
Maximizing Buffer and Disk Utilizations for News
On-Demand

Raymond T. Ng and Jinhai Yang
(rng@cs.ubc.ca) (jyang@cs.ubc.ca)

Department of Computer Science
University of British Columbia

Vancouver, B.C., V6T 124, Canada

Abstract

In this paper, we study the problem of how
to maximize the throughput of a multimedia
system, given a fixed amount of buffer space
and disk bandwidth both pm-determined at
design-time. Our approach is to maximize the
utilizations of disk and buffers. We propose
doing so in two ways. First, we analyze a
scheme that allows multiple streams to share
buffers. Our analysis and preliminary simula-
tion results indicate that buffer sharing could
lead to as much as 50% reduction in total
buffer requirements. Second, we develop two
prefetching strategies: SP and IP. As will be
demonstrated by SP, straightforward prefetch-
ing is not effective at all. In contrast, IP,
which prefetches more intelligently than does
SP, could be valuable in maximizing the effec-
tive use of buffers and disk. Our preliminary
simulation results show that IP could lead to
a 40% improvement in throughput.

1 Introduction

With the advances in networking, storage, and I/O
interface technologies, providing effective multimedia
support in database management systems has become

Permission to copy without fee all or part of this material is
granted provided that the copies ate not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, OT to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 20t’h VLDB Conference
Santiago, Chile, 1994

a topic of great interest and value. To support au-
dio and video data, multimedia database management
systems need to deal with several tough issues. First,
audio and video data are delay-sensitive. As record-
ing and playback of video and audio data are contin-
uous operations, a management system, once starts
displaying audio or video data, must guarantee that
enough resources are allocated so that the continuity
and real time requirements are not violated. Second,
(even compressed) audio and video data consume large
amounts of system resources - primarily storage space
and bandwidth. Third, a multimedia object may con-
sist of multiple components: audio, video and text. It
is the responsibility of the management system to en-
sure that these multiple streams can be synchronized
during retrieval.

Many excellent studies regarding the storage and re-
trieval of audio and video data have been conducted,
such as those reported in [l, 2, 3, 4, 9, 10, 12, 131.
With respect to the topic area of this paper, these
studies can be grouped into two major categories.
The first group is primarily concerned with intelli-
gent disk scheduling. Studies in this group include
the sweeping scheme proposed by Chen, Kandlur and
Yu [2], the sorting-set algorithm developed by Gem-
me1 [3], the SCAN-EDF strategy designed by Reddy
and Wyllie [lo], and the hard real-time approach an-
alyzed by Tindell and Burns [12]. The second group
deals with constrained block allocation, which limits
the distance between successive blocks of a multime-
dia stream. Studies in this group include the scat-
tering parameter approach developed by Rangan and
Vin [9], the cluster strategy introduced by Gemmel
and Christodoulakis [3, 41, and the audio data place
ment work of Yu et. al. [13]. To a very large extent,
most of these proposals aim to minimize seek latencies
so as to satisfy the continuity requirements of multi-
media streams. And most of them are developed from

451

a design perspective.
Quite complementary to the problems addressed in

the studies mentioned above,. the problem we con-
sider here is concerned with the dynamic aspect of
a multimedia system. More specifically, given a fixed
amount of buffer space and disk bandwidth, both pre-
determined at design time, we study how to maximize
the throughput of a multimedia system, and minimize
the response time of queries (with the guarantee that
all continuity requirements will be satisfied). I!!or a sy5

tern with fixed disk bandwidth and buffer space, the
response time of queries are primarily governed by the
utilization of disk and buffers. Thus, our approach is
to utilize buffers and the disk as effectively as possible.
In particular, in this paper, we will report:

l a scheme that allows multiple streams to share
buffers. We will give an analysis on the bene-
fit of buffer sharing, which could lead to a 50%
reduction in total buffer requirements. We will
also present preliminary simulation results pro-
viding further evidence showing the effectiveness
of buffer sharing.

l two prefetching strategies: SP- and IP. As will be
shown by Strategy SP, straightforward prefetch-
ing may not be effective at all. In contrast, Strat-
egy IP, which prefetches more intelligently than
SP, could be very valuable in maximizing disk and
buffer utilizations, as well as system throughput.
Our preliminary simulation results indicate that
IP could lead to a 40% improvement in through-
put.

On first sight, the class of multimediasystems most
amenable to the techniques proposed here is the class
of news on-demand systems (e.g. [S]). This is be-
cause such systems normally have non-uniform, asyn-
chronous arrivals of queries, and the lengths of queries
are usually not long (e.g. 5 5 minutes). However,
in Section 5.4, we will argue that the proposed tech-
niques can also be applicable to multimedia systems
other than news on-demand.

The organization of the paper is as follows. Section
2 presents a preliminary analysis on periodic retrieval
of multiple streams, and gives several basic equations
needed in later analyses. Section 3 presents an anal-
ysis on buffer sharing. Section 4 introduces and ana-
lyzes the two prefetching strategies: SP and IP. Section
5 presents preliminary simulation results, followed by
discussions and conclusions.

2 Preliminary Analysis: Periodic Re-
trieval of Multiple Streams

As observed in [4, 91, for various performance reasons,
the most efficient way to process multiple streams si-

Symbol Meaning of Symbol
B mos maximum number of buffers available

B total buffers needed by n streams
B ahar total buffers needed with buffer sharing

& buffer consumption of Stream Si
Bl block size in non-contiguous placement
P total consumption rate of n streams
pi consumption rate of Stream Si

ppft

x
consumption rate of Si after prefetching
maximum disk reading rate

Si the i-th stream
9 total switching time within a cycle

%,j switching time between Streams Si and Sj
t length of a cycle

ti reading time for Si within a cycle
Ti length of Stream Si (in seconds)
P disk utilization

Figure 1: Meanings of Symbols Used

multaneously is to interleave the reading of the streams
in a cyclic fashion. In this section, we provide a pre-
liminary analysis of this situation.

Let there be n multiple streams denoted by
Sl , . . . , S,. Let the consumption rate ’ of Stream Si be
Pi, and the amount of time reading Si in each period
be ti. Then if si,j denotes the seek (or switching) time
fromSi toSj, we have: tl+. . .+tn+s1,2+. . .+s,,l 5 t,

where t denotes the total length of the cycle. To sim-
plify notations, let s = SIJ + . . . + s*,l. Then the disk
utilization, p, is given by:

t1 + . ..+t.+s
P =

t
(1)

Figure 1 summarizes the meanings of the symbols to
be used in this paper.

Now let us take a closer look at each Stream Si.
The analysis below assumes that apart from the seek
required for switching from Si-i to Si , no extra seek is
needed throughout time ti when Si is being read. This
can be achieved by using the technique of storing data
in clusters proposed in [3], or by storing data contigu-
ously (e.g. such as in a spiral optical disk). In [8], we
discuss how to relax this assumption to handle other
situations of data placement.

Within each period, the total amount of data con-
sumed by Si is t * Pi, and the amount read for Si is
ti * R, where R is the maximum disk reading rate.
Thus, the continuity requirement of Si can be ex-
pressed as:

ti*R 2 t*Pi (2)
lThe consumption rate refers to the rate the data obtained

from disk are consumed. For au uncompressed stream, its con-
sumption rate is the same as its playback rate.

452

However, in order to reduce the number of buffers used
for each stream, we have:

ti*R = t*Pi (3)

From Equation 3, it is easy to see that k = 8.
In other words, to minimize buffer consumption, the
reading time for each stream should be proportional to
its consumption rate. Let P denote the total consump-
tion rate, i.e. P = PI + . . . + P,,. Then by combining
Equations 1 and 3, ti can be determined by:

ti = (t*p-s)*$ (4)

The above equation gives the amount of reading
time for Si in terms of t, the length of the cycle. In
the following, we establish a lower bound on t, by com-
bining Equations 2 and 4:

t 1
s*R

R*p-P (5)

This equation leads to two interesting observations.
First, the equation is valid only if (R * p - P) > 0.
Even if the disk utilization p is set to the maximum 1,
it is necessary that R > P. This is the most obvious
admission control criterion. That is, without violating
their continuity requirements, a system cannot admit
so many streams that their total consumption rate P
exceeds the disk bandwidth. In Section 4, we will show
how this constraint can be relaxed by prefetching.

Second, t is inversely proportional to p. In other
words, the longer the length of the period, the less
utilized the disk becomes (for the n streams). This is
because as t increases, the proportion of time wasted in
switching (i.e. 4) th wi in every cycle becomes smaller.
In other words, a longer period corresponds to a higher
percentage of useful work (i.e. data transfer) done by
the disk, and the disk becomes more effective. Hence,
the proportion of the time when the disk is idle be-
comes higher, In Section 4, we will show how to make
use of this relationship between t and p to maximize
prefetching.

3 Analysis on Buffer Consumption

Thus far, we have analyzed the handling of multiple
streams primarily from the viewpoint of disk band-
width allocation. There is, however, another dimen-
sion: the allocation of buffers. In this section, we will
first give equations specifying the buffer requirements,
based on the analysis presented in the previous section.
Then we will analyze how sharing of buffers among
streams can minimize total buffer consumption and
maximize buffer utilization.

3.1 Buffer Requirements of Multiple Streams

Recall from the above analysis that the basic strategy
to support multiple streams simultaneously is that for
each Stream Si, enough data of Si must be read in
time ti to cover the consumption of Si for time t. TO
achieve this, buffers are needed for Si. In particular,
the maximum number of buffers is needed right af-
ter Si has just finished reading. Thus, the number of
buffers required by Si is: Bi = ti * R - ti * Pi. By
substituting Equation 4 into the above, we get:

Bi

Thus, the total buffer requirements for the
is:

(6)

n streams

B=~& = if!+?! * 2 Pi * (R- Pi) (7)
i=l i=l

Two observations can be drawn from the above equa-
tion. First, it is obvious from the equation that the
longer the period length t, the higher the value of B
is. Second, if Bmoz is the maximum number of buffers
available in the system, it is necessary that B 5 Bmar.
By substituting Equation 7 into B 5 B,,,,,%, we get an
upper bound of the cycle length t:

B maa? *p
t ’ p*Cy=l Pi*(R-Pi) + i (8)

This equation can be combined with Equation 5 to
provide the following admission control policy.

Admission Control Let Sr, . . . , S,-r be all the
streams in the current cycle, and S, be the stream
to be decided whether admission is possible.

1. Compute the lower bound (oft) based on Equa-
tion 5 and the upper bound based on Equation 8.

2. If the lower bound is strictly greater than the up-
per bound, then it is not possible to add S,, with-
out violating continuity requirements.

3. Otherwise, S,, can be admitted to form a new
cycle, and any value between the lower and upper
bound can be chosen as the length of the new
cycle. 0

In Section 4, we will return to this issue of picking a
value for t, and analyze in greater details how to do
that to maximize prefetching.

3.2 Buffer Sharing and its Benefit

As defined in Equation 7, the total buffer requirement
of n streams is based on the assumption that each

453

buffers t_... 3b

L ______________ s ______ s __-__-_____-_____-_____ _ __-._-__--__ 3bR
Sl 2 3

b
I)-

--is-- 4u3
time

onecycle t

Figure 2: Buffer Sharing for 3 Streams with Identical
Consumption Rates

stream Si occupies Bi buffers within each cycle. How-
ever, a~ shown in Figure 2, Si does not need all Bi
buffers at all times. In fact, Si’s buffer requirement
can be less than Bi, for example when Si+l, . . . , S,,
require their maximum number of buffers. Thus, a
simple way to minimize total buffer consumption and
thus to maximize buffer utilization is to allow the n
streams to share buffers.

Figure 2 shows a simple situation when there are
3 streams &, Sz, 5’s in the cycle, all of which has the
same consumption rate. Thus, by Equation 4, each
stream has an equal amount of reading time, i.e. same
ti. Since the cycle length t is normally much larger
than the total switching time s, Figure 2 shows the
simplified situation when ti = t/3. Let us consider the
total buffer requirement at time 4t/3, at which point
Sl has just finished reading and requires b buffers, the
maximum number of buffers that it ever needs. SZ,
which is about to start reading, has run out of data.
Thus, the buffer requirement of S2 is 0. As for S’s,
there were b buffers at time t, but at time 5t/3, all
the data in those buffers will be consumed. Thus, at
the current time 4t/3, S3 needs b/2 buffers. Hence,
the total number of buffers required by all 3 streams
is b + 0 + b/2 = 36/2. Note that if all the streams have
identical consumption rates, their total buffer require-
ment does not change with time. Thus, 3b/2 buffers
are all the 3 streams need. However, without buffer
sharing, 3b buffers are required. Thus, buffer sharing
gives a 50% reduction in total buffer consumption.

An analysis on buffer sharing for the general case
when there are n streams with heterogeneous con-
sumption rates 4, . . . , Pn involves finding the time
point within a period when the total buffer require-
ment reaches the maximum. This is necessary because
this maximum is no longer constant when PI, . . . , P,
are not all the same. Because such an analysis is very
lengthy and complicated, we consider it beyond the
scope of this paper. In the following, we will only
analyze the situation when there are n streams with
identical consumption rates. Since the consumption
rates are the same, the individual buffer requirement

Bi is the same, which is equal to b say. Similarly, the
reading time ti for each stream is the same, say equal
to to. Now let us consider the time when S, has just
finished reading. The following table shows the buffer
requirement of each stream at that point.

Streams Sl S2 S3 . . . S,
Buffers needed 0 &b Ab . . . 3b

First, S, haa just finished reading, thus requiring all
b buffers. 5’1 is about to start reading. Thus, it has 0
buffers of data at this point. S’s, at an earlier point in
time, had b buffers of data which are supposed to cover
the consumption of SZ for a period of (n-l)&. At the
point when S,, has just finished reading, (n-2)+to haa
elapsed, or alternatively, $2 will run of data to seconds
later. Thus, the current level of buffered data for Sz
is (n-i”,**. b = &b. Similarly, it is not difficult to see
that the current level of buffered data for Ss is &b.
Hence, the total number of buffers needed is:

n .
B c

Z-
shar = (9)

i=t

-+ =
n-

;b

In this case, without buffer sharing, the total number
of buffers required is B = nb. Thus, buffer sharing
reduces total buffer consumption by 50%.

Example 1 Consider a homogeneous set of streams
whose consumption rate is 240KB per second. (This
is based on 24 frames per second where each frame
is JPEG compressed to 1OKB Ill].) Given a disk
whose maximum reading rate is 1OOOKB per second,
4 streams can be supported simultaneously, provided
that there are enough buffers. Let the total switching
time be s = 0.1 sets. Furthermore, let us pick the
minimum cycle length, which corresponds to p = 1.
Then by Equation 5, t = 2.5 sets. By Equation 6,
the maximum buffer requirement for each stream is
b = 456KB. Thus, without buffer sharing, about 2MB
of buffer space is needed. But with buffer sharing, only
1MB is needed. Alternatively, if the system only has
1MB of buffer space, the number of streams that can
be supported simultaneously without buffer sharing is
only 2. With buffer sharing, the system can double
the throughput and support all 4 streams. cl

The above analysis assumes that the disk utilization
p is equal to 1. To take disk utilization into account,
we generalize the above table that shows the buffer
requirement of each stream at the point after S, has
finished reading to become:

Streams Sl S?l
Buffers cb (c +‘&)b : : : (c + r;:;P)b

454

where c = s. A simple summation yields:

B shar = w * nb. Now according to Equation 6,

bisequalto(R-F)* n *. Thus, the full equation
is:

B shar = (R-;)*(~*p-s)*~(lo)

This equation can replace Equation 7 (and thus Equa-
tion 8) in the admission control test shown ins Sec-
tion 3.1. In Section 5, we will present preliminary sim-
ulation results showing the savings provided by buffer
sharing, and the effect of buffer sharing on admission
control.

All the analyses presented so far are baaed on a fixed
reading order of streams within a cycle. [2, 31 explore
the benefit of allowing the reading order to change
from one period to another. The gain is a reduction
in total seek time, whereas the price to pay may be
a doubling of buffer requirements. In future work, we
will study whether we can get the best of both worlds
by integrating buffer sharing with variable reading or-
ders.

4 Prefetching Strategies

4.1 Benefits of Prefetching

On receiving a new request for a stream (referred to
as a new query from now on), the admission controller
that we have discussed so far simply checks if there are
enough disk bandwidth and buffers to satisfy the new
query, using Equations 5 and 8. If there are enough
resources, the query is activated. Otherwise, the query
sits idle in the waiting queue. Consequently, there are
resources - buffers and disk bandwidth - that are not
utilized at all 2. For instance, consider the situation
mentioned in Example 1. If the disk bandwidth can
support only 4 streams and there are 2MB buffering
space, buffer sharing would render 1MB idle. In gen-
eral, we measure the performance of our system by
its throughput and the response time of queries. But
given a system with pm-determined (at design time)
disk bandwidth and amount of buffer space, the re
sponse time of queries are primarily determined by
the utilization of disks and buffers. Thus, our goal
here is to try to use these resources as much as possi-
ble. More specifically, in this section, we explore how
data prefetching can maximize resources utilization,
and thus lead to an increase in system throughput.

There are at least 3 ways that prefetching can help
a query.

2 In this paper, we only consider FIFO as the queueing disci-
pline. It has the advantage of being simple and fair. Adopting
other queueing discipline may require additional work to ensure
fairness.

First, if a query has a consumption rate Pi that
is larger than R, then even after a query is ac-
tivated (i.e. becoming one of the queries served
in a cycle), the query cannot be consumed imme-
diately without violating the continuity require-
ments. Thus, to reduce the time between activa-
tion and the beginning of consumption, a system
can prefetch portion of this query while it is still
waiting in the waiting queue.

Second, even if a query .$,+I has a consump-
tion rate Pi less than R, prefetching portion of
this query before activation may reduce the re-
sponse time of the query. To see that, let say
that&,... , S,, are the activated queries. At some
point, query Sr has finished, and S,,+rXis acti-
vated. For reasons apparent later in Section 5.1,
the reading order may become Ss, . . . , $+I. If no
data has been prefetched for ,!?,,+I, then S,,+i can-
not be consumed until Sri+++ starts reading, which
is at the end of the cycle. However, if there is
sufficient amount of prefetched data of S,,+i , con-
sumption of Sn+l can start immediately at the
beginning of the cycle. Thus, there is a difference
in response time which may be as large as one
cycle length.

Third, prefetching portion of this query before ac-
tivation has the effect of reducing the effective
consumption rate of the query after activation.
This is illustrated in Figure 3. The solid line
represents the original consumption curve, whose
slope is given by the consumption rate Pi. If an
amount pf is prefetched, then the new, prefetched
consumption rate is given by the slope of the dot-
ted line. A simple analysis reveals that if Ti is the
length of the query, the new, prefetched consump-
tion rate is given by:

ppft
i =, pi-$

i
(11)

Since the new rate is less than the original rate,
there is a possibility that the new rate may pass
the admission control test, while the old one may
not. Whenever this happens, the response time of
the query is substantially reduced (cf: Example 3
later).

In this section, we will first present a straightfor-
ward prefetching strategy SP. Then observing that the
effectiveness of SP may be hindered by several short-
comings, we will develop another prefetching strategy
IP which tries to maximize overall system throughput.

455

prefetched
amount

Pf

slope = original rate

time

Figure 3: Reducing Consumption Rate by Prefetching

4.2 A Simple Prefetching Strategy: SP

Just like normal data retrieval from disk, prefetching
requires both disk bandwidth and buffers. One obvi-
ous way to allow prefetching to happen is to dedicate a
certain level of disk bandwidth and buffers to prefetch-
ing. But this would backfire as it reduces the disk
bandwidth and buffers available to activated queries.
Thus, we make sure that prefetching is not done at the
expense of activated queries. To this end, recall that
the cycle length t for the activated streams/queries
Sl,... , S,, are bounded below and above respectively
by Equations 5 and 8. If the system does not sup-
port prefetching at all, any value between the upper
and lower bounds can be picked as the value oft. How-
ever, to support prefetching, an immediate question to
answer is how to pick t so as to maximize prefetching,
but not at the expense of the activated queries.

In fact, setting t to any value between the upper
and lower bounds does not have any influence whatso-
ever on the completion times of the activated queries,
as the completion time of a query is determined by
its consumption rate and length 3. Thus, as long as a
value is picked between the lower and upper bounds,
the activated queries will not be affected. Let us con-
sider setting t to its lower bound. Then as discussed in
Section 2, this corresponds to a disk utilization p of 1.
In other words, all the disk bandwidth is used up for
the activated queries, and nothing is left for prefetch-
ing. On the other hand, consider setting t to its upper
bound. From the point of view of disk bandwidth al-
location, this time there is ample room for prefetching
because as discussed in Section 2, a longer cycle length
corresponds to a lower disk utilization p. However, the
trouble is that all the buffers are used up for the allo-
cated queries. Thus, at the end, no prefetching can be
done. Hence, the question to address is which value of
t in between the upper and lower bounds maximizes
prefetching.

There is actually another factor that affects the

3This is assuming normal termination, not preempted by 3. Prefetching stops when an activated query has fin-
such events 86 user quitting prematurely or system failures. ished, or the system has run out of buffers. 0

amount of prefetching that can be done. All the above
analysis is based on the assumption that the cycle for
the current collection of activated queries keep on go-
ing. Let TJinish denote the time the next activated
query will have finished. The range bounding t is only
valid before Tj. rnish, after which the current cycle has
to be changed anyway, and new calculations are re-
quired. Thus, the consideration of Tfinish suggests a
simple strategy (referred to as SP) to pick t so as to
maximize prefetching. It equates the amount of data
that can be retrieved in time Tjinish with the amount
of buffers that are available. This is formalized below.
First, it is obvious that the amount of data that can be
prefetched in time Tfinish is: DPf = Tfinish*R*(I-P).
By substituting Equations 3 and 4, we get:

Dpj
S

= Tfinish * R * (1 - 7 - f) (12)

On the other hand, according to Equation 7, the
buffers available for prefetching is given by:

BPj = &a, -i$ Pi*(R-Pi) (13)
I=1

To maximize prefetching, SP sets

DPf = BPf (14

This is a quadratic equation in t in the form of
&+bt+c = 0. Solving this quadratic equation in
the standard way gives a positive solution us (and a
negative solution). If us falls within the lower and up-
per bounds oft, which occurs more often than not, us
is the value of t. Otherwise, if us is strictly less than
the lower bound, t is set to the lower bound. And if
us is strictly greater than the upper bound, the upper
bound becomes the value of t.

The equations presented above do not assume buffer
sharing, and are based on Equation 7. Since prefetch-
ing is orthogonal to buffer sharing, a similar set of
equations can be derived for the buffer sharing case
based on Equation 10. Strategy SP is summarized in
the following.

Strategy SP Let Si, . . . , S,, be all the activated
queries, as allowed by the admission controller. Let
S ,,+I be the query at the head of the waiting queue.

1. Use Equation 14 to determine the length t of the
cycleforSi,...,S,.

2. Use the remaining disk bandwidth and buffers to
prefetch for S,,+i at the end of each cycle.

456

within cycle tl . . . t, remainder
read operations Sr . . . S,, idle

within cycle 11 t’l 1 . . . 1 t; 1 remainder
read operations Sr . . . S,, 1 prefetch &+I

Figure 4: Cyclic Activities with or without Prefetching

Figure 4 shows the disk activities within each cycle
with or without prefetching. The first table shows
the situation without prefetching. Within each cycle,
the first tl seconds are spent reading Sr, the next t2
for SZ, and so on. After all Sr, . . . , S,, have finished
reading, the disk is idle for the remaining time of the
cycle. The second table in Figure 4 shows the situa-
tion when prefetching strategy SP is used. It differs
from the first table in two respects. First, its cycle
length may be different from that without prefetch-
ing. Thus, the reading times for the activated queries
are t{, . . . , t’,, instead of tl, . . . , t,. More importantly,
after the activated queries have finished reading, the
disk may no longer be idle, and may be engaged in
prefetching S,,+r .

4.3 Motivation for a More Intelligent
Prefetching Strategy

Prefetching Strategy SP maximizes prefetching for the
query S,,+r at the head of the waiting queue. Doing
so, it may minimize the response time of &+I. How-
ever, as a result, &+I may use up too much system
resources, particularly free buffers - for its own good,
but not necessarily for the overall benefit of the system.
More specifically, SP just lets Sri+++ prefetch as much
as possible, but does not consider whether Sri+++ really
needs that much data to get started once an activated
query has finished. As shown in the example below,
too much prefetched data only occupy buffer space,
without doing any good to system performance. ,

Example 2 Consider a situation similar to the one
described in Example 1. There are 4 activated queries,
each with a consumption rate 240KB/s. And there
is 1MB of buffer space left. Now consider a scenario
where the query Sz is the only query in the waiting
queue with the same consumption rate. As discussed
before, SP would allow S’s to prefetch as much as pos-
sible, using up all 1MB of buffer space. However, as
calculated in Example 1, 456KB is all that is needed
for Sz within a cycle. In other words, 456KB is suffi-
cient to minimize the response time of Sz. Thus, the
question is whether prefetching an extra 544KB can
lead to any gain. The answer is no, because once the
consumption of Sz begins, its completion time depends

entirely on its length and its consumption rate. Giving
extra buffers does not help in any way. And in fact,
it can be harmful to the entire system as there is now
544KB less of buffer space available. cl

The above example suggests that while maximizing
prefetching, the SP’s approach of prefetching just for
the query at the head of the waiting queue may not
be sufficient. Thus, for a more effective prefetching
strategy, the questions to be answered are: a) how to
maximize prefetching, and b) how to determine how
much to prefetch for a query in the waiting queue. The
following example shows how looking ahead beyond
the query S,,+r at the head of the waiting queue can
help to determine the amount to prefetch for Sn+r.

Example 3 Consider the situation discussed in the
previous example again. There are 4 activated queries
with consumption rate 240KB/s each. Suppose there
are now two queries in the waiting queue: Sz and Se
both with consumption rate 240KB/s. Further assume
that the disk has a maximum reading rate of R =
1150KB/s, and there is now 1.5MB of buffer space.
Now let us consider the time when one of the acti-
vated queries has finished, and consider two different
amounts of prefetched data of Sz.

First, assume that 456KB of Sz has been prefetched,
which would minimize the response time of Sz. By
Equation 11, the new, prefetched consumption rate of
Sz is 240 - 456130 = 225, assuming that the total
length of S5 is 30 seconds. The question is whether Sz
and Ss can be activated simultaneously. The answer
is no because the total consumption rate P = 3*240+
225 + 240 = 1185 > 1150.

Alternatively, assume that 1500KB of S5 has been
prefetched. Then, by Equation 11, the prefetched con-
sumption rate of Sz is 240 - 1500/30 = 190. In this
case, the total consumption rate P = 3 * 240 + 190 +
240 = 1150 which is 5 R = 1150. 4 Thus, as long
as there are enough buffers to accommodate Sc, both
Sz and Ss can be activated, reducing drastically the
response time of Se. Thus, the consumption rate of
Se can be used to determine an appropriate amount
to prefetch for S5. cl

The above example shows that prefetching Ss for
the appropriate amount can lead to a gain for Sz and
other queries in the waiting queue. It also leads to
an interesting question: how to distribute prefetching
among queries in the waiting queue. In other words,
given the same amount of buffer space available for

‘In practice, it is not so simple just to ensure that the total
consumptionrate is not greater than the maximum reading rate.
As shown later in Strategy IP, what needs to be done is a full
admission control test. But here we simplify the situation to
illustrate the point that prefetching can lead to the activation
of extra queries.

457

prefetching, how much of each query in the waiting
queue should be prefetched so as to maximize the re-
duction in total consumption rate, thereby maximizing
the number of queries that can be activated.

To answer this question, I& us consider a “marginal
gain” analysis on the buffers, quite similar to the one
used in [7’J. More specifically, for a query Si, with
an original consumption rate Pi, we calculate the re-
duction in consumption rate we would obtain if we
prefetch one extra KB of Si. By Equation 11, this
value is equal to Pi - Pff’ which is equal to &. Thus,
given queries Sr , S2 whose lengths are Tl , T2’ respec-
tively, prefetching more for the stream whose length
is the shorter between TI and T2 would result in a
sharper drop in the combined consumption rate of the
two streams. In other words, if the combined con-
sumption rate has to drop below a certain value in
order to pass admission control, prefetching more for
the shorter query would require fewer buffers than
prefetching for the longer one. Consider the follow-
ing example.

Example 4 The previous example shows that in or-
der to activate both Sz and Ss after one other query
has finished, prefetching Ss for 1500KB will do. Sup-
pose the length of Se is 15 seconds. Then solving the
equation P = 3 * 240 + 240 + (240 - $) = 1150 indi-
cates that if we prefetch Ss entirely, only an amount
pf of 750KB would be sufficient to activate both SE
and Ss. Note that this amount is the bare minimum
that allows both queries to be activated. If there are
extra buffers, we can do more by prefetching one cycle
of Sa as well, so that not only are they activated, but
both Sz and Ss can also be consumed immediately at
the beginning of their first cycle. Cl

4.4 Prefetching Strategy IP

The prefetching strategy below, called IP which stands
for “Intelligent Prefetching,” finds the shortest query
to prefetch, so as to maximize prefetching and the
number of queries that can be activated once an active
query has completed.

Strategy IP Let Sr,. . .,S,, be all the activated
queries, as allowed by the admission controller.
Among them, let Sj (1 5 j 5 n) be the query that
will finish the earliest. Also let &+I, Sn+2,. . . be the
queries in the waiting queue, and Bjree be the total
number of buffers available to prefetching.

1. Use Equation 14 to determine the length t of the
cycleforSr,...,S,.

2. Initialize target to &+I, and candidateset to
S n+l as well. Also set finalAmt to 0.

3. (** first chance **) If the combined consump-
tion rate of all the streams in candidateset is
not greater than the consumption rate of Sj (i.e.

4 2 CSkEcandidateSet pk), go to Step 6.

4. (** second chance **) Otherwise,

(4

(b)

(4

(4

(e)

Calculate the necessary prefetched consump-
tion rate PLtget of target so that all the
streams in candidateset can possibly be ac-
tivated when Sj has finished, i.e.

ezgct + c Sk#target;SkEcandidateSet pk 5

Pj + (1 - p) * R.

Use Equation 11 to calculate the amount
that needs to be prefetched in order to reduce
the consumption rate of target to PLFget,

i.e. targetAmt = (Ptarget -Pp.‘:,,,) *Zapget.

If targetAmt > Bjree, then go to Step 5 to
try the next condition.

Otherwise, use the admission control test
given in Section 3.1 to determine if all
streams in candidateset, including the
prefetched one, can get in a cycle with all
the current activated queries except Sj. If
the admission control test fails, go to Step 5.

Otherwise, set finalTarget to target and
finalAmt to targetdmt. Go to Step 6.

5. (** third and final chance: both Steps 3 and 4 fail
i* 1
(4
(b)

(4

Set targetAmt to Bjree.

Use Equation 11 to calculate the prefetched
consumption rate Pfiriet of target,
i e Ppjt . . target = Ptarget -- ‘,,f,,~~‘.

Use the admission control test given in
Section 3.1 to determine if all streams in
candidateset, including the prefetched one,
can get in a cycle with all the current ac-
tivated queries except Sj. If the admission
control test fails, go to Step 7.

(d) Otherwise, set finalTarget to target and
finalAmt to targetAmt. Go to Step 6.

6. (** try to see if more queries can be activated
**) Consider the next query Snert in the waiting
queue that is not in candidateset. Add Sneot to
candidateset. Compare the length of Snert with
the length of target. Set target to be the stream
with the shorter length. Go back to Step 3.

7. (** no more queries can be activated **) If
finalAmt > 0, prefetch finalTarget for the
amount f inalAmt . cl

458

In the above strategy, the purpose of candidateset
is to ensure FIFO in the activation of queries, even
though as argued in the “marginal gain” analysis
above, it is possible to prefetch Sk+i without prefetch-
ing Sk. In each iteration of IP, the stream with the
shortest length in candidateset is chosen to be the
target stream for possible eventual prefetching. Then
there are three possibilities for all the queries in the
candidateset to be activated, once Sj has completed
(i.e. the next activated query to finish). The first case
is when the combined consumption rate of all those in
candidateset does not exceed the consumption rate of
Sj. In this case, all queries in candidateset are guar-
anteed to be activated once Sj has completed. In ad-
dition, nothing needs to be prefetched in this case 5.
Execution then goes to Step 6 to try to see if more
queries in the waiting queue can be activated. A new
target is found, and a new iteration begins.

If the first condition fails in Step 3, execution goes
to Step 4 to see if the second possibility would work
out. In this case, IP tests if a sufficient amount
of target can be prefetched so that all queries in
candidateset can be activated, provided that this
amount does not exceed the number of buffers cur-
rently available to prefetching (cf. Step 4~). If admis-
sion control in Step 4d verifies that all queries can be
activated with the help of prefetching, both target and
the prefetching amount targetAmt are recorded in the
variables f inalTarget and f inalAmt. Execution then
goes to Step 6 to try to add another query from the
waiting queue to candidateset, and a new iteration
begins.

If both the conditions in Steps 3 and 4 fail, IP tries
the “last resort.” It simply tests to see if using all free
buffers to prefetch for target will be sufficient to acti-
vate all queries in candidateset. If admission control
returns a positive answer, all the necessary operations
will be taken in Step 5d and 6, and a new iteration
begins.

If all three conditions in Steps 3, 4 and 5 fail, it is
an indication that not all queries in candidateset can
be activated. More precisely, all but the last added
query in candidateset can be activated once Sj has
completed. Step 7 prepares for this event by prefetch-
ing f inalTarget for the amount finalAmt. As shown
in Figure 4, prefetching occurs at the end of each cycle.

Notice that as presented above, IP is only concerned
with maximizing the number of queries that can be ac-
tivated. As discussed in the previous example, IP can
easily include a Step 8 that would prefetch one cycle
worth of data for each query that would be activated,

5This is the case as far as query activation is concerned.
But if there are enough buffers available at the end, queries in
candidateSet may be prefetched so that they can be consumed
immediately at the beginning of their first cycle.

so that every one can be consumed immediately at the
beginning of the first cycle. Furthermore, in the case
when no query in the waiting queue can be activated
even after Sj has completed (i.e. ,!&+I is the only
query in candidateset), another thing Step 8 could
do is to use SP to prefetch as much ss possible for
S ,,+I. This would take care of the situation when the
consumption rate of Sri+++ needs to be substantially
reduced before S,,+i can be activated. Last but not
least, the admission control used in IP above does not
consider buffer sharing. Equation 10 can be used in
the place of Equation 7 (and thus Equation 8) in ad-
mission control, if buffer sharing is used.

Example 5 Let us apply Strategy IP to the situation
discussed in the previous example. Let us assume that
Sr is the activated query that will finish the earliest. In
the first iteration of IP, S5 alone is considered in Step
3. Since Ss has the same consumption rate ss Si, Ss
can certainly take the place of Si and be activated once
Si has completed. Thus, execution goes to Step 6, in
which Ss is added to candidateset. Since Ss’s length
is shorter than Sg’s, S’S becomes the new target.

In the next iteration of IP, obviously Step 3 fails.
Now based on the calculations given in the previ-
ous example, the prefetched consumption rate of Ss
is Ppft target = lSOKB/s, and the prefetched amount is
targetAmt = 750KB. Assuming that the admission
control test in Step 4d ia psssed, finalTarget is set
to Ss and finalAmt to 750KB. Then in Step 6, an-
other query Sr is added from the waiting queue to
candidateset, and a new iteration begins.

Suppose 5’7 has the same rate and length as Ss,
and is the new target. It is not difficult to verify that
Steps 3, 4 and 5 fail in this iteration. Thus, execu-
tion goes to Step 7, and the final decision is that ss,
which is finalTarget, will be prefetched for 750KB.
As discussed before, if there is a Step 8 in IP to mini-
mize response time, Ss will also be prefetched so that
the consumption of Ss can start immediately at the
beginning of its first cycle. cl

This concludes the presentation of our prefetching
strategies. Next we will show preliminary simulation
results evaluating the effectiveness of IP and SP, as
well as buffer sharing.

5 Preliminary Simulation Results

5.1 Details of Simulation Package

We have implemented a discrete-event simulation
package to evaluate the techniques proposed in this pa-
per. The package runs under Unix on Spare-stations,
and consists of about 5,000 lines of C code, For ease of
coding, all the queries to be executed in a simulation

459

are submitted to the waiting queue at the beginning of
the simulation. Thus, the main outputs of the simula-
tion package do not include response times of queries,
but include such statistics as peak-and average disk
and buffer utilizations, and the total time to complete
all queries. Furthermore, to make our simulations as
close to reality as possible, we have implemented the
following features in our package.

l As observed in [9], a transient period is required
before a new Stream Sn+i can be added to a (new)
cycle. This is because the new cycle length t’ (for
one more stream) is strictly larger than the cur-
rent cycle length t. Thus, if we directly serve S,,+i
at the end of the current cycle, starvation will oc-
cur for all the queries Si, . . . , S, in the current
cycle, because they only have data buffered for
a cycle of length t < t’. Apart from the steady
states, our package also simulates the transient
period. For more information, see [8].

l When, an activated query has completed, there are
two ways to invoke the admission controller. One
way is to wait till that particular cycle ends; the
other is to wake up the controller immediately af-
ter the query has finished (even amidst a cycle).
The former policy, while much easier to imple-
ment, does not optimize system performance, es-
pecially when the cycle length is long and the disk
utility is low. We have implemented the latter
policy, and found out that system performance is
improved.

Apart from making our simulation package as close to
reality as possible, we have designed and run our simu-
lations based on real figures (e.g. minimum and max-
imum seek times equal to 5 and 25ms respectively).
We will give further details on all the simulations pre-
sented below.

5.2 Effectiveness of Buffer Sharing

In Section 3.2, we have analyzed that buffer sharing
can lead to a 50% reduction in total buffer require-
ment, when the disk utilization p is equal to 1. Here
we simulated a situation when p keeps changing and
has an average value less than 1. In this series of sim-
ulation, we used 50 queries, each with consumption
rate 240KB/s. The lengths of the queries were from
20 to 120 seconds, with the average being 60 seconds.
In order to support a sufficiently high number of con-
current queries, the maximum disk reading rate was
set to R = 2000KB/s. The graph in Figure 5 shows
the minimum buffer space needed, when the number of
concurrent queries varies from 3 to 7 - with and with-
out buffer sharing. As expected, in all cases, buffer
sharing requires less buffer space than without buffer

I
without buffer sharing

number of activated queries

Figure 5: Benefit of Buffer Sharing

sharing. The savings in buffer space was between 20%
to 40%, depending on the average disk utilization.

5.3 Effectiveness of Prefetching Strategy IP

In this series of simulation, we evaluated the effec-
tiveness of our prefetching strategies. We again used
50 queries, each with consumption rate 240KB/s, and
length 90 seconds. The maximum disk reading rate
was set to lOOOKB/s. The graphs in Figures 6 and 7
show the time taken to complete the 50 queries and
the average disk utilization with varying amounts of
buffer space. In both graphs, the x-axis is the amount
of buffer space, varying from 5MB to 8.5MB. In Fig-
ure 6, the y-axis is the total time taken to complete 50
queries using IP and SP, normalized by the time taken
without prefetching. Thus, the horizontal line at 1.0 in
Figure 6 represents the situation without prefetching.
With small amounts of space available to prefetching,
IP does not lead to any gain in performance. How-
ever, as more and more space becomes available, IP
is able to activate more and more queries faster than
if no prefetching is allowed. Consequently, the total
time taken becomes smaller. As shown in Figure 6, IP
could lead to a 30% savings in total time taken. Al-
ternatively, the throughput of a system using IP could
be 317 = 40% higher.

The performance gain caused by IP can be best
explained by the graph in Figure 7. If no prefetch-
ing takes place, the average disk utilization is around
0.8. But as more buffer space becomes available to
prefetching, IP is able to better utilize the disk by
prefetching, and the average disk utilization gradu-

460

----_._ SP

\
without preietching

--
IP

J

5 5.5 6 6.5 7 7.5 a 6.5

buffer size (MB)

Figure 6: IP vs SP: relative total time taken Figure 7: IP vs SP: average disk utilization

ally climbs up to 1.0. Moreover, the utilization of
buffers follows a similar trend. Another interesting
thing shown in Figure 7 is that the average disk uti-
lization for SP is still higher than if no prefetching is
allowed. This is an indication that while the disk is
kept busy by prefetching, the way that SP conducts
prefetching is problematic and totally ineffective.

The series of simulation discussed above did not al-
low buffers to be shared. In another series of simula-
tion, we allowed buffers to be shared, and used the ver-
sion of admission control that is based on Equation 10,
but not on Equation 7. The results of this series of
simulation were very similar to those presented above.
The only difference was that buffer sharing saved a few
hundred KBs of buffer space, and made it available to
prefetching. Thus, the point when IP started to show
improvement now began a few hundred KBs earlier
than was shown in Figure 6.

5.4 Discussions: Applicability of Prefetching
to General Multimedia Systems

Our preliminary simulation results indicate that ap-
propriate prefetching can lead to increase in through-
put, disk utilization and buffer utilization. However,
in order to have higher throughputs and thus lower
response times of queries, the price to pay is certainly
availability of buffer space. As shown in our exam-
ples and simulation results, we believe that the price
is not high - provided that the streams are short, say
below 5 minutes in length. As far as news on-demand
systems are concerned, a large class of news clips falls
within this range. However, a natural question to ask

IP

---- sp

without prefetching

5 5.5 6 6.5 7 7.5

buffer size (MB)

a a.5

is whether prefetching has a role to play in other mul-
timedia systems.

Consider multimedia database management sys-
terns. We believe that prefetching indeed has a major
role to play in tuning the performance of such sys-
tems. This is because for a large class of applications,
the audio and video components tend to be short. For
example, for applications such as the one described
in [5], audio and video may not be the only media, and
may work hand-in-hand with other media such as text.
and images. Audio and video components may also
play the role of annotations or illustrations. Moreover,
many applications may require frequent user interac-
tion.

What about the other extreme: movies on-demand
systems? Unlike those cases discussed above, movies
on-demand is concerned with supplying video and au-
dio data to users for long durations and with relatively
little user interaction. By Equation 11, reducing the
consumption rate of a movie by just lKB/s requires T
KB buffer space, where T is the length of the query in
seconds. For example, if a movie is 90 minutes long,
this amount of buffer space is already 5.4MB. And to
reduce the consumption rate by 50KB/s (as in Exam-
ple 5), 270MB of buffer space is needed! As shown
in Equation 11, the amount of buffer space needed for
prefetching (and IP) to work is linearly proportional
to the length of the movie. However, on the positive
side, consider the benefit of prefetching. Recall that
prefetching has the effect of activating as many queries
(movies) as possible. If prefetching is not used, and a
movie i%fs cannot be activated immediately, it has to
wait for an activated movie ikfl to finish. Thus, the

461

waiting time of MO depends linearly on the length of
Mi. In other words, if prefetching is the difference
between whether a movie can or cannot be activated
immediately, the difference in response time, like the
amount of buffer space needed, is linearly proportional
to the length of the movies. As-an example, this dif-
ference in response time may be 30 minutes. Thus,
while long queries magnify the buffer space needed for
prefetching to work, they also magnify the benefits of
prefetching. It is certainly up’ to an enterprise to de-
cide which is more important and costly: 270MB or
30 minutes.

6 Conclusions

Providing effective multimedia support in database
management systems is a topic of great interest and
value. In this paper, we consider one of the key
problems encountered in such systems. Given a fixed
amount of buffer space and disk bandwidth both pre-
determined at design time, we study how to maxi-
mize the throughput of the system. Our approach is
to maximize the utilizations of buffers and disk. To
achieve this goal, we have first proposed a buffer shar-
ing scheme. Analysis and simulation results indicate
that buffer sharing could reduce total buffer consump-
tion by as much as 50%. Second, we have developed
the prefetching strategy IP which aims to maximize
prefetching and the number of queries that can be ac-
tivated. Preliminary simulation results show that IP
could be quite effective in maximizing the effective use
of buffers and disk, and could lead to a 40% increase in
system throughput. Finally, as argued in Section 5.4,
we believe that the proposed techniques can also be
valuable to multimedia systems other than news on-
demand systems and database management systems.

In ongoing work, we are studying how to implement
the proposed techniques in a distributed continuous-
media file system. Key issues to be addressed include
how to extend the proposed techniques to support mul-
tiple disks and network buffering, and how to effec-
tively implement prefetching and buffer sharing, when
the reading orders from one cycle to the next can or
cannot be changed.

Acknowledgements

Research partially sponsored by NSERC Grants
OGP0138055 and STR0134419, IRIS-2 Grants HMI-
5 and IC-5, and CITR Grant on “Distributed
Continuous-Media File System.”

References

[l] D. Anderson, Y. Osawa and R. Govindan. (1992)
A File System for Continuous Media, ACM

Trans. on Computer Systems, 10, 4.

[2] M. Chen, D. Kandlur and P. Yu. (1993) Op-
timization of the Grouped Sweeping Scheduling
with Heterogeneous Multimedia Streams, Proc.
ACM-Multimedia, pp 235-242.

[3] J. Gemmell. (1993) Multimedia Network File
Servers: Multi-channel Delay Sensitive Data Re-
trieval, Proc. ACM-Multimedia, pp 243-250.

[4] J. Gemmell and S. Christodoulakis. (1992) Prin-
ciples of Delay-Sensitive Multimedia Data Stor-
age and Retrieval, ACM Trans. on Information
Systems, 10, 1, pp 51-90.

[5] R. Goldman-Segall. (1990) Learning Constella-
tions: a Multimedia Research Environment for
Exploring Children’s Theory-Making, Construc-
tionist Learning, ed. I. Harel, Cambridge, MA,
MIT Media Laboratory.

[6] G. Miller, G. Baber and M. Gilliland. (1993)
News On-Demand for Multimedia Networks,
Proc. ACM-Multimedia, pp 383-392.

[7] R. Ng, C. Faloutsos and T. Sellis. (1991) Flexi-
ble Bugler Allocation Based ‘on Marginal Gains,
Proc. ACM-SIGMOD, pp 387-396.

[8] R. Ng and J. Yang. (1994) Maximizing Bugler
and Disk Utilizations for Multimedia Sys-
tems, Technical Report, University of British
Columbia.

[9] P. Venkat Rangan and H. Vin. (1991) Designing
File Systems for Digital Video and Audio, Proc.
ACM Symposium on Operating Systems Princi-
ples, pp 69-79.

[lo] A. Reddy and J. Wyllie. (1993) Disk Schedul-
ing in a Multimedia I/O System, Proc. ACM-
Multimedia, pp 225-233.

[ll] L. Rowe and B. Smith. (1992) A Continuous Me-
dia Player, Proc. 3rd Intl. Workshop on Network
and OS Support for Digital Audio and Video.

[12] K. Tindell and A. Burns. (1993) Scheduling Hard
Real-Time Multimedia Disk l+afic, Technical
Report, University of York, England.

[13] C. Yu, W. Sun, D. Bitton, Q. Yang and R.
Bruno. (1989) Eficient Placement of Audio Data
on Optical Disks for Real-Time Applications,
Communications of ACM, 32, 7, pp 862-871.

462

