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Abstract 

Much published research on data integration 
considers only a “one shot” effort to produce an 
integrated schema or a multidatabase query. This 
paper examines a more complex environment. 
Our clients CBST~ out multiple integration efforts, 
producing multiple kinds of integrated systems 
that involve overlapping subsets of their 
component databases. Metadata is costly to 
collect and maintain, so one wishes to reuse it 
wherever possible. We thus must devise ways to 
reuse integration metadata across integration 
efforts, though the efforts may have different 
goals and may concern overlapping subsets of 
the components. This paper identifies and 
examines issues of maximing information and 
code reuse by organizations facing data 
integration in the large. 

1 Introduction 
Organizations increasingly need to build multidatabase 
systems that combine, exchange, or otherwise integrate 
information among independently developed databases 
and applications1 Our large customers realize that data 

1 The terms “integrate” and “multidatabaso” are used 
broadly, to cover any way of establishing a system that 
handles data from multiplo components, including loose 
coupling without a global schema To limit tho scope, we 
do not discuss tramution management or data model 
tlZilUlations. 
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integration will be costly, and require strategies for 
establishing a wide variety of integration arrangements, 
including integrated access, migration to standard 
interfaces, and intersystem dataflows. Communication is 
currently achieved either by expensive ad hoc code or by 
manual intervention at runtime. Current Computer Aided 
Software Engineering (CASE) tools are inadequate, 
because they focus on building and maintaining individual 
systems rather than multidatabase systems. 

Much published research in this area concerns support 
for one-shot schema integration or integration via 
multidatabase query. Many methodologies ignore the 
other forms of integration. This paper examines a more 
complex environment in which organizations carry out 
multiple integration efforts, producing different kinds of 
integrated systems that involve overlapping subsets of its 
component databases. A major goal of this paper is to 
sensitize researchers to consider these typical 
complexities of customer environments. 

Example: A customer may wish to establish a data 
flow that extracts recent intelligence data on a geographic 
region and ships it to a planning database of target 
information, at a different location. (Efficiency, security, 
and availability all argue for shipping the data to the 
downstream database, rather than providing integrated 
access to both systems.) Next, a display system desires 
integrated access to both the planner’s target information 
and plans, plus a weather database and three-dimensional 
map data. Finally, the information may need to be made 
available to other systems, including those of allies, in a 
form that (as much as feasible) complies with standard or 
commonlyusedAirForcede6nitions. 

We consider reuSe -ofmetadataandofcode-tobea 
major requirement for CASE tools for multidatabases. 
Tool vendors, when addressing multiple forms of 
integration, want to reuse code. User organizations want 
their metadata available in ways that maximizes reuse 
across multiple integration efforts. They also like the 
consistency that stems from code reuse. 

Reuse should be considered even when designing a 
technique for an individual scenario, such as schema 
integration. Architectural overviews have often 
remgnized that the same metadata may help in supporting 
multiple external views [ShethgO], but published 
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methodologies are uneven in the reusability of their 
metadata products and their code modules. This 
unevenness may be unnecessary - major improvements 
can often be achieved by small changes to details. 

Example: A query that derives a view spanning two 
components is diffkult to reuse. First, it is large and 
monolithic, covering perhaps dozens of attributes. As a 
result, a simple change (e.g., to the derivation of one of 
the view’s attributes) requires that a large, complex query 
be modified, instead of just a small modular chunk of 
knowledge. Second, information is tied to particular pairs 
of systems; assertions that related a component to a 
reference deftition would be easier to reuse. Finally, it is 
difficult to combine partial information from multiple 
view definitions (e.g., to combine {views relating DBl 
and DB2) with {views relating DBl and DB3) to infer 
{views relating DB2 and DB3)). 

Paper Roadmap: The contribution of the paper lies in 
establishing connections between the wider requirements 
and existing research, rather than in specific algorithms or 
new methodologies. We also wish to emphasize the 
importance of standardizing multisystem metadata to 
enable multidatabase CASE tools to interoperate. 

A wide variety of data integration problems are 
described in Section 2. We briefly discuss the metadata 
needed for each plateau of functionality. Generally, 
analysts working on a particular form of integration would 
wish to be prompted for exactly the metadata needed for 
the chosen form. The discussion can thus guide builders 
of methodologies and tools in their modularization. 

Section 3 provides some tactics that methodology- 
designers can use to select metadata that will be reusable. 
We identify tactics by which schema integration 
methodologies can produce metadata that is easy to reuse. 
Some of the listed techniques are described in the cited 
literature while others are our abstraction of 
implementation-level details of familiar methodologies, or 
our own adaptation. While few are novel, it seems 
important to consider them from the perspective of reuse. 

Section 4 describes the central role of repositories in 
supporting information reuse. It argues that repositories 
could enable an industry of CASE tools for multidatabase 
systems. Standardized repositories would be particularly 
valuable since they would enable interoperation of 
separately-developed tools. This section also describes 
our efforts to develop a prototype repository designed to 
support data integration in the large. 

2 Varieties of Data Integration Problems 
2.1. Describing the Varieties of Integration 

Much of the literature on multidatabase systems has 
emphasized one-shot schema integration and 
multidatabase queries. While these are important 
problems, several additional hinds of integration efforts 
are common in large organizations. 

Recently, we analyzed the metadata requirements of 
data integration scenarios from MITRE’s clients. We 
found a wide variety of scenarios. In addition, we found 
that it is common for a given component system to 
participate in multiple integration efforts. For example, a 
component system could be part of several federated 
views, could exchange data with other systems in a 
loosely-coupled interoperable multidatabase, and could be 
replaced by a new system that consolidates several 
existing systems. 

We found that the following were typical goals of 
integration efforts in our clients’ organizations: 

A new query interface to an exiting system. In some 
cases the requirement may be to map the component 
to a new enterprise schema. In others, the changes 
may affect attributes but not class hierarchies. For 
example, one may need to provide a revised interface 
that attempts to use new preferred naming 
conventions, datatypes, and units for each attribute. 
My-Alt (in feet, as a string) might become 
Current~Altitude (in hundreds of feet, as an integer). 
A new interface (as above), but this time with support 
for update. DBMSs typically support some update 
operations against views; in the future they may also 
allow other operations (e.g., error messages in terms 
of view objects, administration of the underlying 
data). Metadata beyond that of a query interface is 
often required (e.g., to disambiguate updates). 
A query-only federated view of multiple existing 
systems. This is the most familiar product of schema 
integration. 
A more robust federated view, including support for 
updates, error processing, etc. 
Dataflows among systems, with facilities only for 
documenting the data interrelationships. In many 
current systems, these dataflows are implemented by 
manually-written extract and load programs in SQL 
and a 3GL. We are currently unscrambling a 6000 
line program that extracts data from one Oracle 
database, converts it, and loads into another. The 
code combines data routing, attribute and class 
transformations, and constraint checking. Knowledge 
of intercomponent relationships is buried in these 
programs, and is not easily reused (e.g., to create a 
federated view). 
Dataflows among systems, with facilities for 
specifying and managing interdatabase consistency 
and other constraints [Rusinkiewicz9 11. 
Consolidation of multiple legacy systems into a new, 
more homogeneous system. In very large or newly- 
merged organizations, there are often multiple 
systems with roughly equivalent functionality but 
heterogeneous designs. The goal here is to understand 
the functionalities (via reverse engineering), to 
produce a new schema that supports the union of all 
important requirements, and then to implement a new 
system. Each legacy system will be replaced by a 
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copy of the new system; further integration efforts 
may proceed from this more homogeneous base. 

l Evolution of a legacy multidatabase system . Several 
challenging scenarios involving migration of multiple 
databases and applications are described in 
[Brodie93]. A key requirement was that change 
would be introduced over a period of years, but 
service would continue throughout. 

2.2 Overlap and Reuse of Required Metadata 

The scenarios represent fairly natural plateaus of 
hctionality. We examined the metadata that is needed to 
support each of them. The information might be of 
interest to tool builders, since it suggests natural modules 
of metadata to be captured. It also indicates the potential 
for very extensive reuse. 

Figure 1 attempts to summarize the situation. 
Interestingly, the metadata that are useful for the most 
basic scenario (i.e., providing a new query interface to an 
existing system) are also needed for the other scenarios. 
For example, to support the development of a query-only 
federated view of existing systems, one could reuse 
virtually all of the information collected while providing a 
new, standards-compliant query interface. If the view is 
generated automatically from intercomponent assertions, 
the integrator needs to collect only the following 

additional information: semantic correspondences across 
the component systems and rules for identifying and 
handling multiple (possibly inconsistent) references to the 
same real-world instances. (If the default generated view 
is not the desired one, the deviation must also be 
documented.) Another example of metadata reuse among 
scenarios is provided by the Consolidation-via-Migration 
scenario, which requires basically the same information as 
the combination of the Migration and the Federated View 
scenarios. 

The arrow from “Updatable Views” to “Data Flow 
among Loosely Coupled Interoperable Systems” indicates 
an interesting opportunity for reuse. In a typical system 
today, data flows into the receiving system via a 
manually-produced program that embeds database update 
requests in 3GL code. If instead, one defined a retrieval 
view of the source that matched an updatable view of the 
receiver, the transformation information would be much 
more declarative, and easier to reuse. 

The overlap shown in Figure 1 is especially significant 
for large, complex organizations, in which many 
individual systems participate in multiple data integration 
efforts during their life cycle. If the metadata collected for 
one data integration effort could be stored in a repository 
and reused in subsequent efforts, that would result in 
substantial cost savings. 

Figure 1. Overlapping Information Requirements Among Several Scenarios 
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3 Some Guidelines for Promoting 
Reusability 

This section proposes some guidelines for methodology 
and tool developers to maximize the reusability of 
collected metadata. While few of these techniques are 
novel, it seems useful to gather and review them f?om the 
perspective of improving reuse of metadata. 

3.1 Capture Small Modules of Information 

View definitions are difficult to reuse, but the detinitions 
can often be automatically generated from smaller 
modules of metadata. We give two examples. 

A view that defines a new interface may involve many 
attributes, and the query that derives it may be a large 
expression in a textual query language. These are 
awkward units for reuse. For example, the next integration 
effort may require the same transformation on some of the 
attributes, and may require attributes not mentioned in the 
view. 

Reuse will be easier if the information in the view 
definition is modularized. Frequently, the derivations of 
attributes in a view’s target list are independent. The fact 
that Name is truncated to 20 characters is independent of 
the fact that Aircrafi-Range is converted from miles to 
kilometers. Each of these can be stored in the repository 
as a single assertion, reusable as needed. An analyst who 
wishes to reuse or modify the conversion on 
Aircraft-Range can now avoid poring through a view 
definition that derives thirty other attributes. Security is 
also improved because one can release definitions 
selectively. 

A similar tactic can be used with views that span 
components. As in [Sheth93], one can capture a collection 
of intercomponent assertions, and use them to generate 
the view. For example, suppose in separate integration 
efforts, a view that spans components 1 and 2 combines 
EMPLOYEE and WORKER, while a view that spans 
components 2 and 3 combines WORKER and PERSON. 
If a later integration effort on components 1 and 3 needs 
to combine information about EMPLOYEE and 
PERSON, it will be difficult to do so. 

If one has intercomponent assertions instead of just 
views, the situation is easier. For example, one might have 
assertions on the actual populations, that every instance of 
EMPLOYEE in component 1 appears as an instance of 
WORKER in component 2, and that a similar inclusion 
holds between WORKER in component 2 and PERSON 
in component 3. Now one can infer an inclusion between 
EMPLOYEE and WORKER. 

The example suggests an interesting open problem. 
Suppose one intends to integrate components A and B to 
form [AB], and then integrate [AB] with C. Assertions 
about [AB] are awkward to obtain (there are no experts in 
database [AB]) and to reuse. Can one instead express 
sufficient painvise assertions among A, B, and C to 

enable the integration of [AB] with C? How many such 
assertions are needed? 
3.2 Use Existing Reference Definitions: Enterprise 

Schemas and Standards 

One powerful technique is to detine an enterprise schema 
as a central point of reference. One then relates objects 
(classes, attributes, etc.) in each component schema to 
objects in this “standard” enterprise schema. For example, 
MCC’s Camot project [ColleBl] used the Cyc knowledge 
base as a model for a large portion of “common sense 
reality. ” If objects in two component schemas are 
asserted to be “the same” as an object in the standard 
schema, then they are the same. More general 
intercomponent relationships can also be handled. 

The reuse advantage is that to relate n systems one 
needs only n sets of intcrcomponent assertions, rather than 
O(n2). The information that one component system’s class 
“Car” means the same as another component’s ‘Yoiture” 
is hard to reuse; the information that it matches the 
“standard” interpretation of Automobile is more helpful. 
Also, the enterprise schema may be well considered and 
documented, as it receives substantial attention. As a 
modest extension, one can provide multiple reference 
schemas instead of one. This enables integrators to refer 
to any “well known” object, even when there is no 
universally accepted conceptual schema 

A variant of reference schemas, widespread in U.S. 
Government standardization efforts, is the definition of 
generic attributes and value domains. For example, a 
database might include scores of attributes that denote a 
position (e.g., HomeBase, Target, Refueling). The 
definition of the notion of Position is captured once. Use 
of such generic deftitions may deserve more emphasis in 
integration methodologies. 

3.3 Create New Reference Definitions: Give Names 
to Common Properties 

We cannot build a descriptive system that will describe 
(or even name) all shades of “meaning.” However, 
whenever some property is given a name and a commonly 
understood meaning, there is substantial utility to placing 
this name and meaning as a reference definition, as in 
section 3.2. One can then assert the relationship between 
any schema object and the new reference definition. 
These definitions need not all be pushed into one schema, 
as that may require close cooperation. 

For example, one might discover that attributes 
concerned with Speed have in their descriptions either a 
statement “absolute” or “relative.” One then defines a 
new property name, say Frame Of-Reference, with legal 
values “absolute” and “relativ? Now when comparing 
the meanings of Speed attributes, one can easily check 
whether they have the same frame of reference. By 
capturing and naming such commonalities, we get the 
benefits of reference definitions. Units, Datatype, and 
Scale are other properties one might defme. 
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Sets of reference definitions offer more flexibility but 
less uniformity than having an enterprise schema at the 
center. Avoidance of homonyms is critical: if two 
components say VolumeUnit=“gallon”, chaos will result 
if one uses British gallons and the other American. It is 
also desirable to recognize synonyms, as this allows more 
similarities to be discovered. [Sciore94] uses sets of 
(property name, property value) pairs to drive a mediator 
that determines whether an application can use a 
database’s data. (If the data is not directly usable, the 
mediator attempts to find a conversion function that alters 
the offending property.) 

Assertions with respect to reference definitions are 
convenient for reuse. An assertion that 
“Databasel.Aircra~.Range.LengthUnit=miles” will be 
useful whether integrating with Database2 or Database3. 
In contrast, an assertion “Database1 .Aircraft.Range and 
Database2.Aircratt.MaxDistance are in compatible units” 
will be of less use when confronting Database3. 

3.4. Move Individual components Toward the 
Desired Standard 

When one produces a schema to integrate two 
components, the metadata will be more reusable if one 
splits the integrating view definition into two stages. The 
first stage transforms the individual schemas, providing 
each with an interface that better conforms to outside 
practice and to each other. For example, one might 
transform attributes’ units, scale, precision, and datatypes 
in one or both component schemas, to make them match. 
One can perform joins and other operations to bring 
relations into closer correspondence.2 The views of the 
components now exhibit less diversity than the original 
components. This should simplib later integration efforts. 

Even if the immediate goal is schema integration, there 
are other benefits to single-component views that better 
conform to an organization’s standards. For example, due 
to differing requirements and decentralized development, 
the European, Pacific, and other regional databases do not 
have identical schemas. Suppose that after schema 
integration is completed, one wishes to port a planning or 
display application currently running against the Pacific 
database so that other regions will be able to run the 
application over their own data. The port will be easier if 
the components* interfaces have been made less diverse. 

* The alternative is to assert correspondences between 
dissimilar structures in the two components. This 
approach has the disadvantage of duplicating much of the 
transformational power of the query language in the 
intercomponent assertion language. 

4 Toward Repositories for Data Integration 
in the Large 

The previous section describes guidelines for maximizing 
metadata muse across multiple data integration efforts. In 
order to achieve this reuse, however, organizations need a 
mechanism for managing huge amounts of metadata 
required for data integration in the large. This section 
argues that metadata repositories for multidatabase 
systems provide such a mechanism and that they are a 
critical enabler for an industry of CASE tools for 
multidatabases. In addition, we describe our efforts to 
prototype such a repository. 

4.1 The Critical Role of Repositories 

The cost of developing and evolving multidatabase 
systems could be reduced by extending software 
engineering repositories [BernknopfPO] to support such 
systems. The primary benefits of using such a 
metadatabase are the following: 

l It provides a critical enabling technology which 
would permit CASE companies to attack data 
integration problems incrementally, via tools that 
each incorporate some useful expertise. 

l It would permit substantial information reuse, by 
exploiting the commonalities in the metadata 
gathering requirements of the different data 
integration scenarios. This is especially important in 
large complex organizations, in which a given 
component system frequently participates in multiple 
data integration efforts. 

4.1.1 Discussion 

Commercial heterogeneous DBMS products (e.g., 
Unifa, Oracle version 7) can provide transparent access 
to multiple systems despite differences in platforms, 
operating systems, and DBMSs. But (except for DII’s 
Iuterviso) they do little to identify correspondences and 
discrepancies between component systems, resolve the 
discrepancies between them, incrementally define a 
federated view (or a new target schema), create the 
mappings from the component systems to the federated 
view (or target schema), and specify and manage 
constraints across multiple systems. We need CASE tools 
that help build and manage a metadatabase about 
multidatabase systems. 

The extensive literature on schema integration, 
federated databases, and multidatabase interoperability 
addresses these issues (e.g., [Batini86, Sheth90, Litwin90, 
Wiederhold921). While researchers have investigated the 
data integration process and have made progress on 
supporting individual integration tasks, two things have 
made it difftcult to transition their results. First, each 
individual effort has naturally addressed only a narrow 
part of the integration problem. Second, the tools that 
have emerged from these efforts have been closed, unable 
to interoperate to form a greater whole. There has been 
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insufficient attention to developing a framework that 
would connect a large number of niche tools. 

Example: To illustrate the benefit of getting multiple 
tools to interoperate, consider the following plausible 
scenario. First, reverse engineering tools are used to help 
capture information about one or more component 
systems in a common (possibly semantic) data model. 
Next, another tool is used to hypothesize semantic 
relationships between pairs of attributes from multiple 
systems. One can then imagine the integrator turning to a 
variety of other tools to perfbrm subsequent phases of the 
integration process. For example, a tool which uses 
attribute assertions to infer relationships among classes, 
such as that described in [Sheth93], might be useful here. 
Tools which analyze instance-level data in order to 
hypothesize relationships across systems, such as 
[Beck921 or [Li94], could also be employed Tools which 
use declarative specifications about interdatabase 
consistency requirements to automatically generate 
consistency enforcement procedures, such as [Ceri93] and 
[Seligman93], provide further examples. 

To date, work on repositories and Integrated CASE (I- 
CASE) [Chen92] has focused on the development of 
single systems. In I-CASE systems, multiple specialized 
tools interoperate by exchanging information through a 
common repository. While repository standards 
(e.g., IRDS, PCTE) have received very limited vendor 
support, cottage industries of specialized CASE tools are 
emerging, centered around the repositories of the major 
CASE vendors. However, the repository-centered I-CASE 
approach has yet to be applied to CASE for developing 
and evolving multidatabase systems. 

We contend that the development of repositories and 
repository standards for multidatabases is a critical step 
toward enabling a new industry of data integration CASE 
tools. The existence of a common infrastructure would 
support interoperability of specialized integration tools. 
Individual tools could be added relatively easily, 
facilitating the transition of niche tools and techniques 
from the research community to government and industry. 
Users would benefit by not being confined to a single 
vendor. In addition, vendors of integrated systems could 
acquire tools from multiple sources. 

While to date there has been limited practical 
experience with using and managing multidatabase 
repositories, there may be advantages to standardizing 
their schemas before there are many conflicting 
proprietary variants. 

4.2 A Repository Prototype 

We are currently working to define requirements for a 
repository for data integration in the large, to develop a 
schema for such a repository, and to refme that schema 
through experimentation with a prototype system. We 
have restricted our focus to those aspects of the repository 
that are unique to the development and evolution of 
multidatabase systems; we have not addressed issues that 

also exist for single-system repositories (e.g., versioning, 
control and presentation integration [Chen92]). In 
addition, we have focused on issues of data heterogeneity 
(i.e., representation and semantics) and not on 
inhstructure heterogeneity (i.e., heterogeneous networks, 
operating systems, data models, and DBMSs), all of 
which are receiving considerable attention in the 
commercial marketplace. 

Some of the issues being addressed by our work are: 
l What metadata representations are best suited to 

supporting reuse across diverse integration efforts? 
We seek to maximize reuse across the different 
integration scenarios described in Section 2, as well 
as across efforts employing different integration 
strategies (e.g., bottom-up, top-down, and hybrid 
approaches [ Sheth901). 

l What are the core reusable modules which ought to 
be part of the repository infrastructure? What 
functionality belongs in tools, and what in the 
repository? 

l What constructs are necessary to support the 
incremental specification of an integrated or 
interoperable system? This requires facilities for a 
tool or a human to make assertions about partial, 
uncertain, and negative information. 

l What kinds of background knowledge are usefnl to 
multiple integration tools and how should it be 
represented7 Examples include enterprise schemas, 
generic data elements, knowledge about naming 
standards and conventions, and both domain-specific 
and domain-independent knowledge bases. 

We have developed an initial prototype of a 
multidatabase repository using the ITASCA object 
database; for prototyping, the convenience of developing 
over an OODBMS outweighed conformance to standards. 
We have used the repository to capture the metadata 
required to support transparent access to two autonomous 
law enforcement databases, and are refining the repository 
based on that experience. 

In the coming months, we will be using the prototype to 
manage metadata for performing different kinds of data 
integration efforts using overlapping subsets of several 
component systems. In addition, another MITRE group, 
which is researching techniques for automatically 
generating code for intersystem dataflows from a 
declarative specification, is developing a relational 
adaptation of our schema. These efforts should provide 
valuable lessons in our efforts to provide better support 
for managing and reusing metadata for data integration in 
the large. In addition, demonstrations of the prototype 
may help convince procurement officials to require 
contractors to deliver integration metadata for any new or 
reengineered system. 

5 Conclusions 
We discussed how organizations perform multiple, 
overlapping integration projects, often involving 
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overlapping sets of data. We indicated that reusability of 
metadata is an important issue for user organizations, and 
reusability of tool code is desirable. For CASE tool 
vendors, reuse of code modules is important. 

We identified numerous varieties of integration. While 
the individual problems are not new, researchers rarely 
refer to the whole collection. Modules of functionality 
were identified and placed in a hierarchy. 

We then argued that reuse should be considered 
whenever a methodology for any kind of integration is 
developed. We found both good and bad practices in 
published algorithms. Some guidelines to make metadata 
and functionality more reusable were given. Once again, 
our contribution was to supply the necessary context and 
abstract the problem, rather than to provide new 
techniques. 

Finally, we argued that a metadata repository for 
multidatabase systems is a critical enabler of information 
reuse and of an industry of multidatabase CASE tools. We 
briefly described a prototype that we are in the process of 
building. 
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