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Abstract 

Making a database system active entails devel- 
oping an expressive event specification language 
with well-defined semantics, algorithms for the 
detection of composite events, and an architec- 
ture for an event detector along with its imple- 
mentation. Thii paper presents the semantics 
of composite events using the notion of a global 
event history (or a global event-log). Parame- 
ter contexts are introduced and precisely defined 
to facilitate efficient management and detection 
of composite events. Finally, an architecture and 
the implementation of a composite event, detector 
is analyzed in the context of an object-oriented 
active DBMS. 

1 Introduction 
This paper focuses on the event component of the ECA 
(event-condition-action) rules used in active databases. 
An ECA rule consists, primarily, of three components: 
an event, a condition, and an action. A significant body 
of work exists on rules and rule proceasing in a DBMS. 
However, the event component of rules has received at- 
tention only recently [MisOl, CM94, GJS92b, GD93] 
and perhaps is the least understood compared to the 
condition and action components. Conditions and ac- 
tions correspond to side-effect free queries and transac- 
tions, respectively. 

Although event, specification has been addressed 
in the literature primarily in the context of active 
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databases, its applicability is not limited to active 
databases. An expressive event specification language 
and its detection can be used for analyzing event histo- 
ries (or event logs) [SW921 in applications, such as stock 
trading, trend/demographic profile computation, and 
auditing (either as events occur or over stored event oc- 
currences). Some aspects of knowledge discovery (e.g., 
determining events that lead to the stock market crash, 
understanding sequences of events leading to an earth- 
quake) involve analyzing event patterns and their effect 
on various recorded observations. In other words, ap- 
plications that examine cause-effect relationships need 
to specify and detect complex event, patterns. 

From the above, it is evident that support for rules 
needs to be complemented with an expressive event 
specification language. As an example, management 
of portfolios for various customers in 8 stock-trading 
application may require a rule of the form “when the 
DowJonea average changes by 20% in any 2 hour in- 
terval, after reaching the value 3750, execute ‘Ikump’s 
portfolio model to determine what to buy or sell”. This 
rule requirea not only the database events, but also tem- 
poral and composite events; this rule requires an expres- 
sive event, specification language for modeling ita events. 
As another example, detecting aperiodic occurrences of 
a pattern of events may indicate a potential money laun- 
dering scheme. 

Thii paper extends earlier work on Snoop [MisSl, 
CM941 in several significant ways. Earlier work was 
primarily concerned with the motivation for the event 
language, classification of events, need for event oper- 
ators, and the set of event operators. In this paper, 
we introduce primitive event, sequences as ordered oc- 
currences of a primitive event (termed primitive event 
history/event-log), and composite event history/event- 
log as a partial order of the merged primitive (or other 
composite) event histories. We define the semantics of 
primitive and composite events over an event history. 
We argue that the detection of composite events over a 
composite event hiitory leads to monotonically increas- 
ing storage overhead as previous occurrences of events 
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cannot be deleted. To overcome this problem, we in- 
troduce the notion of parameter contexts w a mecha- 
nism for precisely restricting the occurrences that make 
a composite event occur 8s well as for computing its pa- 
rameters. We have developed complete algorithms for 
detecting Snoop expreaaions in all parameter contexts. 

Ode [GJS92b, GJS92a] and Samos [GD93, GD94] a;d- 
dress event specification and detection in the context of 
active databases. Although there are some difference8 
between Snoop, Ode, and Samos in the event specifica- 
tion language (for example, Samos has a Times operator 
for defining the occurrence of n events in an interval and 
Ode has a complement operator), they differ primarily 
in the mechanism used for event detection. Ode uses a 
finite automaton and Samos uses a labeled Petri Net. In 
contrast, we use an event graph where event occurrence8 
(both primitive and composite) flow bottom-up from the 
node8 to their parents. The formulation of event hiito 
riea as presented in this paper is different from that of 
Ode [GJS92a]. In addition, parameter contexts as well 
8s event detection in various parameter contexts are ex- 
tensions of our earlier work. 

The rest of thii paper is structured 8s follows. Sec- 
tion 2 provide8 semantics for the operators of Snoop 
[MisSl, CM94]. In section 3, we define global, primitive, 
and composite event histories and present the compu- 
tation of composite events using the event history. In 
section 4, we define parameter contexts and illustrate 
event detection for all contexts. Section 5 provides an 
architecture for composite event detection in an object- 
oriented DBMS and highlights implementation choices. 
Section 6 contains conclusions. 

2 Semantics of Snoop 
For the purpose of thii paper, we assume an equi-distant 
discrete time domain having “0” 8s the origin and each 
time point represented by a non-negative integer. We 
distinguish between an event, an event expression, and 
an event modifier. 

An event is defined to be an instantaneous, atomic 
(happens completely or not at all) occurrence of inter- 
est at a point in time. In database applications, the 
interest in events come8 mostly from the state changes 
that 8re produced by data manipulation operations.’ 
Similar events can be grouped into an event type, and a 
type of events can be further classified into subtypes, re- 
sulting in an event type hierarchy as the class hierarchy. 
For instance, events of database update can be grouped 
into an event type Update, and further grouped into 
Update-IBM, Update-DEC, etc. Different event types 
are distinguished by different event type nameza Event 
of an event type may occur zero or more times over 
the time line; the time of occurrence of an event is de- 
noted by tocc. In addition, for simplicity, we assume 

‘Retrieval operations may also he regarded as events, al- 
though they do not change the database state. 

‘Or they may be distinguished by using parameters such 
8s Updirte(IBM) and Update(DEC). 

that two occurrences of the s8me event type are not 
simultaneous. Furthermore, an event may causally pre- 
cede or follow another, or events may be unrelated. For 
example, the two events end-of-abort Tl and begin-of- 
rollback Tl must follow one another and are causally 
related (causally dependent), whereas the events begin- 
of T1 and begin-of T2 are causally independent and are 
said to be unrelated. An event is definite if and only if 
it is guaranteed to occur. 

An event type is expressed by an event expression, 
which shall be discussed in the following subsection. Al- 
though an event is assumed to instantaneously occur at 
a time point, the event might be initiated at a prior time 
point, thus yielding a closed time interval between the 
start and end points (+occ is the end point by default). 
A transaction event is such an example. In order to 
axplicitly specify (or modify) the occurrence time of an 
event spanning a time interval, event modifiers begin-of 
8nd end-of were introduced in [CM94]. For inherently 
instantaneous events, the two event modiiers yield the 
Same time point. 

2.1 Primitive Events 
Primitive events are those that are pm-defined in the 
system (and using the event modifiers). A mecha- 
nism for the detection is assumed to be available (re- 
fer to [AMC93] for details). Primitive events include 
database events, temporal events, and explicit events. 
Database events correspond to database operations, 
such as data manipulation operations, transactions, or 
methods in object-oriented databases. Temporal events 
8re either absolute or relative. An absolute tempo 
ral event is specified with 8n absolute value of time, 
and represented as: < time string > using the format 
< (hh/mm/ss)mm/dd/yy >. A relative temporal event 
also corresponds to a unique point on the time line 
but in this case both the reference point and the off- 
set are explicitly specified. The reference point may 
be any event that can be specified in Snoop including 
8n absolute temporal event. The syntax for a relative 
event is event + [time string]. Observe that the relative 
event subsume8 the absolute event. However, the ab- 
solute version is retained for practical ressons. Explicit 
events are those events that are detected along with 
their parameters by application programs (i.e., outside 
the DBMS) and 8re only managed by the DBMS. Once 
registered with the system, they can be used 8s primi- 
tive events. 

2.2 Event Expressions and Event 
Operators 

Primitive events discussed so far sre useful for modeling 
a number of applications. However, for many other ap- 
plications, it is necessary to detect certain combinations 
of different events 8s a single event, i.e., 8 composite 
event. In this paper, a composite event is defined by 
applying an event operator to constituent events that 
are primitive or other composite events. In the absence 
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of event operators, several rules are required to specify 
a composite event. Furthermore, some control informa- 
tion needs to be made a part of a rule specification.3 

As mentioned before, &.I event type is denoted by an 
event expression. A primitive event (type)-name itself is 
an event expression. If El, Ez, . . . , E,, are event expres- 
sions, an application of any event operator, described 
below, over the event expressions is an event expres- 
sion. For an event E, begin-of E, end-of E, and (E) 
are all event expressions. If event modifier is omitted, 
end-of is assumed by default. The operator semantics 
described below assumes the end-of modifier. 

2.2.1 Operator Semantics 

An event E (either primitive or composite) is a func- 
tion from the time domain onto the boolean values, True 
and False. 

E : T + {True, False} 

given by 

T(rue) 
E(t) = 

Fbw 

if an event of type E occurs 
at time point t 
otherwise. 

We denote the negation of the boolean function E 
as NE. Given a time point, it computes the non- 
occurrence of an event at that point. The Snoop 
event operators 4 and the semantics of composite events 
formed by these event operators are as follows: 

OR (V): Disjunction of two events El and El, de 
noted ElVE3, occur3 when El occurs or Es occurs. 
Formally, 

(ES%)(t) = El(t) v G(t). 

AND (A): Conjunction of two events El and Es, 
denoted ElAE2, occurs when both El and Es occur, 
irrespective of their order of occurrence. Formally, 

(E&W(t) = (3tl) (((El(h) A Ez(t)) 

‘@a(h) A El(t))) A tr L t). 

Note that the OR and AND operators are commu- 
tative and associative: 

(W’&)(t) = (EaVEl)(t) 

((ElAEa)A&)(t) = (ElA(WW)(t)- 

3. 

4. 

5. 

‘In fact, in production rule systems (e.g., OPS5 [For82, 
FM87]), programs are written by incorporating a lot of con- 
trol information BS part of rulea which have a form similar 
to au ECA rule. Speciiically, in an OPS5 rule, events are 
not explicitly specitied but are inferred for the worst case 
scenario. 

‘We denote the ‘d.isjnnction” , “conjunction”, and ‘not” 
event operators m V, A, and 1, respectively. The symbol 
V, A, and H represent the “or”, “and”, and “not” boolean 
operators, respectively. 

ANY: The conjunction event, denoted by 
ANY(m, El, Es,. . . , En) where m 5 n, occurs when 
m events out of the n distinct events specified oc- 
cur, ignoring the relative order of their occurrence. 
Formally, 

ANY(m, El, IS!&,. . ., En)(t) = 

(31)(32) - - - @m-l) 

(Ei(tl) A Ej(ts) A -. . A E&-1) A El(t) 
A(tlg2+*gm-&t) 
A(1 5 i,j,.--,&I< n) 

A (i # j # - - - # k # I)). 

For example, 

ANY(3, El, Es,. . . , En)(t) = (W(%) 
(Ei(tl) A Ej(b) A El(t) 
A (tl 5 t2 5 t) 
A(l<i,j,k<n)A(i#j#E)). 

Also to specify m distinct occurrences of an event 
E, the following variant is provided: 

ANY(m, E*)(t) = (W(%) s - - (S-1) 
(E(h) A E(b) A - - - A E(t+1) A E(t) 
A(tl < ta < *** < %?a-1 < t)). 

SEQ (;): Sequence of two events El and Es, de 
noted El ; Es, occurs when Es occurs provided El 
has already occurred. This implies that the time of 
occurrence of El is guaranteed to be less than the 
time of occurrence of Es. Formally, 

(El; G)(t) = (S) (El(h) A h(t) A (tl < t)). 

It is possible that after the occurrence of El, Ez does 
not occur at all. To avoid thii situation, it is desir- 
able that definite events, such as end-of-transaction 
or an absolute temporal event, are used appropri- 
ately. 

Aperiodic Operators (A, A*): The Aperiodic 
operator A allows one to express the occurrences 
of an aperiodic event within a closed time interval. 
There are two versions of thii event specification. 
The non-cumulative aperiodic event is expressed as 
A(Er , Es, Es), where El, Es, and E3 are arbitrary 
events. The event A is signaled each time Es occurs 
within the time interval started by El and ended by 
E3. Formally, 

A(El, Es, Es)(t) = (%)(Vt,) (El(h) A G(t) 
A (tl 5 t) A ((tl S tz < t) -+ -Es(h))). 

On the other hand, the cumulative aperiodic event 
A’ (El, Ez, Es) occura only once when ES occurs and 
accumulates the occurrences of ES within the open 
time interval formed by El and Es. This constructor 
is useful for integrity checking in databases and for 
collecting parameters of an event over an interval for 
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6. 

7. 

computing aggregates. As an example, highest or 
lowest stock price can be computed over an interval 
using this operator. Note that Es itself can occurs 
zero or more times within the interval and does not 
contribute to the occurrence of the composite event 
A*. Nonetheless, the parameters of A’ will contain 
the parameters of Ea. Formally, 

A'(&,Ez,&)(t) = (%)(&(+-3(t) 

A@1 < t)). 

Periodic Event Operators (P, P*): A pe- 
riodic event is a temporal event that occurs 
periodically. A periodic event is denoted as 
P(Ei,TI [: parameters], Es) where El and Es are 
events and TI [: parameters] is a time interval spec- 
ification with optional parameter list. P occurs for 
every TI interval, starting after El and ceasing after 
Es. Parameters specified are collected each time P 
occurs. If not specified, the occurrence time of P is 
collected by default. The occurrence of P is formally 
defined ss 

P(Ei, TI [: parameters], Es)(t) = (3tl)(&) 
(El(h) A (@I 5 tz 5 t) + -Es(b)) 
A (t = tl + i *TI for some integer i 2 1)). 

P has a cumulative version P* expressed as 
P’( El, TI : parameters, Es). Unlike P, P* occurs 
only once when E3 occurs. Also, specified parame- 
ters are collected and accumulated at the end of each 
period and made available when P* occurs. Note 
that the parameter specification is mandatory in P*. 
The occurrence of P* is formally defined as 

P*(Ei,TI :parameters, Es)(t) = 
@1)(&(h) A E3(W(t L tl+ TI)). 

NOT (7): The NOT operator, denoted 
-(Es)[El, Es], detects the non-occurrence of the 
event ES in the closed interval formed by El and 
E3 .5 Formally, 

+2)[&,E3l(t) = (%)(V~z) 

@I( -Ez(t) AE3(t) 

A((tl 5 t2 < t) 4 -(Ez(ta) v E3@2)))). 

2.3 Examples 
Below, we show some rules that entail detection of var- 
ious composite events. We use a simplified syntax to 
make the events readable. 
1. Sample IBM stock every 30 minutes from 8 a.m. to 

5 p.m. each day. Event: P*(8 a.m., [30 mins]: IBM- 
stock-price, 5 p.m.) 

2. When 4 withdrawals are made on an account in a 
day, do not allow further withdrawals. Event: A(8 
a.m., ANY(4, withdraw-on-an-account*), 5 p.m.) 

‘Note that this operator ia different from that of !E, a 
uuary operator in Ode [GJS92b], which detects the occur- 
rence of any event other than E. 

3. In a nuclear power plant if there is a change in fls- 
sion rate followed by an increase in temperature, 
introduce moderator rods. Event: (fission-rate; 
temperatureincrease) 

4. Compute the new DowJones average when any two 
of IBM, DEC, or Boeing stock prices change during 
the day. Event: A(8 a.m., ANY(2, modify-IBM, 
modify-DEC, modify-Boeing), 5 p.m.) 

3 Histories and Event Logs 
So far, we have defined the semantics of event operators 
over the time line in which only the time of (primitive 
or composite) event occurrences were recorded. How- 
ever, detection of a composite event entails detecting 
not only the time at which the composite event occurs, 
but also the specific constituent event occurrences that 
make the composite event occur. In thii section, we 
formally express the occurrence of a composite event 
E with respect to its constituent events that form part 
of the occurrence of E. At some level, the constituent 
events are primitive events. 

We denote an occurrence of an event type Ej by ej 
where i indicates the relative time of occurrence with re- 
spect to other occurrences of the same event. Composite 
events are represented as a set of constituent event oc- 
currences within which the order of event occurrences 
is preserved. Note that it is possible for the same con- 
stituent event occurrence to be used for more than one 
occurrence of a composite event. The last event in the 
set is one whose occurrence made the composite event 
occur. The time of occurrence of a composite event is 
the time of occurrence of the last constituent event. 

Global Event History/Event Log is a set of all 
primitive event occurrences and is denoted by H. Each 
primitive event occurrence is represented as a singleton 
set in the log. 

H = {{ei} ] for all j, primitive event ei has 
occurred at instance i relative to events Ej .) 

Primitive Event History/Event Log of the primi- 
tive event type E is a set of the occurrences of E present 
in the Global History H and is denoted by E[H]. 

Ej[H] = ({ej} 1 for alli, E H}. 

Composite Event History/Event Log of a com- 
posite event E that has n constituent events El, * - -, 
E,, is a mapping from the global event history H to 
a subset of El[Hl u . -- @ E,JH] where u is an op 
erator that computes the cross product of two sets 
(whose elements are sets) and merges the elements of 
the cross product using the union operator. For exam- 
ple, given-event hiito& El[H] = ({e:, es}, {ef}} and 
WHI = {#I, (ei)h 
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Event Collection is a collection of all event occur- 
rences of a particular type within a specified time inter- 
val. It is denoted by function p as follows. 

p(E, start-time, end.time) = {e 1 {e} E E[H] 

and start-time 5 t-occ(e) < end-time}. 

Given a global event history, the event history for an 
arbitrary composite event formulated using the opera- 
tors defined in section 2.2 can be computed. Below, 
we define these computations formally. This formula- 
tion will compute all occurrences of a composite event 
(along with participating constituent event occurrences) 
for a finite H. This is termed the unrestricted contezt. 
The operators u, V, A are all left associative. 

3.1 The Unrestricted Context 

1. (&V&)[Hl = (e I e E EdHI U&WI). 

2. (&A&)[H] = ((e’,d} 1 {e’,d} E 

ww4 kwM) u @2Wl t!Jmm 
and t-occ(e’) 5 t-occ(&)}. 

3. ANY(m,E1,&,**-,E,)[H] = {{ei,ej,*--,eh} 1 
t,occ(e’) < t-occ(ej) < ... < t-occ(ek) and 
I{e’,d,...,e”}l = m ,< n and {ei,d,...,et} E 
P (element) } 

where P is the power set and element is a member 
of the set: E,, [H] &I E,,[H] ktJ . - - &I E,, [HI; 
each xi (permutation) can be any i from 1 to n 
with the restriction that each E participating in the 
merged-carte&n product ( l+J ) is distinct. 

4. 

ANY(m,E*)[H] = {{ei,ei,---,ek} I 
t-occ(e’) < t-occ(ej) < . . . < t-occ(ek) and 
I{e’,ei,.*. , ek}l = m < n and 
{ei,d,..- , ekt) E P(WI)l. 

(El; Ea)[H] = {{e’,&} I tncc(e’) < t-occ(ei) 
and {e’, ej} E El[H] &JEz[H]}. 

5. A(El, Es, Es)[H] = {{e’, d} I tncc(e’) < t-occ(&) 
ad (e’,d,e’} E El[H] lj&[H] kJ&[HI). 

6. VLTI, EdHI = {{e’,t) I 
for all {ei, ek} E El[H] uEs[H] and 
t-occ(e’) < t-occ(ek), 
t = t-occ(e’) + j * TI for integer j > 1 
and t 5 t-occ(e”)}. 

7. -&@I, &][H] = {{e’, ek} I 
{ei,ek} E El[H] tj&[H] and 
p(E2, t-occ(e’), tncc(ek)) = 0). 

The definition of the cumulative operatora include the 
accumulation of event occurrencea over an interval. This 
requires the function p to collect the appropriate occur- 
rences. A* and P* are defined below using p. 

8. A*(&, E2, &@I = 
{{e’, p(E2, t-occ(e’), tncc(ek)), ek} I ei E El[H] 
and ek E Es[H] and tncc(e’) < tncc(el’)). 

9. P*(Er,TI,E3)[a = {{e’,r,e”) I 
for all{e’,e’} E El[H] uEs[H] and 
t-occ(e’) < t-occ(e)), 
r = {t I t = t-occ(e’) + j * TI for integer j 2 1 
and t < t-occ(ek))). 

Below, we illustrate the computation of a composite 
event X on a global history H according to the above 
definitions of operators in the unrestricted context. The 
event X ia drawn from the stock market applications. 
The interpretation of constituent events of X is, El: 
opening of stock market, El: change in Dow Jones av- 
erage, Es: change in the price of IBM stock, and E4: 
change in a commodity which depends on IBM stock. 

X = ((El AEa); Es; (EsAE4)) 

H = {{e% {eih @d, #I9 {efh @iI, @%I, {e:H 

EdHI = {{e% @!I) 
EdHI = {{ekh @iI> 
EdHI= {{eih {eiH 
WV = Ue:h {et)) 

(J%AJ%WI = {{eh eih {et, $2, {ef, eid, {ei, &I 
(EzAEd[H] = {{ei, e:}, {e$, ei}, {ei, e:}, {ei, ei}} 

As can be visualized, there are 16 occurrences of the 
event X for the given history. It is not clear whether 
all these occurrences will be useful in all applications. 
We strongly believe that an application would be inter- 
ested in a subset of these events that are meaningful to 
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the semantics of that application. Furthermore, differ- 
ent applications mLy be interested in different subsets. 
In the next section, we propose parameter contexts as a 
way of imposing meaningful restrictions of the compos- 
ite event history generated for an event. 

Note that the detection a composite event in the un- 
restricted context may warrant keeping all event occur- 
rences (especially for ;, Any, and A operators) and hence 
poses practical problems for the management of event 
history and detection. In most applications, either the 
time interval within which the events need to be de- 
tected or the relevance of multiple occurrences of the 
same event is derived from the application semantics. 
Hence, only a subset of the events detected in the unre- 
stricted context is likely to be meaningful. 

4 Composite Event Detection 
Events can always be detected and parameters com- 
puted using the unrestricted context presented in the 
previous section. However, the unrestricted context pro 
duces a large number of event occurrences and not all 
occurrences may be meaningful from the point of view 
of an application. Moreover, the computation and space 
overhead associated with the detection of events in this 
context can be substantial. 

In this section, we refine parameter contexts intro- 
duced in [CM941 for the purpose of reducing the space 
and computation overhead associated with the detec- 
tion of composite events and providing a mechanism for 
choosing a meaningful subset of event occurrences gen- 
erated by the unrestricted context. Parameter contexts 
serve the purpose of detecting and computing the pa- 
rameters of composite events in different ways to match 
the semantics of applications. The choice of a parameter 
context also suggests the complexity of event detection 
and storage requirements for a given application. 

The detection of a composite event may require the 
detection of one or more constituent events as well as 
one or more occurrences of a constituent event. Events 
requiring multiple event occurrences (either of the same 
type or of different types) for the detection of a compos- 
ite event, give rise to alternate ways of computing the 
history as well as parameters, as the events are likely to 
occur several times over an interval. 

The occurrence of a composite event is marked by 
the occurrence of a constituent event that makes the 
composite event occur (using the end-of event modifier 
semantics). This constituent event is termed the termi- 
nator of the composite event. Several constituent events 
can act as terminators, but there is at least one termi- 
nator event for a given composite event. Analogously, 
there is always a constituent event that initiates the oc- 
currence of a composite event. Thii constituent event 
is termed the initiator of the composite event. There 
may be more than one initiators for a composite event. 
For a primitive event, the primitive event itself is the 
terminator and initiator. 

The composite event detector needs to record the oc- 

Figure 1: Global event history 

currences of each constituent event and save its param& 
ters so that they can be used to compute the parameter 
set of the composite event. Consider the following event 
expressions: 

A = (I&A&); Es 

B = EiVEzVEs 
C = El; ANY(2, Es, Es) 

where El, El, and E3 are primitive events. Event A 
is detected when Es occurs provided both El and Ez 
have already occurred in any order. Event B is signaled 
each time an instance of any of the three events El, 
Es or ES occurs. Parameters of event A (as well as C) 
include parameters of all the three events El, Ez and 
E3 whereas the parameters of event B include only the 
parameters of one of its events. Both El and Ea can be 
initiators of A and ES is the only terminator. For C, El 
is the initiator and both Ea and Es can be terminators. 
Figure 1 shows a global event history in which four types 
of events El, Ez, Es, and E4 occur, as well as the event 
graph for the composite event A. 

4.1 Parameter Contexts 
The parameter contexts proposed below are motivated 
by a careful analysis of several classes of applications. 
We have identified four parameter contexts that are use- 
ful for a wide range of applications. Below, we indicate 
the characteristics of the applications that motivated 
our choice of parameter contexts: 
1. Applications where the events are happening at a 

fast rate and multiple occurrences of the same type 
of event only refine the previous data value. In other 
words, the effect of the occurrence of several events 
of the same type is subsumed by the most recent 
occurrence. This is typical of sensor applications 
(e.g., hospital monitoring, global position tracking, 
multiple reminders for taking an action). 
Applications where there is a correspondence be- 
tween different types of events and their occurrences 
and this correspondence needs to be maintained. 
Applications that exhibit causal dependency (e.g., 
between aborts, rollbacks, and other operations; be- 
tween bug reports and releases; start of a transaction 
and its end) come under this category. 
Trend analysis and forecasting applications (e.g., s+ 
curities trading, stock market, after-thefact diagno 
sis) where composite event detection along a moving 
time window needs to be supported. For example, 
computing change of more than 20% in DowJones 
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average in any 2 hour period requires each change 
to initiate a new occurrence of an event. This corre- 
sponds to the initiation of the detection of an event 
for each distinct occurrence. 

Applications where multiple occurrences of a con- 
stituent event needs to be grouped and used in a 
meaningful way when the event occurs. This con- 
text is useful in applications where an event is ter- 
minated by a deadline-event and all occurrences of 
constituent events are meaningful up to the occur- 
rence of the deadline event. For example, in a bank- 
ing application we might want to keep track of the 
amount of withdrawals and deposits performed in a 
day and use it to update the account balance at the 
end of the day. 

We introduce the following contexts for the classes of 
applications described above. These contexts are pre- 
cisely defined using the notion of initiator and termina- 
tor events. We explain the contexts using the composite 
event A which is a constituent event of the composite 
event X in the previous section. We are not concerned 
with occurrences e: and ef as event Ed is not part of 
the event expression of A. 

Recent: In this context, only the most recent occur- 
rence of the initiator for any event that has started 
the detection of that event is used. When an event 
occurs, the event is detected and all the occurrences 
of events that cannot be the initiators of that event 
in the future are deleted (or flushed). For example, 
in the recent context, parameters of event A will in- 
clude the event instances 

i 
ef, ei, e:} (A is detected 

when e!j occurs) and {e:, e2, eg} (when A is detected 
again when el occurs). In thii context, not all oc- 
currences of a constituent event will be used in de- 
tecting a composite event. Furthermore, an initiator 
of an event (primitive or composite) will continue to 
initiate new event occurrences until a new initiator 
occurs. 

Chronicle: In this context, for an event occurrence, 
the initiator, terminator pair is unique. The oldest 
initiator is paired with the oldest terminator for each 
event (i.e., in chronological order of occurrence). 
When a composite event is detected, its parameters 
are computed by using the oldest occurrence of each 
constituent event. However, once used occurrences 
of the constituent events cannot participate in any 
other occurrences of the composite event. For exam- 
ple, parameters of event A in the chronicle context 
will be computed by using event instances (et, e: 
and ei). When the next E3 type event occurs at 
e!. then the A will be detected with the instances 

Continuous: In this context, each initiator of an 
event starts the detection of that event. A termina- 
tor event occurrence may detect one or more occur- 
rences of the same event. This, context is especially 
useful for tracking trends of interest on a sliding time 

point governed by the initiator event. In Figure 1, 
each of the occurrences e: and e: (as well as e: and 
e$ would start the detection of the event A. The 
first occurrence of A will have the instances {ei, ei, 
e’ }. The second occurrence of A will consist of {ei, 
9 e2, ei}. In this context, an initiator will be used at 

least once for detecting that event. 

There is a subtle difference between the chronicle 
and the continuous contexts. In the former, pairing 
of the initiator is with a unique terminator of the 
event whereas in the latter multiple initiators are 
paired with a single terminator of that event. 

l Cumulative: In thii context, for each constituent 
event, all occurrences of the event are accumulated 
until the composite event is detected. Whenever 
a composite event is detected, all the constituent 
events occurrences that are used for detecting that 
composite event are deleted. For example, parame- 
ters of event A will include all the instances of each 
event up to eh when it occurs. The entire instances 
shown in Figure 1 (except es, and es) is the set of oc- 
currences that make the composite event A. Unlike 
the continuous context, an event occurrence does not 
participate in two distinct occurrences of the same 
event in the cumulative context. 

Observe that the cumulative context described above 
cannot be generated as a subset of the event history 
generated by the unrestricted context. The notion of 
accumulation of event occurrences is not present in the 
unrestricted context. For this reason, the definitions of 
A* and P* used the function p which accumulates a 
set of event occurrences of a specific type over a given 
interval. 

Although contexts described above restrict the set of 
event occurrences generated, they are based on the use 
of initiator, terminator pair in different ways. In addi- 
tion to the above contexts, it may be useful to detect 
composite events over non-overlapping time intervals. 
That is for any two occurrences of an event W, the 
tncc of the initiator is greater than the t-occ of the ter- 
minator of the immediately preceding occurrence of IV. 
This notion of the use of non-overlapping intervals can 
be applied to any of the contexts described in this paper, 
including the unrestricted context. Thii can be easily 
seen from the Figure 2. For instance, all events detected 
in recent, chronicle, and continuous contexts are not dii 
joint. If disjoint detection of event occurrences were to 
be specified for the example shown in Figure 2, only the 
first occurrences of events in each context (i.e., 1, 3, 5, 
and 9) would be detected. 

Baaed on the above definitions of contexts, several 
observations can be made. Disjoint continuous context 
is the same as diijoint chronicle context. Also, cumu- 
lative context always generates occurrences that satisfy 
the disjoint specification. In other words, disjoint cu- 
mulative context is equivalent to cumulative context. 
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Figure 2: Illustration of event detection in various con- 
texts for the expression X = (ElAEa; ES; EaAEd) 

4.2 Illustration of Composite Event 
Detection 

The approach taken for composite event detection in 
this paper is different from the approaches taken in 
Ode and Samos. Samos defines a mechanism based 
on Petri Nets for modeling and detection of compos- 
ite events for an OODBMS. They use modified colored 
Petri nets called SAMOS Petri Nets to allow flow of 
information about the event parameters in addition to 
occurrence of an event. It appears that common subex- 
pressions are represented separately leading to duplica- 
tion of Petri Nets. Furthermore, although not stated 
explicitly, Samos detects events only in the chronicle 
context described in this paper. Ode uses an extended 
finite automata for composite event detection. Their 
extended automaton, makes a transition at the occur- 
rence of each event in the history like a regular automa- 
ton and in addition to that it looks at the attributes of 
the events, and also computes a set of relations at the 
transition. The definitions of And and Pipe operators 
on event histories do not seem to produce the desired 
result. 

We use an event tree for each composite event and 
these trees are merged to form an event graph for de- 
tecting a set of composite events. This will avoid the 
detection of common sub-events multiple times thereby 
reducing storage requirements. Primitive event occur- 
rences are injected at the leaves and flow upwards anal- 
ogous to a data-flow computation. Furthermore, the 
commonality of representation between event detection 
and query optimization using operator trees allow us to 

combine both, and optimize a situation (event-condition 
pair) as a unit. This is certainly possible in the rele 
tional model as transformations can be applied to push 
predicates from conditions to and apply them during 
event detection as part of the optimization (in contrast, 
event masks are specified in Ode by the user). Finally, 
the combination of event-condition trees will allow con- 
ditions to be evaluated on a demand basis avoiding un- 
necessary computations. In summary, our formulation 
of event detection readily lends itself to optimization 
techniques used in databases. 

The introduction of parameter contexts adds another 
perspective to the detection of composite events. From 
Figure 2 it is easier to understand how each parame- 
ter context detects different instances of the same com- 
posite event for a given sequence of primitive event oc- 
currences. In this section we will use one event graph 
and discuss how we compute the constituent events of a 
composite event for each of the parameter contexts. Al- 
gorithms for detecting composite events in different con- 
texts and their implementation are detailed in [Kri94]. 
The time line indicates the relative order of the prim- 
itive events with respect to their time of occurrences. 
All event propagations are done in a bottom-up fashion. 
The leaves of the graphs have no storage and hence pass 
the primitive events directly to their parent nodes. The 
operator nodes have separate storage for each of their 
children. The graphs shown in Figure 3 for the various 
contexts are at a time point when primitive event e: 
is detected. The different instances of the same event 
are stored as separate entries and are shown in separate 
lines in the figure. Since the leaves do not have any 
storage, the primitive event e: is passed to the parent 
of leaf E4. The arrows pointing from the child node to 
its parent in the graph indicates the detection and flow 
of the events. 

In the recent context {e& e:) is sent to node A since 
ei and e: are the most recent initiator and terminator 
of the AND operator (node C). Since the terminator e: 
can serve as an initiator for node C (according to the 
semantics of AND), it is not discarded. At node A the 
initiator is already present and {e& e:) serves as the ter- 
minator. So event X is detected with {e:, ei, e& e& e:}. 
Here since the terminator cannot serve as the initiator 
it is discarded and only {e:, et, ei} which is the most 
recent initiator of X is retained at node A. 

In the case of Chronicle context, ei is the oldest ini- 
tiator of node C and it is at the head of the initiator lit. 
Hence e: is paired with e?j and {e:, e:} is passed to node 
A. Once they are passed, unlike the recent context, both 
the initiator and the terminator are discarded. Hence 
node C retains only e$ after AND is detected. Event X 
is detected with {e:,e:,e&e:,e:) at node A and both 
{e:,ei,ei} and (e?j,e:} are deleted. 

Continuous context involves lot of storage overhead 
for event detection. As in the chronicle context we 
retain all the initiators signalled so far in each of the 
nodes. But unlike chronicle context, the terminator is 
paired with each of the initiators present and all the 
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Figure 3: Event detection in various contexts 

initiators are deleted after the detection of the com- 
posite event. We retain the terminator only if it can 
serve as an initiator for future detection of the compo+ 
ite event. At any point of time, the terminator of the 
composite event X in all the other contexts will signal 
only one occurrence of event X, whereas in the con- 
tinuous context it will generate multiple occurrences of 
X. In our example ei, a es are the initiators at node C. 
Both of them are paired with e: to generate two occur- 
rences of the AND at the same point of time, namely 
{e!j, e:), {ei, e:). Since e: can serve as an initiator for 
node C in the detection of a new occurrence of the con- 
stituent event, we retain it and both the initiators e:, 
ei that have been paired are deleted. At node A, there 
are two initiators already present and the two termina- 
tors signalled from node C lead to four instances of the 
detection of event X with the same time of occurrence. 
Among the four contexts presented, the continuous con- 
text generates a larger subset of the event occurrences 
identified by the unrestricted case. 

In the cumulative context, unlike the continuous con- 
text, all the initiator occurrences available so far are 
combined with the terminator and only one occurrence 
of X is detected. In our example, ei, ez are com- 
bined together as one initiator and {e:,e$,e:} is sent 
to parent node A. Similarly, node A detects X with 
{e:, ef, ei, es, ei, e:, ei}. Once detected the unified ini- 
tiator and terminator is discarded. 

4.3 Storage Requirements 
Parameter contexts described in this paper simplify the 
event detection as well as the computation of parame- 
ters as compared to the unrestricted context. 

Some of the parameter contexts, such as continuous 
and chronicle, impose more storage requirements than 
the recent and cumulative contexts. The recent parame- 
ter context can be implemented using a fixed size buffer 
for each event (i.e., at each node of the event graph). 
This is because only the parameters for the most re- 
cent occurrence of an event is stored and hence requires 
the least amount of storage. For the chronicle context, 
a queue is required and the amount of storage needed 
is dependent upon the duration of the interval of the 
composite event and the frequency of event occurrences 
within that interval. Similarly, for the continuous con- 
text, the storage requirements can be excessive, imply- 
ing that the choice of the parameter context for each rule 
needs to be made judiciously. The cumulative context, 
unlike the continuous and chronicle contexts, combines 
all initiators and hence at each node there is only one 
whole initiator combination. Though both continuous 
and chronicle maintain a list of initiators, only contin- 
uous can signal more than one occurrence of a compos- 
ite event for a single terminator. Since this composite 
event might be a constituent event of another larger 
expression, the continuous parameter context requires 
considerable storage compared to any other parameter 
context. The storage requirements can be excessive for 
the cumulative context also. However, based on the se- 
mantics of the parameter contexts, the storage require- 
ment increases monotonically from recent to cumulative 
to chronicle to continuous to unrestricted. This is be 
cause all the event occurrences used in the detection 
of a composite event are deleted when the event is de- 
tected in the cumulative context whereas in the chron- 
icle context, initiator and terminator event occurrences 
are paired in the order of occurrences and hence more 
events are stored for longer duration. Application of 
the disjoint modifier, on any context (except the cu- 
mulative), further reduces the storage requirements by 
allowing events to be discarded earlier. 

5 Active OODBMS 
Architecture 

It is useful to examine the requirements of rule process- 
ing in active databases before presenting an architec- 
ture. Broadly, the requirements are: 

5.1 Support for Events 
l Primitive and Composite event detection: Any 

method of any object class is a potential primitive 
event. Further we permit before- and after-variants 
of method invocation as events. Composite events 
are formed by applying a set of operators to prim- 
itive events and composite events. Both primitive 
and composite events need to be detected by the 
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system. The detection of composite events entails 
not only the time at which the composite event oc- 
curs, but also keeping track of the constituent event 
occurrences. 

Parameter computation: The parameters of a prim- 
itive event corresponds to the parameters of the 
method declared as a primitive event. The process- 
ing of composite events entails not only its detection, 
but also the computation of the parameters associ- 
ated with a composite event. The parameters of a 
composite event need to be collected, recorded and 
passed on to condition and action portions of a rule 
by the event detector. Furthermore, these param& 
ters need to be recorded in such a way that they can 
be interpreted by the condition and action compo 
nents of a rule. 

Online and batch detection of composite events: The 
composite event detector needs to support detection 
of events as they happen (online) when it is coupled 
to an application or over a stored event-log (in batch 
mode). 

Inter-application (global) events: In addition to rules 
based on events from within an application, it is 
useful to allow composite events whose constituent 
events come from different applications. This is 
especially useful for cooperative transactions and 
workflow applications. This entails detection of 
events that span several applications. 

5.2 Support for Rules 
Multiple rules: An event (primitive as well as com- 
posite) can trigger several rules. Hence, it is neces- 
sary to support a rule execution model that supports 
concurrent as well as prioritized rule execution. 

Nested rules: When rule actions raise events which 
trigger other rules there is nested execution of rules. 
Rules can be nested to arbitrary levels. 

Coupling modes: The three coupling modes (imme- 
diate, deferred and detached) discussed in HiPAC 
were introduced to support application needs. Sen- 
tinel architecture should be able to support all of 
them. 

Rule scheduling: In the presence of multiple rules 
and nested execution, the architecture need to sup- 
port prioritized serial execution of rules, concurrent 
execution of all rules, or a combination of the two. 
Further, the system, should allow the application de- 
signer to choose from among the above alternatives. 

The above requirements as well as the 00 model into 
which active capability is being incorporated affect the 
design of both the rule processing subsystem and the 
event detector. Below, we present the Sentinel architec- 
ture in terms of extensions to the Open OODB system 
and discuss how the above requirements are supported 
in our current implementation. 

5.3 Sentinel Architecture 

The Sentinel architecture proposed in this section ex- 
tends the passive Open OODB system [Ins93]. 

In order to satisfy the above requirements in an 
object-oriented framework, we propose the architecture 
shown in Figure 4 which is being implemented as an ex- 
tension to the Open OODB Toolkit developed at Texas 
Instruments. Our proposed architecture relies on the 
use of threads (or light weight processes) for separating 
event detection from application execution in a trans- 
parent manner. 

Our primitive event detection is based on the design 
proposed in [AMC93]. Primitive events are signaled by 
adding a notify procedure call in the wrapper method 
by Sentinel. Also, appropriate calls for the parameter 
collection are added at this stage. Both primitive and 
local composite events are signaled as soon as they are 
detected. However, the detection of a composite event 
may span a time interval as it involves the detection and 
grouping of its constituent events in accordance with the 
parameter context specified. A clean separation of the 
detection of primitive events (as an integral part of the 
database) from that of composite events allows one to: 
i) implement a composite event detector as a separate 
module (ss has been done) and ii) introduce additional 
event operators without having to modify the detection 
of primitive events. 

Each application has a local composite event detec- 
tor (Figure 4) to which all primitive events are sig- 
naled. Our implementation uses threads (light weight 
processes), instead of processes, for separating compos- 
ite event detection (as well as for the execution of rules) 
from application. When a primitive event occurs it is 
sent to the local composite event detector and the appli- 
cation waits for the signaling of a composite event that 
is detected in the immediate mode. The local composite 
event detector and the application share the same ad- 
dress space and our event detector uses an event graph 
similar to operator trees. 

Parameter computation for composite events raises 
additional problems in the object-oriented framework. 
The lack of a single data structure (such as a relation) 
makes it extremely difficult to identify and manage p& 
rameter computation even within an application. As a 
first cut, we include the identification of the object (i.e., 
oid) as one of the event parameters and other param- 
eters which have atomic values. However, no assump 
tions are made about the state of the object (when the 
oid is passed as part of a composite event) as the de- 
tection of a composite event is over a time interval. A 
linked list that contains the parameters of each primi- 
tive event (as a list) that participates in the detection 
of the composite event is computed and passed to the 
rule associated with that event. Complete support for 
parameters of composite events may require versioning 
of objects and related concurrency control and recovery 
techniques. 

A rule specified to be executed in the deferred mode 
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Figure 4: Sentinel architecture 

is rewritten at the source code level into a rule in im- 
mediate mode by the Sentinel pm-processor. Our event 
specification language Snoop [CM941 supports a num- 
ber of operators of which A* monitors the cumulative 
effect of an event occurrence within a specified inter- 
val. For example, if we need to accumulate all insert 
events in a transaction, we can specify the event as 
A*(begin_transaction, insert, endtransaction). Using 
this operator, we model the deferred coupling mode in 
terms of the immediate coupling mode by using begin 
and pre-commit transaction events and postpone the 
execution of the rule to the end of the transaction. 
In Sentinel, the begin transaction event is always sig- 
nalled at the beginning of a transaction and the pre- 
commit is signalled before the commit of a transaction. 
Using the A* operator, a rule in deferred mode with 
an (arbitrary) event E is transformed by the Sentinel 
pm-processor to A*(begin-transaction, E, pre-commit- 
transaction). This causes a deferred rule to be executed 
exactly once even though its event may be triggered a 
number of times in the course of that transaction exe- 
cution. 

For rule execution, a nested transaction manager is 
implemented with its own lock manager. This is in ad- 
dition to the concurrency control and recovery provided 
by the Exodus for top-level transactions. Each rule 
(i.e., condition and action portions of a rule) is packaged 
into a subtransaction. A number of subtransactions are 

spawned as a part of the application process. This is 
further elaborated in [CKTB94]. Support for multiple 
rule execution and nested rule execution entails that the 
event detector be able to receive events detected within 
a rule’s execution in the same manner it receives events 
detected in a top level transaction. This is accomplished 
relatively easily by separating the local composite event 
detection from the application as shown in Figure 4. 
This separation also readily supports both online and 
batch (or after-thefact) detection of composite events. 

Finally, in the presence of composite events, it is 
possible for the events to cross transaction boundaries 
(within the same application). Currently, we provide a 
mechanism to flush all events generated by a transaction 
when it commits. More work is required to understand 
the semantics of rule execution whose events span trans- 
action boundaries. 

6 Conclusions 
This paper significantly extends our earlier work on an 
expressive event specification language. We have pro- 
vided a declarative semantics of each operator of Snoop. 
We introduced the notion of global event history and 
local event history for defining the computation of par- 
ticipating events for an arbitrary composite event ex- 
pression. We refined the parameter contexts introduced 
earlier using initiator and terminator eventa. We have 
illustrated the detection of composite events in various 
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contexts and proposed an architecture for its implemen- 
tation in an object-oriented framework along with a 
discussion of the various issues involved. Finally, algo 
rithms for all parameter contexts have been developed 
and implemented using the architecture shown in this 
paper. 

In this paper, we are assuming that the param- 
eters of an event can be computed once the event 
occurrences are known. It is useful, however, to 
explicitly introduce (as a minimum) the identifica- 
tion of the object (i.e.,, oid) for which the primitive 
event is applicable. This can be done by specify- 
ing, for each primitive event, a parameter which is 
either a constant or a variable representing the oid. 
For example, the primitive event Change-price(IBM) 
indicates that the event occurs when the method 
Change-price is executed for the IBM object. As an- 
other example, Change-price(X)Chanprice(X) refers 
to the sequence of events on the same oid X. 
And Changeprice(X);Change-price(Y) refers to the m 
quence of events on two different oid’s. Detailed diicus- 
sion of parameter computations are beyond the scope 
of this paper. Some of these issues have been discussed 
in section 5. All the event detection algorithms we have 
developed extend readily when the oid is allowed ss an 
explicit parameter of a primitive event. 
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