
Hilbert R-tree: An Improved R-tree Using Fkactals

Ibrahim Kamel
Department of Computer Science

University of Maryland
College Park, MD 20742

kamelQcs.umd.edu

Abstract

We propose a new Rtree structure that out-
performs all the older ones. The heart of the
idea is to facilitate the deferred splitting ap
preach in R-trees. This is done by propos-
ing an ordering on the R-tree nodes. This
ordering has to be ‘good’, in the sense that
it should group ‘similar’ data rectangles to
gether, to minimize the area and perimeter
of the resulting minimum bounding rectangles
(MBRs).
Following [KF93] we have chosen the so-called
‘2D-c’ method, which sorts rectangles accord-
ing to the Hilbert value of the center of the
rectangles. Given the ordering, every node
has a well-defined set of sibling nodes; thus,
we can use deferred splitting. By adjusting
the split policy, the Hilbert R-tree can achieve
as high utilization as desired. To the contrary,
the R.-tree has no control over the space uti-
lization, typically achieving up to 70%. We
designed the manipulation algorithms in de-
tail, and we did a full implementation of the

*This resexch was partially fuuded by the hmtitutc for Sys-
term, FLsemch (ISR), by the National Science Foundation un-
der Grants IF&9205273 and IFU-8958546 (PYI), with matching
fuuds from EMPRESS Software Inc. und Think& h4achinen
IIIC.

Pcrmieoion io copy without fee all or part of thir maicrial ir
granid provided that tbe copier are not made or dirtribmted for
direci commercial advantage, the VLDB copyrigkt notice and
the title of be publication and iio dde eppar, and notice ir
given that copying ir by pewnirrion of the Very Large Data Bare
Endowment. To copy other&e, or to reprblieh, reqrirer a fee
and/or l puial pemirvior from ihe Endowment.

Proceedings of the 20th VLDB Conference
Santiago, Chlle, 1994

Christos Faloutsos *
Department of Computer Science and
Institute for Systems Research (ISR)

University of Maryland
College Park, MD 20742

christos@cs.umd.edu

Hilbert R-tree. Our experiments show that
the ‘2-to-3’ split policy provides a cornpro
mise between the insertion complexity and the
search cost, giving up to 28% savings over the
R’ - tree [BKSSOO] on real data.

1 Introduction

One of the requirements for the database management
systems (DBMSs) of the near future is the ability to
handle spatial data [SSUSl]. Spatial data arise in
many applications, including: Cartography [WhiOl];
Computer-Aided Design (CAD) [OHM+841 [Gut84a];
computer vision and robotics [BB82]; traditional
databases, where a record with k attributes corre-
sponds to a point in a k-d space; temporal databases,
where time can be considered as one more dimen-
sion [KS91]; scientific databases with spatial-temporal
data, such as the ones in the ‘Grand Challenge’ appli-
cations [Gra92], etc.

In the above applications, one of the most typical
queries is the mnge query: Given a rectangle, retrieve
all the elements that intersect it. A special csse of the
range query is the point query or stabbing query, where
the query rectangle degenerates to a point.

We focus on the R-tree [Gut84b] family of methods,
which contains some of the most efficient methods that
support range queries. The advantage of our method
(and the rest of the R-tree-based methods) over the
methods that use linear quad-trees and z-ordering is
that R-trees treat the data objects as a whole, while
quad-tree based methods typically divide objects into
quad-tree blocks, increasing the number of items to be
stored.

The most successful variant of R-trees seems to be
the R*-tree [BKSSOO]. One of its main contributions is
the idea of ‘forced-reinsert’ by deleting some rectangles
from the overflowing node, and reinserting them.

500

The main idea in the present paper is:to impose an
ordering on the data rectangles. The consequences are
important: using this ordering, each R-tree node has
a well defined set of siblings; thus, we can use the al-
gorithms for deferred splitting. By adjusting the split
policy (2-to-3 or 3-t&4 etc) we can drive the utilization
a8 close to 100% as desirable. Notice that the R*-tree
does not have control over the utilization, typically
achieving an average of ~70%.

The only requirement for the ordering is that it has
to be ‘good’, that is, it should lead to small R-tree
nodes.

The paper is organized as follows. Section 2 gives
a brief description of the R-tree and its variants. Sec-
tion 3 describes the Hilbert R-tree. Section 4 presents
our experimental results that compare the Hilbert R-
tree with other R-tree variants. Section 5 gives the
conclusions and directions for future research.

2 Survey

Several spatial access methods have been proposed. A
recent survey can be found in [Sam89]. These meth-
ods fall in the following broad classes: methods that
transform rectanglea into points in a higher dimen-
sionality space [HN83, Fre87]; methods that use lin-
ear quadtrees [Gar82] [AS911 or, equivalently, the Z-
ordering [Ore861 or other space filling curvea [FR89]
[JaggOb]; and finally, methods based on treea (R-
tree [Gut84b], k-d-trees [Ben75], k-d-B-trees [RobBl],
hB-trees [LS90], cell-trees [Gun891 e.t.c.)

One of the most promising approaches in the last
class is the R-tree [Gut84b]: Compared to the trans-
formation methods, R-trees work on the native space,
which has lower dimensionality; compared to the lin-
ear quadtrees, the R-trees do not need to divide the
spatial objects into (several) pieces (quadtree blocks).
The R-tree is an extension of the B-tree for multidi-
mensional objects. A geometric object is represented
by its minimum bounding rectangle (MBR): Non-leaf
nodes contain entries of the form (R&r) where ptr is
a pointer to a child node in the R-tree; R is the MBR
that covers all rectangles in the child node. Leaf nodes
contain entries of the form (obj-id, R) where obj-id is a
pointer to the object description, and R is the MBR of
the object. The main innovation in the R-tree is that
father nodes are allowed to overlap. This way, the R-
tree can guarantee at least 50% space utilization and
remain balanced.

Guttman proposed three splitting algorithms, the
linear split, the quadraiic split and the exponedial
split. Their namea come from their complexity; among
the three, the quadratic split algorithm is the one that
achieves the best trade-off between splitting time and

search performance.
Subsequent work on R-trees includes the work by

Greene [Gre89], Roussopoulos and Leiflrer [RL85], R+-
tree by Sellii et al. [SRF87], R-trees using Mini-
mum Bounding Ploygons [JaggOal, Kamel and Falout-
sos [KF93] and the R*-tree [BKSSSO] of Beckmann
et al. , which seems to have better performance than
Guttman R-tree “quadratic split”. The main idea in
the R*-tree is the concept of forced re-insert. When a
node overflows, some of its children are carefully the
sen; they are deleted and re-inserted, usually resulting
in a R-tree with better structure.

3 Hilbert R-trees

In this section we introduce the Hilbert R-tree and dis-
cuss algorithms for searching, insertion, deletion, and
overflow handling. The performance of the R-trees de-
pends on how good is the algorithm that cluster the
data rectangles to a node. We propose to use space
filling curves (or fractals), and specifically, the Hilbert
curve to impose a linear ordering on the data rectan-
gles.

A space filling curve visits all the points in a Ic-
dimensional grid exactly once and never crosses it-
self. The Z-order (or Morton key order, or bit-
interleaving, or Peano curve), the Hilbert curve, and
the Gray-code curve [Fal88] are examples of space fill-
ing curves. In [FR89], it was shown experimentally
that the HiIbert curve achieves the beat clustering
among the three above methods.

Next we provide a brief introduction to the Hilbert
curve: The basic Hilbert curve on a 2x2 grid, denoted
by HI, is shown in Figure 1. To derive a curve of or-
der i, each vertex of the basic curve is replaced by the
curve of order i - 1, which may be appropriately rc+
tated and/or reflected. Figure 1 also shows the Hilbert
curvea of order 2 and 3. When the order of the curve
tends to infinity, the resulting curve is a fractal, with a
fractal dimension of 2 [Man77]. The Hilbert curve can
be generalized for higher dimensionalitiea. Algorithms
to draw the two-dimensional curve of a given order,
can be found in [Gri86], [JaggOb]. An algorithm for
higher dimensionalities is in [Bia69].

The path of a space filling curve imposes a linear
ordering on the grid points. Figure 1 shows one such
ordering for a 4 x 4 grid (see curve Ha). For example
the point (0,O) on the Hz curve has a Hilbert value
of 0, while the point (1,l) has a Hilbert value of 2.
The Hilbert value of a rectangle needs to be defined.
Following the experiments in [KF93], a good choice is
the following:

Definition 1 : The Hilbed value of a rectangle is de-

501

“1 “2 “3

Figure 1: Hilbert Curves of order 1, 2 and 3

fined as the Hilbert value of its center.
After this preliminary material, we are in a position

now to describe the proposed methods.

3.1 Description

The main idea is to create a tree structure that can

l behave like an R-tree on search.

l support deferred splitting on insertion, using the
Hilbert value of the inserted data rectangle as the
primary key.

These goals can be achieved ss follows: for every
node n of our tree, we store (a) its MBR, and (b)
the Largest Eilberi Value (LHV) of the data rectangles
that beiong to the subtree with root n.

Specifically, the Hilbert R-tree has the following
structure. A leaf node contains at most Cl entries
each of the form

(R, objid)

where Cl is the capacity of the leaf, R is the MBR of
the real object (~1~ , Zhigh , glou, , uhigh) and obj - id
is a pointer to the object description record. The main
difference with R- and R*-trees is that nonleaf nodes
also contain information about the LHVs. Thus, a
non-leaf node in the Hilbert R-tree contains at most
C,, entries of the form

where C,, is the capacity of a non-leaf node, R is the
MBR that encloses all the children of that node, ptr
is a pointer to the child node, and LHV is the largest
Hilbert value among the data rectangles enclosed by R.
Notice that we never calculate or use the Hilbert val-
ues of the MBRs. Figure 2 illustrates some rectangles,
organized in a Hilbert R-tree. The Hilbert values of
the centers are the numbers by the ‘x’ symbols (shown
only for the parent node ‘II’). The LHV’s are in [brack-
ets]. Figure 3,shows how is the tree of Figure 2 stored

on the disk; the contents of the parent node ‘II’ are
shown in more detail. Every data rectangle in node
‘I’ has Hilbert value 533; everything in node ‘II’ has
Hilbert value greater than 33 and 5107 etc.

Before we continue, we list some definitions. A plain
R-tree splits a node on overflow, turning 1 node to 2.
We call this policy a I-to-2 splitting policy. We pro-
pose to defer the split, waiting until they turn 2 nodes
into 3. We refer to it as the 2-to-3 splitting policy.
In general, we can have an s-to-(s+l) splitting policy;
we refer to s as the order of the splitting policy. To
implement the order-s splitting policy, the overflow-
ing node tries to push some of its entries to one of its
s - 1 siblings; if all of them are full, then we have an
s-to(s+l) split. We refer to these s - 1 siblings as the
cooperating siblings of a given node.

Next, we will describe in detail the algorithms for
searching, insertion, and overflow handling.

3.2 Searching

The searching algorithm is similar to the one used in
other R-tree variants. Starting from the root it de
scends the tree examining all nodes that intersect the
query rectangle. At the leaf level it reports all entries
that intersect the query window w as qualified data
items.

Algorithm Search(node Root, rect w):
Sl. Search nonleaf nodes:

invoke Search for every entry whose MBR
intersects the query window w.

S2. Search leaf nodes:
Report all the entries that intersect the query
window w as candidate.

3.3 Insertion

To insert a new rectangle r in the Hilbert R-tree, the
Hilbert value h of the center of the new rectangle is
used as a key. In each level we choose the node with

502

-

Figure 2: Data rectangles organized in a klilbert R-tree

LHV XL YL XH WI LHV XL YL XH q LHV XL YL XH YH
aa a 6 a640 1072oaa 66 266 60 10 60 40 1 76j ,

Figure 3: The file structure for the previous Hiibert R-tree

minimum LHV among the siblings. When a leaf node
is reached the rectangle P is inserted in its correct order
according to h. After a new rectangle is inserted in a
leaf node N, Ad,iust’Ikee ia called to fix the MBR and
LHV values in upper level nodes.

Algorithm I.neert(node Root, rect r):
/* inserts a new rectangle r in the Hilbert R-tree.
h is the Hilbert value of the rectangle. */
Il. Find the appropriate leaf node:

Invoke ChooseLeaf(r, h) to select a leaf node
L in which to place P.

12. Insert r in a leaf node L:
if L hae an empty slot, insert r in L in the
appropriate place according to the Hilbert
order and return.

if L is full, invoke HandleOverflow(L,r),

which will return new leaf if split was
inevitable.

13. Propagate change8 upward:
form a set S that contains L, its cooperating

siblings and the new leaf (if any).
invoke AdjustTree

14. Grow tree taller:
if node split propagation caused the root to
split, create a new root whose children are
the two resulting nodes.

Algorithm ChooseLeaf(rect r, int h):
/* Returns the leaf node in which to place
a new rectangle r. */
Cl. Initialize:

Set N to be the root node.
C2. Leaf check:

503

if N is 8 leaf, return N.
C3. Choose subtree:

if N is a non-leaf node, choose the entry
(R, ptr, LHV) with the minimum LHV
value greater than h.

C4. Descend until a leaf is nached:
set N to the node pointed by ptr and

repeat from C2.

Algorithm A~ustTree(set S):
/* S is a set of nodes that contains the node
being updated, its cooperating siblings (if overflow
has occurred) and newly created node NN (if split
has occurred). The routine ascends from leaf level
towards the root, adjusting MBR and LHV of nodes
that coverthe nodes in S siblings. It propagates
splits (if any). */
Al. if reached root level stop.
A2. Propagate node split upward

let N,, be the parent node of N.
if N has been split, let NN be the new node.
insert NN in Nr in the correct order according
to its Hilbert value if there is room. Otherwise,
invoke HandIeOverHow(Nr, MBR(NN)).

if Np is split, let PP be the new node.
A3. adjust the MBR’s and LHV’s in the parent level:

let P be the set of parent nodes for the nodes
in S.

Adjust the corresponding MBR’s and LHV’s
appropriately of the nodes in P.

A4. Move up to next level:
Let S become the set of parent nodes P, with
NN = PP, if Np ~8s split.
repeat from Al.

3.4 Deletion

In Hilbert R-tree we do NOT need to -insert or-
phaned nodes, whenever a father node underfiows. In-
stead, we borrow keys from the siblings or we merge 8n
underflowing node with its siblings. We 8re able to do
so, because the nodes have a clear ordering (Largest
Hilbert Value LHV); in contrast, in R-trees there is no
such concept of sibling node. Notice that, for deletion,
we need s cooperating siblings while for insertion we
needs-l.

Algorithm Delete(r):
Dl. Find the host leaf:

Perform 8n ex8ct match search to find
the leaf node L that contsin r.

D2. Delete P :
Remove r from node L.

D3. if L underfIows

borrow some entries from s cooperating
siblings.

if all the siblings are ready to underflow,
merge 8 + 1 to 8 nodes,
adjust the resulting nodes.

D4. adjust MBR and LHV in parent leveb:
form a set S that contains L and its

cooperating siblings (if underflow has
occurred).

invoke AdjustTree(

3.5 Overflow handling

The overflow handling algorithm in the Hilbert R-tree
treats the overflowing nodes either by moving some of
the entries to one of the B - 1 cooperating siblings or
splitting s nodes to s + 1 nodes.

Algorithm HandleOverflow(node N, rect r):
/* return the new node if a split occurred. */
Hl. let E be a set that contains all the entries from

N and its s - 1 cooperating siblings.
H2. add r to S.
H3. if at leaet one of the 8 - 1 cooperating

siblings is not full, distribute E
evenly among the a nodes according
to the Hilbert value.

H4. if all the s cooperating siblings are full,
create a new node NN and
distribute & evenly among the s + 1 nodes
according to the Hilbert value.
return NN.

4 Experimental results

To sssess the merit of our proposed Hilbert R-tree,
we implemented it and ran experiments on a two di-
mensional space. The method ~8s implemented in
C, under UNIX. We compared our methods against
the quadratic-split R-tree, and the R* - tree. Since
the CPU time required to process the node is negligi-
ble, we baaed our comparison on the number of nodes
(=pages) retrieved by range queries.

Without loss of generality, the address space ~8s
normalised to the unit square. There are several fat-
tors that affect the search time; we studied the follow-
ing ones:

Data items: points and/or rectangles and/or line
segments (represented by their MBR)

File siae: ranged from 10,000 - 100,000 records

Query - Qacda = Q= x qv: ranged from 0 - 0.3 of
the area of the address space

504

Another important factor, which is derived from N
and the average area a of the data rectangles, is the
‘data density’ d (or ‘cover quotient’) of the data rect-
angles. This is the sum of the areas of the data rect-
angles in the unit square, or equivalently, the average
number of rectangles that cover a randomly selected
point. Mathematically: d = N x a. For the selected
values of N and a, the data density ranges from 0.25
- 2.0.

To compare the performance of our proposed struc-
tures we used 5 data files that contained different types
of data: points, rectangles, lines, or mixed. Specifi-
cally, we used:

A) Real Data: we used real data from the TIGER
system of the U.S. Bureau of Census. An impor-
tant observation is that the data in the TIGER
datasets follow a highly skewed distribution.

‘MGCounty’ : This file consists of 39717 line
segments, representing the roads of Mont-
gomery county in Maryland. Using the min-
imum bounding rectangles of the segments,
we obtained 39717 rectangles, with data den-
sity d = 0.35. We refer to this dataset as the
‘MGCounty’ dataset.

‘LBeach’ : It consists of 53145 line segments,
representing the roads of Long Beach, Cali-
forniai The data density of the MBRs that
cover these line segments is d = 0.15. We
refer to this dataset aa the ‘LBeach’ dataset.

B) Synthetic Data: The reason for using synthetic
data is that we can control the parameters (data
density, number of rectangles, ratio of points to
rectangles etc.).

‘Points’ : This file contains 75,000 uniformly
distributed points.

‘Ret8 : This ille contains 100,000 rectangles,
no points. The centers of the rectangles
are uniformly distributed in the unit square.
The data density is d = 1.0

‘Mix’ : This file contains a mix of points and
rectangles; specifically 50,000 points and
10,000 rectangles; the data density is d =
0.029.

The query rectangles were squares with side Q,;
their centers were uniformly distributed in the unit
square. For each experiment, 200 randomly generated
queries were asked and the results were averaged. The
standard deviation was very small and is not even plot-
ted in our graphs. The page size used is 1KB.

We compare the Hilbert I&tree against the origi-
nal’ R-tree (quadratic split) and the R’ - tree. Next
we present experiments that (a) compare our method
against other R-tree variants (b) show the effect of the
different split policies on the performance of the pro-
posed method and (c) evaluate the insertion cost.

sso.00 ’ I I I I I

9’

Figure 4: Points and Rectangles (‘Mix’ Data&); Disk
Accesses vs. Query Area

I I I I I I Qms,d
on0 som lcaoo lsom mono zsoo

Figure 5: Rectangles Only (‘Recta’ dataset); Disk Ac-
cease% vs. Query Area

505

Figure 6: Points Only (‘Points’dataset); Disk Accesses
vs. Query Area

4.1 Comparison of the Hilbert R-tree vs.
other R-tree variants

In this section we show the performance superiority of
our Hilbert R-tree over the R* -tree, which is the most
successful variant of the R-tree. We present experi-
ments with all five datasets, namely: ‘Mix’, ‘Rects’,
‘Points’, ‘MGCounty’, and ‘LBeach’ (see Figures 4 - 6,
respectively). In all these experiments, we used the
‘2-t+3’ split policy for the Hilbert R-tree.

In all the experiment the Hilbert Rtree is the clear
winner, achieving up to 28% savings in response time
over the next best contender (the R* - tree). This
maximum gain is achieved for the ‘MGCounty’ dataset
(Figure 7). It is interesting to notice that the perfor-
mance gap is larger for the real data, whose main dif-
ference from the synthetic one is that it is skewed, as
opposed to uniform. Thus, we can conjecture that the
skeweness of the data favors the Hilbert R-tree.

Figure 4 also plots the results for the quadratic-
split R-tree, which, as expected, is outperformed by
the R’ - tree. In the rest of the figures, we omit the
quadratic-split R-tree, because it was consistently out-
performed by R’ - tree.

4.2 The efZect of the split policy on the per-
formance

Figure 9 shows the response time as a function of
the query size for the l-to-2, 2-tc+3, 3-to-4 and 4tc+
5 split policies. The corresponding space utilization
was 65.5%, 82.2%, 89.1% and 92.3% respectively. For

Figure 7: Montgomery County Data&; Disk Accesses
vs. Query Area

comparison, we also plot the response times of the
R’ - tree. As expected, the response time for the
range queries improves with the average node utiliza-
tion. However, there seems to be a point of diminishing
returns as s increases. For this reason, we recommend
the ‘2-t&3’ splitting policy (s=2), which strikes a bal-
ance between insertion speed (which deteriorates with
8) and search speed, which improves with 8.

4.3 Insertion cost

The higher space utilization in the Hilbert R-tree
comes at the expense of higher insertion cost. As we
employ higher split policy the number of cooperating
siblings need to be inspected at overflow increases. We
see that ‘2-to3’ policy is a good compromise between
the performance and the insertion cost. In this section
we compare .the insertion caet of the Hilbert R-tree
‘2-te3’ split with the insertion cost in the R’ -tree.
Also, show the effect of the split policy on the inser-
tion cost. The cost is measured by the number of disk
accesses per insertion.

Table 4.3 shows the insertion cost of the Hilbert R-
tree and the R’ - tree for the five different datasets.
The main observation here is that there is no clear
winner in the insertion cost.

Table 4.3 shows the effect of increasing the split
policy in the Hilbert R-tree on the insertion cost for
MGCounty dataset. As expected, the insertion cost

506

Lo8gBachls3145luaegemdq2b-3rplltpoucy

MT-

owm 5ba1-b

mm
We

mo.00

aom

owm

wo.00

mm

49000

4wm

3wm

xom

worn

mm

lwm

mm

wm

0.00

ol* 10-3
0.00 wm worn mm worn moo

Figure 8: Long Beach Dataset; Disk Accesses vs. Figure 9: The Effect of The Split Policy; Disk Accesses
Query Area vs. Query Area

Table 1: Comparison Between Insertion Cost in
Hilbert R-tree ‘2to-3’ Split and R’ - tree; Disk Ac-
cesses per Insertion

(disk accesses)/insertion
dataset Hilbert R-tree I R? - tree

(2~to-3 split)
MGCounty 3.55 3.10

LBeach 3.56 4.01
Points 3.66 4.06
Recta 3.95 4.07
Mix 3.47 3.39

L

increases with the order s of the split policy.

5 Conclusions

In this paper we designed and implemented a superior
R-tree variant, which outperforms all the previous R-
tree methods. The major idea is to introduce a ‘good’
ordering among rectangles. By simply defining an or-
dering, the R-tree structure is amenable to deferred
splitting, which can make the utiliiation approach the
100% mark as closely as we want. Better packing re-
sults in a shallower tree and a higher fanout. If the
ordering happens to be ‘good’, that is, to group simi-
lar rectangles together, then the R-tree will in addition
have nodes with small MBRs, and eventually, fast re-
sponse times.

Based on this idea, we designed in detail and imple-

MonQomeq Camnty: 39717 llae rcgementr; dUbrent rpllt p&da
MT-

worn
no.00
worn
worn
worn
worn
worn
mm
worn
IWrn
lam
lam
lwm
worn
am
am
am
wm
om

am loM0 law wom 4oom worn

Table 2: The Effect of The Split Policy on The Inser-
tion Cost; MGCounty Data&

mented the Hilbert R-tree, a dynamic tree structure
that is capable of handling insertions and deletions.
Experiments on real and synthetic data showed that
the proposed Hilbert I&tree with the ‘2-to-3’ splitting
policy consistently outperforms all the R-tree meth-
ods, with up to 28% savings over the best competitor
(the R+-tree).

Future work could focus on the analysis of Hilbert
R-trees, providing analytical formulas that predict the
response time as a function of the characteristics of
the data rectangles (count, data density etc).

References

[AS911 Walid G. Aref and Hanan Samet. Opti-
miration strategies for spatial query pro-
cessing. Proc. of VLDB (Very Large Data
Bases), pages 81-90, September 1991.

[BBS21 D. Ballard and C. Brown. Computer Vi-
sion. Prentice Hall, 1982.

507

[Ben751

[Bia69]

[BKSS90]

[Fa188]

[FR89]

[Fre87]

[Gar82]

[Gra92]

[Gre89]

[Gri86]

[Gun891

J.L. Bentley. Multidimensional binary
search trees used for associative searching.
CACM, 18(9):509-517, September 1975.

T. Bially. Spacefilling curves: Their
generation and their application to band-
width reduction. IEEE tins. on Informa-
tion Theory, IT-l-15(6):658-664, November
1969.

N. Beckmann, H.-P. Kriegel, R. Schneider,
and B. Seeger. The r*-tree: an efficient
and robust access method for points and
rectangles. ACM SIGMOD, pages 322-
331, May 1990.

C. Faloutsos. Gray codes for partial match
and range queries. IEEE l’kans. on Soft-
ware Engineering, 14(10):1381-1393, Oc-
tober 1988. early version available as
UMIACS-TR-87-4, also CSTR-1796.

C. Faloutsoa and S. Roseman. Frac-
tals for secondary key retrieval. Eighth
ACM SIGACT-SIGMOD-SIGART Sym-
posium on Principles of Database Systems
(PODS), pages 247-252, March 1989. also
available as UMIACSTR-89-47 and CS
TR2242.

Michael Freeston. The bang file: a new
kind of grid file. Proc. of ACM SIGMOD,
pages 260-269, May 1987.

I. Gargantini. An effective way to repre-
sent quadtrees. Comm. of ACM (CACM),
25(12):905-910, December 1982.

Grand challenges: High performance com-
puting and communications, 1992. The
FY 1992 U.S. Research and Development
Program.

D. Greene. An implementation and per-
formance analysis of spatial data access
methods. Prvc. of Data Engineering, pages
606-615, 1989.

J.G. Grifhths. An algorithm for displaying
a class of space-filling curves. Soflware-
Practice and Experience, 16(5):403-411,
May 1986.

0. Gunther. The cell tree: an index for
geometric data. Pmt. Data Engineering,
1989.

[Gut84a] A. Guttman. New Features for Relational
Database Systems to Support CAD Appli-
cations. PhD thesis, University of Califor-
nia, Berkeley, June 1984.

[Gut84b] A. Guttman. R-trees: a dynamic index
structure for spatial searching. Proc. ACM
SIGMOD, pages 47-57, June 1984.

[HN83] K. Hinrichs and J. Nievergelt. The grid
file: a data structure to support proxim-
ity queries on spatial objects. Proc. of
the WG’8S (Intern. Workshop on Graph
Theoretic Concepis in Computer Science),
pages lOO-113,1983.

[JagSOa] H. V. Jagadish. Spatial search with poly-
hedra. Proc. Sixth IEEE Int ‘1 Confi on
Data Engineering, February 1990.

[JagSOb] H.V. Jagadish. Linear clustering of objects
with multiple attributes. ACM SIGMOD
Conf, pages 332-342, May 1990.

[KF93] I. Kamel and C. Faloutsos. On pack-
ing r-trees. In Proc. 2nd International
Conference on Information and Knowl-
edge Management(CIKM-93), pages 490-
499, Arlington, VA, November 1993.

[KS911 Curtis P. Kolovson and Michael Stone-
braker. Segment indexes: Dynamic index-
ing techniques for multi-dimensional in-
terval data. Proc. ACM SIGMOD, pages
138-147, May 1991.

[LS90] David B. Lomet and Betty Salzberg. The
hb-tree: a multiattribute indexing method
with good guaranteed performance. ACM
TODS, 15(4):625-658, December 1990.

[Man771 B. Mandelbrot. Jkactal Geometry of No-
ture. W.H. Freeman, New York, 1977.

[OHM+841 J. K. Ousterhout, G. T. Hamachi, R. N.
Mayo, W. S. Scott, and G. S. Taylor.
Magic: a vlsi layout system. In 21st De-
sign Automation Conference, pages 152 -
159, Alburquerque, NM, June 1984.

[Ore861 J. Orenstein. Spatial query processing in
an object-oriented database system. Proc.
ACM SIGMOD, pages 326-336, May 1986.

@L851 N. Roussopoulos and D. Leifker. Direct
spatial search on pictorial databases using
packed r-trees. Prvc. ACM SIGMOD, May
1985.

508

[Rob811 J.T. Robinson. The k-d-b-tree: a search
structure for large multidimensional dy-
namic indexes. Proc. ACM SIGMOD,
pages 10-18, 1981.

[Sam89] H. Samet. The Design and Analysis of
Spatial Data Structures. Addison-Wesley,
1989.

[SRF87] T. Sellis, N, Roussopoulos, and C!. Falout-
808. The r+ tree: a dynamic index for
multi-dimensional objects. In Proc. 13th
International Conference on VLDB, pages
507-518, England,, September 1987. also
available as SRC-T&87-32, UMIACSTR
87-3, CS-TR-1795.

[SSUSl] Avi Silberschatz, Michael Stonebraker,
and Jeff Ullman. Database systems:
Achievements and opportunities. Comm.
of ACM (CACM), 34(10):110-120, Otto
ber 1991.

phi811 M. White. N-‘Bees: Large Odered In-
dexes for Multi-Dimensional Space. Appli-
cation Mathematics Research St&, Statis-
tical Research Division, U.S. Bureau of the
Census, December 1981.

