
Data Integration in the Large: The Challenge of Reuse

Arnon Rosenthal
The MITRE Corporation

202 Burlington Road
Bedford, MA 01730 USA

amie@mitre.org

Abstract

Much published research on data integration
considers only a “one shot” effort to produce an
integrated schema or a multidatabase query. This
paper examines a more complex environment.
Our clients CBST~ out multiple integration efforts,
producing multiple kinds of integrated systems
that involve overlapping subsets of their
component databases. Metadata is costly to
collect and maintain, so one wishes to reuse it
wherever possible. We thus must devise ways to
reuse integration metadata across integration
efforts, though the efforts may have different
goals and may concern overlapping subsets of
the components. This paper identifies and
examines issues of maximing information and
code reuse by organizations facing data
integration in the large.

1 Introduction
Organizations increasingly need to build multidatabase
systems that combine, exchange, or otherwise integrate
information among independently developed databases
and applications1 Our large customers realize that data

1 The terms “integrate” and “multidatabaso” are used
broadly, to cover any way of establishing a system that
handles data from multiplo components, including loose
coupling without a global schema To limit tho scope, we
do not discuss tramution management or data model
tlZilUlations.

Penn&ton to copy without fee all or part of thir material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the LCDB copyright notice and
the title of the publication and its date qpear, and notice is
given that copying is by permission of the V’ Lunge Data Base
Endowment. To wpy otherwise, or to republish, requires a fee
andor spectalpetmirsionjkm the Endinvment.
Proooodiaga of the 20th VLDB Conference
santiago,chile,1994

Leonard J. Seligman
The MITRE Corporation

7525 Colshire Drive
McLean, VA 22102 USA

seligman~tre.org

integration will be costly, and require strategies for
establishing a wide variety of integration arrangements,
including integrated access, migration to standard
interfaces, and intersystem dataflows. Communication is
currently achieved either by expensive ad hoc code or by
manual intervention at runtime. Current Computer Aided
Software Engineering (CASE) tools are inadequate,
because they focus on building and maintaining individual
systems rather than multidatabase systems.

Much published research in this area concerns support
for one-shot schema integration or integration via
multidatabase query. Many methodologies ignore the
other forms of integration. This paper examines a more
complex environment in which organizations carry out
multiple integration efforts, producing different kinds of
integrated systems that involve overlapping subsets of its
component databases. A major goal of this paper is to
sensitize researchers to consider these typical
complexities of customer environments.

Example: A customer may wish to establish a data
flow that extracts recent intelligence data on a geographic
region and ships it to a planning database of target
information, at a different location. (Efficiency, security,
and availability all argue for shipping the data to the
downstream database, rather than providing integrated
access to both systems.) Next, a display system desires
integrated access to both the planner’s target information
and plans, plus a weather database and three-dimensional
map data. Finally, the information may need to be made
available to other systems, including those of allies, in a
form that (as much as feasible) complies with standard or
commonlyusedAirForcede6nitions.

We consider reuSe -ofmetadataandofcode-tobea
major requirement for CASE tools for multidatabases.
Tool vendors, when addressing multiple forms of
integration, want to reuse code. User organizations want
their metadata available in ways that maximizes reuse
across multiple integration efforts. They also like the
consistency that stems from code reuse.

Reuse should be considered even when designing a
technique for an individual scenario, such as schema
integration. Architectural overviews have often
remgnized that the same metadata may help in supporting
multiple external views [ShethgO], but published

669

methodologies are uneven in the reusability of their
metadata products and their code modules. This
unevenness may be unnecessary - major improvements
can often be achieved by small changes to details.

Example: A query that derives a view spanning two
components is diffkult to reuse. First, it is large and
monolithic, covering perhaps dozens of attributes. As a
result, a simple change (e.g., to the derivation of one of
the view’s attributes) requires that a large, complex query
be modified, instead of just a small modular chunk of
knowledge. Second, information is tied to particular pairs
of systems; assertions that related a component to a
reference deftition would be easier to reuse. Finally, it is
difficult to combine partial information from multiple
view definitions (e.g., to combine {views relating DBl
and DB2) with {views relating DBl and DB3) to infer
{views relating DB2 and DB3)).

Paper Roadmap: The contribution of the paper lies in
establishing connections between the wider requirements
and existing research, rather than in specific algorithms or
new methodologies. We also wish to emphasize the
importance of standardizing multisystem metadata to
enable multidatabase CASE tools to interoperate.

A wide variety of data integration problems are
described in Section 2. We briefly discuss the metadata
needed for each plateau of functionality. Generally,
analysts working on a particular form of integration would
wish to be prompted for exactly the metadata needed for
the chosen form. The discussion can thus guide builders
of methodologies and tools in their modularization.

Section 3 provides some tactics that methodology-
designers can use to select metadata that will be reusable.
We identify tactics by which schema integration
methodologies can produce metadata that is easy to reuse.
Some of the listed techniques are described in the cited
literature while others are our abstraction of
implementation-level details of familiar methodologies, or
our own adaptation. While few are novel, it seems
important to consider them from the perspective of reuse.

Section 4 describes the central role of repositories in
supporting information reuse. It argues that repositories
could enable an industry of CASE tools for multidatabase
systems. Standardized repositories would be particularly
valuable since they would enable interoperation of
separately-developed tools. This section also describes
our efforts to develop a prototype repository designed to
support data integration in the large.

2 Varieties of Data Integration Problems
2.1. Describing the Varieties of Integration

Much of the literature on multidatabase systems has
emphasized one-shot schema integration and
multidatabase queries. While these are important
problems, several additional hinds of integration efforts
are common in large organizations.

Recently, we analyzed the metadata requirements of
data integration scenarios from MITRE’s clients. We
found a wide variety of scenarios. In addition, we found
that it is common for a given component system to
participate in multiple integration efforts. For example, a
component system could be part of several federated
views, could exchange data with other systems in a
loosely-coupled interoperable multidatabase, and could be
replaced by a new system that consolidates several
existing systems.

We found that the following were typical goals of
integration efforts in our clients’ organizations:

A new query interface to an exiting system. In some
cases the requirement may be to map the component
to a new enterprise schema. In others, the changes
may affect attributes but not class hierarchies. For
example, one may need to provide a revised interface
that attempts to use new preferred naming
conventions, datatypes, and units for each attribute.
My-Alt (in feet, as a string) might become
Current~Altitude (in hundreds of feet, as an integer).
A new interface (as above), but this time with support
for update. DBMSs typically support some update
operations against views; in the future they may also
allow other operations (e.g., error messages in terms
of view objects, administration of the underlying
data). Metadata beyond that of a query interface is
often required (e.g., to disambiguate updates).
A query-only federated view of multiple existing
systems. This is the most familiar product of schema
integration.
A more robust federated view, including support for
updates, error processing, etc.
Dataflows among systems, with facilities only for
documenting the data interrelationships. In many
current systems, these dataflows are implemented by
manually-written extract and load programs in SQL
and a 3GL. We are currently unscrambling a 6000
line program that extracts data from one Oracle
database, converts it, and loads into another. The
code combines data routing, attribute and class
transformations, and constraint checking. Knowledge
of intercomponent relationships is buried in these
programs, and is not easily reused (e.g., to create a
federated view).
Dataflows among systems, with facilities for
specifying and managing interdatabase consistency
and other constraints [Rusinkiewicz9 11.
Consolidation of multiple legacy systems into a new,
more homogeneous system. In very large or newly-
merged organizations, there are often multiple
systems with roughly equivalent functionality but
heterogeneous designs. The goal here is to understand
the functionalities (via reverse engineering), to
produce a new schema that supports the union of all
important requirements, and then to implement a new
system. Each legacy system will be replaced by a

670

copy of the new system; further integration efforts
may proceed from this more homogeneous base.

l Evolution of a legacy multidatabase system . Several
challenging scenarios involving migration of multiple
databases and applications are described in
[Brodie93]. A key requirement was that change
would be introduced over a period of years, but
service would continue throughout.

2.2 Overlap and Reuse of Required Metadata

The scenarios represent fairly natural plateaus of
hctionality. We examined the metadata that is needed to
support each of them. The information might be of
interest to tool builders, since it suggests natural modules
of metadata to be captured. It also indicates the potential
for very extensive reuse.

Figure 1 attempts to summarize the situation.
Interestingly, the metadata that are useful for the most
basic scenario (i.e., providing a new query interface to an
existing system) are also needed for the other scenarios.
For example, to support the development of a query-only
federated view of existing systems, one could reuse
virtually all of the information collected while providing a
new, standards-compliant query interface. If the view is
generated automatically from intercomponent assertions,
the integrator needs to collect only the following

additional information: semantic correspondences across
the component systems and rules for identifying and
handling multiple (possibly inconsistent) references to the
same real-world instances. (If the default generated view
is not the desired one, the deviation must also be
documented.) Another example of metadata reuse among
scenarios is provided by the Consolidation-via-Migration
scenario, which requires basically the same information as
the combination of the Migration and the Federated View
scenarios.

The arrow from “Updatable Views” to “Data Flow
among Loosely Coupled Interoperable Systems” indicates
an interesting opportunity for reuse. In a typical system
today, data flows into the receiving system via a
manually-produced program that embeds database update
requests in 3GL code. If instead, one defined a retrieval
view of the source that matched an updatable view of the
receiver, the transformation information would be much
more declarative, and easier to reuse.

The overlap shown in Figure 1 is especially significant
for large, complex organizations, in which many
individual systems participate in multiple data integration
efforts during their life cycle. If the metadata collected for
one data integration effort could be stored in a repository
and reused in subsequent efforts, that would result in
substantial cost savings.

Figure 1. Overlapping Information Requirements Among Several Scenarios

671

3 Some Guidelines for Promoting
Reusability

This section proposes some guidelines for methodology
and tool developers to maximize the reusability of
collected metadata. While few of these techniques are
novel, it seems useful to gather and review them f?om the
perspective of improving reuse of metadata.

3.1 Capture Small Modules of Information

View definitions are difficult to reuse, but the detinitions
can often be automatically generated from smaller
modules of metadata. We give two examples.

A view that defines a new interface may involve many
attributes, and the query that derives it may be a large
expression in a textual query language. These are
awkward units for reuse. For example, the next integration
effort may require the same transformation on some of the
attributes, and may require attributes not mentioned in the
view.

Reuse will be easier if the information in the view
definition is modularized. Frequently, the derivations of
attributes in a view’s target list are independent. The fact
that Name is truncated to 20 characters is independent of
the fact that Aircrafi-Range is converted from miles to
kilometers. Each of these can be stored in the repository
as a single assertion, reusable as needed. An analyst who
wishes to reuse or modify the conversion on
Aircraft-Range can now avoid poring through a view
definition that derives thirty other attributes. Security is
also improved because one can release definitions
selectively.

A similar tactic can be used with views that span
components. As in [Sheth93], one can capture a collection
of intercomponent assertions, and use them to generate
the view. For example, suppose in separate integration
efforts, a view that spans components 1 and 2 combines
EMPLOYEE and WORKER, while a view that spans
components 2 and 3 combines WORKER and PERSON.
If a later integration effort on components 1 and 3 needs
to combine information about EMPLOYEE and
PERSON, it will be difficult to do so.

If one has intercomponent assertions instead of just
views, the situation is easier. For example, one might have
assertions on the actual populations, that every instance of
EMPLOYEE in component 1 appears as an instance of
WORKER in component 2, and that a similar inclusion
holds between WORKER in component 2 and PERSON
in component 3. Now one can infer an inclusion between
EMPLOYEE and WORKER.

The example suggests an interesting open problem.
Suppose one intends to integrate components A and B to
form [AB], and then integrate [AB] with C. Assertions
about [AB] are awkward to obtain (there are no experts in
database [AB]) and to reuse. Can one instead express
sufficient painvise assertions among A, B, and C to

enable the integration of [AB] with C? How many such
assertions are needed?
3.2 Use Existing Reference Definitions: Enterprise

Schemas and Standards

One powerful technique is to detine an enterprise schema
as a central point of reference. One then relates objects
(classes, attributes, etc.) in each component schema to
objects in this “standard” enterprise schema. For example,
MCC’s Camot project [ColleBl] used the Cyc knowledge
base as a model for a large portion of “common sense
reality. ” If objects in two component schemas are
asserted to be “the same” as an object in the standard
schema, then they are the same. More general
intercomponent relationships can also be handled.

The reuse advantage is that to relate n systems one
needs only n sets of intcrcomponent assertions, rather than
O(n2). The information that one component system’s class
“Car” means the same as another component’s ‘Yoiture”
is hard to reuse; the information that it matches the
“standard” interpretation of Automobile is more helpful.
Also, the enterprise schema may be well considered and
documented, as it receives substantial attention. As a
modest extension, one can provide multiple reference
schemas instead of one. This enables integrators to refer
to any “well known” object, even when there is no
universally accepted conceptual schema

A variant of reference schemas, widespread in U.S.
Government standardization efforts, is the definition of
generic attributes and value domains. For example, a
database might include scores of attributes that denote a
position (e.g., HomeBase, Target, Refueling). The
definition of the notion of Position is captured once. Use
of such generic deftitions may deserve more emphasis in
integration methodologies.

3.3 Create New Reference Definitions: Give Names
to Common Properties

We cannot build a descriptive system that will describe
(or even name) all shades of “meaning.” However,
whenever some property is given a name and a commonly
understood meaning, there is substantial utility to placing
this name and meaning as a reference definition, as in
section 3.2. One can then assert the relationship between
any schema object and the new reference definition.
These definitions need not all be pushed into one schema,
as that may require close cooperation.

For example, one might discover that attributes
concerned with Speed have in their descriptions either a
statement “absolute” or “relative.” One then defines a
new property name, say Frame Of-Reference, with legal
values “absolute” and “relativ? Now when comparing
the meanings of Speed attributes, one can easily check
whether they have the same frame of reference. By
capturing and naming such commonalities, we get the
benefits of reference definitions. Units, Datatype, and
Scale are other properties one might defme.

672

Sets of reference definitions offer more flexibility but
less uniformity than having an enterprise schema at the
center. Avoidance of homonyms is critical: if two
components say VolumeUnit=“gallon”, chaos will result
if one uses British gallons and the other American. It is
also desirable to recognize synonyms, as this allows more
similarities to be discovered. [Sciore94] uses sets of
(property name, property value) pairs to drive a mediator
that determines whether an application can use a
database’s data. (If the data is not directly usable, the
mediator attempts to find a conversion function that alters
the offending property.)

Assertions with respect to reference definitions are
convenient for reuse. An assertion that
“Databasel.Aircra~.Range.LengthUnit=miles” will be
useful whether integrating with Database2 or Database3.
In contrast, an assertion “Database1 .Aircraft.Range and
Database2.Aircratt.MaxDistance are in compatible units”
will be of less use when confronting Database3.

3.4. Move Individual components Toward the
Desired Standard

When one produces a schema to integrate two
components, the metadata will be more reusable if one
splits the integrating view definition into two stages. The
first stage transforms the individual schemas, providing
each with an interface that better conforms to outside
practice and to each other. For example, one might
transform attributes’ units, scale, precision, and datatypes
in one or both component schemas, to make them match.
One can perform joins and other operations to bring
relations into closer correspondence.2 The views of the
components now exhibit less diversity than the original
components. This should simplib later integration efforts.

Even if the immediate goal is schema integration, there
are other benefits to single-component views that better
conform to an organization’s standards. For example, due
to differing requirements and decentralized development,
the European, Pacific, and other regional databases do not
have identical schemas. Suppose that after schema
integration is completed, one wishes to port a planning or
display application currently running against the Pacific
database so that other regions will be able to run the
application over their own data. The port will be easier if
the components* interfaces have been made less diverse.

* The alternative is to assert correspondences between
dissimilar structures in the two components. This
approach has the disadvantage of duplicating much of the
transformational power of the query language in the
intercomponent assertion language.

4 Toward Repositories for Data Integration
in the Large

The previous section describes guidelines for maximizing
metadata muse across multiple data integration efforts. In
order to achieve this reuse, however, organizations need a
mechanism for managing huge amounts of metadata
required for data integration in the large. This section
argues that metadata repositories for multidatabase
systems provide such a mechanism and that they are a
critical enabler for an industry of CASE tools for
multidatabases. In addition, we describe our efforts to
prototype such a repository.

4.1 The Critical Role of Repositories

The cost of developing and evolving multidatabase
systems could be reduced by extending software
engineering repositories [BernknopfPO] to support such
systems. The primary benefits of using such a
metadatabase are the following:

l It provides a critical enabling technology which
would permit CASE companies to attack data
integration problems incrementally, via tools that
each incorporate some useful expertise.

l It would permit substantial information reuse, by
exploiting the commonalities in the metadata
gathering requirements of the different data
integration scenarios. This is especially important in
large complex organizations, in which a given
component system frequently participates in multiple
data integration efforts.

4.1.1 Discussion

Commercial heterogeneous DBMS products (e.g.,
Unifa, Oracle version 7) can provide transparent access
to multiple systems despite differences in platforms,
operating systems, and DBMSs. But (except for DII’s
Iuterviso) they do little to identify correspondences and
discrepancies between component systems, resolve the
discrepancies between them, incrementally define a
federated view (or a new target schema), create the
mappings from the component systems to the federated
view (or target schema), and specify and manage
constraints across multiple systems. We need CASE tools
that help build and manage a metadatabase about
multidatabase systems.

The extensive literature on schema integration,
federated databases, and multidatabase interoperability
addresses these issues (e.g., [Batini86, Sheth90, Litwin90,
Wiederhold921). While researchers have investigated the
data integration process and have made progress on
supporting individual integration tasks, two things have
made it difftcult to transition their results. First, each
individual effort has naturally addressed only a narrow
part of the integration problem. Second, the tools that
have emerged from these efforts have been closed, unable
to interoperate to form a greater whole. There has been

673

insufficient attention to developing a framework that
would connect a large number of niche tools.

Example: To illustrate the benefit of getting multiple
tools to interoperate, consider the following plausible
scenario. First, reverse engineering tools are used to help
capture information about one or more component
systems in a common (possibly semantic) data model.
Next, another tool is used to hypothesize semantic
relationships between pairs of attributes from multiple
systems. One can then imagine the integrator turning to a
variety of other tools to perfbrm subsequent phases of the
integration process. For example, a tool which uses
attribute assertions to infer relationships among classes,
such as that described in [Sheth93], might be useful here.
Tools which analyze instance-level data in order to
hypothesize relationships across systems, such as
[Beck921 or [Li94], could also be employed Tools which
use declarative specifications about interdatabase
consistency requirements to automatically generate
consistency enforcement procedures, such as [Ceri93] and
[Seligman93], provide further examples.

To date, work on repositories and Integrated CASE (I-
CASE) [Chen92] has focused on the development of
single systems. In I-CASE systems, multiple specialized
tools interoperate by exchanging information through a
common repository. While repository standards
(e.g., IRDS, PCTE) have received very limited vendor
support, cottage industries of specialized CASE tools are
emerging, centered around the repositories of the major
CASE vendors. However, the repository-centered I-CASE
approach has yet to be applied to CASE for developing
and evolving multidatabase systems.

We contend that the development of repositories and
repository standards for multidatabases is a critical step
toward enabling a new industry of data integration CASE
tools. The existence of a common infrastructure would
support interoperability of specialized integration tools.
Individual tools could be added relatively easily,
facilitating the transition of niche tools and techniques
from the research community to government and industry.
Users would benefit by not being confined to a single
vendor. In addition, vendors of integrated systems could
acquire tools from multiple sources.

While to date there has been limited practical
experience with using and managing multidatabase
repositories, there may be advantages to standardizing
their schemas before there are many conflicting
proprietary variants.

4.2 A Repository Prototype

We are currently working to define requirements for a
repository for data integration in the large, to develop a
schema for such a repository, and to refme that schema
through experimentation with a prototype system. We
have restricted our focus to those aspects of the repository
that are unique to the development and evolution of
multidatabase systems; we have not addressed issues that

also exist for single-system repositories (e.g., versioning,
control and presentation integration [Chen92]). In
addition, we have focused on issues of data heterogeneity
(i.e., representation and semantics) and not on
inhstructure heterogeneity (i.e., heterogeneous networks,
operating systems, data models, and DBMSs), all of
which are receiving considerable attention in the
commercial marketplace.

Some of the issues being addressed by our work are:
l What metadata representations are best suited to

supporting reuse across diverse integration efforts?
We seek to maximize reuse across the different
integration scenarios described in Section 2, as well
as across efforts employing different integration
strategies (e.g., bottom-up, top-down, and hybrid
approaches [Sheth901).

l What are the core reusable modules which ought to
be part of the repository infrastructure? What
functionality belongs in tools, and what in the
repository?

l What constructs are necessary to support the
incremental specification of an integrated or
interoperable system? This requires facilities for a
tool or a human to make assertions about partial,
uncertain, and negative information.

l What kinds of background knowledge are usefnl to
multiple integration tools and how should it be
represented7 Examples include enterprise schemas,
generic data elements, knowledge about naming
standards and conventions, and both domain-specific
and domain-independent knowledge bases.

We have developed an initial prototype of a
multidatabase repository using the ITASCA object
database; for prototyping, the convenience of developing
over an OODBMS outweighed conformance to standards.
We have used the repository to capture the metadata
required to support transparent access to two autonomous
law enforcement databases, and are refining the repository
based on that experience.

In the coming months, we will be using the prototype to
manage metadata for performing different kinds of data
integration efforts using overlapping subsets of several
component systems. In addition, another MITRE group,
which is researching techniques for automatically
generating code for intersystem dataflows from a
declarative specification, is developing a relational
adaptation of our schema. These efforts should provide
valuable lessons in our efforts to provide better support
for managing and reusing metadata for data integration in
the large. In addition, demonstrations of the prototype
may help convince procurement officials to require
contractors to deliver integration metadata for any new or
reengineered system.

5 Conclusions
We discussed how organizations perform multiple,
overlapping integration projects, often involving

674

overlapping sets of data. We indicated that reusability of
metadata is an important issue for user organizations, and
reusability of tool code is desirable. For CASE tool
vendors, reuse of code modules is important.

We identified numerous varieties of integration. While
the individual problems are not new, researchers rarely
refer to the whole collection. Modules of functionality
were identified and placed in a hierarchy.

We then argued that reuse should be considered
whenever a methodology for any kind of integration is
developed. We found both good and bad practices in
published algorithms. Some guidelines to make metadata
and functionality more reusable were given. Once again,
our contribution was to supply the necessary context and
abstract the problem, rather than to provide new
techniques.

Finally, we argued that a metadata repository for
multidatabase systems is a critical enabler of information
reuse and of an industry of multidatabase CASE tools. We
briefly described a prototype that we are in the process of
building.

Acknowledgements

This work has been supported by MITRE Sponsored
Research . It has benefited greatly from interactions with
the Distributed Object Management Integration System
and the Data Interoperability Between C31 Systems
projects, respectively sponsored by Rome Laboratory
CSAV and by ESC/XR,ENS. The authors would also like
to thank Chris Bosch for his helpful comments and his
leadership of the prototyping efforts.

References

[Batini86] C. Batini, M. Lenzerini, and S. Navathe, “A
Comparative Analysis of Methodologies for Database
Schema Integration,” ACM ComputingSurveys,
December 1986.

[Beck921 H. Beck, T. Anwar, and S. Navathe,
“Classification Through Conceptual Clustering in
Database Systems,” International Conference on
Information and Knowledge Management (CIKM-92),
Baltimore, MD, November 1992.

[BemknopfPO] J. Bemknopf, “Repository Race Getting
Crowded,” Sojhvare Magazine, July 1990.

[Brod93] M. Brodie, M. Stonebraker, “DARWIN: On
the Incremental Migration of Legacy Information
Systems,” TR-0222-10-92-165, GTE Laboratories,
Waltham, MA 02254.

[Ceri93] S. Ceri and J. Widom, “Managing Semantic
Heterogeneity with Production Rules and Persistent
Queues,” Proceedings of International Conference on
Very Large Databases (YLJIB)), August 1993.

[Chen 921 M. Chen and R. Norman, “A Framework for
Integrated CASE,” IEEE Sofware, March 1992.

[Collet91] C. Collet, M Huhns, W Shen, “Resource
Integration Using a Large Knowledge Base in Camot,”
IEEE Computer, Vol. 24, No. 12, December 1991.

[Guha90] R. Guha and D. Lenat, “Cyc: A Midterm
Report,” AIMagazine, Vol. 11, No. 3, Fall 1990.

[Li94] W. Li and C. Clifton, “Semantic Integration in
Heterogeneous Databases Using Neural Networks,”
VLDB, September 1994.

[Litwin90] W. Litwin, L. Mark, and N. Roussopoulos,
“Interoperability of Multiple Autonomous Databases,”
ACM Computing Surveys, Special Issue on
Heterogeneous Databases, Vol. 22, No. 3, Sept. 1990.

[Rusinkiewicz94] M. Rusinkewicz, A. Sheth, G.
Karabatis, “Specifying Interdatabase Dependencies in a
Multidatabase Environment,” IEEE Computer, Vol. 24,
No. 12, December 1991.

[Sciore94] E. Sciore, M. Siegel, A. Rosenthal, “Using
Semantic Values to Facilitate Interoperability among
Heterogeneous Information Systems,” to appear in
ACM Transactions on Database Systems, 1994

lSeligman931 L. Seligman and L. Kerschberg,
“Knowledge-base/Database Consistency in a Federated
Multidatabase Environment,” Research Issues in Data
Engineering: Interoperability in Multidatabase Systems
(RIDE-IMS ‘93), Vienna, Austria, April 1993.

[Sheth90] A. Sheth and J. Larson, “Federated Database
Systems for Marraging Distributed Heterogeneous, and
Autonomous Databases,” ACM Computing Surveys,
Vol. 22, No. 3, September 1990.

[Sheth92] A. Sheth and V. Kashyap, “So Far
(Schematically) yet So Near (Semantically),”
Proceedings of IFIP TC2/WG2.6 Conference on
Semantics of Interoperable Database Systems, DS-5,
Lome, Victoria, Australia, November 1992.

[Sheth93] A. Sheth, S. Gala, and S. Navathe, “On
Automatic Reasoning for Schema Integration,”
International Journal on Intelligent and Cooperative
Information Systems, Vol. 2, No. 1, March 1993.

[Wiederhold92] G. Wiederhold, “The Roles of Artificial
Intelligence in Information Systems,” Journal of
Intelligent Information Systems, August 1992.

675

