
Investigation of Algebraic Query Optimisation for
Database Programming Languages

Alexandra Poulovassilis
Dept. of Computer Science

King’s College London
Strand, London WC2R 2LS

alexQdcs.kcl.ac.uk

Abstract

A major challenge still facing the designers
and implementors of database programming
languages (DBPLs) is that of query optimisa-
tion. We investigate algebraic query optimi-
sation techniques for DBPLs in the context of
a purely declarative functional language that
supports sets as first-class objects. Since the
language is computationally complete issues
such as non-termination of expressions and
construction of infinite data structures can be
investigated, whilst its declarative nature al-
lows the issue of side effects to be avoided and
a richer set of equivalences to be developed.
The support of a set bulk data type enables
much prior work on the optimisation of rela-
tional languages to be utilised. Finally, the
language has a well-defined semantics which
permits us to reason formally about the prop
erties of expressions, such as their equivalence
with other expressions and their termination.

1 Introduction

Database programming languages (DBPLs) incorpo-
rate into a single language, with a single semantics, all
of the features normally expected of both a data ma-

Permisrion to copy without fee all or part of thir material ia
granted provided that the copier are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying ir bg permirrion of the Verg Large Data Bare
Endowment. To copy otherwire, or to republish, requires a fee
and/or rpezial permisrion from the Endowment.

Proceedings of the 20th VLDB Conference
Santiago, Chile, 1994

Carol Small
Dept. of Computer Science

Birkbeck College
Malet St., London WClE 7HX

carolQdcs.bbk.ac.uk

nipulation language (DML) and a programming lan-
guage. For example, DBPLs have one computational
model, one type system, and bulk data types with as-
sociated access mechanisms. A major challenge still
facing DBPLs is that. of query optimisation. There
are several reasons for limited progress in this area:

6)

(ii)

(iii)

(4

(VI

The possibility of side-efects restricts the set of
equivalences that can be shown to hold.

Some bulk data structures are inherently hard to
optimise. For example, lists only madily support
the common relational optimisations if the con-
cept of bag equality is used [Tri89] (i.e. lists are
equal if they contain the same elements, although
possibly in different orders), whilst some of the
algebraic properties of sets fail for bags [Albgl].

Since DBPLs are computationally complete, the
termination properties of expressions must be
taken into account when investigating equiva-
lences. For example, if the boolean-valued func-
tion f~ does not terminate for some arguments
whilst the boolean-valued function fa returns
False for all arguments, then the ‘equivalence’
Of1 h (4) = UI/:, (ajl (8)) does not hold since
evaluation of the LHS always terminates for finite
s (returning {)) whereas evaluation of the RHS
may not terminate.

DBPLs may manipulate infinite data structures
and hence some bulk data operations cannot be
implemented using established methods. For ex-
ample, if A and B are infinite sets then a nested
loop method cannot be used to generate A x I3
(since all tuples of the resulting product will have
the same first coordinate).

DBPLs typically support user-defined data types,
and hence require mechanisms to prove equiva-

415

lences over these data types too.

In this paper we investigate optimisation techniques
for DBPLs by addressing some of the above issues. We
undertake our investigation in the context of a purely
declarative functional language. Since database alge-
bras are functional in nature, thii is a particularly
natural computational paradigm in which to investi-
gate query optimisation in DBPLs. It also gives us a
computationally complete formalism that can exhibit
non-termination of expressions (point (iii) above) and
that can result in infinite data structures (point (iv)
above), whilst avoiding the issue of side-effects (point
(i) above). The language supports a set bulk data
type, enabling us to utilise much prior work on the op
timisation of relational languages, including Datalog
(point (ii) above). Finally, the language has a well-
defined semantics which permits us to reason formally
about the properties of expressions, including those
of user-defined data types, such as their equivalence
with other expressions and their termination proper-
ties (point (v) above).

The structure of this paper is as follows. In Section
2 we give the syntax of our language and briefly discuss
its semantics and its provision for built-in and user-
defined functions. In Section 3 we define a small but
powerful algebra of operators over the set data type,
provide some key equivalences for expressions in these
operators, and list transformation principles for opti-
mising expressions. Along the way, we identify some
caveats to well-known equivalences for non-deductive
database languages. In Section 4 we examine two
higher level constructs commonly found in DBPLs -
set abstmctions (also known as set comprehensions in
the literature), and functions with inverses. We pro-
vide some key equivalences for these constructs also,
and give transformation principles for expressions in
them. In Section 5 we briefly compare this work with
related research. Finally, in Section 6 we give our con-
clusions and indicate directions of further work.

2 The Language

The formal foundation of any functional language is
the X-calculus [Hin86]. Expressions in this calculus
have the following syntax:

ev = uar 1 primitive 1 ‘%“vafU. “e2pr 1
exprl ezpr2 1 “(” e2pr ‘7”

A variable 2 is said to be bound in an expression e if
it occurs in a sub-expression of e of the form Jz.e’;
otherwise it is free in e. FV(e) (respectively, l%‘(e))
denotes the set of variables with at least one free (re-
spectively, bound) occurrence in e.

Computation in the X calculus proceeds by syntac-
tically transforming terms using ,O reduction. This

rewrites a function application of the form (Xz.e)e’ to
the expression e[e’/z] obtained by replacing all free oc-
currences of 2 in e by e’. The denotational semantics
of the X-calculus (see [Sch86]) assigns to each expres-
sion a value in a semantic domain - this is the meaning
of the expression. p reduction is semantically sound
in that it does not alter the meaning of an expression.

The language that we will be optimising is the X
calculus extended with constructors, let expressions
and pattern-matching X-abstractions:

ev = uar I constructor I primitive I
Inpattern U. “expr I ezprl ezpr2 I
“let” var 5” exprl ‘in” e2pr2 1
“(” expr “)”

pattern = var I constructor pattern1 . . . pattern,

where tuples (ei, e,) are regarded as applications of
an n-ary constructor Tuple, to n arguments ei, e,.
We use V, w, 2, y, z for denoting variables, p,q, r for
patterns, and e, e’ for expressions. This extended X
calculus is straight-forwardly mapped into the (ordi-
nary) A calculus (see [Pey87]). In particular, let x =
e’ b e translates into (Ax.e)e’. The semantic sound-
ness of /? reduction thus gives the first equivalence:

let/l let 2 = e’ in e = e[e’/+]

This equivalence can be used to abstract common sub
expressions when used in a right-to-left direction, and
to expand definitions in place when used in a left-to-
right direction. The former operation will typically be
useful at the end of the query transformation process,
while the latter will be useful at its outset (in order to
generate an overall expression to optimise).

Functions are defined by equations of the form
f = e. If f E FV(e) i.e. if f is recursively de-
fined, the meaning of f is given by the least fixed
point of the higher-order (and non-recursive) function
Af.e (see [Sch86]). This meaning may just be non-
termination for some arguments e.g. for the function
f = Xz.not(f 2). Thus, the semantic domain contains
for each type t an element It which denotes ‘no in-
formation’ and represents a non-terminating compu-
tation (sometimes we omit the subscript t when it can

be inferred from context). For example, the boolean
type consists of the elements, True, False and IBIS,
where lnOOl is less informative than both True and
False (written lBOOl C True and lnod C False)
and where True and False are not information-wise
comparable. The meaning of f = Xt.not(fx) is then
given by the least fixed point of the higher-order func-
tion Xf.X+.not(ft), and is just the function that maps
all its arguments to &3001 i.e. h.&?,,d.

For the purposes of investigating query optimisation
we use several items of information about expressions:

416

Refemntial tmnsparency. This is a property enjoyed
by our language and means that every occurrence of
an expression denotes the same value in a given en-
vironment (an environment being a mapping of free
variables to expressions).

Termination. The evaluation of an expression e ter-
minates if the value of e contains no I elements. In
the sequel, whenever we say that an expression e is
infinite we mean that its value contains I; otherwise,
we say that e is finite. Deter&ning whether e is finite
is of course undecidable in general. There is, however,
a wide class of expressions whose evaluation is known
to terminate, namely well-typed, non-recursive’expres-
sione: thii is the etmng nornaalisation theorem [Hin86].
Furthermore, it may be possible to construct a proof
of the finiteness of an expression, perhaps using struc-
tural induction (see below) over its definition, and the
user could be permitted to annotate the expression as
such.

Strictness of functions. The order in which /?
reduction is applied in X expressions is significant.
Lazy evaluation (which we assume) ensures termina-
tion whenever possible by only evaluating the argu-
ments to functions if needed by the function to return
a result. A function is strict in an argument if that
argument must be evaluated for thg: function to return
a result. One way to characterise a strict function is to
state that f-l = I (i.e. given a non-terminating argu-
ment, f will not terminate either). Information about
the strictness properties of a function can be derived
from the known strictness properties of the built-in
functions using strictness analysis [Cla85].

Continuity of functions. A function f is said to be
continuous if, for every sequence of values dl & da & . . .
in the domainof f, f(U{dl,dz, . ..)) = U{f dl, f dz, . ..}.
In other words, continuous functions preserve least up
per bounds. Any function defined in the X notation
is continuous ([Sch86] Theorem 6.24). This has two
important implications. First, it guarantees that any
recursive definition has a unique meaning. Second, it
means that when proving a proposition of the form
Vz.f z = g z, where f and g are continuous functions,
induction over the structure of z can be used to prove
the equivalence even if t is infinite i.e. contains I el-
ements. In the terminology of [Sch86] a proposition
of the above form is an inclusive predicate for which
fixpoint induction is valid. [Bir88] gives an accessible
discussion of structural induction and uses it to prove
equivalences over infinite lists and trees. We similarly
use it to prove our equivalences over, possibly infinite,
sets below.

Sets are important in our language, so we briefly
recall their semantics (see [Pou93] for further details).
The least element of the type consisting of sets of val-
uea of type t is the set {It). For example, the value

of f = h.(fx) U (fz) is AZ.(~), while the value of
nats = An.(n) U (nats(n+ 1)) is Xn.{n, n+ 1, . ..I}. so
with nats non-termination arises from the construc-
tion of an infinite set.

2.1 The type system

Our language is strongly, statically typed and supports
a number of primitive types such as Boo!, Str and
Num. The user can declare new enumerated types and
introduce new constants of such a type. For every user-
defined enumerated type T, a built-in zero argument
function allT returns all constants of that type.

We will use as a running example a database that
records results for the Winter Olympics. The user-
defined enumerated typea include Camp (competi&r
id), Sez, Country, Category (category of events) and
Event, where:

allComp =
allSex =
allCountry =
allcategory =
allEvent =

l+ance, . . .}
{Alpine, Nordic, FigureSkating, . ..)
(MensDownhill, WomensSlalom, . . .}

Also supported are polymorphic product, list, set
and function types. In particular, (tl, t,,) is an n-
product type for any types tl , t,, [t] is a list type
and {t} a set type for any type t, and tl + t2 the type
of functions from a type tl to a type t2. Note that
the function type constructor + is right associative, so
that tl + tz + t3 and tl + (t2 + ts) are synonymous.

We use the notation e : t to indicate that an ex-
pression e has type t. We also use letters from the
start of the alphabet to indicate type variables in
type expressions. For example, the infix ‘compose’
function, o, defined by (f o g)z = f(g z) is of type
(b + c) + (a -+ b) + (a + c) , where the type vari-
ables a, b and c can be instantiated to any type.

The user can also declare sum types and introduce
new constructors of such a type c.f. the list construc-
tors (:) : a + [a] + [a] and [] : [a].

2.2 Built-in functions

The usual arithmetic (+, -, *, /) and comparison (==
, ! =, <, <=, >, >=) operators are built-in l. These op
erators may be written either infix or prefix (in which
case they are bracketed e.g. (+) 12). These operators
are of necessity strict in both their arguments. For
example, the value of e == e’ will be I if either e or
e’ has value I: operationally, both operands of ==
must be evaluated in order to determine if they are
equal, and if either yields ‘no information’ so does the
overall evaluation of the equality test. The other main

‘Note that == is the syntactic equality operator as opposed
to equality, =, in the semantic domain.

417

comparison operator, <, works in a similar fashion and
hinges on an alphanumeric ordering of constants and
constructors, with a left-to-right comparison of the ar-
guments of the latter. Functions cannot be meaning-
fully compared, while sets are converted to lists (by
the operation set-to-list below) for comparison.

The Sargument conditional function if is also
builtin and has the following semantics:

ifl&or xy =I
ifl+uexg =x
ifF&exy =y

Thus, if is strict in its first argument, but not in its
second and third arguments. Logical operators can be
defined in terms of if as follows:

and = Xx.&if x y False
or = Xx.Xy.if x lhe y
not = Ax. if x False True

Consequently these too are strict in their first argu-
ment. We will also require on occasion counterparts
to and and or that are commutative and ‘I-avoiding’;
operationally, V and A are implemented by evaluating
their operands in parallel:

TrueVy =lhe False A y = False
xVFrue =lhe t A False = False
False V y = y TrueAy =y
x V False = x tATrue =x
IV1 =I LA1 =I

Two set-building functions are also built-in, the
singleton-forming operator and the union operator:

i-1 : a + {a}
-U- :(a)+(a)+(a)

A set can also be represented by enumerating its ele-
ments, where {ei, e,} equals {ei} U . . . U {e,}.

Breazu-Tannen et al. [BreSl] propose a function,
@, for folding a binary operator op into a finite set,
requiring e and op to form a commutative-idempotent
monoid on the return type of f in order for this defi-
nition to have a unique meaning:

@fop4 =e
@fop44 = fx
@fop e (81 U 82) =op(@fopesl)(@fopes2)

In our case of possibly infinite sets the second equation
has to be modified, giving 4 below:

4fopeO =e

(bfop4xI = if(x=l)l (fx)
q5fope(slUs2) = o~(4fopesl)(dfope4

In operational terms, 4 keeps distributing f to the ele-
ments of an infinite set for ever; in semantic terms, the
modified definition ensures that 4 is continuous. Thus,
as one might expect, we cannot use 4 to devise termi-
nating cardinality or summation functions for infinite
sets. Others have defined similar functions to 0 e.g.
the ‘pump’ operator of FAD [Ban871 and the ‘horn’
operator of Machiavelli [Oho89], and [BreOl] gives a
comparison of these.

We can now use 9 to define a membership operator
over pcesibly infinite sets:

tins = q5 ((==) x) (V) False s

Thus, in returns True if any comparison of x with an
element of s returns True, False if all comparisons of
x with elements of s return False, and I otherwise.
So in only returns False for finite sets: in operational
terms, in keeps on searching an infinite set for a value
that equals x until it finds one. Also, since in depends
on the results of equality tests, it will return I if ap
plied to higher-order sets i.e. sets of functions.

We can also use 4 to define a deterministic conver-
sion function from sets to lists, where list-union is de-
fined in terms of a duplicate-eliminating sort function
and a list append operator ++:

set-to-list s = r$ (Xx.[x]) list-union []
list-union xs ys = sort (xs ++ ys)

Given set-to&t we can determine the cardinality of a
set, the sum of its elements etc. Finally note that since
set-tolist depends on sort it will return I if applied
to higher-order or infinite sets.

2.3 User-defined functions

These can be specified using one or more equations
rather than a single ,! abstraction, and can use pattern-
matching to deconstruct their arguments. For exam-
ple, we can define a function fold1 which is similar to
0 but which works over lists:

foldlfope[] =e
fold1 f op e (x:x9) = op (f x) (fold1 f op e xs)

This function can be used to convert a list to a set:

list-to-set xs = fold1 (Xx.(x]) (cl) (} xs

0-ary set-valued functions can be used to represent
bulk data, the assumption being that such functions
are updatable by the insertion and deletion of values
of the appropriate type. For our Winter Olympics
Database examples, we will use functions which de-
fine: the sponsors of each country; the name, sex and
couutry of each competitor; the category of each event;
the set of competitors registered for each event; and
the list of medalists in rank order for each event:

418

SpOlU?OtS : {(Country, Str)}
compe : {(Comp, Str, Se2, Country)}
events : {(Event &Category)}
registered : {(Event, K’om~)))
results : {(Event, [Camp])}

3 The Algebra
Our algebra cousists of three built-in operators. These
are the {-} and ,U _ operators already introduced and
an operator setmap which has the following semantics:

setmap : (a + VI) + {aI + VI
setmap f 0 = 0
setmpp f (4 = if (x = I) {I} (f x)
setmap f (81 U 62) = (setmap f 82) U (setmap f 92)

setmap thus distributes a function of type (a + {b})
over a set of type (a) and returns the union of the re-
suits. Notice that setmap f is just 4 f (U) (1. [BreSl]
similarly gives a finite-set version of setmap defined in
terms of @.

Two functions that frequently appear in algebras
are map : (a + 6) + {a} + {a} and fiZter : (a +
Booi) + {a} + (a} e.g. in [Clu92, Bee92]. These
functions general& relational projection and selection.
Although they could be built-in for efficiency purposes,
map and filter can be defined in terms of setmap as
follows, where singleton f x = {f x}:

filter f s = setmap (Ax.if (f x) {x} {}) s
mapfs = setmap (singleton f) s

A further operation that can be expressed using
setmap is the join of two relations according to a se-
lection function f and a projection function g, join :
((a, b) -+ Bo4 + ((a, b) + c) + {a} + {b) + {c):

joinfgrs = setmap (Xt.setmap(Xy.
if (f Hyde (9 ~~~Y)l 0) s1 r

join subsumes the various flavours of join and prod-
uct operations found in relational databases. It can
operate upon infinite sets of structured tuples. In par-
ticular, for any a E r and b E s, the value of g(a,b)
in (join f g r s) is True provided that f (a, b) is True,
regardless of the finiteness or otherwise of r and s.

Finally, join obeys the following commutativity
property, provided r and s are both finite or both in-
finite, where f* (x,y) = f(y,x):

joinfgrs = join f* g* r s

3.1 Other set-theoretic operators

Other set-theoretic operators can be defined in terms
of the operators above, although these too could be
built-in for efficiency purposes. We give definitions

for two of these operators, since they raise some in-
teresting issues. Operators such ae nest, unneet and
powerset are also easily defined in our language.

Set difference can be defined using filter and in:

-minus, : {al + M+ {al
sl minus a2 = filter (Ax.not(x in ~2)) 81

Thus minus will terminate if both sl and s2 are finite,
or if sl is finite and is a sub& of 82.

Intersection can also h defined using filter and in:

-inter, : tal+ ial + W
sl inter 82 = filter (Xx.x in 82) 81

However, this definition is not in general commutative
e.g. (3) inter (3, I} = (3) whereas (3, I} inter{%) =
(3, I}. Clearly it is desirable for intersection to be
commutative for optimisation purposes. To achieve
this we can use A:

sl inter s2 = filter (Xx.(x in 81) A (x in s2))
(51 u 52)

This definition is both less efficient and has worse ter-
mination properties than the first e.g. (3) inter ($1)
now gives (J,L}, but is nevertheless the one we assume
for optimisation purposes. If, however, both sl and s2
are known to be finite then the original definition can
safely be used in its place.

3.2 Equivalences

We now give some equivalences for the functions de-
fined above. Some of these are generalisations of well-
known equivalences for relational databases [Jar84,
U1189J. The main class of equivalences which do not
have counterparts in our language are the commute
tive laws for joins and products. However, if records
[Oho89] are used instead of tuples, these equivalences
also apply, subject to the provisos stated for join
above regarding the termination of its arguments.

The first set of equivalences, with their stated pr+
visos, follow easily from the definitions of the logical
operators in Section 2.2:

if/l if el (if e2 e3 ed) e4 = if (el and e2) e9 e4
if/2 if el e9 (if e2 eS ed) = if (el or e2) e3 e4
if/3 if (not el) e2 e3 =ifeleJe2
if/4 f (if el e2 es) = ifel (fez) (fe3)

provided f is strict
and/l el and e2 = e2 and el

provided el = I iff e2 = I
and/2 el A e2 = e2 A el
or/l el or e2 = e2 or el

provided el = I iff e2 = I
or/2 el V e2 = e2 V el
not/l not (not el) = el’
not/2 not (el or e2) = (not el) and (not e2)

419

The U and inter operators obey the expected prop
erties of commutativity and associativity (in opera-
tional terms, this means that the two branches of a U
must be evaluated in parallel), while inter and minus
distribute over U:

U/l 51 u 52 = 52u 51
u/2 51 u (52 u 53) = (51 u 52) u 53
u/3 51 u 52 = 51 if 52 s 51
n/l 51 inter 52 = 52 inter 51
n/2 51 inter (52 inter 53) = (51 inter 52) inter 53
n/3 (51 inter 53) U (52 inter 53) =

(51 U 52) inter 53

-/l (51 minus 53) U (52 minus 53) =
(51 U 82) minus 53

However, the following equivalences only hold sub
ject to the stated provisos:

f-0 51 inter 52 = 52
if 52 E $1, provided sl is finite

-12 51 minus 52 = 51
ifslns2 = (1, provided sl and s& are finite

-/3 51 minus 52 = {}
if sl s 52, provided sl is finite

To illustrate the proviso associated with n/4, consider
the sets sl = {1,2,L) and 92 = { 1). Then $2 E 51,
but sl inter 52 = {1,-L} # 52.

The set membership operator obeys the following
properties, subject to the stated provisos:

in/l el in {} = False
in/2 el in {e2}
in/3 e in (51 U 52) Z $ i1G2V (e in 5.2)
in/4 e in ($1 inter 52) = (e in 51) A (e in 52)

provided e, 51, s& are finite
in/5 e in (51 minus 52)= (e in 51) A not(e in 52)

provided e, $1, 52 are finite

u/3, n/4 and -/3 also allow us to simplify the
following expressions involving the built-in functions
allT, provided s is finite:

all/l s U allT = allT U s = allT
all/2 s inter allT = allT inters = s
all/3 s minus allT = {}

A number of optimisations apply to setmap, and
hence also to operators defined in terms of setmap
such as filter and map:

&map/l setmap f (51 U 52) =
(setmap f 51) U (setmap f 52)

&map/2 setmap f (setmap g 5) =
setmap (Ax.setmap f (g x)) 5

setmap/ setmap (Xx.if (x in 51) el e2) 5 =
(setmap (Ax.el) (5 inter 51)) U

(setmap (Ax.e2) (5 minus 51))
provided s is finite

setmap/ setmap (Ax.:.etmap (Av.e) 52) 51 =
setmap (Ay.setmap (Ax.e) 51) 52
provided x $! FV(52), y 6 FV(sl), and
sl and 52 are both finite or both infinite

setmap/l states that setmap distributes over U.
setmap/2 states that two successive applications of
setmap can be compressed into one application with a
second nested within it. &map/3 states when appli-
cation of a set membership test can be replaced by a
set union. Finally setmap/ states when the nesting of
one setmap within another commutes. A consequence
of &map/4 is that any two setmaps which succea-
sively iterate over the same set can commute. This is
especially important for the optimisation of iteration
over recursively defined sets.

These equivalences are proved by structural induc-
tion over the set arguments. Since sets are constructed
by successive unions of singleton sets and the empty
set, structural induction over a set a has two base cases
which must first be proved: s = {} and s = {e}. The
induction hypothesis is then that the given proposition
holds for sets s’ and 8, from which it remains to show
that it holds for s = s’ U 8.

The main optimisations for map are to combine suc-
cessive applications into one. In particular map/2 be-
low corresponds to combining cascades of projections:

nwdl map f (map g 5) = map(fog)s
map/2 map (Aq.r) (map (Ap.q) 5) = map (Ap.r) 5

provided FV(q) E FV(p)

For filter, filter/l below is a generalised cascade of
selections, filter/2 and filter/3 combine successive ap
plications of filter and setmap into a single setmap,
and filter/4 states that selection distributes over dif-
ference:

filter/l

filter/2

filter/3

filter/4

filter f (filter g 5) =
filter (Ax.(g x) and (f x)) s

setmap f (filter g 5) =
setmap Px.if (s xl (f x) 0) s

filter g (setmap f 5) =
setmap (Ax.filter g (f x)) 5

filter f (sl minus 52) =
(filter f 51) minus (filter f 52)
provided sl and 52 are finite and
(f a) is finite for finite a

Finally we have the expected equivalences regard-
ing combining selection with join (join/l below) and
distributing selection over join (join/a):

join/l filter fl (join f2 g r 5) =
join P (x, d.f2(x, d and fl(g(x, dll g r s

420

join/2 join (A(x,y).(fl x) and (j2 y)) g r s =
setmap (.x.if (fl x) (setmap (Ay.

if@ YJ MGYJ 014 01 r
provided s finite and (f a) finite for finite a

In summary, most of the expected equivalences for
the logical and set operators hold. In some cases, how-
ever, we require functions to be strict, or we require a
priori knowledge about the termination properties of
expressions. The provisos associated with the equiv-
alences arise from the semantics of the built-in func-
tions. Clearly, built-in functions with different seman-
tics, e.g. sequential V, A and U, will give rise to differ-
ent provisos.

3.3 Transformation Principles

Essentially the same principles apply to our language
as to relational algebra expressions [VllSS] , except that
they need to be successively applied starting from the
outermost level of an expression and moving through
to expressions nested within aggregation functions:

(9

(ii)

(iii)

(4

use filter/l in a right to left direction, to split up
complex filter conditions;

perform filter as early as possible by commuting
it with other applications of setmap (setmap/4),
eliminating set membership tests (setmap/3), and
distributing filter over U (&map/l), minus (fil-
ter/4) and join (join/s);

perform map as early as possible by distributing
it over U (&map/l);

combine cascades of setmaps of various kinds
into a single setmap (setmap/2, map/l, map/2,
filter/l-3, join/l);

at any stage during the above steps, simplify
set unions, intersections and differences whenever
possible by using U/3, 174, -/*, all/*, in/*.

The final step of the transformation process is to ab-
stract common subexpressions using let/l in a right-
to-left direction.

Note that there is no general heuristic about which
direction to apply &map/l, since the size of the result
returned by setmap cannot be predicted in general.
Note also that further application of setmap/ can be
made using physical-level knowledge such ss expected
sizes of sets and availability of indexes. Finally, note
that we could also derive an equivalence that moves
map through join in the special case that the former
is a projection and the latter a Cartesian product, but
would be quite contrived. In any case, such an equiv-
alence would go into category (iii) above.

4 Higher-Level Constructs
The algebraic equivalences discussed above are very
fine-grained and low level. We now examine two addi-
tional sets of equivalences at a higher conceptual mod-
elling and querying level: those for set abstractions
and those for functions with known inverses. Our re+
sons for doing so are twofold. Firstly, both these con-
structs are commonly found database languages and
we wish to extend optimisations identified by others
(see Section 5) to our richer computational environ-
ment. Secondly, we conjecture that optimising first at
this conceptual level is likely to be more efficient than
proceeding directly to logical-level optimisations.

4.1 Set abstractions

The syntax of set abstractions is as follows:

se+abstmction = “{ n expr 1’ qualifiers 3 n
qualifiers = qualijier 1 qualifier “;” qualifiers
qualifier = genemtor 1 filter
getle9otor = pattern “E” expr
filter = expr

For example, the following equations define a set
father given a set parent::{(Person,Person)} and a
set mother::{ (Person,Person)) and a recursive set
ant:

father = {t 1 t E parent; not(t in mother)}
ant = parent U { (a,d) I (a,dl) E parent;

(al,d) E ant; al == dl)

Optimisation of set abstractions is important since
these provide a unifying query formalism for relational,
functional, and deductive languages. For example, the
head of a set abstraction corresponds to the SELECT
clause of an SQL query, the generators are correspond
to the FROM clause, and the filters to the WHERE
clause. Also, Trinder [Tri89] gives a translation of the
relational calculus into list (as opposed to set) abstrac-
tions, [PatSO] notes that DAPLEX queries are easily
translated into set abstractions, and in previous pa-
pers e.g. [Pou93] we have observed the syntactic and
semantic correspondence between set-valued functions
such as father and ant and the analogous Datalog
predicates. However, set abstractions are just syntac-
tic sugar for nested applications of setmap and if.
In the interests of simplicity, we give the translation
scheme, T below, only for the case that the patterns in
generators are simple variables: the interested reader
can find the full translation scheme in [Pou93]. In the
translation equations below Q denotes a sequence of
zero or more qualifiers:

WelH = G'T4~
TT{ellez;QIl = if Wzl) CmllQH) 0
T[{ellx E es;&)1 = setmap &.U{el IQIl) (TM)

421

For example, father above translates into: 14 4 P E {PIQ; f); 9’1

setmap (A&if (not (t in mother)) {t) {}) parent

Three classes of equivalences can be identified
for set abstractions, those for qualifier interchange,
for qualifier introduction/elimination, and for moving
qualifiers into nested set abstractions. These equiv-
alences can be proved by translating expressions into
the extended A calculus and using structural induction.

The following equivalences for interchanging the
qualifiers in set abstractions have well-known counter-
parts for list abstractions with bag equality [7X89]:

provided FV(f) E W(p)

More sophisticated forms of these are

{el p E s; 8) = {el p E (p’ 1 p’ E s}; Q}
(4 P E {P’IQI; fi 9’1 =

(4 P E {#IQ; f'h 9'1
where p’ is obtained from p by a renaming of variables
and f’ is obtained from f by the same renaming.

abs/l (e] pl E sl; p2 E 82; Q) =
{el p2 E $2; pl E sf; Q}
provided F V(pl) rl FV(s2) =

4.2 Transformation of set abstractions

The following transformation principles can be applied
successively, moving inwards from the outermost set
abstraction to nested set abstractions c.f. the lower-
level transformations of 3.3:

aw2 (4
FV(p2) n FV(sl) = {}

*-a; P E s; f; 81 = {elf. p E 5; 0)
provided F V(p) n F V(f) = {)

(i) use absJ4 in a right to left direction to split up
complex filter conditions;

aW3 (4 **a; f; 9; 41 = 14 9; f; &I
abs/l states that generators can be interchanged. It
follows directly from &map/4 and has the same pro-
viso that sl and s2 are both finite or both infinite.
abs/2 states that a generator and a filter can be in-
terchanged, and it requires both that s is finite and
that f terminates, otherwise non-termination may be
introduced. Of course, if we do not mind improving
the termination properties of an expression, the rule
may be used in a right-toleft direction ifs is known to
be finite, and in a left-to-right direction if f is known
to terminate. &s/3 states that two filters can be in-
terchanged. Its proof requires if/l and and/l, and
consequently this equivalence holds only if f fails to
terminate whenever g does.

(ii) perform filters as,early as possible by interchang-
ing them with generators and other filters using
abs J2 and abs J3;

(iii) interchange groups consisting of a generator and
its dependent filters by using absJl-3, according
to the expected efficiency of evaluating the group
(based on physical-level knowledge such as ex-
pected sizes of sets and availability of indexes);

(iv) eliminate redundant qualifiers using ah J46;

(v) at any stage during the above steps, simplify
set unions, intersections and differences whenever
possible by using the equivalences of Section 3;

Numerous equivalences can be identified for elimi-
nating qualifiers, of which the following is a represen-
tative sample:

(vi) pass filters into preceding, nested, set abstractions
using abs J8.

ah/4 14 ..*;fi 9; 81 = {el f and g; Q}
abs/5 {el...; x E {e’}; Q} = {e[e’/x]l Q[e’/x]}

provided x $Z BV(Q)
abs/b {e] p E sl; p in ~2; Q) =

{el p E (sl inter ~2); Q}

absJ4 states that two filters can be compressed into
one: its proof follows directly from if/l. absJ5 states
that a generator over a singleton can be eliminated:
its proof follows from the semantic soundness of p re-
duction. absJ6 states that a filter can be eliminated:
its proof follows from the definition of inter and only
holds if both sl and 92 are finite.

Finally, abstract common subexpressions using let Jl
in a right-to-left direction.

We illustrate these principles via two queries. The
first requires the countries of women competitors
who won alpine events. A naive formulation iterates
through all countries, events, results and competitors,
and then specifies the join condition:

{c 1 c E allCountry; (eu,cat) E events;
(ev’ , nums) E results;
(num,name,sex,compc) E camps;
ev f == ev and cat== Alpine and num ==
head(nums) and sex== Female and compc== c}

Applying abs J4 in a right to left direction, followed by
a promotion of filters gives:

The third set of equivalences governs the moving of
qualifiers into and out of nested set abstractions:

absJ7 {ej p E s; Q} = {el P E {P I P E ~1; Q)
ah/8 (4 P E (PIQ); f; 9’) =

{c 1 c E allCountry; (eqcat) E events; cat== Alpine;
(ev’,nums) E results; ev’ == ev;
(num,name,sex,compc) E camps; i
num == headfnums): sex== Female: comvc == c) ,’ I . a

422

Interchange of groups of generators and their depen-
dent filters gives:

{c 1 (ev,cat) E events; cat== Alpine;
(ev’,nums) E results,-ev’ == ev;
(num, name,sex, compc) E wmps;
num == head(nums); sex== Female;
c E allCountry; compc== c)

or, alternatively:

(c 1 (num,name,sex,wmpc) E wmps;
sex== Female; c E allcountry; con@== c;
(ev’, numb) E n%uh; num == head(nums);
(ev,cat) E events; cat == Alpine; ev’ == ev)

Compressing filters, and removing c E allcountry;
wmpe-- -- c by using in/2, followed by abs/6 and al1/2,
gives the following for the first of these alternatives:

{c 1 (ev,cat) E events; cut== Alpine;
(etf , nums) E msults; ev’ == ev;
(num, name, sex, compc) E camps;
num == head(nums) and sex== Female;
c E WwH

Finally, using abs/5 gives:

(compc 1 (ev,cat) E events; iat== Alpine;
(ev’,nums) E results; ev’ == ev;
(num, name,sex, compc) E camps;
num == head(nums) and sex== Female}

A similar process for the second alternative gives:

(compc I (num, name,sex, compc) E camps;
sex == Female;
(ev’, nums) E results; num == head(nums);
(ev,cat) E events; cat== Alpine and ev’ == ev}

The second query requires the competitors spon-
sored by Atomic who won alpine events. A naive for-
mulation iterates through all events, all results and
all tuples of a join of competitors with sponsors over
country, and then specifies a further join condition:

{c I (ev,cat) E events; (ev’,nums) E results;
(c, spname) E

((tqpname) I (c,name,sex,compc) E camps;
(spname,spc) E sponsors; compc == spc}

spname == “Atomic” and cv’ == ev and
cat== Alpine and c == head(nums))

Applying abs/4 in a right to left direction followed by
filter promotion gives two alternatives, one being:

{c I (ev,cat) E events; cat== Alpine;
(ev’, nums) E results; ev’ == ev;
(c, spname) E

{ (c,spname) I (c, name,sex,compc) E camps;
(spname,spc) E sponsors; compc == spc}

spname == “Atomic”; c == head(nums)}

Passing the last two filter conditions into the preceding
set abstraction using abs/8 gives:

{c I (ev,cat) E events; cat == Alpine;
(ev’,nums) E results; ev’ == ev;
(c,spname) E

{ (qspname) I (c,name,eex, wmpc) E wmps;
(spname, spc) E sponsors; wmpc == epc;
spname == ‘Atomic”; c == head(nums)}}

Then performing filter promotion within the nested set
abstraction followed by filter compression givea:

{c I (ev,cat) E eventa; cat== Alpine;
(ev’,nums) E resulta; ev’ == ev;
(qspname) E

{ (c,spname) I (c,name,sf2x,wmpc) E wmps;
c == head(nums);
(epname, spc) E sponsors;
compc == spc and spname == “Atomic”)}

7: I (ev,cat) E everits; cat== Alpine;
(ev’,nums) E results; ev’ == ev;
(c, spname) E

{(c,spname) I (spname,spc) E sponsors;
spname == “Atomic”;
(c, name,sex, compc) E wmps;
compc == spc and c == head(nums)}}

The second alternative is optimised similarly.

4.3 Functions with known inverses

In this section we consider how use may be made of in-
formation about the inverse relationship between pairs
of functions. Such information may be readily avail-
able in languages which use a functional or object-
oriented data model, and may also be available from
other sources e.g. via proofs supplied by the program-
mer [Har92]. In the case of extensional functions, in-
verses typically correspond to fast access paths pro-
vided by indexes. An implicit assumption for the
equivalences we give below is that the functions and
their inverses are strict, which is necessary in order for
the equivalences to hold.

Given two functions f : 8 + t and f-’ : t + 8
such that f-l(f e) = e for all expressions e : s and
f(f-’ e) = e for all expressions e : t, then:

inv/l (f e2) == e!? = el == (f” e2)
iuv/2 (f el) in s = el in (map f” s)

Given a function f : s + t which is many-to-one and
a function f-l : t -+ {s} such that for all e : a, e E
f-‘(f e) and for all e : t, Vu E (f-‘e).f u = e, then:

inv/3 (f el) == e2 = el in (f-l e2)
inv/4 (f el) in 8 = el iA (setmap f-l 8)

423

Clearly inv/3 and inv/4 are also applicable given a
one-t&many function f : 8 + {t) and its inverse f-’ :
t -b 8, since in this case the roles of f and f” above
are reversed. Finally, given a many-to-many function
f : 8 ,+ {t} and a function f-’ : t + (8) such that
for all e : 8, Vu E (fe).e E (f-‘u) and for all e : t,
Vu E (f-‘e).e E (f u), then:

inv/5 e& in (f el) = el in (f” e2)

4.4 Transformation of functions with inverses

The following transformation principles should be ap
plied at successive levels of nesting, and common sub-
expressions should be abstracted out at the end of the
process:

(i) use abs/4 in a right to left direction to break up
complex filter conditions;

(ii) use inv/l-5 to generate tests for set-membership
and equality on variables i.e. tests of the form
v == e and u in e where u is a variable;

(iii) apply transformation principles (ii) - (v) for set
abstractions from Section 4.2.

We again illustrate these principles on our Winter
Olympics database, assuming the following functions
and inverses which can be defined in terms of the base
functions of Section 2.3:

country-of :
team-of :
competes-in :
camps-in :
winner :
sex
sex-l
category :
events

Comp + County
Country + {Comp) //= country-of-’
Comp + {Event}
Event + {Comp} //= competes-in-’
Event + Comp
Comp + Sex
Sex + {Comp}
Event + Category
Category + {Event} //= category-’

The query is the same as the first query of Sec-
tion 4.2, i.e. ‘which countries have female Alpine gold
medalists?‘, and can be expressed as follows:

{c 1 c E allCounty; camp E allcomp; eu E allEvents;
Alpine == (category eu) and Female == (sex camp)
and wmp== (winner eu)
and c == (county-of camp)}

Phase (i), which repeatedly applies abs/4 to break up
the filter condition, gives:

{c 1 c E allcounty; camp E allcomp; eu E allEvents;
Alpine == (category eu); Female == (sex camp);
camp == (winner eu); c == (county-of camp)}

During phase (ii) inv/l-5 are applied, and we reach
the point:

{c 1 c E allCounty; camp E allcomp; eu E allEvents;
eu in (events Alpine); wmp in (8ex-l Female);
camp == (winner eu); c == (county-of camp)}

at which we have a choice: whether or not to apply
inv/l to c == (country-of camp). If we do not do so,
we move on to phase (iii), where the filters are removed
using abs/6:

{c 1 eu E allEvents inter (events Alpine);
camp E allComp inter (8ex’1 Female)

inter (winner eu};
c E allCounty inter {county-of wmp}}

Finally, the lower level optimisations (in particular,
al1/2) reduce the size of the sets over which we iterate,
giving us our first query plan:

{c 1 eu E events Alpine;
camp E (sex-l Female) inter {winner eu};
c E {county-of camp})

Alternatively, applying inv/l again gives:

{c I c E allcounty; camp E allcomp; eu E allEvents;
eu in (events Alpine); camp in (sex-’ Female);
camp== (winner eu); camp in (team-of c))

and removing the filters using abs/6 gives:

{c 1 c E allcounty;
ev E allEvents inter (events Alpine);
conap E allComp inter (sex-’ Female) inter

{winner eu} inter (team-of c)}

Again, all/2 reduces the size of the sets over which we
iterate, giving a second query plan:

{c I c E allcounty; eu E (events Alpine);
camp E (sex-l Female) inter {winner ev}

inter (team-of c)}

These two query plans differ only in that the ex-
tra use of inv/l during the construction of the sec-
ond query plan did not allow the iteration through
allcountry to be eliminated. Thus, it is likely that the
first plan would be chosen for execution after applying
some physical-level heuristics. We finally observe that
both query plans correspond to the first plan of !3ec-
tion 4.2 for the same query. The second plan of Section
4.2 is not generated here due to the non-availability of
an inverse for the winner function.

5 Related Work

Our framework draws considerably from Breazu-
Tannen et al. [BreSl] who proposed a programming
paradigm based upon structural recursion over sets. A
major motivating factor behind this paradigm is that

424

it facilitates the optimisation of database programs.
Indeed, several optimisations are stated, including fil-
ter/2, filter/3 and join/2 above, while structural in-
duction is used as a proof technique. However, this
research is in the contexfof terminating functions over
finite sets and a single level at which equivalences can
be expressed. In contrast, we have richer semantic
domains which include I, and can thus address termi-
nation issues; we also allow for the possibility that sets
may be infinite; and we have investigated equivalences
expressed at several levels of abstraction.

Cluet and Delobel [Clu92] propose a query optimi-
sation formalism for 02 based upon classes and alge-
braic query rewriting. One assumption made is that
methods have no side-effects, although it would seem
difficult in practice to guarantee that this condition
holds. A select-project-join algebra is discussed, and
the introduction of types into algebraic expressions
facilitates its optimisation by allowing the introduc-
tion of functions that enumerate the constants of a
type. Our use of the functions allT and the equiva-
lences inv/ld is analogous. The approach of [Clu92]
retains a separation of DML and programming lan-
guage; thus, the possibility of non-termination or infi-
nite data structures are not considered.

Several other groups have introduced object al-
gebras and strategies for their optimisation [Dem94,
Lie92, Sha89, Sto91, Van911 with analogous equiva-
lences to those we propose here. In general these al-
gebras are either computationally incomplete or sup-
port optimisations for only a subset of their operators.
Also, some provide only limited facilities for optimis-
ing user-defined data types; while others allow few al-
gebraic transformations to be applied to an expression
without changing its value.

Finally, the optimisation of functional database lan-
guages has been examined by several other researchers
e.g. [T&39, BeeSO, Erw91, PatSO, HeySl]. Trinder
[TriSS] advocates analogues of abs/l-3 for list (as op-
posed to set) abstractions. These equivalences are jus-
tified by assuming bag equality over lists. Implicit
assumptions made are that lists are finite (otherwise,
the equivalent of abs/l would not hold for example)
and that functions over their elements are terminating
(otherwise abs/3 would not hold). Trinder also pro-
poses jilter hiding, which corresponds to a combina-
tion of our abs/7 and abs/8. [Hey911 too is concerned
with the optimisation of list-valued expressions, and
in this context proposes combining unary expressions
(analogous to our map/l and filter/l-3), eliminating
iteration over functions of the form allT, and using in-
formation regarding indexes to select preferred query
paths. [PatSO] discusses the optimisation of DAPLEX
queries, essentially using abs/l-3 and inv/l-5. [BeeSO,
ErwSl] discuss the optimisation of FP-like functional

database languages, also highlighting the suitability of
using functional language for DBPL optimisation. In
particular, [ErwSl] develops equivalences over map, fil-
ter and a G-like aggregation operator in the context of
strict functions over finite sets; a set of inverse equiva-
lences are also given, including inv/l, and others that
we have not discussed here.

6 Conclusions

We have investigated algebraic query optimisation
techniques in the context of a functional DBPL fur-
nished with a set bulk data type. We have examined
the extent to which prior work on the optimisation
of relational languages can be utilised. The declara-
tive nature of our language has enabled us to avoid
the problems associated with side effects, whilst its
well defined semantics provides a framework in which
to show formally termination properties of expressions
and equivalences between expressions. We have identi-
fied caveats to several well-known equivalences in this
richer computational paradigm. For processing tasks
such as aggregation and transitive closure, our optimi-
sations can be fully exploited for all sub-expressions
of a query since there is no dichotomy between the
optimisation of ‘programs’ and ‘DML statements’.

Although developed in the context of a functional
language, our findings are directly applicable to other
DBPLs operating over sets. Conversely, we can incor-
porate equivalences discovered by others into our for-
malism. Finally, although we have concentrated upon
showing equivalences relevant to the set data type, the
same approach can be used for other, possibly user-
defined, data types: see for example the equivalences
shown in [Bir88] for list and tree data types.

We have not yet considered heuristics to reduce the
query search space. Also, in a computationally com-
plete language the user can easily ‘program around’
predefined functions and thus thwart the optimisa-
tion process. One ongoing issue is the optimisation
of retrieval from recursive sets. We discussed this in
[Pou93] where we addressed the optimisation of a class
of set-valued functions called selectors. Selectors gen-
eralise the inverse functions of a functional data model
by allowing associative look-up into n-ary, as opposed
to just binary, relations. We proposed a magic-sets
like rewriting of the definitions of intentional selec-
tors, given specific look-up patterns: we are now im-
plementing these ideas. Finally, it is clear that the user
must be provided with sophisticated tools if they are
to aid the optimisation process. Such tools have al-
ready been developed for functional languages, exam-
ples being strictness analysis [Cla85] and Cambridge
LCF [Pau87], h h w ic can be used to prove properties
of functions such as equivalence and termination.

425

Acknowledgements

We are grateful to the anonymous referees for their
pertinent remarks on a previous version of this pa-
per. The work described here has been supported by
the U.K. Engineering and Physical Sciences Research
Council (grant no. GR/J 48818).

References

[Albgl]

Pm871

[Bee901

P-921

[sir881

[BreSl]

[Cla85]

[Clu92]

Albert, J. Algebraic properties of bag data
types, Proc. 17th VLDB Conference, 1991.

Bancilhon, F. et al. FAD, a powerful and
simple database language, Proc. 13th VLDB
Conference, 1991.

Beeri, C. and Kornatzky, Y. Algebmic opti-
mization of object-oriented query languages,
Proc. 3rd ICDT, LNCS 470, Springer-Verlag,
1990.

Beeri, C. and Milo, T. Functional and pred-
icative pmgmmming in OODBs, Proc. ACM
PODS, 1992.

Bird, R. and Wadler, P. Introduction to func-
tional pmgmmming, Prentice-Hall, 1988.

Breazu-Tannen, V. Buneman, P. and Naqvi,
S. Structure1 recursion as a query language,
Proc. 3rd DBPL, Morgan-Kaufman, 1991.

Clack, C. and Peyton-Jones, S. Strictness
analysis - a pmctical approach, Proc. FPCA,
Springer-Verlag LNCS 201, 1985.

Cluet, S. and Delobel, C. A Geneml Fmme-
work for the Optimization of Object-Oriented
Queries, Proc. ACM SIGMOD, 1992.

[Dem94] Demuth, B. Geppert, A. Gorchs, T. Al-
gebmic query optimisation in the CoOMS
structurally object-oriented database system,
in Query Processing for Advanced Database
Systems, eds. Freytag, Maier and Vossen,
Morgan Kaufman, 1994.

[ErwSl] Erwig, M. and Lipeck, U. A functional DBPL
revealing high level optimizations, Proc. 3rd
DBPL, Morgan-Kaufman, 1991.

[Har92] Harrison, P. and Khoshafian, S. The mechan-
ical tmnsformation of data types, The Com-
puter Journal, 35(2), 1992.

[Hey911 Heytens, M.L. and Nikhil, R.S. List compre-
hensions in Agna, a pamllel persistent object
system, Proc. FPCA, Springer-Verlag LNCS
523,199l.

[Hin86]

[Jar841

[Lie921

[Oho89]

[PatSO]

[Pau87]

Pey871

[Pou93]

[Sch86]

[Sha89]

[St0911

[Tri89]

[Ull89]

[Van911

Hindley, J.R. and Seldin, J.P. Introduction to
combinators and X-calculus, C.U.P., 1986.

Jarke, M. and Koch, J. Query optimisotion in
database systems, ACM Computing Surveys,
16(2), 1984.

Lieuwin, D. and Dewitt, D. A tmnsforma-
tion - based approach to optimizing loops in
database pmgmmming languages, Proc. ACM
SIGMOD, 1992.

Ohori, A. Buneman, P. and Breazu-Tannen,
V. Database programming in Machiavelli - a
polymorphic language with static type infer-
ence, Proc. ACM SIGMOD, 1989.

Paton, N.W. and Gray, P.M.D. Optimising
and executing DAPLEX queries using Prolog,
The Computer Journal, 33(6), 1990.

Paulson, L.C. Logic and computation: in-
temctive proof with Cambridge LCF, Cam-
bridge University Press, 1986.

Peyton-Jones, S.L. The Implementation of
Functional Pmgmmming Languages, Pren-
tice Hall, 1987

Poulovassilis, A. and Small, C. A domain-
theoretic approach to integmting logic and
functional database languages, Proc. 19th
VLDB Conference, 1993.

Schmidt, D.A. Denotational Semantics, Al-
lyn and Bacon, 1986.

Shaw, G.B. and Zdonik, S.B. An object
oriented query algebm, Proc. 2nd DBPL,
Morgan-Kaufman, 1989.

Stonebraker, M. Managing persistent objects
in a multi-level store, Proc. ACM SIGMOD,
1991.

Grinder, P. A functional database, D. Phil.
Thesis, Oxford University, 1989.

Ullman, J.D. Principles of database and
knowledge-base systems, Vol. 2, Computer
Science Press, 1989.

Vandenburg, S.L. and Dewitt, D.J. Alge-
bmic support for complex objects with armys,
identity and inheritance, Proc. ACM SIG-
MOD, 1991.

426

