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Abstract 

A major challenge still facing the designers 
and implementors of database programming 
languages (DBPLs) is that of query optimisa- 
tion. We investigate algebraic query optimi- 
sation techniques for DBPLs in the context of 
a purely declarative functional language that 
supports sets as first-class objects. Since the 
language is computationally complete issues 
such as non-termination of expressions and 
construction of infinite data structures can be 
investigated, whilst its declarative nature al- 
lows the issue of side effects to be avoided and 
a richer set of equivalences to be developed. 
The support of a set bulk data type enables 
much prior work on the optimisation of rela- 
tional languages to be utilised. Finally, the 
language has a well-defined semantics which 
permits us to reason formally about the prop 
erties of expressions, such as their equivalence 
with other expressions and their termination. 

1 Introduction 

Database programming languages (DBPLs) incorpo- 
rate into a single language, with a single semantics, all 
of the features normally expected of both a data ma- 
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nipulation language (DML) and a programming lan- 
guage. For example, DBPLs have one computational 
model, one type system, and bulk data types with as- 
sociated access mechanisms. A major challenge still 
facing DBPLs is that. of query optimisation. There 
are several reasons for limited progress in this area: 

6) 

(ii) 

(iii) 

(4 

(VI 

The possibility of side-efects restricts the set of 
equivalences that can be shown to hold. 

Some bulk data structures are inherently hard to 
optimise. For example, lists only madily support 
the common relational optimisations if the con- 
cept of bag equality is used [Tri89] (i.e. lists are 
equal if they contain the same elements, although 
possibly in different orders), whilst some of the 
algebraic properties of sets fail for bags [Albgl]. 

Since DBPLs are computationally complete, the 
termination properties of expressions must be 
taken into account when investigating equiva- 
lences. For example, if the boolean-valued func- 
tion f~ does not terminate for some arguments 
whilst the boolean-valued function fa returns 
False for all arguments, then the ‘equivalence’ 
Of1 h (4) = UI/:, (ajl (8)) does not hold since 
evaluation of the LHS always terminates for finite 
s (returning {)) whereas evaluation of the RHS 
may not terminate. 

DBPLs may manipulate infinite data structures 
and hence some bulk data operations cannot be 
implemented using established methods. For ex- 
ample, if A and B are infinite sets then a nested 
loop method cannot be used to generate A x I3 
(since all tuples of the resulting product will have 
the same first coordinate). 

DBPLs typically support user-defined data types, 
and hence require mechanisms to prove equiva- 
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lences over these data types too. 

In this paper we investigate optimisation techniques 
for DBPLs by addressing some of the above issues. We 
undertake our investigation in the context of a purely 
declarative functional language. Since database alge- 
bras are functional in nature, thii is a particularly 
natural computational paradigm in which to investi- 
gate query optimisation in DBPLs. It also gives us a 
computationally complete formalism that can exhibit 
non-termination of expressions (point (iii) above) and 
that can result in infinite data structures (point (iv) 
above), whilst avoiding the issue of side-effects (point 
(i) above). The language supports a set bulk data 
type, enabling us to utilise much prior work on the op 
timisation of relational languages, including Datalog 
(point (ii) above). Finally, the language has a well- 
defined semantics which permits us to reason formally 
about the properties of expressions, including those 
of user-defined data types, such as their equivalence 
with other expressions and their termination proper- 
ties (point (v) above). 

The structure of this paper is as follows. In Section 
2 we give the syntax of our language and briefly discuss 
its semantics and its provision for built-in and user- 
defined functions. In Section 3 we define a small but 
powerful algebra of operators over the set data type, 
provide some key equivalences for expressions in these 
operators, and list transformation principles for opti- 
mising expressions. Along the way, we identify some 
caveats to well-known equivalences for non-deductive 
database languages. In Section 4 we examine two 
higher level constructs commonly found in DBPLs - 
set abstmctions (also known as set comprehensions in 
the literature), and functions with inverses. We pro- 
vide some key equivalences for these constructs also, 
and give transformation principles for expressions in 
them. In Section 5 we briefly compare this work with 
related research. Finally, in Section 6 we give our con- 
clusions and indicate directions of further work. 

2 The Language 

The formal foundation of any functional language is 
the X-calculus [Hin86]. Expressions in this calculus 
have the following syntax: 

ev = uar 1 primitive 1 ‘%“vafU. “e2pr 1 
exprl ezpr2 1 “(” e2pr ‘7” 

A variable 2 is said to be bound in an expression e if 
it occurs in a sub-expression of e of the form Jz.e’; 
otherwise it is free in e. FV(e) (respectively, l%‘(e)) 
denotes the set of variables with at least one free (re- 
spectively, bound) occurrence in e. 

Computation in the X calculus proceeds by syntac- 
tically transforming terms using ,O reduction. This 

rewrites a function application of the form (Xz.e)e’ to 
the expression e[e’/z] obtained by replacing all free oc- 
currences of 2 in e by e’. The denotational semantics 
of the X-calculus (see [Sch86]) assigns to each expres- 
sion a value in a semantic domain - this is the meaning 
of the expression. p reduction is semantically sound 
in that it does not alter the meaning of an expression. 

The language that we will be optimising is the X 
calculus extended with constructors, let expressions 
and pattern-matching X-abstractions: 

ev = uar I constructor I primitive I 
Inpattern U. “expr I ezprl ezpr2 I 
“let” var 5” exprl ‘in” e2pr2 1 
“(” expr “)” 

pattern = var I constructor pattern1 . . . pattern, 

where tuples (ei, . . . . e,) are regarded as applications of 
an n-ary constructor Tuple, to n arguments ei, . . . . e,. 
We use V, w, 2, y, z for denoting variables, p,q, r for 
patterns, and e, e’ for expressions. This extended X 
calculus is straight-forwardly mapped into the (ordi- 
nary) A calculus (see [Pey87]). In particular, let x = 
e’ b e translates into (Ax.e)e’. The semantic sound- 
ness of /? reduction thus gives the first equivalence: 

let/l let 2 = e’ in e = e[e’/+] 

This equivalence can be used to abstract common sub 
expressions when used in a right-to-left direction, and 
to expand definitions in place when used in a left-to- 
right direction. The former operation will typically be 
useful at the end of the query transformation process, 
while the latter will be useful at its outset (in order to 
generate an overall expression to optimise). 

Functions are defined by equations of the form 
f = e. If f E FV(e) i.e. if f is recursively de- 
fined, the meaning of f is given by the least fixed 
point of the higher-order (and non-recursive) function 
Af.e (see [Sch86]). This meaning may just be non- 
termination for some arguments e.g. for the function 
f = Xz.not(f 2). Thus, the semantic domain contains 
for each type t an element It which denotes ‘no in- 
formation’ and represents a non-terminating compu- 
tation (sometimes we omit the subscript t when it can 

be inferred from context). For example, the boolean 
type consists of the elements, True, False and IBIS, 
where lnOOl is less informative than both True and 
False (written lBOOl C True and lnod C False) 
and where True and False are not information-wise 
comparable. The meaning of f = Xt.not(fx) is then 
given by the least fixed point of the higher-order func- 
tion Xf.X+.not(ft), and is just the function that maps 
all its arguments to &3001 i.e. h.&?,,d. 

For the purposes of investigating query optimisation 
we use several items of information about expressions: 
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Refemntial tmnsparency. This is a property enjoyed 
by our language and means that every occurrence of 
an expression denotes the same value in a given en- 
vironment (an environment being a mapping of free 
variables to expressions). 

Termination. The evaluation of an expression e ter- 
minates if the value of e contains no I elements. In 
the sequel, whenever we say that an expression e is 
infinite we mean that its value contains I; otherwise, 
we say that e is finite. Deter&ning whether e is finite 
is of course undecidable in general. There is, however, 
a wide class of expressions whose evaluation is known 
to terminate, namely well-typed, non-recursive’expres- 
sione: thii is the etmng nornaalisation theorem [Hin86]. 
Furthermore, it may be possible to construct a proof 
of the finiteness of an expression, perhaps using struc- 
tural induction (see below) over its definition, and the 
user could be permitted to annotate the expression as 
such. 

Strictness of functions. The order in which /? 
reduction is applied in X expressions is significant. 
Lazy evaluation (which we assume) ensures termina- 
tion whenever possible by only evaluating the argu- 
ments to functions if needed by the function to return 
a result. A function is strict in an argument if that 
argument must be evaluated for thg: function to return 
a result. One way to characterise a strict function is to 
state that f-l = I (i.e. given a non-terminating argu- 
ment, f will not terminate either). Information about 
the strictness properties of a function can be derived 
from the known strictness properties of the built-in 
functions using strictness analysis [Cla85]. 

Continuity of functions. A function f is said to be 
continuous if, for every sequence of values dl & da & . . . 
in the domainof f, f(U{dl,dz, . ..)) = U{f dl, f dz, . ..}. 
In other words, continuous functions preserve least up 
per bounds. Any function defined in the X notation 
is continuous ([Sch86] Theorem 6.24). This has two 
important implications. First, it guarantees that any 
recursive definition has a unique meaning. Second, it 
means that when proving a proposition of the form 
Vz.f z = g z, where f and g are continuous functions, 
induction over the structure of z can be used to prove 
the equivalence even if t is infinite i.e. contains I el- 
ements. In the terminology of [Sch86] a proposition 
of the above form is an inclusive predicate for which 
fixpoint induction is valid. [Bir88] gives an accessible 
discussion of structural induction and uses it to prove 
equivalences over infinite lists and trees. We similarly 
use it to prove our equivalences over, possibly infinite, 
sets below. 

Sets are important in our language, so we briefly 
recall their semantics (see [Pou93] for further details). 
The least element of the type consisting of sets of val- 
uea of type t is the set {It). For example, the value 

of f = h.(fx) U (fz) is AZ.(~), while the value of 
nats = An.(n) U (nats(n+ 1)) is Xn.{n, n+ 1, . ..I}. so 
with nats non-termination arises from the construc- 
tion of an infinite set. 

2.1 The type system 

Our language is strongly, statically typed and supports 
a number of primitive types such as Boo!, Str and 
Num. The user can declare new enumerated types and 
introduce new constants of such a type. For every user- 
defined enumerated type T, a built-in zero argument 
function allT returns all constants of that type. 

We will use as a running example a database that 
records results for the Winter Olympics. The user- 
defined enumerated typea include Camp (competi&r 
id), Sez, Country, Category (category of events) and 
Event, where: 

allComp = 
allSex = 
allCountry = 
allcategory = 
allEvent = 

l+ance, . . .} 
{Alpine, Nordic, FigureSkating, . ..) 
( MensDownhill, WomensSlalom, . . .} 

Also supported are polymorphic product, list, set 
and function types. In particular, (tl, . . . . t,,) is an n- 
product type for any types tl , . . . . t,, [t] is a list type 
and {t} a set type for any type t, and tl + t2 the type 
of functions from a type tl to a type t2. Note that 
the function type constructor + is right associative, so 
that tl + tz + t3 and tl + (t2 + ts) are synonymous. 

We use the notation e : t to indicate that an ex- 
pression e has type t. We also use letters from the 
start of the alphabet to indicate type variables in 
type expressions. For example, the infix ‘compose’ 
function, o, defined by (f o g)z = f(g z) is of type 
(b + c) + (a -+ b) + (a + c) , where the type vari- 
ables a, b and c can be instantiated to any type. 

The user can also declare sum types and introduce 
new constructors of such a type c.f. the list construc- 
tors (:) : a + [a] + [a] and [] : [a]. 

2.2 Built-in functions 

The usual arithmetic (+, -, *, /) and comparison (== 
, ! =, <, <=, >, >=) operators are built-in l. These op 
erators may be written either infix or prefix (in which 
case they are bracketed e.g. (+) 12). These operators 
are of necessity strict in both their arguments. For 
example, the value of e == e’ will be I if either e or 
e’ has value I: operationally, both operands of == 
must be evaluated in order to determine if they are 
equal, and if either yields ‘no information’ so does the 
overall evaluation of the equality test. The other main 

‘Note that == is the syntactic equality operator as opposed 
to equality, =, in the semantic domain. 
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comparison operator, <, works in a similar fashion and 
hinges on an alphanumeric ordering of constants and 
constructors, with a left-to-right comparison of the ar- 
guments of the latter. Functions cannot be meaning- 
fully compared, while sets are converted to lists (by 
the operation set-to-list below) for comparison. 

The Sargument conditional function if is also 
builtin and has the following semantics: 

ifl&or xy =I 
ifl+uexg =x 
ifF&exy =y 

Thus, if is strict in its first argument, but not in its 
second and third arguments. Logical operators can be 
defined in terms of if as follows: 

and = Xx.&if x y False 
or = Xx.Xy.if x lhe y 
not = Ax. if x False True 

Consequently these too are strict in their first argu- 
ment. We will also require on occasion counterparts 
to and and or that are commutative and ‘I-avoiding’; 
operationally, V and A are implemented by evaluating 
their operands in parallel: 

TrueVy =lhe False A y = False 
xVFrue =lhe t A False = False 
False V y = y TrueAy =y 
x V False = x tATrue =x 
IV1 =I LA1 =I 

Two set-building functions are also built-in, the 
singleton-forming operator and the union operator: 

i-1 : a + {a} 
-U- :(a)+(a)+(a) 

A set can also be represented by enumerating its ele- 
ments, where {ei, . . . . e,} equals {ei} U . . . U {e,}. 

Breazu-Tannen et al. [BreSl] propose a function, 
@, for folding a binary operator op into a finite set, 
requiring e and op to form a commutative-idempotent 
monoid on the return type of f in order for this defi- 
nition to have a unique meaning: 

@fop4 =e 
@fop44 = fx 
@fop e (81 U 82) =op(@fopesl)(@fopes2) 

In our case of possibly infinite sets the second equation 
has to be modified, giving 4 below: 

4fopeO =e 

(bfop4xI = if(x=l)l (fx) 
q5fope(slUs2) = o~(4fopesl)(dfope4 

In operational terms, 4 keeps distributing f to the ele- 
ments of an infinite set for ever; in semantic terms, the 
modified definition ensures that 4 is continuous. Thus, 
as one might expect, we cannot use 4 to devise termi- 
nating cardinality or summation functions for infinite 
sets. Others have defined similar functions to 0 e.g. 
the ‘pump’ operator of FAD [Ban871 and the ‘horn’ 
operator of Machiavelli [Oho89], and [BreOl] gives a 
comparison of these. 

We can now use 9 to define a membership operator 
over pcesibly infinite sets: 

tins = q5 ((==) x) (V) False s 

Thus, in returns True if any comparison of x with an 
element of s returns True, False if all comparisons of 
x with elements of s return False, and I otherwise. 
So in only returns False for finite sets: in operational 
terms, in keeps on searching an infinite set for a value 
that equals x until it finds one. Also, since in depends 
on the results of equality tests, it will return I if ap 
plied to higher-order sets i.e. sets of functions. 

We can also use 4 to define a deterministic conver- 
sion function from sets to lists, where list-union is de- 
fined in terms of a duplicate-eliminating sort function 
and a list append operator ++: 

set-to-list s = r$ (Xx.[x]) list-union [] 
list-union xs ys = sort (xs ++ ys) 

Given set-to&t we can determine the cardinality of a 
set, the sum of its elements etc. Finally note that since 
set-tolist depends on sort it will return I if applied 
to higher-order or infinite sets. 

2.3 User-defined functions 

These can be specified using one or more equations 
rather than a single ,! abstraction, and can use pattern- 
matching to deconstruct their arguments. For exam- 
ple, we can define a function fold1 which is similar to 
0 but which works over lists: 

foldlfope[] =e 
fold1 f op e (x:x9) = op (f x) (fold1 f op e xs) 

This function can be used to convert a list to a set: 

list-to-set xs = fold1 (Xx.(x]) (cl) (} xs 

0-ary set-valued functions can be used to represent 
bulk data, the assumption being that such functions 
are updatable by the insertion and deletion of values 
of the appropriate type. For our Winter Olympics 
Database examples, we will use functions which de- 
fine: the sponsors of each country; the name, sex and 
couutry of each competitor; the category of each event; 
the set of competitors registered for each event; and 
the list of medalists in rank order for each event: 
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SpOlU?OtS : {(Country, Str)} 
compe : {(Comp, Str, Se2, Country)} 
events : {(Event &Category)} 
registered : {(Event, K’om~))) 
results : {(Event, [Camp])} 

3 The Algebra 
Our algebra cousists of three built-in operators. These 
are the {-} and ,U _ operators already introduced and 
an operator setmap which has the following semantics: 

setmap : (a + VI) + {aI + VI 
setmap f 0 = 0 
setmpp f (4 = if (x = I) {I} (f x) 
setmap f (81 U 62) = (setmap f 82) U (setmap f 92) 

setmap thus distributes a function of type (a + {b}) 
over a set of type (a) and returns the union of the re- 
suits. Notice that setmap f is just 4 f (U) (1. [BreSl] 
similarly gives a finite-set version of setmap defined in 
terms of @. 

Two functions that frequently appear in algebras 
are map : (a + 6) + {a} + {a} and fiZter : (a + 
Booi) + {a} + (a} e.g. in [Clu92, Bee92]. These 
functions general& relational projection and selection. 
Although they could be built-in for efficiency purposes, 
map and filter can be defined in terms of setmap as 
follows, where singleton f x = {f x}: 

filter f s = setmap (Ax.if (f x) {x} {}) s 
mapfs = setmap (singleton f) s 

A further operation that can be expressed using 
setmap is the join of two relations according to a se- 
lection function f and a projection function g, join : 
((a, b) -+ Bo4 + ((a, b) + c) + {a} + {b) + {c): 

joinfgrs = setmap (Xt.setmap(Xy. 
if (f Hyde (9 ~~~Y)l 0) s1 r 

join subsumes the various flavours of join and prod- 
uct operations found in relational databases. It can 
operate upon infinite sets of structured tuples. In par- 
ticular, for any a E r and b E s, the value of g(a,b) 
in (join f g r s) is True provided that f (a, b) is True, 
regardless of the finiteness or otherwise of r and s. 

Finally, join obeys the following commutativity 
property, provided r and s are both finite or both in- 
finite, where f* (x,y) = f(y,x): 

joinfgrs = join f* g* r s 

3.1 Other set-theoretic operators 

Other set-theoretic operators can be defined in terms 
of the operators above, although these too could be 
built-in for efficiency purposes. We give definitions 

for two of these operators, since they raise some in- 
teresting issues. Operators such ae nest, unneet and 
powerset are also easily defined in our language. 

Set difference can be defined using filter and in: 

-minus, : {al + M+ {al 
sl minus a2 = filter (Ax.not(x in ~2)) 81 

Thus minus will terminate if both sl and s2 are finite, 
or if sl is finite and is a sub& of 82. 

Intersection can also h defined using filter and in: 

-inter, : tal+ ial + W 
sl inter 82 = filter (Xx.x in 82) 81 

However, this definition is not in general commutative 
e.g. (3) inter (3, I} = (3) whereas (3, I} inter{%) = 
(3, I}. Clearly it is desirable for intersection to be 
commutative for optimisation purposes. To achieve 
this we can use A: 

sl inter s2 = filter (Xx.(x in 81) A (x in s2)) 
(51 u 52) 

This definition is both less efficient and has worse ter- 
mination properties than the first e.g. (3) inter ($1) 
now gives (J,L}, but is nevertheless the one we assume 
for optimisation purposes. If, however, both sl and s2 
are known to be finite then the original definition can 
safely be used in its place. 

3.2 Equivalences 

We now give some equivalences for the functions de- 
fined above. Some of these are generalisations of well- 
known equivalences for relational databases [Jar84, 
U1189J. The main class of equivalences which do not 
have counterparts in our language are the commute 
tive laws for joins and products. However, if records 
[Oho89] are used instead of tuples, these equivalences 
also apply, subject to the provisos stated for join 
above regarding the termination of its arguments. 

The first set of equivalences, with their stated pr+ 
visos, follow easily from the definitions of the logical 
operators in Section 2.2: 

if/l if el (if e2 e3 ed) e4 = if (el and e2) e9 e4 
if/2 if el e9 (if e2 eS ed) = if (el or e2) e3 e4 
if/3 if (not el) e2 e3 =ifeleJe2 
if/4 f (if el e2 es) = ifel (fez) (fe3) 

provided f is strict 
and/l el and e2 = e2 and el 

provided el = I iff e2 = I 
and/2 el A e2 = e2 A el 
or/l el or e2 = e2 or el 

provided el = I iff e2 = I 
or/2 el V e2 = e2 V el 
not/l not (not el) = el’ 
not/2 not (el or e2) = (not el) and (not e2) 
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The U and inter operators obey the expected prop 
erties of commutativity and associativity (in opera- 
tional terms, this means that the two branches of a U 
must be evaluated in parallel), while inter and minus 
distribute over U: 

U/l 51 u 52 = 52u 51 
u/2 51 u (52 u 53) = (51 u 52) u 53 
u/3 51 u 52 = 51 if 52 s 51 
n/l 51 inter 52 = 52 inter 51 
n/2 51 inter (52 inter 53) = (51 inter 52) inter 53 
n/3 (51 inter 53) U (52 inter 53) = 

(51 U 52) inter 53 

-/l (51 minus 53) U (52 minus 53) = 
(51 U 82) minus 53 

However, the following equivalences only hold sub 
ject to the stated provisos: 

f-0 51 inter 52 = 52 
if 52 E $1, provided sl is finite 

-12 51 minus 52 = 51 
ifslns2 = (1, provided sl and s& are finite 

-/3 51 minus 52 = {} 
if sl s 52, provided sl is finite 

To illustrate the proviso associated with n/4, consider 
the sets sl = {1,2,L) and 92 = { 1). Then $2 E 51, 
but sl inter 52 = {1,-L} # 52. 

The set membership operator obeys the following 
properties, subject to the stated provisos: 

in/l el in {} = False 
in/2 el in {e2} 
in/3 e in (51 U 52) Z $ i1G2V (e in 5.2) 
in/4 e in ($1 inter 52) = (e in 51) A (e in 52) 

provided e, 51, s& are finite 
in/5 e in (51 minus 52)= (e in 51) A not(e in 52) 

provided e, $1, 52 are finite 

u/3, n/4 and -/3 also allow us to simplify the 
following expressions involving the built-in functions 
allT, provided s is finite: 

all/l s U allT = allT U s = allT 
all/2 s inter allT = allT inters = s 
all/3 s minus allT = {} 

A number of optimisations apply to setmap, and 
hence also to operators defined in terms of setmap 
such as filter and map: 

&map/l setmap f (51 U 52) = 
(setmap f 51) U (setmap f 52) 

&map/2 setmap f (setmap g 5) = 
setmap (Ax.setmap f (g x)) 5 

setmap/ setmap (Xx.if (x in 51) el e2) 5 = 
(setmap (Ax.el) (5 inter 51)) U 

(setmap (Ax.e2) (5 minus 51)) 
provided s is finite 

setmap/ setmap (Ax.:.etmap (Av.e) 52) 51 = 
setmap (Ay.setmap (Ax.e) 51) 52 
provided x $! FV(52), y 6 FV(sl), and 
sl and 52 are both finite or both infinite 

setmap/l states that setmap distributes over U. 
setmap/2 states that two successive applications of 
setmap can be compressed into one application with a 
second nested within it. &map/3 states when appli- 
cation of a set membership test can be replaced by a 
set union. Finally setmap/ states when the nesting of 
one setmap within another commutes. A consequence 
of &map/4 is that any two setmaps which succea- 
sively iterate over the same set can commute. This is 
especially important for the optimisation of iteration 
over recursively defined sets. 

These equivalences are proved by structural induc- 
tion over the set arguments. Since sets are constructed 
by successive unions of singleton sets and the empty 
set, structural induction over a set a has two base cases 
which must first be proved: s = {} and s = {e}. The 
induction hypothesis is then that the given proposition 
holds for sets s’ and 8, from which it remains to show 
that it holds for s = s’ U 8. 

The main optimisations for map are to combine suc- 
cessive applications into one. In particular map/2 be- 
low corresponds to combining cascades of projections: 

nwdl map f (map g 5) = map(fog)s 
map/2 map (Aq.r) (map (Ap.q) 5) = map (Ap.r) 5 

provided FV(q) E FV(p) 

For filter, filter/l below is a generalised cascade of 
selections, filter/2 and filter/3 combine successive ap 
plications of filter and setmap into a single setmap, 
and filter/4 states that selection distributes over dif- 
ference: 

filter/l 

filter/2 

filter/3 

filter/4 

filter f (filter g 5) = 
filter (Ax.(g x) and (f x)) s 

setmap f (filter g 5) = 
setmap Px.if (s xl (f x) 0) s 

filter g (setmap f 5) = 
setmap (Ax.filter g (f x)) 5 

filter f (sl minus 52) = 
(filter f 51) minus (filter f 52) 
provided sl and 52 are finite and 
(f a) is finite for finite a 

Finally we have the expected equivalences regard- 
ing combining selection with join (join/l below) and 
distributing selection over join (join/a): 

join/l filter fl (join f2 g r 5) = 
join P (x, d.f2(x, d and fl(g(x, dll g r s 
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join/2 join (A(x,y).(fl x) and (j2 y)) g r s = 
setmap (.x.if (fl x) (setmap (Ay. 

if@ YJ MGYJ 014 01 r 
provided s finite and (f a) finite for finite a 

In summary, most of the expected equivalences for 
the logical and set operators hold. In some cases, how- 
ever, we require functions to be strict, or we require a 
priori knowledge about the termination properties of 
expressions. The provisos associated with the equiv- 
alences arise from the semantics of the built-in func- 
tions. Clearly, built-in functions with different seman- 
tics, e.g. sequential V, A and U, will give rise to differ- 
ent provisos. 

3.3 Transformation Principles 

Essentially the same principles apply to our language 
as to relational algebra expressions [VllSS] , except that 
they need to be successively applied starting from the 
outermost level of an expression and moving through 
to expressions nested within aggregation functions: 

(9 

(ii) 

(iii) 

(4 

use filter/l in a right to left direction, to split up 
complex filter conditions; 

perform filter as early as possible by commuting 
it with other applications of setmap (setmap/4), 
eliminating set membership tests (setmap/3), and 
distributing filter over U (&map/l), minus (fil- 
ter/4) and join (join/s); 

perform map as early as possible by distributing 
it over U (&map/l); 

combine cascades of setmaps of various kinds 
into a single setmap (setmap/2, map/l, map/2, 
filter/l-3, join/l); 

at any stage during the above steps, simplify 
set unions, intersections and differences whenever 
possible by using U/3, 174, -/*, all/*, in/*. 

The final step of the transformation process is to ab- 
stract common subexpressions using let/l in a right- 
to-left direction. 

Note that there is no general heuristic about which 
direction to apply &map/l, since the size of the result 
returned by setmap cannot be predicted in general. 
Note also that further application of setmap/ can be 
made using physical-level knowledge such ss expected 
sizes of sets and availability of indexes. Finally, note 
that we could also derive an equivalence that moves 
map through join in the special case that the former 
is a projection and the latter a Cartesian product, but 
would be quite contrived. In any case, such an equiv- 
alence would go into category (iii) above. 

4 Higher-Level Constructs 
The algebraic equivalences discussed above are very 
fine-grained and low level. We now examine two addi- 
tional sets of equivalences at a higher conceptual mod- 
elling and querying level: those for set abstractions 
and those for functions with known inverses. Our re+ 
sons for doing so are twofold. Firstly, both these con- 
structs are commonly found database languages and 
we wish to extend optimisations identified by others 
(see Section 5) to our richer computational environ- 
ment. Secondly, we conjecture that optimising first at 
this conceptual level is likely to be more efficient than 
proceeding directly to logical-level optimisations. 

4.1 Set abstractions 

The syntax of set abstractions is as follows: 

se+abstmction = “{ n expr 1’ qualifiers 3 n 
qualifiers = qualijier 1 qualifier “;” qualifiers 
qualifier = genemtor 1 filter 
getle9otor = pattern “E” expr 
filter = expr 

For example, the following equations define a set 
father given a set parent::{(Person,Person)} and a 
set mother::{ (Person,Person)) and a recursive set 
ant: 

father = {t 1 t E parent; not(t in mother)} 
ant = parent U { (a,d) I (a,dl) E parent; 

(al,d) E ant; al == dl) 

Optimisation of set abstractions is important since 
these provide a unifying query formalism for relational, 
functional, and deductive languages. For example, the 
head of a set abstraction corresponds to the SELECT 
clause of an SQL query, the generators are correspond 
to the FROM clause, and the filters to the WHERE 
clause. Also, Trinder [Tri89] gives a translation of the 
relational calculus into list (as opposed to set) abstrac- 
tions, [PatSO] notes that DAPLEX queries are easily 
translated into set abstractions, and in previous pa- 
pers e.g. [Pou93] we have observed the syntactic and 
semantic correspondence between set-valued functions 
such as father and ant and the analogous Datalog 
predicates. However, set abstractions are just syntac- 
tic sugar for nested applications of setmap and if. 
In the interests of simplicity, we give the translation 
scheme, T below, only for the case that the patterns in 
generators are simple variables: the interested reader 
can find the full translation scheme in [Pou93]. In the 
translation equations below Q denotes a sequence of 
zero or more qualifiers: 

WelH = G'T4~ 
TT{ellez;QIl = if Wzl) CmllQH) 0 
T[{ellx E es;&)1 = setmap &.U{el IQIl) (TM) 
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For example, father above translates into: 14 4 P E {PIQ; f); 9’1 

setmap (A&if (not (t in mother)) {t) {}) parent 

Three classes of equivalences can be identified 
for set abstractions, those for qualifier interchange, 
for qualifier introduction/elimination, and for moving 
qualifiers into nested set abstractions. These equiv- 
alences can be proved by translating expressions into 
the extended A calculus and using structural induction. 

The following equivalences for interchanging the 
qualifiers in set abstractions have well-known counter- 
parts for list abstractions with bag equality [7X89]: 

provided FV(f) E W(p) 

More sophisticated forms of these are 

{el . . . . p E s; 8) = {el . . . . p E (p’ 1 p’ E s}; Q} 
(4 . . . . P E {P’IQI; fi 9’1 = 

(4 . . . . P E {#IQ; f'h 9'1 
where p’ is obtained from p by a renaming of variables 
and f’ is obtained from f by the same renaming. 

abs/l (e] . . . . pl E sl; p2 E 82; Q) = 
{el . . . . p2 E $2; pl E sf; Q} 
provided F V(pl) rl FV(s2) = 

4.2 Transformation of set abstractions 

The following transformation principles can be applied 
successively, moving inwards from the outermost set 
abstraction to nested set abstractions c.f. the lower- 
level transformations of 3.3: 

aw2 (4 
FV(p2) n FV(sl) = {} 

*-a; P E s; f; 81 = {el . . ..f. p E 5; 0) 
provided F V(p) n F V(f) = {) 

(i) use absJ4 in a right to left direction to split up 
complex filter conditions; 

aW3 (4 **a; f; 9; 41 = 14 . . . . 9; f; &I 
abs/l states that generators can be interchanged. It 
follows directly from &map/4 and has the same pro- 
viso that sl and s2 are both finite or both infinite. 
abs/2 states that a generator and a filter can be in- 
terchanged, and it requires both that s is finite and 
that f terminates, otherwise non-termination may be 
introduced. Of course, if we do not mind improving 
the termination properties of an expression, the rule 
may be used in a right-toleft direction ifs is known to 
be finite, and in a left-to-right direction if f is known 
to terminate. &s/3 states that two filters can be in- 
terchanged. Its proof requires if/l and and/l, and 
consequently this equivalence holds only if f fails to 
terminate whenever g does. 

(ii) perform filters as,early as possible by interchang- 
ing them with generators and other filters using 
abs J2 and abs J3; 

(iii) interchange groups consisting of a generator and 
its dependent filters by using absJl-3, according 
to the expected efficiency of evaluating the group 
(based on physical-level knowledge such as ex- 
pected sizes of sets and availability of indexes); 

(iv) eliminate redundant qualifiers using ah J46; 

(v) at any stage during the above steps, simplify 
set unions, intersections and differences whenever 
possible by using the equivalences of Section 3; 

Numerous equivalences can be identified for elimi- 
nating qualifiers, of which the following is a represen- 
tative sample: 

(vi) pass filters into preceding, nested, set abstractions 
using abs J8. 

ah/4 14 ..*;fi 9; 81 = {el . . . . f and g; Q} 
abs/5 {el...; x E {e’}; Q} = {e[e’/x]l . . . . Q[e’/x]} 

provided x $Z BV(Q) 
abs/b {e] . . . . p E sl; p in ~2; Q) = 

{el . . . . p E (sl inter ~2); Q} 

absJ4 states that two filters can be compressed into 
one: its proof follows directly from if/l. absJ5 states 
that a generator over a singleton can be eliminated: 
its proof follows from the semantic soundness of p re- 
duction. absJ6 states that a filter can be eliminated: 
its proof follows from the definition of inter and only 
holds if both sl and 92 are finite. 

Finally, abstract common subexpressions using let Jl 
in a right-to-left direction. 

We illustrate these principles via two queries. The 
first requires the countries of women competitors 
who won alpine events. A naive formulation iterates 
through all countries, events, results and competitors, 
and then specifies the join condition: 

{c 1 c E allCountry; (eu,cat) E events; 
(ev’ , nums) E results; 
(num,name,sex,compc) E camps; 
ev f == ev and cat== Alpine and num == 
head(nums) and sex== Female and compc== c} 

Applying abs J4 in a right to left direction, followed by 
a promotion of filters gives: 

The third set of equivalences governs the moving of 
qualifiers into and out of nested set abstractions: 

absJ7 {ej . . . . p E s; Q} = {el . . . . P E {P I P E ~1; Q) 
ah/8 (4 . . . . P E (PIQ); f; 9’) = 

{c 1 c E allCountry; (eqcat) E events; cat== Alpine; 
(ev’,nums) E results; ev’ == ev; 
(num,name,sex,compc) E camps; i 
num == headfnums): sex== Female: comvc == c) ,’ I . a 
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Interchange of groups of generators and their depen- 
dent filters gives: 

{c 1 (ev,cat) E events; cat== Alpine; 
(ev’,nums) E results,-ev’ == ev; 
(num, name,sex, compc) E wmps; 
num == head(nums); sex== Female; 
c E allCountry; compc== c) 

or, alternatively: 

(c 1 (num,name,sex,wmpc) E wmps; 
sex== Female; c E allcountry; con@== c; 
(ev’, numb) E n%uh; num == head(nums); 
(ev,cat) E events; cat == Alpine; ev’ == ev) 

Compressing filters, and removing c E allcountry; 
wmpe-- -- c by using in/2, followed by abs/6 and al1/2, 
gives the following for the first of these alternatives: 

{c 1 (ev,cat) E events; cut== Alpine; 
(etf , nums) E msults; ev’ == ev; 
(num, name, sex, compc) E camps; 
num == head(nums) and sex== Female; 
c E WwH 

Finally, using abs/5 gives: 

(compc 1 (ev,cat) E events; iat== Alpine; 
(ev’,nums) E results; ev’ == ev; 
(num, name,sex, compc) E camps; 
num == head(nums) and sex== Female} 

A similar process for the second alternative gives: 

(compc I (num, name,sex, compc) E camps; 
sex == Female; 
(ev’, nums) E results; num == head(nums); 
(ev,cat) E events; cat== Alpine and ev’ == ev} 

The second query requires the competitors spon- 
sored by Atomic who won alpine events. A naive for- 
mulation iterates through all events, all results and 
all tuples of a join of competitors with sponsors over 
country, and then specifies a further join condition: 

{c I (ev,cat) E events; (ev’,nums) E results; 
(c, spname) E 

((tqpname) I (c,name,sex,compc) E camps; 
(spname,spc) E sponsors; compc == spc} 

spname == “Atomic” and cv’ == ev and 
cat== Alpine and c == head(nums)) 

Applying abs/4 in a right to left direction followed by 
filter promotion gives two alternatives, one being: 

{c I (ev,cat) E events; cat== Alpine; 
(ev’, nums) E results; ev’ == ev; 
(c, spname) E 

{ (c,spname) I (c, name,sex,compc) E camps; 
(spname,spc) E sponsors; compc == spc} 

spname == “Atomic”; c == head(nums)} 

Passing the last two filter conditions into the preceding 
set abstraction using abs/8 gives: 

{c I (ev,cat) E events; cat == Alpine; 
(ev’,nums) E results; ev’ == ev; 
(c,spname) E 

{ (qspname) I (c,name,eex, wmpc) E wmps; 
(spname, spc) E sponsors; wmpc == epc; 
spname == ‘Atomic”; c == head(nums)}} 

Then performing filter promotion within the nested set 
abstraction followed by filter compression givea: 

{c I (ev,cat) E eventa; cat== Alpine; 
(ev’,nums) E resulta; ev’ == ev; 
(qspname) E 

{ (c,spname) I (c,name,sf2x,wmpc) E wmps; 
c == head(nums); 
(epname, spc) E sponsors; 
compc == spc and spname == “Atomic”)} 

7: I (ev,cat) E everits; cat== Alpine; 
(ev’,nums) E results; ev’ == ev; 
(c, spname) E 

{(c,spname) I (spname,spc) E sponsors; 
spname == “Atomic”; 
(c, name,sex, compc) E wmps; 
compc == spc and c == head(nums)}} 

The second alternative is optimised similarly. 

4.3 Functions with known inverses 

In this section we consider how use may be made of in- 
formation about the inverse relationship between pairs 
of functions. Such information may be readily avail- 
able in languages which use a functional or object- 
oriented data model, and may also be available from 
other sources e.g. via proofs supplied by the program- 
mer [Har92]. In the case of extensional functions, in- 
verses typically correspond to fast access paths pro- 
vided by indexes. An implicit assumption for the 
equivalences we give below is that the functions and 
their inverses are strict, which is necessary in order for 
the equivalences to hold. 

Given two functions f : 8 + t and f-’ : t + 8 
such that f-l(f e) = e for all expressions e : s and 
f(f-’ e) = e for all expressions e : t, then: 

inv/l (f e2) == e!? = el == (f” e2) 
iuv/2 (f el) in s = el in (map f” s) 

Given a function f : s + t which is many-to-one and 
a function f-l : t -+ {s} such that for all e : a, e E 
f-‘(f e) and for all e : t, Vu E (f-‘e).f u = e, then: 

inv/3 (f el) == e2 = el in (f-l e2) 
inv/4 (f el) in 8 = el iA (setmap f-l 8) 
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Clearly inv/3 and inv/4 are also applicable given a 
one-t&many function f : 8 + {t) and its inverse f-’ : 
t -b 8, since in this case the roles of f and f” above 
are reversed. Finally, given a many-to-many function 
f : 8 ,+ {t} and a function f-’ : t + (8) such that 
for all e : 8, Vu E (fe).e E (f-‘u) and for all e : t, 
Vu E (f-‘e).e E (f u), then: 

inv/5 e& in (f el) = el in (f” e2) 

4.4 Transformation of functions with inverses 

The following transformation principles should be ap 
plied at successive levels of nesting, and common sub- 
expressions should be abstracted out at the end of the 
process: 

(i) use abs/4 in a right to left direction to break up 
complex filter conditions; 

(ii) use inv/l-5 to generate tests for set-membership 
and equality on variables i.e. tests of the form 
v == e and u in e where u is a variable; 

(iii) apply transformation principles (ii) - (v) for set 
abstractions from Section 4.2. 

We again illustrate these principles on our Winter 
Olympics database, assuming the following functions 
and inverses which can be defined in terms of the base 
functions of Section 2.3: 

country-of : 
team-of : 
competes-in : 
camps-in : 
winner : 
sex 
sex-l 
category : 
events 

Comp + County 
Country + {Comp) //= country-of-’ 
Comp + {Event} 
Event + {Comp} //= competes-in-’ 
Event + Comp 
Comp + Sex 
Sex + {Comp} 
Event + Category 
Category + {Event} //= category-’ 

The query is the same as the first query of Sec- 
tion 4.2, i.e. ‘which countries have female Alpine gold 
medalists?‘, and can be expressed as follows: 

{c 1 c E allCounty; camp E allcomp; eu E allEvents; 
Alpine == (category eu) and Female == (sex camp) 
and wmp== (winner eu) 
and c == (county-of camp)} 

Phase (i), which repeatedly applies abs/4 to break up 
the filter condition, gives: 

{c 1 c E allcounty; camp E allcomp; eu E allEvents; 
Alpine == (category eu); Female == (sex camp); 
camp == (winner eu); c == (county-of camp)} 

During phase (ii) inv/l-5 are applied, and we reach 
the point: 

{c 1 c E allCounty; camp E allcomp; eu E allEvents; 
eu in (events Alpine); wmp in (8ex-l Female); 
camp == (winner eu); c == (county-of camp)} 

at which we have a choice: whether or not to apply 
inv/l to c == (country-of camp). If we do not do so, 
we move on to phase (iii), where the filters are removed 
using abs/6: 

{c 1 eu E allEvents inter (events Alpine); 
camp E allComp inter (8ex’1 Female) 

inter (winner eu}; 
c E allCounty inter {county-of wmp}} 

Finally, the lower level optimisations (in particular, 
al1/2) reduce the size of the sets over which we iterate, 
giving us our first query plan: 

{c 1 eu E events Alpine; 
camp E (sex-l Female) inter {winner eu}; 
c E {county-of camp}) 

Alternatively, applying inv/l again gives: 

{c I c E allcounty; camp E allcomp; eu E allEvents; 
eu in (events Alpine); camp in (sex-’ Female); 
camp== (winner eu); camp in (team-of c)) 

and removing the filters using abs/6 gives: 

{c 1 c E allcounty; 
ev E allEvents inter (events Alpine); 
conap E allComp inter (sex-’ Female) inter 

{winner eu} inter (team-of c)} 

Again, all/2 reduces the size of the sets over which we 
iterate, giving a second query plan: 

{c I c E allcounty; eu E (events Alpine); 
camp E (sex-l Female) inter {winner ev} 

inter (team-of c)} 

These two query plans differ only in that the ex- 
tra use of inv/l during the construction of the sec- 
ond query plan did not allow the iteration through 
allcountry to be eliminated. Thus, it is likely that the 
first plan would be chosen for execution after applying 
some physical-level heuristics. We finally observe that 
both query plans correspond to the first plan of !3ec- 
tion 4.2 for the same query. The second plan of Section 
4.2 is not generated here due to the non-availability of 
an inverse for the winner function. 

5 Related Work 

Our framework draws considerably from Breazu- 
Tannen et al. [BreSl] who proposed a programming 
paradigm based upon structural recursion over sets. A 
major motivating factor behind this paradigm is that 
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it facilitates the optimisation of database programs. 
Indeed, several optimisations are stated, including fil- 
ter/2, filter/3 and join/2 above, while structural in- 
duction is used as a proof technique. However, this 
research is in the contexfof terminating functions over 
finite sets and a single level at which equivalences can 
be expressed. In contrast, we have richer semantic 
domains which include I, and can thus address termi- 
nation issues; we also allow for the possibility that sets 
may be infinite; and we have investigated equivalences 
expressed at several levels of abstraction. 

Cluet and Delobel [Clu92] propose a query optimi- 
sation formalism for 02 based upon classes and alge- 
braic query rewriting. One assumption made is that 
methods have no side-effects, although it would seem 
difficult in practice to guarantee that this condition 
holds. A select-project-join algebra is discussed, and 
the introduction of types into algebraic expressions 
facilitates its optimisation by allowing the introduc- 
tion of functions that enumerate the constants of a 
type. Our use of the functions allT and the equiva- 
lences inv/ld is analogous. The approach of [Clu92] 
retains a separation of DML and programming lan- 
guage; thus, the possibility of non-termination or infi- 
nite data structures are not considered. 

Several other groups have introduced object al- 
gebras and strategies for their optimisation [Dem94, 
Lie92, Sha89, Sto91, Van911 with analogous equiva- 
lences to those we propose here. In general these al- 
gebras are either computationally incomplete or sup- 
port optimisations for only a subset of their operators. 
Also, some provide only limited facilities for optimis- 
ing user-defined data types; while others allow few al- 
gebraic transformations to be applied to an expression 
without changing its value. 

Finally, the optimisation of functional database lan- 
guages has been examined by several other researchers 
e.g. [T&39, BeeSO, Erw91, PatSO, HeySl]. Trinder 
[TriSS] advocates analogues of abs/l-3 for list (as op- 
posed to set) abstractions. These equivalences are jus- 
tified by assuming bag equality over lists. Implicit 
assumptions made are that lists are finite (otherwise, 
the equivalent of abs/l would not hold for example) 
and that functions over their elements are terminating 
(otherwise abs/3 would not hold). Trinder also pro- 
poses jilter hiding, which corresponds to a combina- 
tion of our abs/7 and abs/8. [Hey911 too is concerned 
with the optimisation of list-valued expressions, and 
in this context proposes combining unary expressions 
(analogous to our map/l and filter/l-3), eliminating 
iteration over functions of the form allT, and using in- 
formation regarding indexes to select preferred query 
paths. [PatSO] discusses the optimisation of DAPLEX 
queries, essentially using abs/l-3 and inv/l-5. [BeeSO, 
ErwSl] discuss the optimisation of FP-like functional 

database languages, also highlighting the suitability of 
using functional language for DBPL optimisation. In 
particular, [ErwSl] develops equivalences over map, fil- 
ter and a G-like aggregation operator in the context of 
strict functions over finite sets; a set of inverse equiva- 
lences are also given, including inv/l, and others that 
we have not discussed here. 

6 Conclusions 

We have investigated algebraic query optimisation 
techniques in the context of a functional DBPL fur- 
nished with a set bulk data type. We have examined 
the extent to which prior work on the optimisation 
of relational languages can be utilised. The declara- 
tive nature of our language has enabled us to avoid 
the problems associated with side effects, whilst its 
well defined semantics provides a framework in which 
to show formally termination properties of expressions 
and equivalences between expressions. We have identi- 
fied caveats to several well-known equivalences in this 
richer computational paradigm. For processing tasks 
such as aggregation and transitive closure, our optimi- 
sations can be fully exploited for all sub-expressions 
of a query since there is no dichotomy between the 
optimisation of ‘programs’ and ‘DML statements’. 

Although developed in the context of a functional 
language, our findings are directly applicable to other 
DBPLs operating over sets. Conversely, we can incor- 
porate equivalences discovered by others into our for- 
malism. Finally, although we have concentrated upon 
showing equivalences relevant to the set data type, the 
same approach can be used for other, possibly user- 
defined, data types: see for example the equivalences 
shown in [Bir88] for list and tree data types. 

We have not yet considered heuristics to reduce the 
query search space. Also, in a computationally com- 
plete language the user can easily ‘program around’ 
predefined functions and thus thwart the optimisa- 
tion process. One ongoing issue is the optimisation 
of retrieval from recursive sets. We discussed this in 
[Pou93] where we addressed the optimisation of a class 
of set-valued functions called selectors. Selectors gen- 
eralise the inverse functions of a functional data model 
by allowing associative look-up into n-ary, as opposed 
to just binary, relations. We proposed a magic-sets 
like rewriting of the definitions of intentional selec- 
tors, given specific look-up patterns: we are now im- 
plementing these ideas. Finally, it is clear that the user 
must be provided with sophisticated tools if they are 
to aid the optimisation process. Such tools have al- 
ready been developed for functional languages, exam- 
ples being strictness analysis [Cla85] and Cambridge 
LCF [Pau87], h h w ic can be used to prove properties 
of functions such as equivalence and termination. 
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