
Hilbert R-tree: An Improved R-tree Using Fkactals 

Ibrahim Kamel 
Department of Computer Science 

University of Maryland 
College Park, MD 20742 

kamelQcs.umd.edu 

Abstract 

We propose a new Rtree structure that out- 
performs all the older ones. The heart of the 
idea is to facilitate the deferred splitting ap 
preach in R-trees. This is done by propos- 
ing an ordering on the R-tree nodes. This 
ordering has to be ‘good’, in the sense that 
it should group ‘similar’ data rectangles to 
gether, to minimize the area and perimeter 
of the resulting minimum bounding rectangles 
(MBRs). 
Following [KF93] we have chosen the so-called 
‘2D-c’ method, which sorts rectangles accord- 
ing to the Hilbert value of the center of the 
rectangles. Given the ordering, every node 
has a well-defined set of sibling nodes; thus, 
we can use deferred splitting. By adjusting 
the split policy, the Hilbert R-tree can achieve 
as high utilization as desired. To the contrary, 
the R.-tree has no control over the space uti- 
lization, typically achieving up to 70%. We 
designed the manipulation algorithms in de- 
tail, and we did a full implementation of the 
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Hilbert R-tree. Our experiments show that 
the ‘2-to-3’ split policy provides a cornpro 
mise between the insertion complexity and the 
search cost, giving up to 28% savings over the 
R’ - tree [BKSSOO] on real data. 

1 Introduction 

One of the requirements for the database management 
systems (DBMSs) of the near future is the ability to 
handle spatial data [SSUSl]. Spatial data arise in 
many applications, including: Cartography [WhiOl]; 
Computer-Aided Design (CAD) [OHM+841 [Gut84a]; 
computer vision and robotics [BB82]; traditional 
databases, where a record with k attributes corre- 
sponds to a point in a k-d space; temporal databases, 
where time can be considered as one more dimen- 
sion [KS91]; scientific databases with spatial-temporal 
data, such as the ones in the ‘Grand Challenge’ appli- 
cations [Gra92], etc. 

In the above applications, one of the most typical 
queries is the mnge query: Given a rectangle, retrieve 
all the elements that intersect it. A special csse of the 
range query is the point query or stabbing query, where 
the query rectangle degenerates to a point. 

We focus on the R-tree [Gut84b] family of methods, 
which contains some of the most efficient methods that 
support range queries. The advantage of our method 
(and the rest of the R-tree-based methods) over the 
methods that use linear quad-trees and z-ordering is 
that R-trees treat the data objects as a whole, while 
quad-tree based methods typically divide objects into 
quad-tree blocks, increasing the number of items to be 
stored. 

The most successful variant of R-trees seems to be 
the R*-tree [BKSSOO]. One of its main contributions is 
the idea of ‘forced-reinsert’ by deleting some rectangles 
from the overflowing node, and reinserting them. 
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The main idea in the present paper is:to impose an 
ordering on the data rectangles. The consequences are 
important: using this ordering, each R-tree node has 
a well defined set of siblings; thus, we can use the al- 
gorithms for deferred splitting. By adjusting the split 
policy (2-to-3 or 3-t&4 etc) we can drive the utilization 
a8 close to 100% as desirable. Notice that the R*-tree 
does not have control over the utilization, typically 
achieving an average of ~70%. 

The only requirement for the ordering is that it has 
to be ‘good’, that is, it should lead to small R-tree 
nodes. 

The paper is organized as follows. Section 2 gives 
a brief description of the R-tree and its variants. Sec- 
tion 3 describes the Hilbert R-tree. Section 4 presents 
our experimental results that compare the Hilbert R- 
tree with other R-tree variants. Section 5 gives the 
conclusions and directions for future research. 

2 Survey 

Several spatial access methods have been proposed. A 
recent survey can be found in [Sam89]. These meth- 
ods fall in the following broad classes: methods that 
transform rectanglea into points in a higher dimen- 
sionality space [HN83, Fre87]; methods that use lin- 
ear quadtrees [Gar82] [AS911 or, equivalently, the Z- 
ordering [Ore861 or other space filling curvea [FR89] 
[JaggOb]; and finally, methods based on treea (R- 
tree [Gut84b], k-d-trees [Ben75], k-d-B-trees [RobBl], 
hB-trees [LS90], cell-trees [Gun891 e.t.c.) 

One of the most promising approaches in the last 
class is the R-tree [Gut84b]: Compared to the trans- 
formation methods, R-trees work on the native space, 
which has lower dimensionality; compared to the lin- 
ear quadtrees, the R-trees do not need to divide the 
spatial objects into (several) pieces (quadtree blocks). 
The R-tree is an extension of the B-tree for multidi- 
mensional objects. A geometric object is represented 
by its minimum bounding rectangle (MBR): Non-leaf 
nodes contain entries of the form (R&r) where ptr is 
a pointer to a child node in the R-tree; R is the MBR 
that covers all rectangles in the child node. Leaf nodes 
contain entries of the form (obj-id, R) where obj-id is a 
pointer to the object description, and R is the MBR of 
the object. The main innovation in the R-tree is that 
father nodes are allowed to overlap. This way, the R- 
tree can guarantee at least 50% space utilization and 
remain balanced. 

Guttman proposed three splitting algorithms, the 
linear split, the quadraiic split and the exponedial 
split. Their namea come from their complexity; among 
the three, the quadratic split algorithm is the one that 
achieves the best trade-off between splitting time and 

search performance. 
Subsequent work on R-trees includes the work by 

Greene [Gre89], Roussopoulos and Leiflrer [RL85], R+- 
tree by Sellii et al. [SRF87], R-trees using Mini- 
mum Bounding Ploygons [JaggOal, Kamel and Falout- 
sos [KF93] and the R*-tree [BKSSSO] of Beckmann 
et al. , which seems to have better performance than 
Guttman R-tree “quadratic split”. The main idea in 
the R*-tree is the concept of forced re-insert. When a 
node overflows, some of its children are carefully the 
sen; they are deleted and re-inserted, usually resulting 
in a R-tree with better structure. 

3 Hilbert R-trees 

In this section we introduce the Hilbert R-tree and dis- 
cuss algorithms for searching, insertion, deletion, and 
overflow handling. The performance of the R-trees de- 
pends on how good is the algorithm that cluster the 
data rectangles to a node. We propose to use space 
filling curves (or fractals), and specifically, the Hilbert 
curve to impose a linear ordering on the data rectan- 
gles. 

A space filling curve visits all the points in a Ic- 
dimensional grid exactly once and never crosses it- 
self. The Z-order (or Morton key order, or bit- 
interleaving, or Peano curve), the Hilbert curve, and 
the Gray-code curve [Fal88] are examples of space fill- 
ing curves. In [FR89], it was shown experimentally 
that the HiIbert curve achieves the beat clustering 
among the three above methods. 

Next we provide a brief introduction to the Hilbert 
curve: The basic Hilbert curve on a 2x2 grid, denoted 
by HI, is shown in Figure 1. To derive a curve of or- 
der i, each vertex of the basic curve is replaced by the 
curve of order i - 1, which may be appropriately rc+ 
tated and/or reflected. Figure 1 also shows the Hilbert 
curvea of order 2 and 3. When the order of the curve 
tends to infinity, the resulting curve is a fractal, with a 
fractal dimension of 2 [Man77]. The Hilbert curve can 
be generalized for higher dimensionalitiea. Algorithms 
to draw the two-dimensional curve of a given order, 
can be found in [Gri86], [JaggOb]. An algorithm for 
higher dimensionalities is in [Bia69]. 

The path of a space filling curve imposes a linear 
ordering on the grid points. Figure 1 shows one such 
ordering for a 4 x 4 grid (see curve Ha). For example 
the point (0,O) on the Hz curve has a Hilbert value 
of 0, while the point (1,l) has a Hilbert value of 2. 
The Hilbert value of a rectangle needs to be defined. 
Following the experiments in [KF93], a good choice is 
the following: 

Definition 1 : The Hilbed value of a rectangle is de- 
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Figure 1: Hilbert Curves of order 1, 2 and 3 

fined as the Hilbert value of its center. 
After this preliminary material, we are in a position 

now to describe the proposed methods. 

3.1 Description 

The main idea is to create a tree structure that can 

l behave like an R-tree on search. 

l support deferred splitting on insertion, using the 
Hilbert value of the inserted data rectangle as the 
primary key. 

These goals can be achieved ss follows: for every 
node n of our tree, we store (a) its MBR, and (b) 
the Largest Eilberi Value (LHV) of the data rectangles 
that beiong to the subtree with root n. 

Specifically, the Hilbert R-tree has the following 
structure. A leaf node contains at most Cl entries 
each of the form 

(R, objid) 

where Cl is the capacity of the leaf, R is the MBR of 
the real object (~1~ , Zhigh , glou, , uhigh ) and obj - id 
is a pointer to the object description record. The main 
difference with R- and R*-trees is that nonleaf nodes 
also contain information about the LHVs. Thus, a 
non-leaf node in the Hilbert R-tree contains at most 
C,, entries of the form 

where C,, is the capacity of a non-leaf node, R is the 
MBR that encloses all the children of that node, ptr 
is a pointer to the child node, and LHV is the largest 
Hilbert value among the data rectangles enclosed by R. 
Notice that we never calculate or use the Hilbert val- 
ues of the MBRs. Figure 2 illustrates some rectangles, 
organized in a Hilbert R-tree. The Hilbert values of 
the centers are the numbers by the ‘x’ symbols (shown 
only for the parent node ‘II’). The LHV’s are in [brack- 
ets]. Figure 3,shows how is the tree of Figure 2 stored 

on the disk; the contents of the parent node ‘II’ are 
shown in more detail. Every data rectangle in node 
‘I’ has Hilbert value 533; everything in node ‘II’ has 
Hilbert value greater than 33 and 5107 etc. 

Before we continue, we list some definitions. A plain 
R-tree splits a node on overflow, turning 1 node to 2. 
We call this policy a I-to-2 splitting policy. We pro- 
pose to defer the split, waiting until they turn 2 nodes 
into 3. We refer to it as the 2-to-3 splitting policy. 
In general, we can have an s-to-(s+l) splitting policy; 
we refer to s as the order of the splitting policy. To 
implement the order-s splitting policy, the overflow- 
ing node tries to push some of its entries to one of its 
s - 1 siblings; if all of them are full, then we have an 
s-to(s+l) split. We refer to these s - 1 siblings as the 
cooperating siblings of a given node. 

Next, we will describe in detail the algorithms for 
searching, insertion, and overflow handling. 

3.2 Searching 

The searching algorithm is similar to the one used in 
other R-tree variants. Starting from the root it de 
scends the tree examining all nodes that intersect the 
query rectangle. At the leaf level it reports all entries 
that intersect the query window w as qualified data 
items. 

Algorithm Search(node Root, rect w): 
Sl. Search nonleaf nodes: 

invoke Search for every entry whose MBR 
intersects the query window w. 

S2. Search leaf nodes: 
Report all the entries that intersect the query 
window w as candidate. 

3.3 Insertion 

To insert a new rectangle r in the Hilbert R-tree, the 
Hilbert value h of the center of the new rectangle is 
used as a key. In each level we choose the node with 
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Figure 2: Data rectangles organized in a klilbert R-tree 

LHV XL YL XH WI LHV XL YL XH q LHV XL YL XH YH 
aa a 6 a640 1072oaa 66 266 60 10 60 40 1 76j , 

Figure 3: The file structure for the previous Hiibert R-tree 

minimum LHV among the siblings. When a leaf node 
is reached the rectangle P is inserted in its correct order 
according to h. After a new rectangle is inserted in a 
leaf node N, Ad,iust’Ikee ia called to fix the MBR and 
LHV values in upper level nodes. 

Algorithm I.neert(node Root, rect r): 
/* inserts a new rectangle r in the Hilbert R-tree. 
h is the Hilbert value of the rectangle. */ 
Il. Find the appropriate leaf node: 

Invoke ChooseLeaf(r, h) to select a leaf node 
L in which to place P. 

12. Insert r in a leaf node L: 
if L hae an empty slot, insert r in L in the 
appropriate place according to the Hilbert 
order and return. 

if L is full, invoke HandleOverflow(L,r), 

which will return new leaf if split was 
inevitable. 

13. Propagate change8 upward: 
form a set S that contains L, its cooperating 

siblings and the new leaf (if any). 
invoke AdjustTree 

14. Grow tree taller: 
if node split propagation caused the root to 
split, create a new root whose children are 
the two resulting nodes. 

Algorithm ChooseLeaf(rect r, int h): 
/* Returns the leaf node in which to place 
a new rectangle r. */ 
Cl. Initialize: 

Set N to be the root node. 
C2. Leaf check: 
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if N is 8 leaf, return N. 
C3. Choose subtree: 

if N is a non-leaf node, choose the entry 
(R, ptr, LHV) with the minimum LHV 
value greater than h. 

C4. Descend until a leaf is nached: 
set N to the node pointed by ptr and 

repeat from C2. 

Algorithm A~ustTree(set S): 
/* S is a set of nodes that contains the node 
being updated, its cooperating siblings (if overflow 
has occurred) and newly created node NN (if split 
has occurred). The routine ascends from leaf level 
towards the root, adjusting MBR and LHV of nodes 
that coverthe nodes in S siblings. It propagates 
splits (if any). */ 
Al. if reached root level stop. 
A2. Propagate node split upward 

let N,, be the parent node of N. 
if N has been split, let NN be the new node. 
insert NN in Nr in the correct order according 
to its Hilbert value if there is room. Otherwise, 
invoke HandIeOverHow( Nr, MBR( NN)). 

if Np is split, let PP be the new node. 
A3. adjust the MBR’s and LHV’s in the parent level: 

let P be the set of parent nodes for the nodes 
in S. 

Adjust the corresponding MBR’s and LHV’s 
appropriately of the nodes in P. 

A4. Move up to next level: 
Let S become the set of parent nodes P, with 
NN = PP, if Np ~8s split. 
repeat from Al. 

3.4 Deletion 

In Hilbert R-tree we do NOT need to -insert or- 
phaned nodes, whenever a father node underfiows. In- 
stead, we borrow keys from the siblings or we merge 8n 
underflowing node with its siblings. We 8re able to do 
so, because the nodes have a clear ordering (Largest 
Hilbert Value LHV); in contrast, in R-trees there is no 
such concept of sibling node. Notice that, for deletion, 
we need s cooperating siblings while for insertion we 
needs-l. 

Algorithm Delete(r): 
Dl. Find the host leaf: 

Perform 8n ex8ct match search to find 
the leaf node L that contsin r. 

D2. Delete P : 
Remove r from node L. 

D3. if L underfIows 

borrow some entries from s cooperating 
siblings. 

if all the siblings are ready to underflow, 
merge 8 + 1 to 8 nodes, 
adjust the resulting nodes. 

D4. adjust MBR and LHV in parent leveb: 
form a set S that contains L and its 

cooperating siblings (if underflow has 
occurred). 

invoke AdjustTree( 

3.5 Overflow handling 

The overflow handling algorithm in the Hilbert R-tree 
treats the overflowing nodes either by moving some of 
the entries to one of the B - 1 cooperating siblings or 
splitting s nodes to s + 1 nodes. 

Algorithm HandleOverflow(node N, rect r): 
/* return the new node if a split occurred. */ 
Hl. let E be a set that contains all the entries from 

N and its s - 1 cooperating siblings. 
H2. add r to S. 
H3. if at leaet one of the 8 - 1 cooperating 

siblings is not full, distribute E 
evenly among the a nodes according 
to the Hilbert value. 

H4. if all the s cooperating siblings are full, 
create a new node NN and 
distribute & evenly among the s + 1 nodes 
according to the Hilbert value. 
return NN. 

4 Experimental results 

To sssess the merit of our proposed Hilbert R-tree, 
we implemented it and ran experiments on a two di- 
mensional space. The method ~8s implemented in 
C, under UNIX. We compared our methods against 
the quadratic-split R-tree, and the R* - tree. Since 
the CPU time required to process the node is negligi- 
ble, we baaed our comparison on the number of nodes 
(=pages) retrieved by range queries. 

Without loss of generality, the address space ~8s 
normalised to the unit square. There are several fat- 
tors that affect the search time; we studied the follow- 
ing ones: 

Data items: points and/or rectangles and/or line 
segments (represented by their MBR) 

File siae: ranged from 10,000 - 100,000 records 

Query - Qacda = Q= x qv: ranged from 0 - 0.3 of 
the area of the address space 
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Another important factor, which is derived from N 
and the average area a of the data rectangles, is the 
‘data density’ d (or ‘cover quotient’) of the data rect- 
angles. This is the sum of the areas of the data rect- 
angles in the unit square, or equivalently, the average 
number of rectangles that cover a randomly selected 
point. Mathematically: d = N x a. For the selected 
values of N and a, the data density ranges from 0.25 
- 2.0. 

To compare the performance of our proposed struc- 
tures we used 5 data files that contained different types 
of data: points, rectangles, lines, or mixed. Specifi- 
cally, we used: 

A) Real Data: we used real data from the TIGER 
system of the U.S. Bureau of Census. An impor- 
tant observation is that the data in the TIGER 
datasets follow a highly skewed distribution. 

‘MGCounty’ : This file consists of 39717 line 
segments, representing the roads of Mont- 
gomery county in Maryland. Using the min- 
imum bounding rectangles of the segments, 
we obtained 39717 rectangles, with data den- 
sity d = 0.35. We refer to this dataset as the 
‘MGCounty’ dataset. 

‘LBeach’ : It consists of 53145 line segments, 
representing the roads of Long Beach, Cali- 
forniai The data density of the MBRs that 
cover these line segments is d = 0.15. We 
refer to this dataset aa the ‘LBeach’ dataset. 

B) Synthetic Data: The reason for using synthetic 
data is that we can control the parameters (data 
density, number of rectangles, ratio of points to 
rectangles etc.). 

‘Points’ : This file contains 75,000 uniformly 
distributed points. 

‘Ret8 : This ille contains 100,000 rectangles, 
no points. The centers of the rectangles 
are uniformly distributed in the unit square. 
The data density is d = 1.0 

‘Mix’ : This file contains a mix of points and 
rectangles; specifically 50,000 points and 
10,000 rectangles; the data density is d = 
0.029. 

The query rectangles were squares with side Q,; 
their centers were uniformly distributed in the unit 
square. For each experiment, 200 randomly generated 
queries were asked and the results were averaged. The 
standard deviation was very small and is not even plot- 
ted in our graphs. The page size used is 1KB. 

We compare the Hilbert I&tree against the origi- 
nal’ R-tree ( quadratic split) and the R’ - tree. Next 
we present experiments that (a) compare our method 
against other R-tree variants (b) show the effect of the 
different split policies on the performance of the pro- 
posed method and (c) evaluate the insertion cost. 

sso.00 ’ I I I I I 

9’ 

Figure 4: Points and Rectangles (‘Mix’ Data&); Disk 
Accesses vs. Query Area 

I I I I I I Qms,d 
on0 som lcaoo lsom mono zsoo 

Figure 5: Rectangles Only (‘Recta’ dataset); Disk Ac- 
cease% vs. Query Area 
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Figure 6: Points Only (‘Points’dataset); Disk Accesses 
vs. Query Area 

4.1 Comparison of the Hilbert R-tree vs. 
other R-tree variants 

In this section we show the performance superiority of 
our Hilbert R-tree over the R* -tree, which is the most 
successful variant of the R-tree. We present experi- 
ments with all five datasets, namely: ‘Mix’, ‘Rects’, 
‘Points’, ‘MGCounty’, and ‘LBeach’ (see Figures 4 - 6, 
respectively). In all these experiments, we used the 
‘2-t+3’ split policy for the Hilbert R-tree. 

In all the experiment the Hilbert Rtree is the clear 
winner, achieving up to 28% savings in response time 
over the next best contender (the R* - tree). This 
maximum gain is achieved for the ‘MGCounty’ dataset 
(Figure 7). It is interesting to notice that the perfor- 
mance gap is larger for the real data, whose main dif- 
ference from the synthetic one is that it is skewed, as 
opposed to uniform. Thus, we can conjecture that the 
skeweness of the data favors the Hilbert R-tree. 

Figure 4 also plots the results for the quadratic- 
split R-tree, which, as expected, is outperformed by 
the R’ - tree. In the rest of the figures, we omit the 
quadratic-split R-tree, because it was consistently out- 
performed by R’ - tree. 

4.2 The efZect of the split policy on the per- 
formance 

Figure 9 shows the response time as a function of 
the query size for the l-to-2, 2-tc+3, 3-to-4 and 4tc+ 
5 split policies. The corresponding space utilization 
was 65.5%, 82.2%, 89.1% and 92.3% respectively. For 

Figure 7: Montgomery County Data&; Disk Accesses 
vs. Query Area 

comparison, we also plot the response times of the 
R’ - tree. As expected, the response time for the 
range queries improves with the average node utiliza- 
tion. However, there seems to be a point of diminishing 
returns as s increases. For this reason, we recommend 
the ‘2-t&3’ splitting policy (s=2), which strikes a bal- 
ance between insertion speed (which deteriorates with 
8) and search speed, which improves with 8. 

4.3 Insertion cost 

The higher space utilization in the Hilbert R-tree 
comes at the expense of higher insertion cost. As we 
employ higher split policy the number of cooperating 
siblings need to be inspected at overflow increases. We 
see that ‘2-to3’ policy is a good compromise between 
the performance and the insertion cost. In this section 
we compare .the insertion caet of the Hilbert R-tree 
‘2-te3’ split with the insertion cost in the R’ -tree. 
Also, show the effect of the split policy on the inser- 
tion cost. The cost is measured by the number of disk 
accesses per insertion. 

Table 4.3 shows the insertion cost of the Hilbert R- 
tree and the R’ - tree for the five different datasets. 
The main observation here is that there is no clear 
winner in the insertion cost. 

Table 4.3 shows the effect of increasing the split 
policy in the Hilbert R-tree on the insertion cost for 
MGCounty dataset. As expected, the insertion cost 

506 



Lo8gBachls3145luaegemdq2b-3rplltpoucy 

MT- 

owm 5ba1-b 

mm 
We 

mo.00 

aom 

owm 

wo.00 

mm 

49000 

4wm 

3wm 

xom 

worn 

mm 

lwm 

mm 

wm 

0.00 

ol* 10-3 
0.00 wm worn mm worn moo 

Figure 8: Long Beach Dataset; Disk Accesses vs. Figure 9: The Effect of The Split Policy; Disk Accesses 
Query Area vs. Query Area 

Table 1: Comparison Between Insertion Cost in 
Hilbert R-tree ‘2to-3’ Split and R’ - tree; Disk Ac- 
cesses per Insertion 

(disk accesses)/insertion 
dataset Hilbert R-tree I R? - tree 

(2~to-3 split) 
MGCounty 3.55 3.10 

LBeach 3.56 4.01 
Points 3.66 4.06 
Recta 3.95 4.07 
Mix 3.47 3.39 

L 

increases with the order s of the split policy. 

5 Conclusions 

In this paper we designed and implemented a superior 
R-tree variant, which outperforms all the previous R- 
tree methods. The major idea is to introduce a ‘good’ 
ordering among rectangles. By simply defining an or- 
dering, the R-tree structure is amenable to deferred 
splitting, which can make the utiliiation approach the 
100% mark as closely as we want. Better packing re- 
sults in a shallower tree and a higher fanout. If the 
ordering happens to be ‘good’, that is, to group simi- 
lar rectangles together, then the R-tree will in addition 
have nodes with small MBRs, and eventually, fast re- 
sponse times. 

Based on this idea, we designed in detail and imple- 

MonQomeq Camnty: 39717 llae rcgementr; dUbrent rpllt p&da 
MT- 

worn 
no.00 
worn 
worn 
worn 
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IWrn 
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lam 
lwm 
worn 
am 
am 
am 
wm 
om 

am loM0 law wom 4oom worn 

Table 2: The Effect of The Split Policy on The Inser- 
tion Cost; MGCounty Data& 

mented the Hilbert R-tree, a dynamic tree structure 
that is capable of handling insertions and deletions. 
Experiments on real and synthetic data showed that 
the proposed Hilbert I&tree with the ‘2-to-3’ splitting 
policy consistently outperforms all the R-tree meth- 
ods, with up to 28% savings over the best competitor 
(the R+-tree). 

Future work could focus on the analysis of Hilbert 
R-trees, providing analytical formulas that predict the 
response time as a function of the characteristics of 
the data rectangles (count, data density etc). 
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