
icates in the low 100’s of instructions per rowl. For
the sake of discussion, we assume 200 instructions per
row. A typical 100 byte row will add 1500 instructions
for software decoding, making it prohibitive for such
use. Hardware decoding, on the other hand, adds only
100 instructions per row and is the implementation of
choice for decision support applications.

Software compression is cost-effective in the narrow
band of applications which are oltp intensive. Even a
small amount of decision support makes software com-
pression costs large2. On the other hand, hardware
comDression vields cost benefits over a broad range
of oltp and decision support applications.
this reason that IBM’s dbms products (DB2,
VSAM) support hardware compression.

2.2 Compression Function Location

It is for
IMS and

From a cost viewpoint, compression functions should
be placed closest to the consumer/producer of data,

1 based on our measurements on commercial dbms products
*Software compression does reduce I/O response time. Sys-

tem costs are the sum of cpu and disk costs. Decision support
contributes to a steep increase in cpu usage.

at the point of capture and display, since all the hard-
ware and software elements in the data flow will ben-
efit. In fact, for video data types this is the only pos-
sible way current systems can sustain the flow rates
needed for real-time display. Commercial data do not
exhibit such high flow rates. In addition, both oltp
and decision support workloads typically filter data.
Only the account number, balance, and security code
columns may be needed out of many columns in the
account row to complete a transaction, say the with-
drawal of $100. As explained later, it is not possible
to locate a column of the compressed row (without
unacceptable space overheads), hence decoding must
occur before extracting these columns (a projection in
relational dbms terminology).

In decision support applications, one may evaluate
many predicates against each row accessed, and select
only those rows that qualify. Even if we were able
to locate the columns within a row, it is not known
how to apply all the selection predicates we support
in current dbms against compressed data (an interest-
ing research opportunity). Hence, again the need to
decode each row to apply selection logic. In current
dbms products (with very few exceptions) functions of
column extraction (projection) and applications of se-
lection predicates lie in dbms code running on the pro-
cessor. Hence it is necessary to decode the data by the
time such logic is applied. This prohibits placing the
compression functions only in the network adapters,
for example. Of course, it is possible to exploit them
during transmission by encoding the result of the data
filtering done by the dbms.

Thus compression functions can be placed in the
processor, the disk, or anywhere in between. If placed
in the processor and used to decode rows only when
they are manipulated by the application, and com-
pressing them upon insertions, very few rows need to
be kept decoded at any time. Almost all the data in
memory can be kept compressed, yielding savings in all
levels of the memory hierarchy up to the disk. If placed
at the disk controller or disk, the benefit is reduced.
For this reason IBM’s DB2, IMS, and VSAM dbms
products compress data with hardware provided by
the processor (IBM’s network communications prod-
uct VTAM shares the compression hardware to com-
press data on the network).

2.3 Unit of Compression

Generally, if a collection of data is compressed to-
gether, then all bytes occurring before the needed byte
have to be decoded on access. Oltp applications ac-
cess just a few columns of one or a few rows. Decision
support applications access a few columns of some or
many rows of tables. Thus the ideal unit of compres-
sion is a column value as argued in [GS91]. Unfortu-
nately, the vast majority of columns are fixed-length
columns typically 4 to 6 bytes long. For uncompressed

696

rows, DB2 tracks the length of a fixed-length column
only once per table (in the metadata describing the
table). If column values are individually compressed,
each fixed-length column becomes a variable length
column, and its length would need to be individually
tracked for each row, costing a minimum of one byte
per column per row. Assuming a 50% compression
savings, the 4-6 byte columns that compress to 2-3
bytes will require 3-4 bytes of storage. Instead of get-
ting 50% space savings, only a savings of 25 to 33%
is realized. This limits the workload mixes for which
compression saves in overall system price.

In IBM’s DB2, IMS, and VSAM products, the next
higher unit (the row - typically 40 to 120 bytes) was
chosen as the unit of compression. Compressed rows
are of variable length, thus the length of each row must
be tracked. In the case of many existing dbms prod-
ucts, the row header already tracks the length of each
row. This is needed even for fixed-length rows to sup-
port schema transformation of the addition of a col-
umn to a row (ALTER ADD COLUMN in SQL) ef-
ficiently. Thus, no extra length field is needed to to
support variable length rows.

Compression is based on statistical properties of
data. Updated rows may change in length. The per-
formance of both oltp and decision support applica-
tions benefits from updated rows being stored back
in place [IW94]. The needed space management al-
gorithms to handle variable length rows already exist
in most dbms. This provides another practical reason
for implementing compression upon the dbms and the
processor.

An additional detail is worth mentioning. It is
necessary to consider the situation where an uncom-
pressed row is slightly smaller than a page. Compress-
ing the row may cause it to increase in size (because
of the statistical basis of compression algorithms) so it
no longer fits into a page. Dbms products have guar-
anteed that such a row will not be rejected. DB2’s
solution is to use a a bit in the row header to indicate
whether the row is compressed. Another alternative is
for the dbms to support splitting a row across a page
like IBM’s IMS dbms product.

2.4 Adaptive vs. Non-adaptive Compression

Compression methods can be characterized as the
specification of data in terms of an assumed model
of it. The model is usually parameterized by statis-
tics gathered from the data to be compressed. If the
parameters used by the model are not changed during
the encoding or decoding of the data, the model is said
to be non-adaptive, otherwise it is adaptive. The Unix
compress call uses an adaptive compression algorithm.

Experiments with user data demonstrated that
compression starting with no a priori knowledge us-
ing an adaptive model for compressing a row yields
insignificant space savings. Rows are typically 40 to

120 bytes in length. Experiments suggest a row needs
to be at least 512 bytes long for some of the popu-
lar adaptive compression methods to show significant
savings. The phenomenon of poor start-up efficiency
is documented in compression literature [BWCSS], and
there is no surprise that there is little opportunity for
compression over a single row (40 to 120 bytes).

Over the length of the row, data types change ev-
ery few bytes. Relationships identified over a decimal
column do not apply when compressing a character
column. This illustrates why adaptive compression
without a priori knowledge does not work well when
the unit of compression is a row. However, much can
be learned when looking down a column, from row to
row. This provides a source of a priori knowledge. The
technique can be considered in terms of a two pass al-
gorithm. In the first pass, available data is analyzed
and statistics gathered to derive the parameter values
to drive the model. These parameters are fixed and are
used each time to begin compressing or decompressing
a row. Within a row’s compression (or decompression)
the model can be adapted from the extra learning pos-
sible from the bytes in the row. Experiments suggest
that little compression is to be gained from such adap-
tion in this case. DB2 uses non-adaptive compression
with a priori knowledge. However, while being non-
adaptive over the length of a row, DB2’s compression
is nevertheless not static. It is possible to gather fresh
statistics and re-parameterize the model during every
orgranization.

2.5 Application of Logic to Compressed Data

The cpu intensiveness of compression leads inevitably
to the search as in [GS91] for methods to store the data
compressed and perform data manipulation without
decompressing the data. The approach taken in [GS91]
is to pick the column within a row as the unit of com-
pression, then manipulations involving equality com-
parisons can be done on the compressed columns (e.g.,
hash join, selection via the “equality” predicate). Of
significance to compression, we found B-tree based in-
dices supported in almost every rdbms product. They
improve performance for queries that have range selec-
tion predicates (e.g., SALARY 5 90K, SALARY BE
TWEEN 40K and 50K). Not surprisingly, a survey of
DB2 user queries [TO911 showed 28% of user queries
involve at least one BETWEEN predicate. Almost
every query in the proposed TPC-D decision support
benchmark [Ra93] involves range predicates. B-tree
indices also provide a free sort for sort-merge joins,
also found in many dbms products. Many of the nav-
igations of the B-tree index (on compressed keys) can
be performed without decoding the keys, if the com-
pression algorithm preserves (sort) order. Each of the
algorithms to be discussed in this paper can be modi-
fied to preserve sort order [HT71, GM59, Pa76,ZIL93].
A summary of each can be found in [IW94]. A good

697

topic for future research would be to compare, con-
trast, and evaluate the trade-off between the approach
advocated in [GS91] and the use of order preserving
compression.

2.6 Algorithm Alternatives

We examined various compression algorithms [IW94]
and found two key ideas. One idea used in many algo-
rithms was the recognition that different symbols oc-
cur with varying probability. These techniques assign
shorter bit patterns to frequently occurring symbols
at the cost of assigning longer bit patterns to less fre-
quently used symbols. Huffman encoding [Hu52] and
Arithmetic encoding [WNC87, BCWSO, LR79, LR82,
RM89, Pa761 are good examples. Decoding speed is an
issue with these algorithms (naive decoding involves
the executions of a few machine jnstructions for ev-
ery coded bit), and is addressed in [Fr75]. Another
idea used by compression algorithms is the identificai
tion of frequently occurring phrases of symbols. Fre-
quently occurring phrases are stored in a dictionary.
Encoding works by replacing a phrase (that appears
in the dictionary) in a row by the label of its dictio-
nary entry. The Ziv-Lempel compression algorithm
and its variants [ZL77, ZL78, We84, MW85] are exam-
ples of compression algorithms that store a dictionary
of frequently used phrases. The variant we use stores
phrases in a parse tree.

3 Experimental Studies of Compres-
sion Techniques

3.1 Choice of Algorithm

Disk savings due to compression is dependent on the
nature of data stored in databases. Image and video
sources are known to produce data that can be reduced
by a factor of 10 to 100. English text has been reported
to reduce to 25-75% of its original size, depending on
the choice of compression algorithm [BCWSO]. The
compressability of data stored in commercial dbms has
not been widely reported.

We contacted users of IBM’s IMS, DB2 and
SQL/DS dbms products and requested randomly se-
lected rows from their largest live production tables.
Confidentiality of that data became a common is-
sue. Some users were willing to give us their data
after altering the confidential information. Evaluating
the compressability of this modified data would not
provide reliable results and such data was rejected.
Approximately twelve customers provided tables that
were unaltered along with their permission to use the
tables over a specified time period. Because the pe-
riods did not completely overlap, we were not able to
conduct all experiments over all the tables. Never-
theless, interesting results were found by using several
tables for each experiment. One surprising observation
was that data types were predominantly character, nu-

MAN2 CREDIT OIL INS1 IN!

Figure 1: Comparison of Ziv-Lempel and RLE
merit, and time related. None of the data was image,
audio, or video.

Because the IMS dbms product already supports
run length encoding (RLE), we first established the
need for an alternative algorithm. We compared the
RLE and Ziv-Lempe13 algorithms over seven tables:
3 from DB2 users (MAN1 and MAN2 from a manu-
facturing application and CREDIT from a credit card
authorization application), 1 from an SQL/DS user
(OIL, an oil company application), and 3 from IMS
users (INSl, INS2 and INS3, all insurance applica-
tions). The particular RLE algorithm studied used
the first bit of an indicator byte to distinguish between
runs of a repeated character and unencoded data. For
runs of a repeated character, the remaining 7 bits of
the indicator contained a repetition count. The indi-
cator was followed by one occurrence of the repeated
symbol. For unencoded data, the remaining 7 bits con-
tained the length of the unencoded string following the
indicator. Ziv-Lempel compressed the data to between
5 and 50% of its original size, as shown in Figure 1.
RLE expanded the data in two cases. Mean savings
due to Ziv-Lempel was 71.85% of the original table
size, while only 13.65% for RLE. For IMS data, Ziv-
Lempel yielded a savings of 83.08% compared to only
24.21% for RLE. It is possible that RLE may have been
more valuable in early dbms products that did not
efficiently support variable length columns. Variable
length data would be stored in fixed-length columns by
padding them with blanks, a perfect opportunity for
RLE. Modern dbms products support variable-length
columns efficiently; thus, RLE no longer provides good
compression. RLE was dropped from consideration
early in our study.

Next, Ziv-Lempel was compared to Huffman and
arithmetic encoding. We ran a large number of ex-
periments on many tables. Huffman and arithmetic
encoding gave comparable compression savings, with

3For all studies in this paper where Ziv-Lempel parse tree
size is not specified, trees consisted of 4K nodes.

698

1 0 Ori inal table size
I Ziv- pt empel encoding
I Arithmetic +xd.ing
I Cascaded Ziv-Lempel

MAN1 CREDIT

Figure 2: Comparison of Ziv-Lempel, arithmetic, and
cascaded Ziv-Lempel compression
arithmetic encoding being marginally better. Savings
due to arithmetic encoding will be discussed further.
Arithmetic encoding based solely on the symbol occur-
rence probability of the 256 different bytes (a 0th order
analysis) yields a savings from 30 to 50% of the origi-
nal uncompressed size. Data structures needed for the
algorithm must be stored in memory, and their cost
in bytes is several times the number of symbols (256).
For better compression, symbol probabilities can be
conditioned on one or more previously occurring sym-
bols. These ‘higher order’ models, however, require
large data structures which are impractical to store in
high speed processor cache (necessary for fast encoding
and decoding). For this reason, a version of arithmetic
encoding was chosen that used only a limited number
of conditional probabilities (for the most frequently oc-
curring symbols). As such, the results from arithmetic
encoding should be viewed as a lower bound on pos-
sible savings. An active area of research in arithmetic
encoding is the identification of encoding contexts that
are most valuable with respect to compression savings
and their efficient use. Furthermore, the size of high
speed processor caches is larger for newer processors,
making it practical to store more contexts and access
them efficiently. Practical arithmetic encoding algo-
rithms will most likely improve. Further discussion is
beyond the scope of this paper. The third algorithm
considered is a cascading of Ziv-Lempel and arithmetic
encodings [PMKSl]. Labels produced by Ziv-Lempel
are themselves encoded (using arithmetic encoding) by
exploiting the non-uniform distribution of occurrence
of the labels. We call this the cascaded ZLA algorithm.

Data from many tables was analyzed. While the
savings from each table varied, the relative ordering of
the different algorithms baaed on compression savings
surprisingly remained the same. Due in part to terms
under which we obtained data from users, we are able
to report results from only 2 tables. Fortunately, they
represent the typical case, and the conclusions drawn

from these tables are the same as those drawn from
the larger set of tables analyzed. In Figure 2, we no-
tice that both arithmetic and Ziv-Lempel encodings
are reasonable choices for compression. Ziv-Lempel
gives more compression than the particular arithmetic
encoding algorithm evaluated. The gap is expected
to be closed by future algorithms based on arithmetic
encoding. Implementation issues are considered to dif-
ferentiate the two algorithms.

Folklore puts reads to be 3-4 times more frequent
than writes for file systems. Due to the popularity of
decision support tools, this ratio is likely to be more
skewed towards reads for dbms. Thus implementa-
tion issues must focus on decoding. Decoding for non-
adaptive Ziv-Lempel can be reduced to a table lookup
using the tree label, retrieving the phrase represented
by the label. Multiple bytes can be decoded in the time
of a single memory access. Known arithmetic com-
pression algorithms take more effort to’ decode single
symbols. More research is needed to address this is-
sue for arithmetic encoding implementations. For this
reason alone, Ziv-Lempel was chosen over arithmetic
encoding for DB2, IMS, and VSAM, and even over the
cascaded ZLA algorithm which yielded more compres-
sion.

3.2 Evaluation of Ziv-Lempel Encoding

Since the cascaded.‘ZLA algorithmgives more compres-
sion savings than the normal ZivJLempel algorithm, we
were motivated to find ways to improve the compres-
sion savings from the normal algorithm without cas-
cading. Before discussing variants of the algorithm, let
us first examine basic parse tree construction.

3.2.1 Parse Tree Construction and Sampling

Key to non-adaptive Ziv-Lempel compression is the
construction of the parse tree for encoding and decod-
ing. Several algorithms have been proposed for con-
structing Ziv-Lempel parse trees [ZL77, ZL78, We84,
MW85]. The essential features of the basic parse tree
building algorithm follows. Initially, the tree consists
of a root node and its 256 children (each child node
represents a distinct value of a symbol). The algo-
rithm proceeds by scanning the input data, matching
symbols against the tree, starting from the root (an ex-
ample is described in Figure 3). Once a leaf node is en-
countered, a new node is added as a child of that leaf.
The new node represents the next (unmatched) sym-
bol of the input data. This is repeated until all data
used for tree construction has been scanned. While
encoding, the input data is scanned and matched (one
symbol at a time) against the parse tree. When no fur-
ther match is found, the label of the last node matched
is output as the encoding for this phrase of symbols.
This label, therefore, represents the concatenation of
symbols found when traversing the tree from its root
to this node.

Input Data: ABCABCBBB
Action: Match input data from root (match AB)
Action: Add next byte (add C)

Input Data Consumed: ABC
Input Data Remaining: ABCBBB
Action: Match input data from root (match ABC)
Action: Add next byte (add B)

Figure 3: Building a Ziv-Lempel parse tree
In building the parse tree, Ziv and Lempel [ZL77,

ZL78] permit the tree to grow without bound while
Welch [We841 and Miller and Wegman [MW85] refer
to approaches that bound the size of the tree. In prac-
tice there is finite memory, hence only a finite number
of nodes are available for the tree. Once the tree be-
comes full, a policy is needed for choosing a node for
replacement. It should also be noted that the initial
portion of the tree (the root and its 256 children) re-
mains fixed. These nodes may not be chosen for re-
placement as they must exist in the final parse tree
(this restriction permits the encoding of any symbol
that may occur during encoding, even if it never ap-
peared during parse tree construction). Several tree
pruning algorithms were considered based on least fre
quency or recency of use. The results were insensitive
to these choices.

The parse tree needs to be built when the table is
first loaded. When the table to be loaded is available
in off-line media (tape) or on-line media (disk), it is
possible to make a pass through it for analysis. If the
data arrives “one row at a time” at the database over
an extended period of time, it is not practical to wait
until all this data has arrived. If one assumes that
the arrivals are not correlated with the contents of the
rows, each arrival provides a good random sample. Al-
though such is always not the case, we may still use the
earliest arriving rows to a freshly created database as
samples from which to construct the parse tree. How-
ever, during reorganization we can sample rows from
the entire table. This may result in higher compres-
sion savings after the first reorganization. Early user

feedback suggests the improvement to be in the O-5%
range.

The earliest arriving rows may be compressed only
after the parse tree is constructed. A single row (typ-
ically in size from 40 to 120 bytes) is unlikely to con-
tain enough information to build a parse tree with 4K
nodes. It is possible that rows can be prevented from
being loaded until sufficient number arrive to construct
the parse tree. However, this is a poor idea if the re-
quired number of rows do not arrive within a short
time interval. It is better to load the rows used to con-
struct the parse tree immediately upon their arrival.
They are loaded uncompressed. Once sufficient rows
have arrived and the parse tree has been constructed,
the loaded rows may be m-accessed and compressed.
If the number of rows so affected is a small portion
of the number of rows that populate the table, leav-
ing these rows uncompressed has an insignificant effect
on savings. This tactic is adopted by DB2, exploiting
again the bit in the row header for indicating an un-
compressed row.

During reorganization, techniques are needed for
choosing the number of rows to sample and which rows
to sample. By varying the number of randomly sam-
pled rows used to build the tree, we studied the impact
of the number of samples on compression savings.

Figure 4 shows the relative size of the compressed
table to the uncompressed table as more rows were
randomly sampled for constructing the parse tree. It
is clear that if only a few percent of the rows were
sampled, a parse tree can be built that compresses as
well as a parse tree built with sampling more rows.
Note that the tables we obtained from users are al-
ready samples of larger production tables in use. In-
terestingly, compression increases with the number of
samples taken, but only up to a point. There is a
levelling off, and almost a small loss afterwards. At
some threshold, sampling more rows no longer im-
proves compression. Figure 4 also shows the points
at which the number of samples taken is just enough
to construct a 4K node parse tree (marked with an ‘0’).
These points occur at or near the threshold at which
compression is maximized. Our experiments suggest
that the number of rows needed to fill the parse tree is
a good indicator of the number of rows which should
be sampled to attain good compression.

If sampling is performed, the question arises as to
which rows to sample. Ideally, randomly chosen sam-
ples should be used to construct the parse tree. How-
ever, random sampling can be quite expensive, since
accessing each sample from a very large table may in-
volve an I/O. Furthermore, the random sampling of a
table stored on tape is prohibitive. However, most re-
organization algorithms have an “unload” phase, dur-
ing which all rows are scanned. It is desirable to pick
samples during this single scan of the table. Simple
algorithms like picking every nrh row fail to work be-

700

YiNi

Figure 4: Use sampling to build Ziv-Lempel parse tree

cause available row counts for the table may be unre-
liable, and the number of rows needed to fill the parse
tree is not known before the scan. In this context,
sampling algorithms have been discussed in [OR861
and [Vit85]. As per these methods, samples are drawn
and placed in a reservoir. The methods manage the
placement and replacement of samples from the reser-
voir and their final use. The most relevant reference
is [ASW85], where an incremental sampling algorithm
attributed to Wegman is described (and referred to
as “sample counting”) for another application. The
algorithm begins with fine granularity sampling (i.e.,
every row) and gradually makes the sampling granu-
larity coarser (i.e., every other row, every fourth row,
etc.). However, the method to control the change in
sampling granularity is quite different since the appli-
cation is different.

DB2’s sampling during reorganization works simi-
larly. Every row is sampled from the beginning of the
table until the parse tree is full. Sampling granularity
is made coarser until the same number of rows have
been sampled. At this point, sampling granularity is
made even more coarse, and the algorithm iterates un-
til the entire table has been scanned.

3.2.2 Parse Tree Size

Next, the size of the parse tree was chosen. Tree sizes
from 512 nodes to 16K nodes were implemented. Note
that trees with more nodes have longer labels. 512
nodes can be represented with 9 bits, while 4K nodes
need 12 bits to distinguish them. Experimental re-
sults from using 512 to 16K node parse trees are given
in Figure 5. Increasing the number of tree nodes in-
creased compression savings. A significant increase
in compression savings is shown from 512 to 1K tree
nodes. The increase in compression leveled off at about
4K nodes. Since it is desireable for the parse tree to fit
in high-speed cache, DB2 uses 4K nodes as the default
size for the parse tree.

0 Original table size
Cl 512nodes H 4Knodes
H 1K nodes
H 2K nodes

n 8Knodes
W 16K nodes

MAN1
I b ‘RBDIT OIL

Figure 5: Ziv-Lempel compression tree sizes
3.2.3 The Short Symbol Option and Exten-

sion Symbols

With a 4K node tree, 12 bits are used per label. Every
label output for a level 1 node loses 4 bits of compres-
sion (12 bits are used to represent an 8 bit symbol). A
particular variant of the Ziv-Lempel algorithm due to
Plambeck [P189] was evaluated to minimize this loss.
The idea of this variant is to let labels of the first
level nodes be represented by the value of the sym-
bol, while the remaining labels (to deeper level nodes)
are represented by the original 12 bit values. To dis-
tinguish short symbols from regular symbols, an extra
bit is added to each symbol. Figure 6a presents the
compression savings with and without this variation.
The algorithm with this variation is referred to as SSO
(for short symbol option). The average compression
savings gained was about l%, and this approach was
abandoned.

Another variation of Ziv-Lempel due to [MW85]
was investigated. In this variant, nodes in the tree
(other than level 1 nodes) represent extended sym-
bols. An extended symbol represents a phrase of sym-
bols, rather than a single symbol. During tree build-
ing, whenever a node is added to the tree, it repre-
sents the phrase matched subsequent to the current
match, rather than simply the next symbol following
the current match. The average amount of compres-
sion gained was over 4% of the original table sizes,
as shown in Figure 6b. This enhancement is used by
DB2.

3.2.4 Parse Tree Trimming

Some of the experiments reported in Figure 4 show
that sampling more rows than needed to build a parse
tree could reduce the amount of compression savings.
A possible reason is that the algorithms used to re-
place tree nodes (when the tree becomes full) are in-
adequate. Our algorithms replace one node whenever
an entry must be added to the tree after it has reached

701

o Ori inal table size
m Ziv- % em]
I Ziv-Le

MAN2 CREDIT OIL

(a) Short Symbol Option

AANl MAN2 CREDIT OIL

(b) Extension Symbols

Figure 6: Ziv-Lempel algorithm variations

its maximum size (4K nodes). Since this decision is
based on looking at only 1 additional (possibly ex-
tended) symbol, perhaps it may be improved. In the
alternative explored, the parse tree was permitted to
grow beyond its final size, and pruned after final con-
struction. For example, if a 4K node parse tree is
built, it was allowed to grow to 8K nodes during its
construction. Once the tree reached 8K nodes, the sin-
gle node replacement algorithm described earlier was
used. The frequency of reference to each node was also
stored during tree building. After the parse tree con-
struction phase, the tree contained 8K nodes. A sim-
ple tree trimming algorithm was used which identified
the nodes with fewest references and trimmed them
(note that only leaves were trimmed) so the parse tree
contained 4K nodes. We conducted a number of exper-
iments, increasing the built tree size to 2, 4, 8, and 16
times the size of the desired parse tree, then trimmed
it. We found that compression savings increased to an
optimum when the multiplicative factor was 4. When
the built tree was larger than a factor of 4, we saw
loss of compression savings consistently for each of the
different tables. The improved savings is not large, as
shown in Figure 7 (on the average, slightly more than

0 Ori inal table size
I Zy- 3 empel encoding
I ZwLempel with tree trim

- MAN1 MAN2 CREDIT OIL INS1
Figure 7: Build 16K node tree, trim to 4K nodes

2%). However, since the implementation cost is low
and it only affects the tree construction phase, it is
included in DB2.

3.2.5 Column Sensitivity

Rows are comprised of multiple columns. During parse
tree construction, as each new row is parsed, parsing
resets to the root of the tree. Furthermore, when-
ever a phrase from the input row is parsed against
the current tree, parsing resets to the root of the tree.
Column sensitivity experiments were conducted which
reset parsing to the root of the tree at various column
boundaries. For our first column sensitivity experi-
ment, we reset parsing to the root of the tree at every
column boundary during parse tree construction. Dur-
ing the actual encoding of data, since speed is an issue,
encoding was not sensitive to column boundaries. In
summary, the algorithm was column sensitive (to every
column) during the parse tree construction phase and
column insensitive during the encoding phase. This
naive approach proved to be disastrous as shown in
Figure 8. For example, MAN2 suffered severe com-
pression loss, due to many small columns in the table.
Intuitively, however, it seems that selectively choosing
certain column boundaries may provide better com-
pression. The best results are presented from many
related experiments. Resetting the parsing at some
column boundaries did provide some improvement in
compression (Figure 8). However, improvement was
not significant enough to recommend this method.

The second experiment was similar to the first, ex-
cept that the parse was reset at certain columns during
both the build and encode phases. Results from this
experiment were similar to those in the first experi-
ment, and this method is not recommended.

The third experiment on column sensitivity used
data of different types to build different parse trees
(one for each type). A total of 4K nodes was used.
The nodes were distributed among the trees in pro-
portion to the space used by its corresponding type in

702

: ‘gy-$g$$&
Z E!

umn ms nsmve
e ectlve co umn sensitivitv f

MAN1 MAN2 CREDIT

Figure 8: Column sensitivity, build phase only
the table. For example, if 46% of each row consists of
character data, then the tree built for character data
contains 46% of the 4K nodes. The results show that
using a total of 4K nodes and compressing each col-
umn type separately provides approximately equiva-
lent compression to the column insensitive method.

In summary, the results of the column sensitivity
experiments were inconclusive. While suggesting that
there are areas to explore for improving compression
savings, no clear method emerged for exploiting col-
umn sensitivity. Further study is recommended.

4 Usability and Performance

The following DB2 features make compression easy to
use. It is easy to enable and disable. Simply by using
the ALTER command, DB2 is told to use compression.
In the next reorganization (or if the table is empty,
during the initial load of data) compression goes into
effect. In addition, the maximum number of rows that
can reside in a page is also doubled, in anticipation of
more compressed rows stored per page.

It is possible to selectively apply compression. Fre
quently accessed and small tables may not need com-
pression. Large but less used tables can be selectively
compressed. DB2 also supports the partitioning of a
table by key range and independent utility operations
against various partitions. This allows DB2 to selec-
tively compress partitions of a table. For example,
time-series applications (such as retail and billing ap-
plications), frequently access data from recent months.
The partition containing the most recent months can
be left uncompressed while the remaining partitions
are compressed. To help the user, tools are available
which estimate the compression savings.

It can be argued that for frequently reorganized
databases, the statistical properties with respect to
compression do not change between each pair of con-
secutive reorganizations. Thus DB2 allows an existing
parse tree to be reused during reorganization.

Although IBM’s dbms products implement hard-
ware compression, software compression is also sup-

ported. Data compressed by hardware is decodable by
software and vice-versa. This allows the migration of
applications and dynamic load balancing among mul-
tiple processors in an installation where only some of
the processors have hardware compression support.

In the past, dbms users of software compression
have reported a total loss of data if the software com-
pression routine was lost by error. This is a problem
solved by DB2. DB2’s compression parse tree is re-
garded as metadata and stored in the header pages of a
table. The parse tree is logged on creation and change,
and is recoverable. When a table is migrated from one
DB2 dbms to another, the parse tree goes along (the
table is self-describing). Feedback from early users of
DB2 compression is extremely positive.

When considering performance, oltp workloads
gained significant price performance benefits from
compression. Decision support workloads also bene-
fitted. Table scans have been benchmarked to show
a 50% reduction in response time at the cost of 20%
extra CPU. Database backup and recovery have mea-
sured a 50% reduction in response time and a 10% re-
duction in CPU time. Utilizing an existing dictionary
during database reorganization has yielded a 50% sav-
ings in reorganization time. Furthermore, it should be
noted that the percentage cost of the dictionary build
during reorganization decreases with table size due to
the incremental sampling technique used.

5 Conclusions

We have made the case for integrating lossless com-
pression into dbms products as a means of improving
price performance. Tradeoffs were made to solve nu-
merous architectural problems encountered during this
integration. We chose the row as the unit of compres-
sion. The compression algorithm selected is a non-
adaptive variant of the Ziv-Lempel algorithm using
extension symbols. The Ziv-Lempel parse tree is de-
termined by building a large parse tree with sampled
rows and trimming it to the desired number of nodes.
Column sensitivity was not employed because exper-
iments with real data were inconclusive (while show-
ing good potential). We have described the particular
usability features and performance of this implemen-
tation for the DB2 dbms product. In conclusion, we
believe that a majority of concerns relating to the use
of compression for databases have been addressed, and
expect wide acceptance of compression in dbms prod-
ucts.

6 Acknowledgements

We would like to thank many IBM employees and users
of IBM’s dbms products for their generous help. A
partial list follows: Ron Arps, John Babb, Rick Baum,
Nancy Burchfield, Albert Chang, Chung Chang, Wal-
ter Changi\Jo Cheng, Ivy Wong Chong, Carissa
Chun, Dick Crus, Jean-Jacques Daudenarde, Greg

703

Davoll, Parameah Desai, Mohamed El-Ruby, Joel Far-
ber, Craig Friske, Debbie Fuhrer, Don Haderle, Harold
Hall, Dave Hauser, Suse Kelley, Lubor Kollar, Gopal
Krishna, Spencer Krueger, Clark Kurtz, Glen Lang-
don, Pete Lazarus, Ron Lember, Helen McMillan, Ted
Messinger, Victor Miller, Rich Pasco, Ken Plambeck,
Guru Rao, Pat Selinger, Akira Shibamiya, Bhaskar
Sinha, Mark Slovick, Brian Smith, Barry Stevenson,
Dave Voss, Robin Williams, John Wong, Pong Wong
and Ahmad Zandi.

References
[A1751

[ASW85]

[Ba85]

[BCWSO]

[BWCSS]

[Co851

[ES801

[Fr75]

[GM591

[Gr91]

[GS91]

[HT71]

[Hu52]

[IW94]

[LB811

[LR79]

P. AIsberg. Space and Time Savings Through
Large Data Base Compression and Dynamic Re-
structuring. Proc. IEEE, 63(8), Aug. 1975, p
1114.
M. Astrahan, A. SchkoInick, and K. Whang.
Counting Unique Values of an Attribute without
Sorting. IBM Research Report RJ4960, Dec. 30,
1985.
M. Bassiouni. Data Compression in Scientific
and Statistical Databases. IEEE Trans. on Soft-
ware Eng., SE-11 (lo), Oct. 1985, p 1047.
T. Bell, J. Cleary, and I. Witten. Text Compres-
sion. Chapter 1, Prentice Ha& Englewood Cliffs,
NJ, 1990.
T. Bell, I. Witten, and J. Cleary. ModeIIing for
Text Compression. A CM Computing Surveys,
21, 4, Dec. 1989, p 557.
G. Cormack. Data Compression in a Database
System. Communications of the ACM, 28, 12,
Dec. 1985, p 1336.
S. Eggers and A. Shoshani. Efficient Access of
Compressed Data Performance. Proc. of VLDB,
Montreal, Oct. 1980, p 205.
A. Frank. Uniform Decoding of Minimum Re-
dundancy Codes. U.S. Patent 388347, 1975.
E. Gilbert and E. Moore. Variable-Length Bi-
nary Encodings. BeII Systems Technical Journal,
38, 1959, p 933.
J. Gray. The Performance Handbook for
Database and Transaction Processing Systems.
Morgan Kaufman, San Mateo, 1991.
G. Graefe and L. Shapiro. Data Compres-
sion and Database Performance. Proc. of
ACM/IEEE Computer Science Symp. on Ap-
plied Computing, Kansas City, Apr. 1991.
T. Hu and A. Tucker. Optimum Binary Search
Trees. SIAM J. Applied Math, 21(4), 1971, p
514.
D. Huffman. A Method for the Construction of
Minimum-Redundancy Codes. Proc. of the IRE,
40, Sept. 1952, p 1098.
B. Iyer and D. WiIhite. Data Compression:
A Method to Improve Price Performance for
Databases. Technical Report, under prepara-
tion.
L. Lynch and E. Brownrigg. Application of Data
Compression to a Large Bibliographic Data
Base. VLDB, France, Sept. 1981, p 435.
G. Langdon Jr. and J. Rissanen. Arithmetic
Coding with Integer Code Word Lengths. IBM
Research Division Report RJ2597, San Jose,

CA, Aug. 1979.
[LR82] G. Langdon Jr. and J. Rissanen. A Simple Gen-

eral Binary Source Code. IEEE Trans. on Infor-
mation Theory, v. IT-28, Sept. 1982, p 800.

[MW85] V. Miller and M. Wegman. Variations on a
Theme by Lempel and Ziv. Combinatorial Algo-
rithms on Word, Spriger Verlag (A. Apostolico
and Z. GaIiI, eds.), p 131.

[OR861 F. Olken and D. Rotem. Simple Random
Sampling from Relational Databases. Proc. of
VLDB, Kyoto, Japan, Aug. 1986, p 160.

[Pa761 R. Pasco. Source Coding Algorithms for Fast
Data Compression. Ph.D. Thesis, Dept. of Elec-
trical Engineering, Stanford University, 1976.

[PMKSl] Y. Perl, V. Maram, and N. Kadakuntle. The

[P189]
[Ra93]

[RK72]

[RM89]

[RS91]

[RV93]

[Se831

[TO911

[TU84]

[Vit85]

[We841

Cascading of the LZW Compression Algorithm
with Arithmetic Coding. Proc. of IEEE Data
Compression Conf., Utah, 1991, p 277.
K. Plambeck. Private Communications. 1989.
F. Raab. TPC-D Benchmark (Decision Sup
port), Working Draft 5.1, June, 1993.
S. Ruth and P. Keutzer. Database Compression
for Business Files. Datamation, 18, Sept. 1972,
p 62.
J. Rissanen and K. Mohiuddin. IEEE Trans. on
Communications, 37(2), Feb. 1989, p 93.
N. Ranganathan and H. Srinidhi. A Suggestion
for Performance Improvement in a Relational
Database Machine. Computers Electrical Engi-
neering, 17(4), 1991, p 245.
M. Roth and S. Van Horn. Database Compres-
sion. SIGMOD Record, 22(3), Sept. 1993.
D. Severence. A Practitioner’s Guide to
Database Compression. Information Systems,
8(l), Jan. 1983, p 51.
A. Tsang and M. Olschanowsky. The Study of
Database 2 Customer Queries. TR03.413, IBM
Santa Teresa Lab, San Jose, CA, April 1991.
M. Toyama and S. Ura. Fixed Length Semi-
Order Preserving Code for Field Level Data File
Compression. Proc. of IEEE Data Engineering,
Los Angeles, Apr. 1984, p 224.
J. Vitter. Random Sampling with a Reservoir.
ACM tins. on Math. Software, 11(l), Mar.
1985, p 37.
T. Welch. A Technique for High Performance
Data Compression. IEEE Computer, 17(6), June
1984, p 8.

[ZIL93]

[WNC87] I. Witten, R. Neal, and J. Cleary. Arithmetic
Coding for Data Compression. Comm. of the
ACM, 30(6), June 1987, p 520.
A. Zandi, B. Iyer, and G. Langdon. Sort Or-
der Preserving Data Compression for Extended
Alphabets. DCC 93 Data Compression Conf.,
1993, p 330.
J. Ziv and A. Lempel. A Universal Algorithm
for Sequential Data Compression. IEEE Trans.
on Information Theory, 23(3), May 1977, p 337.
J. Ziv and A. Lempel. Compression of Individ-
ual Sequences via Variable-Rate Coding. IEEE
Tmns. on Information Theory, 24(5), Sept.
1978, p 530.

[ZL77]

[ZL78]

704

