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1 Introduction 

Abstract 

When an update to a view is requested by 
a user, there may be no unique way of up 
dating the stored relations in the database to 
realize the requested update. Chosing one of 
the alternatives for updating stored relations 
may not reflect the change that has actually 
taken place in the real world; in the presence 
of other derived views, the database may ac- 
tually present a very wrong model of the world 
to the user. The problem is even more severe 
in the case of deductive databases. For avoid- 
ing this problem, we introduce a new notion of 
view updates, called cumulative updates. The 
key idea behind cumulative updates is that 
update mechanisms should wait for further 
update requests to resolve ambiguities. Equiv- 
alently, current update requests must also take 
into account previous requests made to the 
knowledge base. Cumulative updates, there- 
fore, subsume conventional updates in which 
only the current update request is considered. 
In this paper, we motivate the need for cumu- 
lative updates and formally define the notion 
of such updates as well as the different classes 
therein. We then give methods for computing 
one particular class of cumulative updates. 
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When a view update is requested by a user, there may 
be no unique way of updating the stored relations in 
the database to realize the requested update. How- 
ever, chasing one of the alternatives for updating base 
relations may not reflect the change that has actually 
taken place in the real world. For example, consider 
two stored relations empdept and deptMgr that record 
the department in which each employee works and the 
manager for each department respectively. Assume 
that a view empMgr has been defined on this rels 
tional schema which is obtained by joining the two 
base relations: 

empMgr(X, Y) t empdept(X, Z), 

deptMgr(Z, Y) 

Let us assume that in the current database, “Tim is the 
manager of the sales department” and “Tom works in 
the sales department”. Therefore, the view empMgr 
contains the tuple “manager of Tom is Tim”. Now 
consider an update request on the view which states 
that “Smith is the manager of Tom”. There are at 
least two ways in which this update can be realized: 
(1) Tom has now moved into a new department which 
is managed by Smith, or (2) Smith has replaced Tim 
as the manager of the sales department. Depending 
upon which alternative is chosen, updates to the base 
relations empdept and deptMgr will be made. How- 
ever, each choice may bring with it additional co- 
quences. For example, it may be that Tim has been 
fired and therefore should not receive his next salary 
cheque. The database has no way of knowing which 
alternative would be best. But at least it should make 
sure that it does not misrepresent the state of affairs 
in the real world. On the other hand, the user may 
not have enough information to resolve this conflict 
either. Indeed, he may come to know of what had a~- 
tually happened at a later date, and this information 
will then come in as a new update request. There- 
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fore, it would be nice to have an update mechanism 
that would allow the database to record the ambigu- 
ous state of affairs concerning its model of the world 
and let the user be warned. It would also be nice if 
the database would wait for further update requests to 
resolve the ambiguity. The notion of cumulative up- 
dates that we propose in this paper is precisely aimed 
at achieving this objective. 

The problem is even more serious in the case of 
deductive databases where derived relations are recur- 
sively defined. Sometimes, the number of alternatives 
for an update may be infinite. We shall now consider 
another example to illustrate the problem of side ef- 
fects caused by other derived views. 

Consider the following propositional knowledge 
base KB: 

p t ml,m2 
p t nl,m2 
q t a,m2 

r t &ml 
8 t L,nl 

a 
b 

Now consider the update request to add p. This up 
date may be realized in two ways: 

(i) add ml and add m2 

(ii) add nl and add m2. 

However, both alternatives have side-effects. The first 
alternative causes r to be true in addition to p. The 
second alternative causes s to be true in addition to p. 
In addition, both alternatives cause q to be true. 

It is not possible to come up with a “belief revision” 
semantics that would allow us to identify, in all situa- 
tions, which of the two alternatives in the above exam- 
ple is better [AGM85, Da188, EG92, FKUV86, Gar88, 
Gra91, KM91, Mar91, MS86, Neb91, HdK87, WinSO]. 
So, normally we are forced to make a choice, and al- 
most all the update mechanisms proposed in the liter- 
ature make a choice or leave it to the user to make a 
choice, where s/he may have no way of knowing apriori 
which is the correct choice [BKSW91, Dec90, GL90, 
KM90, ML91, HB92, S191, Tom88, TA91, Wiit931. 

There are severe problems with making a choice. 
Suppose we choose alternative (i) in our example. 
Then, we also believe that r is true. However, suppose 
that after some time, more information concerning the 
world is known. Say, an update request to add s is re- 
ceived. It can be seen that, if choice (ii) were made in 
first place, then the second update request would have 
been automatically satisfied. If nl is now added to K B 

(so as to realize “add s”), then the KB updates do not 
satisfy the minimal change criterion (which seems to 
be the most natural one). In order to satisfy this cri- 
terion, ml should be deleted and nl should be added 
to the KB. It is not at all straightforward to discover 
that that the above two operations, when performed, 
would result in a minimal change. 

In addition to the criterion of minimal change, the 
second problem with forcing an option is that r may 
be believed to be true when in reality it is not the case. 
In other words, the update we request is not the update 
we get. 

Of course, one may argue that instead of converting 
an update on a view (a derived relation) to that of an 
update on a base relation, one may just “update” the 
derived relation. That is: “p” is added to the database. 
Such an approach is proposed in [LLS93]. However, 
there are serious problems with this approach too, the 
main ones being the following: (1) It may not be mean- 
ingful or indeed impossible to “store” some views. For 
example, let us assume that the date’s of birth of all 
employees are recorded in a base relation employee- 
Dob and that a view of the ages of all employees em- 
ployeeAge is defined over employeeDob, where age is 
obtained by subtracting the date of birth from the cur- 
rent date. When a request to update the view employ- 
eeAge is received, it is not meaningful to store the age 
of the employee explicitly since it changes every day. 
(2) If p is stored directly in the KB of our example, 
then it would not be possible to know that q is also true 
in the world. (3) Undisciplined addition and deletion 
of base and derived relations to a database results in 
inconsistencies and anomalies. For example, when an 
employee (eg. Smith) is fired, he may still - according 
to the database - be the manager of some employees 
(eg. Tom) since the view empMgr is now explicitly 
stored! 

For the above reasons, we believe that a better 
mechanism for realising updates in a database is re- 
quired. The purpose of this work is to propose a 
new concept of updates, called cumulative updates, 
which overcomes the above problems. In particular, 
one would like to have an update mechanism such that 
after the addition of p in our example 

1. p is true in (the new) KB 

2. ml and nl are possibly true in KB since there is 
no way to say which is true for sure 

3. r and s are possibly true in KB (follows from 2) 

4. m2 is true in KB (since m2 will have to be added 
no matter which choice is made) 

5. q is true in KB (follows from 4) 
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Similarly, after a further addition of s, 

1. p is still true in (the new) K B 

2. nl is true in the new KB but ml is not 

3. s is true in the new KB but r is not (follows from 
2) 

4. m2 is still true in KB 

5. q is still true in KB 

In other words, cumulative updates behave as though 
always the right choice is made. This means, however, 
that updates have to take into account previous update 
requests as well as the current one. 

Cumulative updates can vary widely in complexity 
depending upon whether updates involve only the ad- 
dition and deletion of facts or they involve the addition 
and deletion of rules or they involve the induction of 
new rules. 

Several methods for updating knowledge bases have 
been proposed in the literature [BKSWSl, Dec90, 
RB92, GL90, KM90, Tom88, TA91, Wiit.931. Although 
some of the methods consider composite updates (i.e. 
several atomic updates at a time) e.g. piit93], they 
do not consider situations where the knowledge base 
is queried in between the atomic updates. These ap- 
proaches require that the user or the system make a 
choice to realize an update. As we have outlined above, 
there are severe problems with making choices. Kakas 
and Mancarella [KM901 express some of the sentiments 
found in this paper regarding choices. They are how- 
ever concerned with unsatisfiability of update requests 
and with backtracking over previous choices in case an 
update request proves unsatisfiable. They suggest the 
use of a truth maintenance system for backtracking 
over previous update choices. We are not aware of any 
work in the literature which deals with the problem of 
cumulative updates. 

The main aim of this paper is to define the notion 
of cumulative updates in the more general setting of 
knowledge bases, identify the different classes of cumu- 
lative updates, and to propose a method for a specific 
class of cumulative updates for knowledge bases. The 
method we propose is sound but not always complete. 
The method is straightforward to implement for the 
relational case. 

The rest of the paper is organized as follows. We 
describe different classes of cumulative updates in sec- 
tion 2. In section 3, we define the notions of correctness 
and completeness for techniques dealing with cumula- 
tive updates. We provide an exhaustive example in 
section 4 and motivate a technique to realize cumu- 
lative updates. The technique consists of two parts 
described in sections 5 and 6 respectively. The first 

part concerns the creation of some new rules from the 
original rules in the KB (section 5). This is basically 
a rewrite technique such as Magic Sets. The second 
part, described in section 6, concerns the maintenance 
of a table of ambiguous facts. In section 7, we out- 
line how the proposed technique may be implemented 
for the relational case to realize cumulative updates. 
Conclusions and future work are outlined in section 8. 

2 Cumulative Updates 

Different classes of cumulative update problems are 
conceivable depending upon the syntax and the seman- 
tics of a knowledge base, the interpretation of what a 
sequence of updates means, the allowed modifications 
of the knowledge base, and so on. We list six criteria 
according to which the problem of dealing with cumu- 
lative updates can be classified. Each criterion is based 
on a particular assumption. Each assumption results 
in a different instance of the problem. Therefore, there 
is a whole class of problems of cumulative updates. 

We assume to have a knowledge base KB = 
(F, R, C) consisting of a set of ground atoms or facts F, 
a set of rules R and a possibly empty set of integrity 
constraints C. Purthermore, we assume a sequence 
of transactions Tl,Tz,Ta, . . . coming in that order. 
Each transaction Ti consists of a sequence of updates 
Ui,l, ***P Ui,ni* Hence a transaction sequence Tl, . . ..Tk 
is also an update sequence ul,i, . . . . UI,,,~, . . . . uk,nr. Six 
criteria have a significant influence on the problem of 
cumulative updates. Below, we list these criteria with 
possible values for each criterion. 

1. Syntactic restrictions on KB 

(a) Propositional rules and constraints 
(b) Datalog rules without negation [ull88] 

(c) Datalog rules with stratified negation [ull88] 

(d) Rules with function symbols [Llo87] 
(e) Datalog rules without recursion (equiva- 

lently, views defined by relational algebra ex- 
pressions) pll82] 

2. Semantics 

(4 Well founded model semantics [GRSSl] 

(b) Negation as failure [Llo87] 

(4 Least model semantics [vEK76] 

(4 Minimal model [ABWSS] 

(4 Clark completion [Cla78] 

( f 1 Classical logical consequence [Men871 

3. Information which may be changed by an update 

(a) The facts F 
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(b) The facts F and the rules R 

How to decide between different potential solu- 
tions 

Choose the appropriate solution among the 
set of all potential solutions 
Dealing with semi-modalities (i.e. a fact can 
also be “possibly true” or “possibly false” re- 
spectively) and definitely confirming a modi- 
fication only when it is unique (i.e. the modi- 
fication is required by all potential solutions) 

5. Semantics of the sequence of updates 

(4 

04 

(4 

Update UQ is independent from update ul,h 
ifi#lorj#h 
Transactions are independent of each other; 
the intention of a single transaction Ti is to 
make /\jui,j true 
All updates throughout all transactions co- 
operate, the user would like to make A~JU~J 
true, but knows the information at different 
points in time (hence has to put the updates 
into different transactions) 

6. What’s a solution 

A solution is a fact (and/or rule) modifica- 
tion which makes the update true and makes 
minimal changes on the set F (and the set 
RI 
A solution is a fact (and/or rule) modifica- 
tion which makes the update true and mini- 
mally changes the information deducible 

The following example illustrates criterion 5 under the 
assumptions l(a), 2(d), 3(a), 4(b) and 6(a). 

We consider the propositional knowledge base con- 
sisting of the constraint 

+ q,c 

(i.e. q and c cannot hold simultaneously) and the rules 

P 4- a,b 
P + c,b 

q+a 

q+d 

r t d,c 

We consider two sequential transactions consisting of 
one update each: 

1. addp 

2. addq 

Let us first assume 5(b). From the request to add 
p we can conclude that b holds since b is true in all 
alternatives that make p true (one alternative is to 
add {a, b) and the other alternative is to add {c, b}). 
Hence we confirm this information by adding the fact 
b to the knowledge base. Whilst p should be true after 
the transaction, a and c should be possibly true. A 
subsequent request to add q results in no further con- 
firmations (one alternative is to add u and the other 
alternative is to add d). Whilst g should be true after 
the transaction, a and d should be possibly true. Com- 
bining the individual consequences of the two updates 
together will make r possibly true (since c is possibly 
true by the first update and d is possibly true by the 
second update). So after both transactions p,g and 
b should be true, and a, c, d and P should be possibly 
true. 

On the other hand, if we assume 5(c) then the con- 
clusions are different. Having received the update to 
make p true, we know that b is true. Hence it is added 
to the knowledge base. We also know that a and c are 
possibly true. Then we receive the transaction add q. 
So we have to look for solutions making pAq true. The 
only minimal solution is to add a (since adding {d, c} 
is forbidden by the constraint). Hence we confirm a 
by adding it to the knowledge base. This now leaves t 
definitely false and makes p, g, a and b true. 

In the sequel, we will assume 5(c) as the semantics 
of a sequence of updates. Let ~18, . . ..uP be those re- 
quests of ui,i, . . . . uk,nr not yet uniquely realized (i.e. 
not made true by confirmed information alone). Then 
we try to deduce the information necessarily needed to 
make the not yet uniquely realized updates 1111, . . . . UI~ 
simultarieously true. The modifications necessarily 
needed to make u11 h . . . A UP true are then confirmed 
and the base relations are modified accordingly. In 
course of time, more and more of the remaining up 
dates ~18, . . . . UII will be realized in the wake of new 
information arriving in form of update requests on ex- 
tensional or intensional data. 

In the rest of the paper we discuss the problem of 
cumulative updates under the assumptions l(b), 2(d), 
3(a), 4(b), 5(c) and 6(a). 

The novelty of our study stems from the following 
facts: 

l We define the semantics of a sequence of update 
transactions (no other study so far considers the 
case of a sequence of update transactions). 

l We propose not to force a choice in case of up 
date ambiguity (choice 4(a)) but instead to deal 
with the problem through semi-modalities (choice 
4(b)). 

Introducing semi-modalities creates another as- 
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sumption dimension, namely, whether a transaction is 
allowed to make updates on possibly true and possibly 
false information. Updates on “possible” information 
may be interpreted in two ways. 

l The first interpretation arises when the user is 
not aware of the fact that the knowledge base is 
assimilating updates in a cumulative fashion. It 
is then reasonable to assume that an update re- 
quest to delete a “fact” arises in the world only 
if that “fact” was previously true in the world. 
Then the update request to delete “fact” when 
pos(fact) holds (i.e. when fact is possibly true) 
in the knowledge base implies that “fact” should 
have been true in the knowledge base prior to the 
current update request. This kind of reasoning 
can be achieved only when both the history of 
events occurring in the real-world as well as a his- 
tory of the database updates are both recorded in 
the database [Sri88, Rei92]. Recording such his- 
tories enables one to reason about the two notions 
of time, namely valid time and transaction time, 
that are required in advanced knowledge base ap 
plications [Sri93]. 

l The second interpretation is plausible when the 
user is aware of the fact that the knowledge base 
is assimilating updates in a cumulative fashion. 
It is then reasonable to assume that the update 
request to delete “fact” when pos(fad) holds in 
knowledge base implies that the user would ac- 
tually like to confirm that “fact” is not true in 
the real-world. In other words, the user is try- 
ing to reduce the ambiguity or uncertainty of the 
information contained in the knowledge base by 
explicitly ruling out some possibilities. 

Both interpretations are equally plausible. However, 
the first one requires a more complicated reasoning 
and an explicit treatment of time. For the sake of 
simplicity, we adopt the second interpretation in this 
paper. 

The assumptions 3(a) and 6(a) we made are natu- 
ral and more or less standard in the literature. The 
update methods proposed so far [BKSWSl, Dec90, 
GL90, KM90, LLS93, RB92, Tom88, TA91, Wiit93] 
are mostly concerned with criteria 1 and 2; they only 
differ in the methods proposed for solving the update 
problem. 

We now give the formal definitions needed for a pre- 
cise understanding of the notions presented in this pa- 
per. 

3 Definitions 

Let J!Z be a first order language built from a finite al- 
phabet A containing three disjoint c1asse.s of predicate 

symbols: intensional predicates IP, extensional predi- 
cates EP and possible predicates PP. ,4 satisfies that 
for each n-ary predicate symbol p in EP or IP, there 
are the two n-ary predicate symbols possibly-p and 
possibly-not-p in PP. The predicates possibly-p and 
possibly-not-p will be written as pas(p) and pos(~p) 
respectively. ,4 contains also a finite set of skolem con- 
stants Sk = {cl, ~2, . ..). 

A knowledge base, denoted KB and sometimes sub- 
scripted, is a triple (F, R, C) of sets: F is a set of facts 
or ground atoms, R is a set of rules and C is a set of 
constraints. A rule is an implicitly universally closed 
formula of the form H t L1, . . . . L, where H is an 
atom built from a predicate in IP and Li (1 5 i 5 n) 
is a literal. A constmint is a universally closed, range- 
restricted formula. In this paper we assume Horn 
rules, i.e. each literal in any rule body is positive. 
This is assumption l(b). 

An update u, sometimes called update request, is a 
conjunction of ground literals. Sometimes we also say 
that fact A is to be deleted or should be made false 
while referring to the update -A. 

As mentioned earlier in this paper, we will restrict 
ourselves to the case where only modifications on facts 
are allowed. This reflects assumption 3(a). By m 
we denote a modification which is a pair (S+, S-) of 
sets of facts built from predicates in EP. If KB is a 
knowledge base then m(K B) = (KB U S+) - 9. A 
modification can also be viewed as a formula. Each 
skolem constant in m is replaced by a new variable 
symbol, the atoms in S- are existentially closed, the 
conjunction of all atoms in S+ plus the negation of 
the atoms in S- are conjunctively connected, and fi- 
nally, the resulting formula is existentially closed and 
the quantifiers moved in. For example, the modifica- 
tion m = ({PU), q(cl, c2), r(cl, 31, {t(c3,4)1) rep- 
sents the formulap(1) A (3X(3Yq(X,Y) A r(X, 2))) A 
lm(Z, 4). 

We introduce a two-valued function a mapping a 
knowledge base and a closed formula to the set {t, f}. 
That is, for an update u we have (r(KB, u) = t iff 
< /= u and cr(KB,u) = f iff < p u, where < denotes 
the chosen semantics under criterion 2. In this paper, 
we assume that [ = MKB where MKB denotes the 
minimal model of the rules and the facts in KB. This 
reflects our assumption 2(d). Therefore, in this pa- 
per, a is the minimal model semantics of a database 
consisting of Horn rules and facts. 

Let m be a modification, u be an update and KB = 
(F, R, C) be a knowledge base. We say that m is a 
solution (wrt u and KB) iff 

l cr(m(KB), u) = t, 

l a(m(KB), heecc) = t, and 
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l no proper subformula of m is logically equivalent 
to m. 

A solution is therefore a fact modification which makes 
the update true, leaves the constraints satisfied and is 
minimized with respect to facts involving skolem con- 
stants. Notice that the definition of solution is in- 
dependent of any specific assumptions that one may 
make i.e. it applies to any combination of assump 
tions. 

We assume a belief revision function /3 (6(a) and 
6(b) are belief revision functions). The set of all pos- 
sible solutions wrt u and KB under the belief revision 
function @ is denoted by /3( K B, u). In our case, we as- 
sume /I to be 6(b), so that /3(KB, u) is the set contain- 
ing exactly the solutions which are minimal according 
to the partial order 5 defined as follows. Let ml and 
rn2 be two modifications viewed as formulae. Then, 
m2 is as big as ml, denoted ml C ma, iff ma logically 
implies ml. The two modifications are equal, denoted 
ml z ma, iff ml & m2 and ma E ml. The intersec- 
tion m of ml and m2, denoted ml fl m2(= m), is the 
biggest modification such that m G ml and m G ma. 

The natural criterion for making a fact modification 
due to an update request definite is that whenever a 
submodification m is required by all (or equivalently 
all minimal) modifications realizing an update then 
and only then m has enough support to be made defi- 
nite. We call this strategy confirmation by uniqueness. 
This strategy reflects assumption 4(b). We say that a 
modification m is confirmed (made definite) by update 
u and knowledge base KB iff m = nmlE@(KB,U)m’. 
Note that m is syntactically determined only up to 
equality (z) which means that its representation is 
determined up to renaming of skolem constants. 

We now define correctness and completeness of 
techniques dealing with cumulative updates under 
the assumption 5(c). Let KBo be a given, ini- 
tial knowledge base and ur,r, . . . . uk,,,* be a sequence 
of updates received from a sequence of transactions 
Tl = ~l,l, --.,~l,n~, 5% = UZ,I, ---,U2,nac . . . . Tk = 

uk,l, -a-) uk,nr- Then the knowledge base sequence 
(KBo, KBl, . . . . K&) is said to be cow& iff for all 
I (1 < I < IS) and for each ground atom A the follow- 
ing four conditions hold: 

1. (a) We set KBL to K Bo and define KB,’ to be 
m(KB;-l) where m is the modification con- 
firmed by ~1’ A . . . A ~1’ and KBI-,. 

(b) Let I.Q#, . . . . u11 be all updates in ur,r, . . . . UI,,,, 
such that a(KBiN1, II<‘) = f holds I. 

2. ~Y(KB~,A) = t * 

‘Note that l(a) and l(b) recursively define a confirmed 
knowledge base sequence KBA to KB;. 

(a) a(KBI,A) = t; or 

(b) a(KBL, > A) = t and there are ml and 
m2 in P(KB[-l,ul~ h . . . A ~1,) such that 
a(ml(KBI’_1),4 = t and 
4m(KBL), A) = f. 

3. a(KBl,pos(A)) = t * 

(a) there is an m E P(KB:-, , ~1’ A . . . A up) such 
that a(m(KBiel),A) = t, and 

(b) @&,A) = f. 

4. a(KBl,pos(-A)) = t ==R 

(a) there is an m E P(KB,‘_, , ul~ A . . . A up) such 
that a(m(KBIml),A) = f, and 

(b) a(KBl,A) = t. 

The knowledge base sequence is said to be complete 
iff condition 1 holds and the if-counterparts (e) of 
conditions 2, 3 and 4 (i.e. the when the implications 
in 2, 3 and 4 above are reversed) hold. 

These definitions of correctness and completeness 
also describe what happens in the case of an unrealiz- 
able update: it leads to a situation where no changes 
can be made, regardless of what further update r* 
quests arrive. We now give a comprehensive example. 

4 Example 

Consider the database of a company. The basic infor- 
mation is given through two base relations: h(X,Y) 
(Y is head of department X) and tu(X,Y) (Y is a 
worker of department X). From these base relations 
some information is deduced intensionally through 
rules: d(D,X) (X is an employee in department D), 
sd(X,Y) (X and Y work in the same department), 
m(X) (X is a manager), and p(X,Y) (X and Y are 
peers). Furthermore, three integrity constraints (de 
noted ICs) assure that nobody is in more than one 
department, that no department has two heads, and 
that nobody is a worker and a department head at the 
same time. 

IC: d(D1, X), d(D2, X) + Dl = 02 (1) 
h(D,X), h(D,Y) + x = Y (2) 
1(3Dlw(Dl, X), 302h(D2, X)) (3) 

WAX) +- w(D,X) (4) 
d(D,X) t h(D,X) (5) 

4X, Y) + W, W, dP, Y) (6) 
m(X) t h(D,X) (7) 

PV,Y) 4- m(x), m(Y) (8) 

P(XJ) + ~uL%wY) (9) 
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The information acquisition and inference scenario 
that we would like to achieve, given the above rules 
and constraints, is illustrated in the following. Since 
an update (a piece of information) can not always be 
explained uniquely we would sometimes like to deduce 
facts such as pos(~fact) denoting that fact is possi- 
bly false, or pos(fad) denoting that fact is possibly 
true. Therefore, we would like to reason with semi- 
modalities in a two valued logic. The logic is still 
two valued since a fact such az pos(fad) is either de- 
ducible, hence true, or not deducible, hence false. We 
will discuss a knowledge assimilation scenario consist- 
ing of three sequential updates stemming from three 
different transactions: 

1. add sd(john, &non) 

2. add w( 1, Simon) 

3. add h(1, john) 

Considering the above transactions, first of 
all we get the information that john and si- 
mon belong to the same department. Hence 
we would like to make sd(john,simon) deducible. 
In order to realize this we would like to sim- 
ply physically insert the fact add(sd(john,simon)) 
into the system. This should enable the sys- 
tem to deduce sd(john,simon), sd(simon, john), 
pos(w(c1, john)), pos(w(cl ,simon)), pos(h(c1, john)), 
pos(h(cl,simon)), posh(john)h posMsimonN, 
pos(p(john, Simon)), pos(p(simon, john)), 
pos(d(cl,john)), and pos(d(cl,simon)) a. Note that 
cl is a skolem constant (simply a constant not used 
anywhere else) replacing an existentially quantified 
variable (hence a skolem constant can also be seen as 
a NULL value [Imi86, IL84]). 

Secondly, we get the information that si- 
mon works in department 1, thus we insert 
add(w(l,simon)) into the database. This should make 
sd(john,simon), sd(simon, john), posfi(l,joW~~ 
pos(w(l,joW), pos(m(john)~, pos(p(john,simon)), 
w(l,simon), pos(p(simon, john)), d(l,simon), and 
pos(d(1, john)) deducible3. 

Thirdly, we account for the new and comple- 
menting information that john is head of depart- 
ment 1 by inserting the fact add(h(1, john)). We 
would then like to have the facts sd(john,simon), 
sd(simon, john), m(john), w(l,simon), h(1, john), 
d(1, john), and d(1, simon) deducible. 

2There is a weak form of incompleteness in our techniques 
proposed in sections 5 and 6 which ia illustrated through this 
example: it would be strongly complete to deduce d(cfjohn) 
and d(cl,rimon) (there is a department to which john and 
rimon belong) instead of por(d(eljohn)), and por(d(cl,rimon)) 
respectively. 

3The same weak incompleteness occurs here with 
por(d(l,john)) . 

Our technique, described in sections 5 and 6, which 
achieves the reasoning illustrated above consists of two 
components. 

The first component generates new rules and in- 
tegrity constraints from the original set of rules and 
constraints using rewriting techniques. Standard 
query evaluation mechanisms are then applied to the 
new rules to answer queries. Under our assump 
tions, the new rules will be evaluated under the min- 
imal model semantics for stratified Datalog programs 
[ABWSS]. The second component maintains the set of 
base facts, which now include semi-modalities such as 
pos(m(john)) and meta-facts such as add(m(john)). 
This component is invoked immediately after each up 
date transaction to prepare the database for the cor- 
rect evaluation of subsequent queries. 

In section 5 we describe how to generate the new 
rules from the original set of rules. In section 6 we 
describe the method for maintaining the base facts. 

5 Rule Rewriting 

In this section, we describe the logic behind the genera- 
tion of new rules and show how new rules and integrity 
constraints are generated from the original set of rules. 

If m is a predicate symbol and X is a vector of 
terms, three kinds of facts m(X), pos(m(X)) and 
pos(-m(X)), will be visible (and accessible) to the 
DB user. In addition to the above, some auxiliary 
facts (not visible to the user) are needed corresponding 
to the intensional predicates: m*(X), pas* (-m(X)), 
pos*(mW), nt(m(W), nf(m(X)), add(m(X)) ad 
del(m(X)) (if m is an extensional predicate then only 
pos*(m(X)) and pos*(ym(X)) are needed). The fact 
m*(X) is deducible exactly when m(X) follows from 
the confirmed (and hence unique) information alone. 
The fact pos*(m(X)) (resp. pos*(-m(X)) ) shows 
that m(X) possibly holds irrespective of whether it is 
not yet definitely deducible and irrespective of whether 
it is necessarily false (a weak inference). Hence 
the (user-visible) fact pos(m(X)) can be defined by 
pos(m(X)) c pos*(m(X)), -m(X),-nf(m(X)). The 
fact pos(-m(X)) is analogously defined. The fact 
nt(m(X)) (resp. nf(m(X)) ) expresses that from the 
update request it follows that m(X) necessarily holds 
(resp. necessarily does not hold ). 

An update request of the form add m(john) (resp. 
delete m(john) ) will be transformed into a phys- 
ical insertion of the tuple add(m(john)) into the 
database (resp. a physical insertion of the tuple 
del(m(john)) 1 ( see also step 1 of the algorithm 
given in section 6). However, such tuples are no 
longer needed when for instance m* (john) becomes de- 
ducible and thus m(john) is derivable without the ex- 
plicit fact add(sd(john, Simon)). So two constraints, 
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t m*(X), add(m(X)) and t -m’(X), deZ(m(X)), 
are required to ensure that facts such as add(m(X)) 
and deZ(m(X)) are deleted when they are no longer 
necessary. Hence a truth maintenance [Mar911 is 
achieved with these constraints (section 6 explains 
when these integrity constraints are checked). A fact 
such as m(john) may become deducible without an 
explicit fact add(m(john)) from the more complete in- 
formation that has been assimilated in the meantime 
through subsequent transactions. There are two ways 
of assimilating more information on base relations: 

l Obtain new data by means of explicit base rela- 
tion updates given by the user. 

l Uniquely deduce (modulo skolem constant renam- 
ing) through an update request on an intensional 
predicate that certain base facts must be added 
or deleted. 

Considering the example again, we now give the 
rules and integrity constraints generated from the rules 
(4) to (9). The newly generated rules and constraints 
as well as the original rules and constraints are stored 
in the database since they are needed by the fact main- 
tenance component (see section 6). The query evalua- 
tion itself uses only the new rules ((16 to (45)). 

ICs: t 
t 
t 
t 
t 
t 

d(D, X) t d*(D, X),-nf(W, X)) (16) 

WAX) + NV, X)1 (17) 
SW, Y) t sd*(X, Y), vaf(sd(X, Y)) (18) 

4x, Y) t nt(sd(X, Y)) (19) 

m(X) t m’(X), -nf(m(W) (20) 

m(X) + ~~(m(w) (21) 

PK Y) +- P* (X Y), -Jf(P(X, 0 (22) 

PVS Y) + 4PK Y)) (23) 

m* (X), ad4mW (10) 
sd* (X, Y), add(sd(X, Y)) (11) 
P* (X, Y), aWp(X, Y)) (12) 

-m*(X), del(m(X)) (13) 
-sd* (X, Y), del(sd(X, Y)) (14) 

-P* (X, Y), WPK YN (15) 

d+(D,X) t w(QX) 
d*(D,X) t h(D,X) 

sS(X,Y) t S(D,X),fl(W’) 
m*(X) t h(D,X) 

P* (X, Y) + m* (X), m* VI 

p(X, Y) +- w(D, X), w(Q Y) 

(24 
(25) 
(26) 

(27) 
(W 

(29) 

PM~Q 4) t 

POW, X)) + 

POW, Xl) + 

pos(sd(X Y)) t 

pos(m(W) + 

POS+ (w(D, X)), -4D, Xl, 
-nf(4D, Xl) 
POS* (W, Xl), -44 Xl, 
-nf(h(D, Xl) 
pos*(d(D,X)),ld(D,X), 
-f(W Xl) 
POS* (4X Y)), -4-T Yh 

+(4X, Y)) 
pos*(m(Xj),~m(X), 

-am(W) 

POS(PW> Y)) + 

POS(-@, Xl) + 

P~+W Xl) + 

po+W Xl) +- 

pos(-wd(X, Y)) t 

po+mV)) + 

pas+ (PV, YN 9 -Pm Y), 

-nfb(X, Y)) 
pos+(-w(D, X)), w(D, X), 

+w(D, Wj 
pas* (7h(D, X)), h(D, X), 

-WD, W) 
pas* (--WA X)), d(D, Xl, 
-NW, Xl) 
POS* (=4X, Y)), 4X, Y), 
wt(sd(X, Y)) 

POS+ (-4x)), m(x), 

-n+(X)) 

Po+Pw, VI + pas* (-p(X, Y)),p(X, Y), 

‘74P(X, Y)) 

POS* MD, Xl) i- POS* (W, -9) 

pas* (W X)) t POS* VW, Xl) 
pas* (sd(X, Y)) t pas* (d(D, X)), d(D, Y) 
pos* (sd(X, Y)) t 44 Xl, POS* WA Y)) 
pas* (sd(X, Y)) t pas* (W, W),pos’W(DJ)) 

Pas* b-4X)) + POS* (h(D, Xl) 

pas* (PV, VI +- ws* (m(XNj m(Y) 

pas* (PVC 0 + m(Xhpos’MY)) 

pas* (PGC YN + POS* (m(x)), pas* (m(Y)) 

Pas* (PK YN +- POS* (W, 0, w(Q Y) 

pas+ (PK YN + w(D,X),pos*(w(D,Y)) 

pas* (P(X, Y)) + pos*(w(D,X)),pos*(w(D,Y)) 
pas* (7d(D, X)) t POS* (-CD, WI 
pas* (Td( D, X)) t POS* (+(D, Xl) 

pos* (7sd(X, Y)) t pos*(-d(D, Xj), d(Q Y) 
pas* (1sd(X, Y)) t d(D, X), POS* (--WA Y)) 

pas* (-m(X)) t POS* (+(D, Xl) 

Ps*(-P(x, Y)) +- pos*(-m(X)), m(Y) 

pas* (-p(X, 0 4- m(X), Pas* (-m(Y)) 
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po+P(K Y)) + P08Y-@, m, w, Y) 

Pas* (-Pm Y)) +- w(Q X), pos’(-4A Y)) 

nt(d(D, X) t add(d(D, X)) 

nt(sd(X, Y)) t add(sd(X, Y)) 

nt(m(X)) t add(m(X)) 

nt@(x, Y)) +- aMp(X, Y)) 

nf(W, x) + ~eW(Q x)1 
nf(sd(X, Y)) t del(sd(X, Y)) 

nf(m(W + deUm(X)) 

nfb(X J-7) t WG YN 

nt(sd(X, Y)) t nW(Q XN, WT Y) 
nt(sd(X, Y)) t d*(D, X), nt(d(D, Y)) 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 
nt(sd(X, Y)) t NW JO), 4W Y)) (40) 

nWX, Y)) + nt(m(x)), m* (Y) (41) 

nWX, Y)) t m+ GO, nt(m(Y)) (42) 
nt(p(X, Y)) + 4+m nWY)) (43) 
nt(d(c1, X)) t ni!(sd(X, Y)) (44 
nt(d(c1, Y)) t nt(sd(X, Y)) (45) 

Some properties and remarks on the transformation 
technique are the following: 

l The information given by the user in the form of 
extensional relations (or predicates) is not altered 
at all by the rewriting technique. 

l The technique is also applicable for recursive rules 
although we did not explicitly show an example 
with recursion. 

l If queries does not refer to possibly true and possi- 
bly false facts then most of the rules generated will 
not be involved in the query evaluation process at 
all. In our example, only the rules (16) to (29) 
and (30) to (45) are needed in such a case. Most 
of these rules are of a simple form (no joins are in- 
volved) and work only on facts introduced by up 
date requests (add(fad) and del(fad)). There- 
fore, performance degradation is minimal when 
semi-modal information is not queried. 

l All the rules generated are range restricted if the 
original rules are range restricted (each variable 
of a rule occurs in one of its positive body liter- 
als). The generated rules are thus amenable to 
set-oriented bottom-up query evaluation. 

l The number of rules generated is linear in the 
number of the original rules. 

Let 3;: = Ui,l, . . . . Ui,ni be the latest transaction 
received. For each i(l 5 j 2 ni) insert the fact 
add(ui,j) (resp. the fact del(ui,j)) in the DB if x 
requires the ground atom ui,j to be added (resp. 
to be deleted). 

Let ul’, . . . . U~I be all update requests received so 
far for which there is still a tuple edd(ui,) or 
del(uil) kept internally. Generate all minimal fact 
modifications ml, . . . . m, realizing uit, . . . . UP by 
taking into account only the facts, the original set 
of rules, and the original set of constraints. This 
can be done using the method given in [Wiit93], 
for instance. (In our example of section 4, we 
generate the minimal solutions for these updates 
from the rules (4) to (9) and the constraints (1) 

to (3)*) 

Determine the information which can be con- 
firmed, i.e. compute the maximal modification 
m = (S+,S-) = fll<i<nmi which is in all mi = 
(St, $7). Add the tuples in S+ to the base rela- 
tions and delete the tuples S- from the base rela- 
tions. Emntv the nossiblv true and uossiblv false II 1 

l The technique is also applicable for the case when 
the original rules involve stratified negation (as- 
sumption l(c)). The rules generated thereof are 
also stratified. Because of limitations of space this 
aspect is not illustrated in the paper. 

In the foregoing, we have explained the key ideas 
behind the transformation technique by means of an 
example. The rewriting technique for Horn rules can 
be generalized from the example. The suggested rule 
transformation for deducing information that is neces- 
sarily true is not always complete. This occurs in situ- 
ations where reasoning by cases is required. Therefore, 
the rules (38) to (45) of our example are not always 

complete although most situations are handled satis- 
factorily by these rules (see, for instance, the running 
example). In the following, we describe how to feed 
the new rules with appropriate factual information to 
achieve the desired cumulative view update behaviour. 

6 Fact Maintenance 

The fact maintenance described in this section feeds 
the rules generated in section 5 with appropriate fac- 
tual information in order to achieve the desired behav- 
ior. The fact maintenance uses the constraints gen- 
erated in section 5, the original constraints and the 
originally given rules. For each extensional predicate 
p we need a table or relation pm*(p) (the possibly true 
table) and a table pos*(~p) (the possibly false table). 

For each transaction received, the following four 
steps are carried out: 
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tables and store the tuples (Ul<i<,SF)-S+ in the 
possibly true tables and the tip&s (Ul<i<,S,T) - 

- - S- in the possibly false tables. 

4. Check the new integrity constraints ((10) to (15) 
in our example) and remove an internal tuple 
edd(uil) (resp. deZ(Uit)) if an instance of a con- 
straint t ut,Udd(Ui~) (resp. t +,del(ui,)) is 
violated. 

Note that no additional integrity checking is need. The 
original constraints are taken into account when gen- 
erating the minimal solutions in step 2 by relying on 
the method [Wiit93]; and the internal constraints are 
maintained in step 4. 

This method is correct and complete for base facts. 
However, in the presence of recursive rules, the genera- 
tion of all minimal fact modifications in step 2 may be 
too expensive. For pragmatic reasons , therefore, one 
should not generate all but only generate some of the 
minimal fact modifications, as proposed in [Wiit93]. 
This makes the technique somewhat incomplete also 
for base facts, but still leaves it correct. 

The illustration of the whole view update method 
with the interaction between the rule transformation 
and the fact maintenance components was already 
anticipated in section 4. Processing the knowledge 
base (0, {(4), . . . . (9)}, {(l), . . . . (3))) and the update se- 
quence sd(john, Simon), ~(1, Simon), h(1, john) with 
the method given in sections 5 and 6 results in the 
cumulative view update behavior described in section 
4. 

7 Cumulative View Updates in Rela- 
tional Databases 

Application of the techniques presented in sections 5 
and 6 to the relational case is straightforward. In the 
relational case, every rule of section 5 is represented 
as a view. Since views in the relational case are non- 
recursive, step 2 of fact maintenance which computes 
all minimal solutions for a given update is simplified. 
For non-recursive views there is always a finite num- 
ber of minimal solutions, hence all of them can be 
computed as part of step 2 of fact maintenance. Con- 
sequently, it is possible to give a complete method for 
the relational case. 

The methods given in section 5 and 6 for the deduc- 
tive case suffer from incompleteness for two reasons. 
Firstly, there may be an infinite number of minimal 
solutions (for step 2 of fact maintenance, section 6) 
not all of which can be computed. However, for the 
relational case, the views are non-recursive. Therefore, 
there are always a finite number of minimal solutions 
for step 2 (of fact maintenance). Hence our techniques 

do not suffer from this form of incompleteness for the 
relational case. 

Secondly, the techniques of section 5 and 6 are 
sometimes incomplete for the case where possibly true 
and possibly false facts originating from disjunctive 
views are also used in the derivation of other disjunc- 
tive views. For example, consider the following two 
view definitions. 

CREATE VIEW ENGINEERINGDEP AS 

SELECT EMP 
FROM EMPDEP 
WHERE DEP = ‘DEVELOPEMENT' 
ORDEP = ‘RESEARCH' 

CREATE VIEW ENGINEERINGMGR AS 
SELECT EMP 
FROM EMPDEP A, MGR B 
WHERE (A.DEP = ‘DEVELOPEMENT' 
OR A.DEP = ‘RESEARCH') 
AND (A.EMP = B.EMP) 

On receiving the information that Tim became a 
member of the engineering department whilst already 
knowing (or whilst receiving within the same transac- 
tion) the information that Tim is a manager, one can 
definitely deduce that Tim is also an engineering man- 
ager. Our methods, however, only deduce that Tim 
is possibly an engineering manager. This form of in- 
completeness can be removed for the relational case, 
making our techniques sound and complete. 

A sound and complete method for the relational 
case is obtained by replacing step 3 of fact maintenance 
(section 6) by the following: 

Look for information which can be con- 
firmed, i.e. compute the maximal modifica- 
tion m = (S+,S-) = LIi<i<nmi which is in 
all mi = (Sf, $7). We add the tuples in S+ 
to the base relations and delete the tuples 
S- from the base relations. Empty the pos- 
sibly true and possibly false tables and store 
the tuples (Ul<i<,St) - S+ in the possibly 
true tables ana the tuples (Ul<i<,S,T) - S- 
in the possibly false tables. 

For each modification mi and each fact 
pas(q) deducible from the rules given in sec- 
tion 5 such that q is an intensional predi- 
cate, check whether q is deducible under each 
modification mi. If so, then add the fact 
add(q), otherwise don’t do anything. 

This method, although complete, is highly inefficient. 
It has exponential time complexity. However, we be- 
lieve that more efficient methods could be devised for 
the relational case. 
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8 Conclusions 

We presented a novel idea, called cumulative up- 
dates, for intelligently assimilating updates in knowl- 
edge bases. The biggest advantage of cumulative up 
dates compared to conventional updates is that in the 
presence of update ambiguities a misleading model of 
the world is never presented to the user by the knowl- 
edge base. Instead, the user is made aware of the in- 
formation that s/he should acquire in order to make 
the database reflect the world being modeled more ac- 
curately, without ambiguities. However, when such 
information is not forthcoming, cumulative updates 
provide a mechanism for coping gracefully with the 
situation. 

We gave motivating examples for cumulative up 
dates and formally defined the notion of such updates 
in a very general setting. We also identified differ- 
ent classes of cumulative updates and defined the no 
tions of correctness and completeness for cumulative 
updates. The simplest class of cumulative updates 
comprises of update requests that involve only the ad- 
dition or deletion of base and derived facts. For this 
class, we proposed a method for computing cumula- 
tive updates and showed that the method imparts an 
“intelligent knowledge assimilation” behavior to the 
knowledge base. The method involves rewriting of the 
logical rules defining the views. Such a rewriting ap- 
proach has never been proposed before in the literature 
for view updates. The rewriting technique may also 
be used for achieving traditional (i.e. non-cumulative) 
view updates in databases. Cumulative updates are 
also very relevant to the relational case as shown in 
this paper. A sound and complete method for cumu- 
lative view updates in relational databases is also given 
in this paper. 

We view the work presented in this paper as lay- 
ing the foundations for cumulative updates in data 
and knowledge bases. The solutions proposed herein 
are considered only as a first attempt. Many exten- 
sions are conceivable. For instance, we restricted our- 
selves to one particular class cumulative update prob- 
lems where updates are made only on base and derived 
facts. Techniques should be developed for other classes 
as well. A study of the complexity for various classes 
of cumulative updates is also required. The rewriting 
technique for cumulative updates presented in this pa- 
per is a novel idea and may also be applied to realize 
non-cumulative updates. 
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