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Abstract 

In this paper, we study the problem of how 
to maximize the throughput of a multimedia 
system, given a fixed amount of buffer space 
and disk bandwidth both pm-determined at 
design-time. Our approach is to maximize the 
utilizations of disk and buffers. We propose 
doing so in two ways. First, we analyze a 
scheme that allows multiple streams to share 
buffers. Our analysis and preliminary simula- 
tion results indicate that buffer sharing could 
lead to as much as 50% reduction in total 
buffer requirements. Second, we develop two 
prefetching strategies: SP and IP. As will be 
demonstrated by SP, straightforward prefetch- 
ing is not effective at all. In contrast, IP, 
which prefetches more intelligently than does 
SP, could be valuable in maximizing the effec- 
tive use of buffers and disk. Our preliminary 
simulation results show that IP could lead to 
a 40% improvement in throughput. 

1 Introduction 

With the advances in networking, storage, and I/O 
interface technologies, providing effective multimedia 
support in database management systems has become 

Permission to copy without fee all or part of this material is 
granted provided that the copies ate not made or distributed for 
direct commercial advantage, the VLDB copyright notice and 
the title of the publication and its date appear, and notice is 
given that copying is by permission of the Very Large Data Base 
Endowment. To copy otherwise, OT to republish, requires a fee 
and/or special permission from the Endowment. 

Proceedings of the 20t’h VLDB Conference 
Santiago, Chile, 1994 

a topic of great interest and value. To support au- 
dio and video data, multimedia database management 
systems need to deal with several tough issues. First, 
audio and video data are delay-sensitive. As record- 
ing and playback of video and audio data are contin- 
uous operations, a management system, once starts 
displaying audio or video data, must guarantee that 
enough resources are allocated so that the continuity 
and real time requirements are not violated. Second, 
(even compressed) audio and video data consume large 
amounts of system resources - primarily storage space 
and bandwidth. Third, a multimedia object may con- 
sist of multiple components: audio, video and text. It 
is the responsibility of the management system to en- 
sure that these multiple streams can be synchronized 
during retrieval. 

Many excellent studies regarding the storage and re- 
trieval of audio and video data have been conducted, 
such as those reported in [l, 2, 3, 4, 9, 10, 12, 131. 
With respect to the topic area of this paper, these 
studies can be grouped into two major categories. 
The first group is primarily concerned with intelli- 
gent disk scheduling. Studies in this group include 
the sweeping scheme proposed by Chen, Kandlur and 
Yu [2], the sorting-set algorithm developed by Gem- 
me1 [3], the SCAN-EDF strategy designed by Reddy 
and Wyllie [lo], and the hard real-time approach an- 
alyzed by Tindell and Burns [12]. The second group 
deals with constrained block allocation, which limits 
the distance between successive blocks of a multime- 
dia stream. Studies in this group include the scat- 
tering parameter approach developed by Rangan and 
Vin [9], the cluster strategy introduced by Gemmel 
and Christodoulakis [3, 41, and the audio data place 
ment work of Yu et. al. [13]. To a very large extent, 
most of these proposals aim to minimize seek latencies 
so as to satisfy the continuity requirements of multi- 
media streams. And most of them are developed from 
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a design perspective. 
Quite complementary to the problems addressed in 

the studies mentioned above,. the problem we con- 
sider here is concerned with the dynamic aspect of 
a multimedia system. More specifically, given a fixed 
amount of buffer space and disk bandwidth, both pre- 
determined at design time, we study how to maximize 
the throughput of a multimedia system, and minimize 
the response time of queries (with the guarantee that 
all continuity requirements will be satisfied). I!!or a sy5 

tern with fixed disk bandwidth and buffer space, the 
response time of queries are primarily governed by the 
utilization of disk and buffers. Thus, our approach is 
to utilize buffers and the disk as effectively as possible. 
In particular, in this paper, we will report: 

l a scheme that allows multiple streams to share 
buffers. We will give an analysis on the bene- 
fit of buffer sharing, which could lead to a 50% 
reduction in total buffer requirements. We will 
also present preliminary simulation results pro- 
viding further evidence showing the effectiveness 
of buffer sharing. 

l two prefetching strategies: SP- and IP. As will be 
shown by Strategy SP, straightforward prefetch- 
ing may not be effective at all. In contrast, Strat- 
egy IP, which prefetches more intelligently than 
SP, could be very valuable in maximizing disk and 
buffer utilizations, as well as system throughput. 
Our preliminary simulation results indicate that 
IP could lead to a 40% improvement in through- 
put. 

On first sight, the class of multimediasystems most 
amenable to the techniques proposed here is the class 
of news on-demand systems (e.g. [S]). This is be- 
cause such systems normally have non-uniform, asyn- 
chronous arrivals of queries, and the lengths of queries 
are usually not long (e.g. 5 5 minutes). However, 
in Section 5.4, we will argue that the proposed tech- 
niques can also be applicable to multimedia systems 
other than news on-demand. 

The organization of the paper is as follows. Section 
2 presents a preliminary analysis on periodic retrieval 
of multiple streams, and gives several basic equations 
needed in later analyses. Section 3 presents an anal- 
ysis on buffer sharing. Section 4 introduces and ana- 
lyzes the two prefetching strategies: SP and IP. Section 
5 presents preliminary simulation results, followed by 
discussions and conclusions. 

2 Preliminary Analysis: Periodic Re- 
trieval of Multiple Streams 

As observed in [4, 91, for various performance reasons, 
the most efficient way to process multiple streams si- 

Symbol Meaning of Symbol 
B mos maximum number of buffers available 

B total buffers needed by n streams 
B ahar total buffers needed with buffer sharing 

& buffer consumption of Stream Si 
Bl block size in non-contiguous placement 
P total consumption rate of n streams 
pi consumption rate of Stream Si 

ppft 

x 
consumption rate of Si after prefetching 
maximum disk reading rate 

Si the i-th stream 
9 total switching time within a cycle 

%,j switching time between Streams Si and Sj 
t length of a cycle 

ti reading time for Si within a cycle 
Ti length of Stream Si (in seconds) 
P disk utilization 

Figure 1: Meanings of Symbols Used 

multaneously is to interleave the reading of the streams 
in a cyclic fashion. In this section, we provide a pre- 
liminary analysis of this situation. 

Let there be n multiple streams denoted by 
Sl , . . . , S,. Let the consumption rate ’ of Stream Si be 
Pi, and the amount of time reading Si in each period 
be ti. Then if si,j denotes the seek (or switching) time 
fromSi toSj, we have: tl+. . .+tn+s1,2+. . .+s,,l 5 t, 

where t denotes the total length of the cycle. To sim- 
plify notations, let s = SIJ + . . . + s*,l. Then the disk 
utilization, p, is given by: 

t1 + . ..+t.+s 
P = 

t 
(1) 

Figure 1 summarizes the meanings of the symbols to 
be used in this paper. 

Now let us take a closer look at each Stream Si. 
The analysis below assumes that apart from the seek 
required for switching from Si-i to Si , no extra seek is 
needed throughout time ti when Si is being read. This 
can be achieved by using the technique of storing data 
in clusters proposed in [3], or by storing data contigu- 
ously (e.g. such as in a spiral optical disk). In [8], we 
discuss how to relax this assumption to handle other 
situations of data placement. 

Within each period, the total amount of data con- 
sumed by Si is t * Pi, and the amount read for Si is 
ti * R, where R is the maximum disk reading rate. 
Thus, the continuity requirement of Si can be ex- 
pressed as: 

ti*R 2 t*Pi (2) 
lThe consumption rate refers to the rate the data obtained 

from disk are consumed. For au uncompressed stream, its con- 
sumption rate is the same as its playback rate. 
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However, in order to reduce the number of buffers used 
for each stream, we have: 

ti*R = t*Pi (3) 

From Equation 3, it is easy to see that k = 8. 
In other words, to minimize buffer consumption, the 
reading time for each stream should be proportional to 
its consumption rate. Let P denote the total consump- 
tion rate, i.e. P = PI + . . . + P,,. Then by combining 
Equations 1 and 3, ti can be determined by: 

ti = (t*p-s)*$ (4) 

The above equation gives the amount of reading 
time for Si in terms of t, the length of the cycle. In 
the following, we establish a lower bound on t, by com- 
bining Equations 2 and 4: 

t 1 
s*R 

R*p-P (5) 

This equation leads to two interesting observations. 
First, the equation is valid only if (R * p - P) > 0. 
Even if the disk utilization p is set to the maximum 1, 
it is necessary that R > P. This is the most obvious 
admission control criterion. That is, without violating 
their continuity requirements, a system cannot admit 
so many streams that their total consumption rate P 
exceeds the disk bandwidth. In Section 4, we will show 
how this constraint can be relaxed by prefetching. 

Second, t is inversely proportional to p. In other 
words, the longer the length of the period, the less 
utilized the disk becomes (for the n streams). This is 
because as t increases, the proportion of time wasted in 
switching (i.e. 4) th wi in every cycle becomes smaller. 
In other words, a longer period corresponds to a higher 
percentage of useful work (i.e. data transfer) done by 
the disk, and the disk becomes more effective. Hence, 
the proportion of the time when the disk is idle be- 
comes higher, In Section 4, we will show how to make 
use of this relationship between t and p to maximize 
prefetching. 

3 Analysis on Buffer Consumption 

Thus far, we have analyzed the handling of multiple 
streams primarily from the viewpoint of disk band- 
width allocation. There is, however, another dimen- 
sion: the allocation of buffers. In this section, we will 
first give equations specifying the buffer requirements, 
based on the analysis presented in the previous section. 
Then we will analyze how sharing of buffers among 
streams can minimize total buffer consumption and 
maximize buffer utilization. 

3.1 Buffer Requirements of Multiple Streams 

Recall from the above analysis that the basic strategy 
to support multiple streams simultaneously is that for 
each Stream Si, enough data of Si must be read in 
time ti to cover the consumption of Si for time t. TO 
achieve this, buffers are needed for Si. In particular, 
the maximum number of buffers is needed right af- 
ter Si has just finished reading. Thus, the number of 
buffers required by Si is: Bi = ti * R - ti * Pi. By 
substituting Equation 4 into the above, we get: 

Bi 

Thus, the total buffer requirements for the 
is: 

(6) 

n streams 

B=~& = if!+?! * 2 Pi * (R- Pi) (7) 
i=l i=l 

Two observations can be drawn from the above equa- 
tion. First, it is obvious from the equation that the 
longer the period length t, the higher the value of B 
is. Second, if Bmoz is the maximum number of buffers 
available in the system, it is necessary that B 5 Bmar. 
By substituting Equation 7 into B 5 B,,,,,%, we get an 
upper bound of the cycle length t: 

B maa? *p 
t ’ p*Cy=l Pi*(R-Pi) + i (8) 

This equation can be combined with Equation 5 to 
provide the following admission control policy. 

Admission Control Let Sr, . . . , S,-r be all the 
streams in the current cycle, and S, be the stream 
to be decided whether admission is possible. 

1. Compute the lower bound (oft) based on Equa- 
tion 5 and the upper bound based on Equation 8. 

2. If the lower bound is strictly greater than the up- 
per bound, then it is not possible to add S,, with- 
out violating continuity requirements. 

3. Otherwise, S,, can be admitted to form a new 
cycle, and any value between the lower and upper 
bound can be chosen as the length of the new 
cycle. 0 

In Section 4, we will return to this issue of picking a 
value for t, and analyze in greater details how to do 
that to maximize prefetching. 

3.2 Buffer Sharing and its Benefit 

As defined in Equation 7, the total buffer requirement 
of n streams is based on the assumption that each 
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Sl 2 3 

b 
I)- 

--is-- 4u3 
time 

onecycle t 

Figure 2: Buffer Sharing for 3 Streams with Identical 
Consumption Rates 

stream Si occupies Bi buffers within each cycle. How- 
ever, a~ shown in Figure 2, Si does not need all Bi 
buffers at all times. In fact, Si’s buffer requirement 
can be less than Bi, for example when Si+l, . . . , S,, 
require their maximum number of buffers. Thus, a 
simple way to minimize total buffer consumption and 
thus to maximize buffer utilization is to allow the n 
streams to share buffers. 

Figure 2 shows a simple situation when there are 
3 streams &, Sz, 5’s in the cycle, all of which has the 
same consumption rate. Thus, by Equation 4, each 
stream has an equal amount of reading time, i.e. same 
ti. Since the cycle length t is normally much larger 
than the total switching time s, Figure 2 shows the 
simplified situation when ti = t/3. Let us consider the 
total buffer requirement at time 4t/3, at which point 
Sl has just finished reading and requires b buffers, the 
maximum number of buffers that it ever needs. SZ, 
which is about to start reading, has run out of data. 
Thus, the buffer requirement of S2 is 0. As for S’s, 
there were b buffers at time t, but at time 5t/3, all 
the data in those buffers will be consumed. Thus, at 
the current time 4t/3, S3 needs b/2 buffers. Hence, 
the total number of buffers required by all 3 streams 
is b + 0 + b/2 = 36/2. Note that if all the streams have 
identical consumption rates, their total buffer require- 
ment does not change with time. Thus, 3b/2 buffers 
are all the 3 streams need. However, without buffer 
sharing, 3b buffers are required. Thus, buffer sharing 
gives a 50% reduction in total buffer consumption. 

An analysis on buffer sharing for the general case 
when there are n streams with heterogeneous con- 
sumption rates 4, . . . , Pn involves finding the time 
point within a period when the total buffer require- 
ment reaches the maximum. This is necessary because 
this maximum is no longer constant when PI, . . . , P, 
are not all the same. Because such an analysis is very 
lengthy and complicated, we consider it beyond the 
scope of this paper. In the following, we will only 
analyze the situation when there are n streams with 
identical consumption rates. Since the consumption 
rates are the same, the individual buffer requirement 

Bi is the same, which is equal to b say. Similarly, the 
reading time ti for each stream is the same, say equal 
to to. Now let us consider the time when S, has just 
finished reading. The following table shows the buffer 
requirement of each stream at that point. 

Streams Sl S2 S3 . . . S, 
Buffers needed 0 &b Ab . . . 3b 

First, S, haa just finished reading, thus requiring all 
b buffers. 5’1 is about to start reading. Thus, it has 0 
buffers of data at this point. S’s, at an earlier point in 
time, had b buffers of data which are supposed to cover 
the consumption of SZ for a period of (n-l)&. At the 
point when S,, has just finished reading, (n-2)+to haa 
elapsed, or alternatively, $2 will run of data to seconds 
later. Thus, the current level of buffered data for Sz 
is (n-i”,**. b = &b. Similarly, it is not difficult to see 
that the current level of buffered data for Ss is &b. 
Hence, the total number of buffers needed is: 

n . 
B c 

Z- 
shar = (9) 

i=t 

-+ = 
n- 

;b 

In this case, without buffer sharing, the total number 
of buffers required is B = nb. Thus, buffer sharing 
reduces total buffer consumption by 50%. 

Example 1 Consider a homogeneous set of streams 
whose consumption rate is 240KB per second. (This 
is based on 24 frames per second where each frame 
is JPEG compressed to 1OKB Ill].) Given a disk 
whose maximum reading rate is 1OOOKB per second, 
4 streams can be supported simultaneously, provided 
that there are enough buffers. Let the total switching 
time be s = 0.1 sets. Furthermore, let us pick the 
minimum cycle length, which corresponds to p = 1. 
Then by Equation 5, t = 2.5 sets. By Equation 6, 
the maximum buffer requirement for each stream is 
b = 456KB. Thus, without buffer sharing, about 2MB 
of buffer space is needed. But with buffer sharing, only 
1MB is needed. Alternatively, if the system only has 
1MB of buffer space, the number of streams that can 
be supported simultaneously without buffer sharing is 
only 2. With buffer sharing, the system can double 
the throughput and support all 4 streams. cl 

The above analysis assumes that the disk utilization 
p is equal to 1. To take disk utilization into account, 
we generalize the above table that shows the buffer 
requirement of each stream at the point after S, has 
finished reading to become: 

Streams Sl S?l 
Buffers cb (c +‘&)b : : : (c + r;:;P)b 
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where c = s. A simple summation yields: 

B shar = w * nb. Now according to Equation 6, 

bisequalto(R-F)* n *. Thus, the full equation 
is: 

B shar = (R-;)*(~*p-s)*~(lo) 

This equation can replace Equation 7 (and thus Equa- 
tion 8) in the admission control test shown ins Sec- 
tion 3.1. In Section 5, we will present preliminary sim- 
ulation results showing the savings provided by buffer 
sharing, and the effect of buffer sharing on admission 
control. 

All the analyses presented so far are baaed on a fixed 
reading order of streams within a cycle. [2, 31 explore 
the benefit of allowing the reading order to change 
from one period to another. The gain is a reduction 
in total seek time, whereas the price to pay may be 
a doubling of buffer requirements. In future work, we 
will study whether we can get the best of both worlds 
by integrating buffer sharing with variable reading or- 
ders. 

4 Prefetching Strategies 

4.1 Benefits of Prefetching 

On receiving a new request for a stream (referred to 
as a new query from now on), the admission controller 
that we have discussed so far simply checks if there are 
enough disk bandwidth and buffers to satisfy the new 
query, using Equations 5 and 8. If there are enough 
resources, the query is activated. Otherwise, the query 
sits idle in the waiting queue. Consequently, there are 
resources - buffers and disk bandwidth - that are not 
utilized at all 2. For instance, consider the situation 
mentioned in Example 1. If the disk bandwidth can 
support only 4 streams and there are 2MB buffering 
space, buffer sharing would render 1MB idle. In gen- 
eral, we measure the performance of our system by 
its throughput and the response time of queries. But 
given a system with pm-determined (at design time) 
disk bandwidth and amount of buffer space, the re 
sponse time of queries are primarily determined by 
the utilization of disks and buffers. Thus, our goal 
here is to try to use these resources as much as possi- 
ble. More specifically, in this section, we explore how 
data prefetching can maximize resources utilization, 
and thus lead to an increase in system throughput. 

There are at least 3 ways that prefetching can help 
a query. 

2 In this paper, we only consider FIFO as the queueing disci- 
pline. It has the advantage of being simple and fair. Adopting 
other queueing discipline may require additional work to ensure 
fairness. 

First, if a query has a consumption rate Pi that 
is larger than R, then even after a query is ac- 
tivated (i.e. becoming one of the queries served 
in a cycle), the query cannot be consumed imme- 
diately without violating the continuity require- 
ments. Thus, to reduce the time between activa- 
tion and the beginning of consumption, a system 
can prefetch portion of this query while it is still 
waiting in the waiting queue. 

Second, even if a query .$,+I has a consump- 
tion rate Pi less than R, prefetching portion of 
this query before activation may reduce the re- 
sponse time of the query. To see that, let say 
that&,... , S,, are the activated queries. At some 
point, query Sr has finished, and S,,+rXis acti- 
vated. For reasons apparent later in Section 5.1, 
the reading order may become Ss, . . . , $+I. If no 
data has been prefetched for ,!?,,+I, then S,,+i can- 
not be consumed until Sri+++ starts reading, which 
is at the end of the cycle. However, if there is 
sufficient amount of prefetched data of S,,+i , con- 
sumption of Sn+l can start immediately at the 
beginning of the cycle. Thus, there is a difference 
in response time which may be as large as one 
cycle length. 

Third, prefetching portion of this query before ac- 
tivation has the effect of reducing the effective 
consumption rate of the query after activation. 
This is illustrated in Figure 3. The solid line 
represents the original consumption curve, whose 
slope is given by the consumption rate Pi. If an 
amount pf is prefetched, then the new, prefetched 
consumption rate is given by the slope of the dot- 
ted line. A simple analysis reveals that if Ti is the 
length of the query, the new, prefetched consump- 
tion rate is given by: 

ppft 
i =, pi-$ 

i 
(11) 

Since the new rate is less than the original rate, 
there is a possibility that the new rate may pass 
the admission control test, while the old one may 
not. Whenever this happens, the response time of 
the query is substantially reduced (cf: Example 3 
later). 

In this section, we will first present a straightfor- 
ward prefetching strategy SP. Then observing that the 
effectiveness of SP may be hindered by several short- 
comings, we will develop another prefetching strategy 
IP which tries to maximize overall system throughput. 
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prefetched 
amount 

Pf 

slope = original rate 

time 

Figure 3: Reducing Consumption Rate by Prefetching 

4.2 A Simple Prefetching Strategy: SP 

Just like normal data retrieval from disk, prefetching 
requires both disk bandwidth and buffers. One obvi- 
ous way to allow prefetching to happen is to dedicate a 
certain level of disk bandwidth and buffers to prefetch- 
ing. But this would backfire as it reduces the disk 
bandwidth and buffers available to activated queries. 
Thus, we make sure that prefetching is not done at the 
expense of activated queries. To this end, recall that 
the cycle length t for the activated streams/queries 
Sl,... , S,, are bounded below and above respectively 
by Equations 5 and 8. If the system does not sup- 
port prefetching at all, any value between the upper 
and lower bounds can be picked as the value oft. How- 
ever, to support prefetching, an immediate question to 
answer is how to pick t so as to maximize prefetching, 
but not at the expense of the activated queries. 

In fact, setting t to any value between the upper 
and lower bounds does not have any influence whatso- 
ever on the completion times of the activated queries, 
as the completion time of a query is determined by 
its consumption rate and length 3. Thus, as long as a 
value is picked between the lower and upper bounds, 
the activated queries will not be affected. Let us con- 
sider setting t to its lower bound. Then as discussed in 
Section 2, this corresponds to a disk utilization p of 1. 
In other words, all the disk bandwidth is used up for 
the activated queries, and nothing is left for prefetch- 
ing. On the other hand, consider setting t to its upper 
bound. From the point of view of disk bandwidth al- 
location, this time there is ample room for prefetching 
because as discussed in Section 2, a longer cycle length 
corresponds to a lower disk utilization p. However, the 
trouble is that all the buffers are used up for the allo- 
cated queries. Thus, at the end, no prefetching can be 
done. Hence, the question to address is which value of 
t in between the upper and lower bounds maximizes 
prefetching. 

There is actually another factor that affects the 

3This is assuming normal termination, not preempted by 3. Prefetching stops when an activated query has fin- 
such events 86 user quitting prematurely or system failures. ished, or the system has run out of buffers. 0 

amount of prefetching that can be done. All the above 
analysis is based on the assumption that the cycle for 
the current collection of activated queries keep on go- 
ing. Let TJinish denote the time the next activated 
query will have finished. The range bounding t is only 
valid before Tj. rnish, after which the current cycle has 
to be changed anyway, and new calculations are re- 
quired. Thus, the consideration of Tfinish suggests a 
simple strategy (referred to as SP) to pick t so as to 
maximize prefetching. It equates the amount of data 
that can be retrieved in time Tjinish with the amount 
of buffers that are available. This is formalized below. 
First, it is obvious that the amount of data that can be 
prefetched in time Tfinish is: DPf = Tfinish*R*(I-P). 
By substituting Equations 3 and 4, we get: 

Dpj 
S 

= Tfinish * R * (1 - 7 - f) (12) 

On the other hand, according to Equation 7, the 
buffers available for prefetching is given by: 

BPj = &a, -i$ Pi*(R-Pi) (13) 
I=1 

To maximize prefetching, SP sets 

DPf = BPf (14 

This is a quadratic equation in t in the form of 
&+bt+c = 0. Solving this quadratic equation in 
the standard way gives a positive solution us (and a 
negative solution). If us falls within the lower and up- 
per bounds oft, which occurs more often than not, us 
is the value of t. Otherwise, if us is strictly less than 
the lower bound, t is set to the lower bound. And if 
us is strictly greater than the upper bound, the upper 
bound becomes the value of t. 

The equations presented above do not assume buffer 
sharing, and are based on Equation 7. Since prefetch- 
ing is orthogonal to buffer sharing, a similar set of 
equations can be derived for the buffer sharing case 
based on Equation 10. Strategy SP is summarized in 
the following. 

Strategy SP Let Si, . . . , S,, be all the activated 
queries, as allowed by the admission controller. Let 
S ,,+I be the query at the head of the waiting queue. 

1. Use Equation 14 to determine the length t of the 
cycleforSi,...,S,. 

2. Use the remaining disk bandwidth and buffers to 
prefetch for S,,+i at the end of each cycle. 
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within cycle tl . . . t, remainder 
read operations Sr . . . S,, idle 

within cycle 11 t’l 1 . . . 1 t; 1 remainder 
read operations Sr . . . S,, 1 prefetch &+I 

Figure 4: Cyclic Activities with or without Prefetching 

Figure 4 shows the disk activities within each cycle 
with or without prefetching. The first table shows 
the situation without prefetching. Within each cycle, 
the first tl seconds are spent reading Sr, the next t2 
for SZ, and so on. After all Sr, . . . , S,, have finished 
reading, the disk is idle for the remaining time of the 
cycle. The second table in Figure 4 shows the situa- 
tion when prefetching strategy SP is used. It differs 
from the first table in two respects. First, its cycle 
length may be different from that without prefetch- 
ing. Thus, the reading times for the activated queries 
are t{, . . . , t’,, instead of tl, . . . , t,. More importantly, 
after the activated queries have finished reading, the 
disk may no longer be idle, and may be engaged in 
prefetching S,,+r . 

4.3 Motivation for a More Intelligent 
Prefetching Strategy 

Prefetching Strategy SP maximizes prefetching for the 
query S,,+r at the head of the waiting queue. Doing 
so, it may minimize the response time of &+I. How- 
ever, as a result, &+I may use up too much system 
resources, particularly free buffers - for its own good, 
but not necessarily for the overall benefit of the system. 
More specifically, SP just lets Sri+++ prefetch as much 
as possible, but does not consider whether Sri+++ really 
needs that much data to get started once an activated 
query has finished. As shown in the example below, 
too much prefetched data only occupy buffer space, 
without doing any good to system performance. , 

Example 2 Consider a situation similar to the one 
described in Example 1. There are 4 activated queries, 
each with a consumption rate 240KB/s. And there 
is 1MB of buffer space left. Now consider a scenario 
where the query Sz is the only query in the waiting 
queue with the same consumption rate. As discussed 
before, SP would allow S’s to prefetch as much as pos- 
sible, using up all 1MB of buffer space. However, as 
calculated in Example 1, 456KB is all that is needed 
for Sz within a cycle. In other words, 456KB is suffi- 
cient to minimize the response time of Sz. Thus, the 
question is whether prefetching an extra 544KB can 
lead to any gain. The answer is no, because once the 
consumption of Sz begins, its completion time depends 

entirely on its length and its consumption rate. Giving 
extra buffers does not help in any way. And in fact, 
it can be harmful to the entire system as there is now 
544KB less of buffer space available. cl 

The above example suggests that while maximizing 
prefetching, the SP’s approach of prefetching just for 
the query at the head of the waiting queue may not 
be sufficient. Thus, for a more effective prefetching 
strategy, the questions to be answered are: a) how to 
maximize prefetching, and b) how to determine how 
much to prefetch for a query in the waiting queue. The 
following example shows how looking ahead beyond 
the query S,,+r at the head of the waiting queue can 
help to determine the amount to prefetch for Sn+r. 

Example 3 Consider the situation discussed in the 
previous example again. There are 4 activated queries 
with consumption rate 240KB/s each. Suppose there 
are now two queries in the waiting queue: Sz and Se 
both with consumption rate 240KB/s. Further assume 
that the disk has a maximum reading rate of R = 
1150KB/s, and there is now 1.5MB of buffer space. 
Now let us consider the time when one of the acti- 
vated queries has finished, and consider two different 
amounts of prefetched data of Sz. 

First, assume that 456KB of Sz has been prefetched, 
which would minimize the response time of Sz. By 
Equation 11, the new, prefetched consumption rate of 
Sz is 240 - 456130 = 225, assuming that the total 
length of S5 is 30 seconds. The question is whether Sz 
and Ss can be activated simultaneously. The answer 
is no because the total consumption rate P = 3*240+ 
225 + 240 = 1185 > 1150. 

Alternatively, assume that 1500KB of S5 has been 
prefetched. Then, by Equation 11, the prefetched con- 
sumption rate of Sz is 240 - 1500/30 = 190. In this 
case, the total consumption rate P = 3 * 240 + 190 + 
240 = 1150 which is 5 R = 1150. 4 Thus, as long 
as there are enough buffers to accommodate Sc, both 
Sz and Ss can be activated, reducing drastically the 
response time of Se. Thus, the consumption rate of 
Se can be used to determine an appropriate amount 
to prefetch for S5. cl 

The above example shows that prefetching Ss for 
the appropriate amount can lead to a gain for Sz and 
other queries in the waiting queue. It also leads to 
an interesting question: how to distribute prefetching 
among queries in the waiting queue. In other words, 
given the same amount of buffer space available for 

‘In practice, it is not so simple just to ensure that the total 
consumptionrate is not greater than the maximum reading rate. 
As shown later in Strategy IP, what needs to be done is a full 
admission control test. But here we simplify the situation to 
illustrate the point that prefetching can lead to the activation 
of extra queries. 
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prefetching, how much of each query in the waiting 
queue should be prefetched so as to maximize the re- 
duction in total consumption rate, thereby maximizing 
the number of queries that can be activated. 

To answer this question, I& us consider a “marginal 
gain” analysis on the buffers, quite similar to the one 
used in [7’J. More specifically, for a query Si, with 
an original consumption rate Pi, we calculate the re- 
duction in consumption rate we would obtain if we 
prefetch one extra KB of Si. By Equation 11, this 
value is equal to Pi - Pff’ which is equal to &. Thus, 
given queries Sr , S2 whose lengths are Tl , T2’ respec- 
tively, prefetching more for the stream whose length 
is the shorter between TI and T2 would result in a 
sharper drop in the combined consumption rate of the 
two streams. In other words, if the combined con- 
sumption rate has to drop below a certain value in 
order to pass admission control, prefetching more for 
the shorter query would require fewer buffers than 
prefetching for the longer one. Consider the follow- 
ing example. 

Example 4 The previous example shows that in or- 
der to activate both Sz and Ss after one other query 
has finished, prefetching Ss for 1500KB will do. Sup- 
pose the length of Se is 15 seconds. Then solving the 
equation P = 3 * 240 + 240 + (240 - $) = 1150 indi- 
cates that if we prefetch Ss entirely, only an amount 
pf of 750KB would be sufficient to activate both SE 
and Ss. Note that this amount is the bare minimum 
that allows both queries to be activated. If there are 
extra buffers, we can do more by prefetching one cycle 
of Sa as well, so that not only are they activated, but 
both Sz and Ss can also be consumed immediately at 
the beginning of their first cycle. Cl 

4.4 Prefetching Strategy IP 

The prefetching strategy below, called IP which stands 
for “Intelligent Prefetching,” finds the shortest query 
to prefetch, so as to maximize prefetching and the 
number of queries that can be activated once an active 
query has completed. 

Strategy IP Let Sr,. . .,S,, be all the activated 
queries, as allowed by the admission controller. 
Among them, let Sj (1 5 j 5 n) be the query that 
will finish the earliest. Also let &+I, Sn+2,. . . be the 
queries in the waiting queue, and Bjree be the total 
number of buffers available to prefetching. 

1. Use Equation 14 to determine the length t of the 
cycleforSr,...,S,. 

2. Initialize target to &+I, and candidateset to 
S n+l as well. Also set finalAmt to 0. 

3. (** first chance **) If the combined consump- 
tion rate of all the streams in candidateset is 
not greater than the consumption rate of Sj (i.e. 

4 2 CSkEcandidateSet pk), go to Step 6. 

4. (** second chance **) Otherwise, 

(4 

(b) 

(4 

(4 

(e) 

Calculate the necessary prefetched consump- 
tion rate PLtget of target so that all the 
streams in candidateset can possibly be ac- 
tivated when Sj has finished, i.e. 

ezgct + c Sk#target;SkEcandidateSet pk 5 

Pj + (1 - p) * R. 

Use Equation 11 to calculate the amount 
that needs to be prefetched in order to reduce 
the consumption rate of target to PLFget, 

i.e. targetAmt = (Ptarget -Pp.‘:,,,) *Zapget. 

If targetAmt > Bjree, then go to Step 5 to 
try the next condition. 

Otherwise, use the admission control test 
given in Section 3.1 to determine if all 
streams in candidateset, including the 
prefetched one, can get in a cycle with all 
the current activated queries except Sj. If 
the admission control test fails, go to Step 5. 

Otherwise, set finalTarget to target and 
finalAmt to targetdmt. Go to Step 6. 

5. (** third and final chance: both Steps 3 and 4 fail 
i* 1 
(4 
(b) 

(4 

Set targetAmt to Bjree. 

Use Equation 11 to calculate the prefetched 
consumption rate Pfiriet of target, 
i e Ppjt . . target = Ptarget -- ‘,,f,,~~‘. 

Use the admission control test given in 
Section 3.1 to determine if all streams in 
candidateset, including the prefetched one, 
can get in a cycle with all the current ac- 
tivated queries except Sj. If the admission 
control test fails, go to Step 7. 

(d) Otherwise, set finalTarget to target and 
finalAmt to targetAmt. Go to Step 6. 

6. (** try to see if more queries can be activated 
**) Consider the next query Snert in the waiting 
queue that is not in candidateset. Add Sneot to 
candidateset. Compare the length of Snert with 
the length of target. Set target to be the stream 
with the shorter length. Go back to Step 3. 

7. (** no more queries can be activated **) If 
finalAmt > 0, prefetch finalTarget for the 
amount f inalAmt . cl 
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In the above strategy, the purpose of candidateset 
is to ensure FIFO in the activation of queries, even 
though as argued in the “marginal gain” analysis 
above, it is possible to prefetch Sk+i without prefetch- 
ing Sk. In each iteration of IP, the stream with the 
shortest length in candidateset is chosen to be the 
target stream for possible eventual prefetching. Then 
there are three possibilities for all the queries in the 
candidateset to be activated, once Sj has completed 
(i.e. the next activated query to finish). The first case 
is when the combined consumption rate of all those in 
candidateset does not exceed the consumption rate of 
Sj. In this case, all queries in candidateset are guar- 
anteed to be activated once Sj has completed. In ad- 
dition, nothing needs to be prefetched in this case 5. 
Execution then goes to Step 6 to try to see if more 
queries in the waiting queue can be activated. A new 
target is found, and a new iteration begins. 

If the first condition fails in Step 3, execution goes 
to Step 4 to see if the second possibility would work 
out. In this case, IP tests if a sufficient amount 
of target can be prefetched so that all queries in 
candidateset can be activated, provided that this 
amount does not exceed the number of buffers cur- 
rently available to prefetching (cf. Step 4~). If admis- 
sion control in Step 4d verifies that all queries can be 
activated with the help of prefetching, both target and 
the prefetching amount targetAmt are recorded in the 
variables f inalTarget and f inalAmt. Execution then 
goes to Step 6 to try to add another query from the 
waiting queue to candidateset, and a new iteration 
begins. 

If both the conditions in Steps 3 and 4 fail, IP tries 
the “last resort.” It simply tests to see if using all free 
buffers to prefetch for target will be sufficient to acti- 
vate all queries in candidateset. If admission control 
returns a positive answer, all the necessary operations 
will be taken in Step 5d and 6, and a new iteration 
begins. 

If all three conditions in Steps 3, 4 and 5 fail, it is 
an indication that not all queries in candidateset can 
be activated. More precisely, all but the last added 
query in candidateset can be activated once Sj has 
completed. Step 7 prepares for this event by prefetch- 
ing f inalTarget for the amount finalAmt. As shown 
in Figure 4, prefetching occurs at the end of each cycle. 

Notice that as presented above, IP is only concerned 
with maximizing the number of queries that can be ac- 
tivated. As discussed in the previous example, IP can 
easily include a Step 8 that would prefetch one cycle 
worth of data for each query that would be activated, 

5This is the case as far as query activation is concerned. 
But if there are enough buffers available at the end, queries in 
candidateSet may be prefetched so that they can be consumed 
immediately at the beginning of their first cycle. 

so that every one can be consumed immediately at the 
beginning of the first cycle. Furthermore, in the case 
when no query in the waiting queue can be activated 
even after Sj has completed (i.e. ,!&+I is the only 
query in candidateset), another thing Step 8 could 
do is to use SP to prefetch as much ss possible for 
S ,,+I. This would take care of the situation when the 
consumption rate of Sri+++ needs to be substantially 
reduced before S,,+i can be activated. Last but not 
least, the admission control used in IP above does not 
consider buffer sharing. Equation 10 can be used in 
the place of Equation 7 (and thus Equation 8) in ad- 
mission control, if buffer sharing is used. 

Example 5 Let us apply Strategy IP to the situation 
discussed in the previous example. Let us assume that 
Sr is the activated query that will finish the earliest. In 
the first iteration of IP, S5 alone is considered in Step 
3. Since Ss has the same consumption rate ss Si, Ss 
can certainly take the place of Si and be activated once 
Si has completed. Thus, execution goes to Step 6, in 
which Ss is added to candidateset. Since Ss’s length 
is shorter than Sg’s, S’S becomes the new target. 

In the next iteration of IP, obviously Step 3 fails. 
Now based on the calculations given in the previ- 
ous example, the prefetched consumption rate of Ss 
is Ppft target = lSOKB/s, and the prefetched amount is 
targetAmt = 750KB. Assuming that the admission 
control test in Step 4d ia psssed, finalTarget is set 
to Ss and finalAmt to 750KB. Then in Step 6, an- 
other query Sr is added from the waiting queue to 
candidateset, and a new iteration begins. 

Suppose 5’7 has the same rate and length as Ss, 
and is the new target. It is not difficult to verify that 
Steps 3, 4 and 5 fail in this iteration. Thus, execu- 
tion goes to Step 7, and the final decision is that ss, 
which is finalTarget, will be prefetched for 750KB. 
As discussed before, if there is a Step 8 in IP to mini- 
mize response time, Ss will also be prefetched so that 
the consumption of Ss can start immediately at the 
beginning of its first cycle. cl 

This concludes the presentation of our prefetching 
strategies. Next we will show preliminary simulation 
results evaluating the effectiveness of IP and SP, as 
well as buffer sharing. 

5 Preliminary Simulation Results 

5.1 Details of Simulation Package 

We have implemented a discrete-event simulation 
package to evaluate the techniques proposed in this pa- 
per. The package runs under Unix on Spare-stations, 
and consists of about 5,000 lines of C code, For ease of 
coding, all the queries to be executed in a simulation 
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are submitted to the waiting queue at the beginning of 
the simulation. Thus, the main outputs of the simula- 
tion package do not include response times of queries, 
but include such statistics as peak-and average disk 
and buffer utilizations, and the total time to complete 
all queries. Furthermore, to make our simulations as 
close to reality as possible, we have implemented the 
following features in our package. 

l As observed in [9], a transient period is required 
before a new Stream Sn+i can be added to a (new) 
cycle. This is because the new cycle length t’ (for 
one more stream) is strictly larger than the cur- 
rent cycle length t. Thus, if we directly serve S,,+i 
at the end of the current cycle, starvation will oc- 
cur for all the queries Si, . . . , S, in the current 
cycle, because they only have data buffered for 
a cycle of length t < t’. Apart from the steady 
states, our package also simulates the transient 
period. For more information, see [8]. 

l When, an activated query has completed, there are 
two ways to invoke the admission controller. One 
way is to wait till that particular cycle ends; the 
other is to wake up the controller immediately af- 
ter the query has finished (even amidst a cycle). 
The former policy, while much easier to imple- 
ment, does not optimize system performance, es- 
pecially when the cycle length is long and the disk 
utility is low. We have implemented the latter 
policy, and found out that system performance is 
improved. 

Apart from making our simulation package as close to 
reality as possible, we have designed and run our simu- 
lations based on real figures (e.g. minimum and max- 
imum seek times equal to 5 and 25ms respectively). 
We will give further details on all the simulations pre- 
sented below. 

5.2 Effectiveness of Buffer Sharing 

In Section 3.2, we have analyzed that buffer sharing 
can lead to a 50% reduction in total buffer require- 
ment, when the disk utilization p is equal to 1. Here 
we simulated a situation when p keeps changing and 
has an average value less than 1. In this series of sim- 
ulation, we used 50 queries, each with consumption 
rate 240KB/s. The lengths of the queries were from 
20 to 120 seconds, with the average being 60 seconds. 
In order to support a sufficiently high number of con- 
current queries, the maximum disk reading rate was 
set to R = 2000KB/s. The graph in Figure 5 shows 
the minimum buffer space needed, when the number of 
concurrent queries varies from 3 to 7 - with and with- 
out buffer sharing. As expected, in all cases, buffer 
sharing requires less buffer space than without buffer 

I 
without buffer sharing 

number of activated queries 

Figure 5: Benefit of Buffer Sharing 

sharing. The savings in buffer space was between 20% 
to 40%, depending on the average disk utilization. 

5.3 Effectiveness of Prefetching Strategy IP 

In this series of simulation, we evaluated the effec- 
tiveness of our prefetching strategies. We again used 
50 queries, each with consumption rate 240KB/s, and 
length 90 seconds. The maximum disk reading rate 
was set to lOOOKB/s. The graphs in Figures 6 and 7 
show the time taken to complete the 50 queries and 
the average disk utilization with varying amounts of 
buffer space. In both graphs, the x-axis is the amount 
of buffer space, varying from 5MB to 8.5MB. In Fig- 
ure 6, the y-axis is the total time taken to complete 50 
queries using IP and SP, normalized by the time taken 
without prefetching. Thus, the horizontal line at 1.0 in 
Figure 6 represents the situation without prefetching. 
With small amounts of space available to prefetching, 
IP does not lead to any gain in performance. How- 
ever, as more and more space becomes available, IP 
is able to activate more and more queries faster than 
if no prefetching is allowed. Consequently, the total 
time taken becomes smaller. As shown in Figure 6, IP 
could lead to a 30% savings in total time taken. Al- 
ternatively, the throughput of a system using IP could 
be 317 = 40% higher. 

The performance gain caused by IP can be best 
explained by the graph in Figure 7. If no prefetch- 
ing takes place, the average disk utilization is around 
0.8. But as more buffer space becomes available to 
prefetching, IP is able to better utilize the disk by 
prefetching, and the average disk utilization gradu- 
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Figure 6: IP vs SP: relative total time taken Figure 7: IP vs SP: average disk utilization 

ally climbs up to 1.0. Moreover, the utilization of 
buffers follows a similar trend. Another interesting 
thing shown in Figure 7 is that the average disk uti- 
lization for SP is still higher than if no prefetching is 
allowed. This is an indication that while the disk is 
kept busy by prefetching, the way that SP conducts 
prefetching is problematic and totally ineffective. 

The series of simulation discussed above did not al- 
low buffers to be shared. In another series of simula- 
tion, we allowed buffers to be shared, and used the ver- 
sion of admission control that is based on Equation 10, 
but not on Equation 7. The results of this series of 
simulation were very similar to those presented above. 
The only difference was that buffer sharing saved a few 
hundred KBs of buffer space, and made it available to 
prefetching. Thus, the point when IP started to show 
improvement now began a few hundred KBs earlier 
than was shown in Figure 6. 

5.4 Discussions: Applicability of Prefetching 
to General Multimedia Systems 

Our preliminary simulation results indicate that ap- 
propriate prefetching can lead to increase in through- 
put, disk utilization and buffer utilization. However, 
in order to have higher throughputs and thus lower 
response times of queries, the price to pay is certainly 
availability of buffer space. As shown in our exam- 
ples and simulation results, we believe that the price 
is not high - provided that the streams are short, say 
below 5 minutes in length. As far as news on-demand 
systems are concerned, a large class of news clips falls 
within this range. However, a natural question to ask 

IP 

---- sp 

without prefetching 

5 5.5 6 6.5 7 7.5 

buffer size (MB) 

a a.5 

is whether prefetching has a role to play in other mul- 
timedia systems. 

Consider multimedia database management sys- 
terns. We believe that prefetching indeed has a major 
role to play in tuning the performance of such sys- 
tems. This is because for a large class of applications, 
the audio and video components tend to be short. For 
example, for applications such as the one described 
in [5], audio and video may not be the only media, and 
may work hand-in-hand with other media such as text. 
and images. Audio and video components may also 
play the role of annotations or illustrations. Moreover, 
many applications may require frequent user interac- 
tion. 

What about the other extreme: movies on-demand 
systems? Unlike those cases discussed above, movies 
on-demand is concerned with supplying video and au- 
dio data to users for long durations and with relatively 
little user interaction. By Equation 11, reducing the 
consumption rate of a movie by just lKB/s requires T 
KB buffer space, where T is the length of the query in 
seconds. For example, if a movie is 90 minutes long, 
this amount of buffer space is already 5.4MB. And to 
reduce the consumption rate by 50KB/s (as in Exam- 
ple 5), 270MB of buffer space is needed! As shown 
in Equation 11, the amount of buffer space needed for 
prefetching (and IP) to work is linearly proportional 
to the length of the movie. However, on the positive 
side, consider the benefit of prefetching. Recall that 
prefetching has the effect of activating as many queries 
(movies) as possible. If prefetching is not used, and a 
movie i%fs cannot be activated immediately, it has to 
wait for an activated movie ikfl to finish. Thus, the 
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waiting time of MO depends linearly on the length of 
Mi. In other words, if prefetching is the difference 
between whether a movie can or cannot be activated 
immediately, the difference in response time, like the 
amount of buffer space needed, is linearly proportional 
to the length of the movies. As-an example, this dif- 
ference in response time may be 30 minutes. Thus, 
while long queries magnify the buffer space needed for 
prefetching to work, they also magnify the benefits of 
prefetching. It is certainly up’ to an enterprise to de- 
cide which is more important and costly: 270MB or 
30 minutes. 

6 Conclusions 

Providing effective multimedia support in database 
management systems is a topic of great interest and 
value. In this paper, we consider one of the key 
problems encountered in such systems. Given a fixed 
amount of buffer space and disk bandwidth both pre- 
determined at design time, we study how to maxi- 
mize the throughput of the system. Our approach is 
to maximize the utilizations of buffers and disk. To 
achieve this goal, we have first proposed a buffer shar- 
ing scheme. Analysis and simulation results indicate 
that buffer sharing could reduce total buffer consump- 
tion by as much as 50%. Second, we have developed 
the prefetching strategy IP which aims to maximize 
prefetching and the number of queries that can be ac- 
tivated. Preliminary simulation results show that IP 
could be quite effective in maximizing the effective use 
of buffers and disk, and could lead to a 40% increase in 
system throughput. Finally, as argued in Section 5.4, 
we believe that the proposed techniques can also be 
valuable to multimedia systems other than news on- 
demand systems and database management systems. 

In ongoing work, we are studying how to implement 
the proposed techniques in a distributed continuous- 
media file system. Key issues to be addressed include 
how to extend the proposed techniques to support mul- 
tiple disks and network buffering, and how to effec- 
tively implement prefetching and buffer sharing, when 
the reading orders from one cycle to the next can or 
cannot be changed. 
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