
The GMAP: A Versatile Tool for Physical Data Independence

Odysseas G . Tsat alas* Marvin H. Solomon* Yannis E. Ioannidist

Computer Sciences Dept., Univ. of Wisconsin-Madison, WI 53706
{odysseas,solomon,yannis}@cs.wisc.edu

Abstract

Physical data independence is touted as a central fea-
ture of modern database systems. Both relational and
object-oriented systems, however, force users to frame their
queries in terms of a logical schema that is directly tied to
physical structures. Our approach eliminates this depen-
dence. All storage structures are defined in a declarative
language based on relational algebra as functions of a log-
ical schema. We present an algorithm, integrated with a
conventional query optimizer, that translates queries over
this logical schema into plans that access the storage struc-
tures. We also show how to compile update requests into
plans that update all relevant storage structures consis-
tently and optimally. Finally, we report on experiments
with a prototype implementation of our approach that
demonstrate how it allows storage structures to be tuned to
the expected or observed workload to achieve significantly
better performance than is possible with conventional tech-
niques.

1 Introduction

Physical data independence is usually described as the
ability to write queries without being concerned with
how the data are actually structured on disk. In cur-
rent database systems (DBMSs), however, queries are
tied to logical constructs such as relations, class ex-
tents, or object sets, that closely track the physical
organization of data. In a relational database, for ex-
ample, each relation is usually stored as a file, perhaps
with a primary index. The database administrator can

‘Partially supported by the Advanced Research Project
Agency, ARPA order number 018 (formerly 8230), monitored by
the U.S. Army Research Laboratory under contract DAAB07-
91-C-Q518

tPartiaIly supported by grants from NSF (IRI-9113736,
IHI-9224741, and IRI-9157368 (PYI Award)) DEC, IBM, HP,
AT&T, and Informix.

Permission to copy without fee all or part of this material is
gmnted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Lave Data Base
Endowment. To copy otherw’se, or to republish, requires a fee
and/or special permission &om the Endowment.
Proceedings of the 20th VLDB Conference
Santiago, Chile, 1994

improve performance by adding secondary indices or
by specifying the clustering of files, but more extensive
improvements require modifying the logical schema,
for example by de-normalizing tables. Such modifica-
tions necessitate rewriting queries and thus physical
data independence is lost.

Our goal is to improve physical data independence
by decoupling physical decisions such as clustering and
replication from the logical data model, so that the
physical organization can be altered without chang-
ing the logical schema or queries written against it.
A more subtle benefit is that it places a wider range
of possibilities for data organization at the disposal
of the database administrator. For example, the fact
that the data are described in a traditional normal-
ized relational schema should not preclude a repli-
cated, nested physical organization, if that organiza-
tion would achieve better performance for the antici-
pated mix of queries and updates.

Assume that data are stored in files of records, pos-
sibly implemented by an index structure such as a B+-
tree. Instead of requiring a one-to-one correspondence
between logical data constructs and physical storage
structures (e.g., relation c) file), we allow the contents
of each file to be defined as a function of the logical
schema, specified by a restricted relational-algebra ex-
pression. We call the combination of a file and its def-
inition a gmap (pronounced gee-map and an acronym
for Generalized Multilevel Access Path.) In the sim-
plest cases, gmaps correspond to traditional storage
structures such as an unordered file of the tuples in
a relation or an index on that file. Gmaps, however,
can also be used to partition the database vertically
and horizontally and add multiple access paths, gen-
eralizing path indices. Since gmaps are allowed to con-
tain overlapping data, they can also capture redundant
storage structures. Gmaps are invisible at the logical
layer, so their definitions affect only the performance
of queries and not their semantics.

In this paper, we restrict both gmap definitions and
queries to project-select-join (psj) expressions over a
simple semantic data model. We demonstrate that
such expressions are powerful enough to express most
conventional storage structures, as well as more “ex-
otic” techniques such as path indices [2,16], field repli-

367

cation [ll, 231, and more. We present an algorithm
to translate user queries, expressed as psj-queries over
structures in the logical schema, into relational expres-
sions over the gmaps. We also show how this transla-
tion can be integrated into a conventional query opti-
mizer .

One of the benefits of our approach is that gmaps
may store redundant data to improve the performance
of queries. Thus, updates may need to change mul-
tiple gmaps in a consistent manner. We show how a
simple modification of the query translation algorithm
can produce plans to perform these updates. We also
demonstrate how this flexibility can be used in sev-
eral other areas, e.g., acceleration of bulk loading of
the database and acceleration of updates of complex
objects.

All of the algorithms presented in this paper have
been implemented in a prototype system. We re-
port on experiments with a test database that illus-
trates that for a plausible mix of queries and up-
dates, our techniques allow the physical representa-
tion to be tuned to provide better performance than
what could be achieved through standard relational or
object-oriented methods.

2 The Gmap Definition Language

In this section, we introduce our data model and the
corresponding data definition language. The data defi-
nition language (DDL) has two parts, the logical DDL,
which defines the logical schema capturing the concep-
tual organization of the data, and the physical DDL,
which defines the storage structures containing the
data that instantiate the logical schema. We present
the model in two notations, a semantic one (resembling
the ER model) and a formal relational one. The two
notations are equivalent; the semantic notation is more
intuitive as a user interface, but all of our algorithms
manipulate the relational forms of schemas.

2.1 The Logical Data Definition Language

In the semantic notation, schemas are displayed as
graphs. Throughout this paper we will illustrate our
approach with an example database describing a uni-
versity and its personnel (see Figure 1).

assists TA

Figure 1: The logical schema
Nodes in this graph represent domains and solid

edges represent relationships between them. Leaves

represent primitive domains such as integers, character
strings, or real numbers. Internal nodes represent do-
mains populated with identity surrogates (tuple or ob-‘
ject identifiers). In our example schema, these domains
are Dept (department), Faculty, Student, Course,
and TA (teaching assistant). To reduce clutter in the
figures, these domain names are abbreviated to their
initials. Functional dependencies are indicated by ar-
row heads. Inclusion dependencies (formally defined
in Section 3) can also be expressed but are not shown
for simplicity. ISA associations are denoted by dashed
arcs pointing to the supertype. For our purposes, they
are simply relationships with certain functional and
inclusion dependencies implied by default. A name of
the form D.d is used to denote both a primitive domain
and its relationship to an internal domain. For exam-
ple, Course. level names both a primitive domain of
integers and its relationship to the Course domain.

In the relational form of the data model, each edge
of a schema graph from domain A to domain B is rep-
resented as a binary relation with attributes A and B.
Because of this correspondence, we often use the term
“attribute” to refer to domains (nodes in the graph)
and “base relation” to refer to relationships (edges).
Because our algorithms operate on the (binary) rela-
tional form of the schema, they apply to any semantic
model that can be represented by binary relations with
functional and inclusion dependencies.

2.2 The Physical Data Definition Language

In our system, all physical storage structures are de-
fined as gmaps. A gmap consists of a set of records
(the gmap data), a query that indicates the seman-
tic relationships among the attributes of these records
(the gmap query), and a description of the data struc-
ture used to store the records (the gmap structure).
Although the actual database stores gmap data rather
than the base relations, the gmap data may be thought
of as the result of running the gmap query on the base
relations.

Gmap queries are expressed in a simple SQL-like
language. For example, the gmap

def-gmap cs-faculty-by-area as btree by
given Faculty.area
select Faculty
where Faculty works-in Dept and

Dept = cs-oid

stores a set of pairs containing Faculty identifiers and
the corresponding area names. Only faculty in the
Computer Sciences department (identified by the con-
stant cs-oid) are included. The gmap structure is
a B+-tree indexed by Faculty. area. The entire by
clause defines the gmap query. Attributes following
the given and select keywords are called input and
output attributes, respectively, and the selection Dept
= cs-oid is called a restriction. Input attributes form
the search key for gmap structures that allow sssocia-
tive access.

The gmap query can also be expressed graphically
as a subgraph of the schema graph called the query

368

graph (see Figure 2). Shaded edges correspond to re-
lationships explicitly mentioned in the where clause
or implicitly mentioned as part of primitive attribute
names. Input attributes are indicated by small arrows,
and output attributes are indicated by double circles
around nodes. Restrictions are described as annota-
tions on the corresponding nodes.

a

TA

Figure 2: A collection based index
Each query expressible in this language is equivalent

to a restricted project-select-join (psj) query on the
relational form of the logical schema :

Q = TAO,& W R2 W .a. W &).

In this example,

Q = ~~,~.~~~c~~=~~-~id(F.area w works-in).

Expressible queries obey three restrictions:
l They are range-restricted, i.e., all attributes in S

and A are attributes of the relations &,
0 selections are conjunctions of comparisons (= , > ,>

, <, 5) between attributes and constants, and
l joins are natural, i.e., only attributes with the same

name are joined and all attributes maintain their
name in the result.

In the rest of the paper, we use the term psj-query
to refer to a query that conforms to these restrictions.

2.3 The Query Language

We often use the term logical query to refer to queries
posed on the logical schema. We currently require log-
ical queries to be written in the same language we use
for gmap queries. That is, they must be restricted
psj-queries. In addition, each query must be trans-
latable into a psj-query over gmaps or projections of
them. Thus, we do not handle cases where logical
queries need to be translated into unions or arbitrary
sequences of psj-queries. Note that translated logical
queries involve relations with arbitrary arity (the gmap
data), while gmap queries involve binary relations only
(corresponding to relationships).

2.4 Examples
Gmaps can be used ta define arbitrary physical repro-
sentations, including those of a conventional normal-
ized relational database, an object-oriented database,
or any combination of the two.

To illustrate the object-oriented approach, suppose
we want to cluster together all information about

each faculty member. Given the object identifier of
a Faculty object, we should be able to retrieve per-
sonal information as well as the object identifiers of the
faculty member’s department, advisees, and courses
taught. A gmap that meets these specifications may
be defined and drawn as in Figure 3.

def-gmap faculty-data as heap by
given Faculty select Student, Dept.

Course, Faculty.area, Faculty.name
where Faculty works-in Dept and

Faculty advises Student and
Faculty teaches Course

Figure 3: The Faculty class extent
A secondary index in a relational system can also be

defined easily in our language. For example, an index
on the faculty area is defined as in Figure 4.

def-gmap faculty-index-on-area as btree by
given Faculty.area select Faculty

a

Figure 4: A Faculty index on “area”
Note that the index is not defined in terms of the

previous gmap, as would be the case in a relational
database, but in terms of the logical schema.

In the facultydata example, it might be desir-
able to include in a faculty member’s record the de-
partment name in addition to the department id, be-
cause for example, the department name is frequently
printed along with the name of the faculty member.
The department name is in this case a nested attribute
of the Faculty domain. This essentially implements
field replicdion [ll, 231, which has been shown to of-
fer several advantages. The only change necessary is
to add “Dept .name” to the select clause.

In the previous examples, the gmap data included
all Faculty instances. However, there are cases where
we frequently access only some instances of a domain.
Object-oriented systems that store instances in explicit

369

collections rather than class extents (5, 16, 181 allow
the creation of collection indices, which provide fast
access paths only to the subsets of the domains that
are included in the collection. Our gmap definition
language is powerful enough to express such indices
by using restrictions. An example of this technique
was shown in Figure 2 above.

Many more indexing schemes can be specified us-
ing gmaps, e.g., nested indices, replication of non-
functional nested attributes, and indices with com-
posite keys where each key component is a path. A
complete taxonomy of existing indexing schemes and
other advanced storage structures that can be defined
by using gmaps is presented elsewhere [24].

3 Query translation

Before presenting the actual translation algorithm, we
first introduce some additional notation and defini-
tions, and also discuss two auxiliary problems that
arise as part of query translation.

3.1 Notation

For convenience, we use a triplet (QT,QS,Qp) as an
alternative way of representing a psj-query Q. The set
Qr contains the joined binary relations, the set Qs con-
tains the selection predicates, and the set Qp contains
the projected attributes. We call the set Qp the query
target, and its members target atttibutes. Given a
query Q, we frequently deal with its part that includes
only relations in a set R, denoted Q[reZ E R]. Sim-
ilarly, the subset of Qs that mentions only attributes
in a set A is denoted Q,[attr E d]. The set of a at-
tributes in a set of relations R is denoted A(R).

3.2 Definitions

The natural join of two psj-queries P and Q, denoted
P W Q, is the natural join of their result relations. The
add-join of two psj-queries P and Q, denoted P 6~ Q,
is the psj-query P ~3 Q = (P, U Q,., P, U Q8, Pp U Qp).
The add-join differs from the natural join in that the
projections of P and Q are performed after all joins of
base relations rather than being interleaved with them.

Let RI (a, p), Rz(P, 7) be two relations with a com-
mon attribute ,0. An inclusion dependency from RI to
Rz exists, denoted RI.@ C Rg.p, if every value of p in
RI appears also in Rz.

Multivalued dependencies are not meaningful in bi-
nary relations, but are important in n-ary results of
psj-queries, such as the gmap data. Since lossless join
decompositions imply multivalued dependencies and
gmap data are the result of joining base relations, we
can infer certain multivalued dependencies for each
gmap. An algorithm that generates a cover of the
multivalued dependencies that hold on the gmap re-
lation is described in a longer version of this paper
[25]. Multivalued dependencies are important because
they help determining the pieces of the gmap relation
that can be used to answer a user query.

3.3 Query Equivalence

When translating a logical query into a query over
gmaps, we often need to test the equivalence of psj-
queries. Two psj-queries Qi and Qs a.re equivalent,
denoted Qi q Q2, if they produce the same result
for any valid instance of the database schema. Equiv-
alence testing of arbitrary conjunctive queries, even
without taking into account any dependencies, is NP-
complete [l, 73. On the other hand, we can efficiently
compare two psj-queries syntactically to see if they are
identical (up to trivial differences such as the ordering
of the join terms). This is a sufficient condition for
equivalence, which we use in our translation algorithm.
We are also interested in two special cases of equiva-
lence testing, where psj-queries of specific forms are
involved and various types of dependencies are taken
into account. These are discussed in the next two sub-
sections, where sufficient conditions for equivalence are
provided.

3.3.1 Coverage
A query Q covers a set of relations R if

QW E RI = rA(R)(Q) (1)

For e=wle, if RI (a, P) = ~,,&RI (a, P) W JW, Y))
then RI W Rz covers {RI}. In general, the result of
the left-hand side query is a superset of that of the
right-hand side query. When (1) holds, the part of
the query that involves relations not in R (relation
R2 in our example) has no effect on ?rA(R)(Q), in the
sense that it does not filter out any tuples produced by
the rest of the query. An algorithm that implements
a sufficient condition for testing coverage is presented
elsewhere [25]. The algorithm makes use of the inclu-
sion dependencies of the schema. Its running time is
linear in the size of Q and quadratic in the number of
inclusion dependencies between relations in Q.

3.3.2 Natural join vs. Add-Join
In general, if P and Q are two psj-queries, P $ Q C

P W Q. However, in the presence of certain integrity
constraints P CB Q z P W Q. For example, sup-
pose R(Q, PI, W, r> are two relations, P is the query
?r,dR) = R, and Q is the query rr,-, (R W S). Then
P @ Q is r,+,(R W R W S) = R W S, which is not
in general the same as R W r,,(R W S). If, however,
p is functionally determined by a in R (that is, cx is
a key for R), the two joins are equal. Intuitively, the
information “lost” by projecting away the p attribute
in P W Q can be completely recovered from the re-
maining a attributes.

Detecting when the natural join of two psj-queries
is equivalent to a psj-query is very important in our
query translation algorithm, since it allows us to
rewrite the join of two gmaps (which are psj-queries) as
a psj-query. The algorithm iteratively performs such
rewritings in order to express the join of several gmaps
as a psj-query, which is then checked syntactically for
equivalence with the user query. As a sufficient con-
dition for guaranteeing that the natural join of two

370

queries is a psj-query, we test if it is equivalent to
the add-join of the queries in question. An algorithm
that implements a sufficient condition for testing this
equivalence is presented elsewhere [25]. The algorithm
makes use of multivalued dependencies and of query
coverage and its running time is quadratic in the size
of queries and in the size of multivalued dependencies.

3.4 Query Translation Algorithm

Below we present an algorithm to translate a logical
psj-query into a query over gmaps. To simplify the
presentation, we omit most considerations of efficiency.

Algorithm 1 Given a psj-query Q and a set of psj-
queries E, find subsets {G1,. . . , Gn} C_ 9, s.t.
Q -=Q~~Q.(~A(Q~)G W*** W~A(Q,.)G~>

1. letN={GEOs.t. G,nA(Q,nG,)#@and
2. G,[attr E A(U Q,[attr E GP] =

Q&ttr E A(G,)] and
3. G covers QT}
4. for each subset {Gl, Gn} of 3t do
5. let S= {~A(Q,)~Q~G~,...,~A(Q~)~Q.G~}
6. while there is G, H E S s.t. G W H = G @ H
7. replace G and H in S by G W H
8. if S = {&‘} where TQ,(&‘) = Q accept

current subset of 3c as a solution
0

The algorithm first narrows down its search space to
gmaps that have something to do with the query (lines
l-3). More specifically, a gmap must have at least one
relation in common with the query, with at least one
attribute of the relation included in the gmap result
(line 1); the query selections on attributes of the gmap
relations must be either on the target attributes of the
gmap (so that they can be applied on them) or must
be identical to selections that the gmap itself has (line
2); and the gmap must cover the common relations
with the query (otherwise, the gmap will not have all
the information needed by the query) (line 3).

Each possible subset of the relevant gmaps (line 4)
gives rise to a single candidate translation (assuming
that selections are always pushed through the joins):

'Q,('U(Q#'Q.G~ w **- w ~A(Q#'Q.G~). (2)

The rest of thi algorithm tests whether or not this
query expression is equivalent to the given logical
query. Each join operand in the above equation is a
projection and a selection on a gmap. Since we verified
earlier (line 2) that the query selections can be pushed
through the gmap projections, the join operands are
psj-queries. The algorithm tries to express their join
as a psj-query as well. The join operands are scanned
(line 5) and any pair whose natural join is equivalent
to their add-join (line 6) is replaced by a single join
operand which is again a psj-query (line 7). The set
of join operands thus keeps reducing. At some point,
we can no longer reduce the set either because there is
just one psj-query left or because there is no pair that
satisfies the equivalence test (line 6). In the former

case, the remaining psj-query is equivalent to the ini-
tial join expression (2) after performing one final pro-
jection step (7rQ,) and can be syntactically checked for
equivalence (line 8) with the logical query. In the latter
case, the subset chosen in line 4 is rejected. Algorithm
1 satisfies the following.
Proposition 1 Given a psj-query Q and a set of psj-
queries Q, for any subset {GI, . . . , G,) c 6 generated
by Algorithm 1, the following holds:

Q E ~Q,~Q.(~A(Q,.)GI W *..W~A(Q,)G~)

Because there are exponentially many subsets of R,
the whole algorithm runs in exponential time. How-
ever, checking if a given subset of gmaps can form
a solution (lines 5-8) takes polynomial time. In the
next section, we show how we can run the algorithm
in conjunction with a conventional optimizer to avoid
enumerating all subsets.

An example may help illustrate the algorithm. Con-
sider a query Q that asks for all 500-level courses,
the names and department id’s of students attending
them:
def-query Q by select Student.name, Dept

where Student attends Course and
Student enrolled Dept and Course.level = 500.

The database consists of three gmaps: an index Gl
from the names of students to their departments, an
index G2 from the names of students to courses they
attend and the levels of those courses, and an index G3
from a course-level to courses at that level, together
with the departments that supply students to them.
def-gmap Gl as btree by

given Student.name select Dept
where Student enrolled Dept

def-gmap G2 as btree by
given Student.name select Course, Course.level
where Student attends Course

def-gmap G3 as btree by
given Course.level select Dept, Course

where Student attends Course and Student enrolled Dept.

All three gmaps are relevant to the query (they pass
the tests of lines l-3). For example Gl can provide val-
ues for two attributes needed by the query (Dept and
Student .name) so it passes line 1, it trivially satisfies
the constraint test of line 2, and it covers the relations
enrolled and Student .name, so it passes the test on
line 3.

The algorithm considers subsets of the relevant
gmaps Gl , G2, G3. Consider, for example, the subset
{ Gl, G2 }. The candidate solution corresponding to
this combination is the natural join of Gl and G2 fol-
lowed by a selection for Course. level = 500 followed
by a projection. The loop of lines 6 and 7 will be ex-
ecuted once to check whether Gl W G2 = Cl $ G2.
This test will fail unless Student .name functionally
determines Student; otherwise two tuples that join
on the Student .name need not join on their Student
id as well. If Student .na.me functionally determines
Student, then the join on the Student id is irrelevant:
we can project out that attribute before performing

371

the join, which implies that the add-join is equivalent
to the natural join (line 6). Eventually line 8 of Algo-
rithm 1 will conclude that the candidate solution is a
correct one.

Following the same process, the algorithm would re-
ject the subsets { Cl, G3 } and { G2, G3 }, because
the necessary multivalued dependencies do not hold.
However, the combination { Gl , G2, G3 } is a correct
solution. During the course of the loop of lines 6 and 7,
the algorithm will test all pairs of gmaps in this subset
to check whether or not their add-join is equivalent to
their natural join. As we saw, all the pairs will fail ex-
cept Gl @ G2. In the next iteration, the pair (Gl @ G2,
G3) is considered and it is confirmed that its add-join
is equivalent to its natural join.

Interestingly, the solution using all three gmaps is
likely to be more efficient than the one that uses only
Gl and G2, because the index on Course. level in G3
will accelerate the selection in the query. The next
section shows how a gmap-aware optimizer identifies
and prunes the inferior plan.

4 Integration with a Query Optimizer

The presentation of Algorithm 1 emphasizes clarity at
the expense of efficiency. It implies that all subsets of
the gmaps are enumerated in random order and each
is tested to see if it provides a solution to the equation.
All subsets that pass the test are feasible plans. The
version of the algorithm that is actually implemented
by our system is considerably more sophisticated. It is
integrated with a conventional dynamic-programming
query optimizer [21], which controls the order in which
subsets are evaluated and uses cost information and
intermediate results to prune the search space.

A conventional dynamic-programming optimizer it-
eratively finds optimal access plans for increasingly
larger parts of a query. We follow these steps in more
detail, showing at each step what needs to be changed
for a gmap-equipped database (Table 1). We then
identify the pieces of Algorithm 1 that correspond to
these changes. In what follows, for simplicity, we avoid
any discussion of “interesting orders” [21]. We also use
the term complete solution to refer to a gmap access
plan (i.e., a specific sequence of joins, together with the
method used for each join) that is equivalent to the log-
ical query, and partial solution for a gmap access plan
that could potentially be enhanced to become a com-
plete solution. A partial solution does not necessarily
have to be a psj-query; it may be that no reordering
of its joins makes them equivalent to add-joins.

Like a conventional optimizer, the gmap optimizer
only attempts to join a partial solution with gmaps
that share projected attributes with it, thus avoiding
Cartesian products. Each step in the gmap optimizer
corresponds to part of Algorithm 1. Step (al) of the
first iteration corresponds to lines l-3 of Algorithm
1; it finds all gmaps that are relevant to the query.
The remaining steps of all iterations represent the rest
of the algorithm. Moving from iteration to iteration

and step (c) of each iteration corresponds to a specific
implementation of line 4, where all subsets of relevant
gmaps that are not pruned on the way are regularly
explored in increasing size. After the first iteration,
step (al) forms the joins of these subsets (solutions)
and step (a2) corresponds to lines 6-8, where these
solutions are examined for completeness. Step (a2) can
be implemented incrementally taking into account the
results of earlier iterations on smaller partial solutions.

Note that step (b) of each iteration has no counter-
part in the translation algorithm because it deals only
with pruning the search space and not with transla-
tion. Implementing this step is not straightforward
because it involves not only the cost but also the con-
tribution of solutions to the query. Contributions of
partial solutions can be compared on the basis of their
pieces that correspond to psj-queries and the set of at-
tributes in their result. When each piece of a partial
solution has subsets of the relations and projected at-
tributes of a piece of another partial solution, then the
former contributes less and can therefore be removed
from further consideration if it also has a higher cost.
Query signatures, an encoding of the names of all the
relations used by the query, can be used to perform
these comparisons efficiently [8].

It is interesting to see how the new algorithm be-
haves when it is given a set of gmaps that represents
a traditional relational physical schema. Assume for
example that one gmap is a file containing the extent
of the Faculty relation with all associated attributes,
def-gap faculty-relation as heap by

given Faculty select Faculty.name, Faculty.area, Dept
where Faculty works-in Dept

while another gmap is a secondary index on the
Faculty. area field,
def-gmap faculty-index-on-area as btree by

given Faculty.area select Faculty.

Assume that the logical query requests the names of
all faculty in the database area. During the first itera-
tion both gmaps are considered. Scanning the relation
extent would be far more expensive than accessing the
index, but the two solutions are not comparable. Since
the index simply returns Faculty ids, it is not ade-
quate to answer the query, while the extent is. During
the second iteration, the index (the only partial solu-
tion left) is considered for a join with the Faculty ex-
tent. The join would be less expensive than scanning
the Faculty extent while both plans are equivalent
to the logical query. Thus, the solution found dur-
ing the first iteration is eliminated in the second. At
that point, there is no partial solution left and the al-
gorithm ends. This example demonstrates that access
plans that are pruned in the conventional optimizer are
also pruned in its enhanced version. However, since an
access plan considered at iteration n in the old version
may combine more than n gmaps, it may be considered
at a later iteration in the new version, thus delaying
potential prunings. In general, we expect the perfor-
mance of the modified optimizer to be similar to the

372

Table 1: Step by step comparison of a conventional optimizer vs. one designed for a gmap-equipped database

Conventional optimizer

Iteration 1
For each query relation:
a) Find all possible access paths.

Gmap optimizer

Iteration 1

al) Find all gmaps that are relevant to the query.
a2) Distinguish between partial and complete solutions among them.

b) Compare their cost and keep the least ex- b) Compare all gmaps among themselves. If one has neither greater
pensive. contribution to the query than another nor a lower cost, prune it.
c) If the query involves only one relation, stop. c) If there are no partial solutions, stop.

Iteration 2 Iteration 2
For each query join:
a) Consider joining the relevant access paths al) Consider joining all partial solutions found in the previous iteration
found in the previous iteration using all possi- with another gmap using all possible join methods.
ble join methods. a2) Distinguish partial and complete solutions among resulting joins.
b) Compare the cost of the resulting join plans b) Compare all generated solutions among themselves and to any earlier
and keep the least expensive. solution. If any single gmap or gmap combination has neither a greater

contribution to the query than another nor a lower cost, prune it.
c) If the query involves only two relations, stop. c) If there are no partial solutions, stop.

Iteration 3 Iteration 3
.

performance of the original one. Our experience ob-
tained by using the optimizer for the examples shown
in Section 8 supports the prediction.

5 Update propagation

Relational systems mitigate dependencies between the
logical and the physical schema through the use of
stored queries called wiews, and users express their
queries in terms of the views. With this approach,
the logical schema becomes a (relational) function of
the physical schema. View updates, however, are dif-
ficult or impossible to support. The usual solution is
to require updates to be expressed in terms of the un-
derlying schema.

Our approach is the inverse. We define the physi-
cal structures as functions of the logical schema. Al-
though query translation is more complicated, we have
shown above that it is still possible, and it can be in-
tegrated with the optimization stage of a conventional
system adding little overhead to the preparation of
query plans and no overhead to the execution of those
plans. Updates, however, are much simpler. Trans-
lating them into the physical schema turns into the
materialized view maintenance problem, which accepts
simple solutions.

As discussed elsewhere [3], propagating updates into
materialized views requires the execution of queries
over the base relations and the inserted or deleted tu-
ples. However, here we do not necessarily have the
base relations stored, and the actual data are repli-
cated in many places. In this section, we illustrate
how the query translation algorithm described above
can be adapted to translate an update request over the
logical schema into the corresponding physical plan.
Our algorithm produces optimal update plans, using
existing gmaps to accelerate update propagation where

possible.

5.1 Specifying Updates

Insertions are specified by supplying a query (the up-
date query) and a set of tuples to be inserted (the up-
date data), corresponding to the target attributes of
the query. The database must be updated in such a
way that the change in the results of the query between
the original and updated database is precisely the set
of tuples in the update data. Deletions are defined
similarly, with the roles of “original” and “updated”
database reversed. Note the difference from the query
used when specifying updates in SQL-like languages,
in which the query is used to generate the update tu-
ples. The query here describes only the “schema” of
the tuples. Since the update data can be the result of
another query, no generality is lost.

For example, students can become enrolled in
courses by supplying a set of (StudentId, CourseId)
pairs and the update query

def-query enroll-student as
select Student, Course where Student attends Course.

Allowing arbitrary queries to be used in update
gmaps would re-introduce all the problems of updat-
ing through views. Therefore, we disallow projections
and explicit selections from update queries and im-
pose a few other restrictions described in more detail
elsewhere [25]. Although the semantics of the update
query depends only on the logical schema, its valid-
ity may depend on the choice of gmaps used to define
the physical schema. For example, the physical schema
must have sufficient “information capacity” to hold the
inserted data [17]. These issues are not addressed in
this paper.

373

5.2 The Algorithm

Given an update query U, a set AU of tuples, and
a gmap G in the physical schema, we need to find
the change AG in the value of G corresponding to
the change AU in the value of U. Suppose we find a
collection of psj-queries Hi, . . . , H, that are invariant
under changes to U such that

G=TG~~.G,(UWH~ b4.a*WH,).

Let Gprev be the value of G before the update and
Gnsvr the value after. Then

hew = KG, UG, ((U + AU) W HI W * - . W I&)
= TG,UG, (AU W HI W * * * W H,) + Gprev

or equivalently

AG = ~G,,uG~(AU W HI W a** W H,). (3)
In other words, the updates to G can be found by eval-
uating the right-hand side of (3). As shown elsewhere
[25], we can use Algorithm 1 to find HI,. . . , Hm. Here,
we illustrate the algorithm with an example.

Consider the update query enroll-student pre-
sented earlier
def-query enroll-student as select Student, Course

where Student attends Course.

Assume that our database consists of two gmaps, one
that maps faculty members to the courses they teach,
defgmap FC as btree by given Faculty select Course

where Faculty teaches Course,

and one that records the students and teacher of each
course,
defgmap CFS as btree by

given Course select Faculty, Student
where Faculty teaches Course and

Student attends Course.

To propagate the update to the database, we consider
each database gmap separately. The gmap FC is not
affected by the update since it has no common rela-
tions with the update query. The updates to gmap
CFS depend both on the update data and on the exist-
ing contents of FC. We need to enhance the (CourseId,
StudentId) pairs in the update data with the faculty
members who teach the courses before they are added
to CFS. The algorithm constructs the tuples to be in-
serted by considering the part of the gmap that is not
affected by the update, i.e., the query
def-query Q by select Course, Faculty

where Faculty teaches Course,

and trying to find a translation for it. Q can definitely
be answered by using gmap FC, and thus the tuples to
be inserted into CFS are found by joinmg the update
gmap enroll-student and the gmap FC. Gmap CFS
may not be used as the source of the needed informa-
tion because CFS will not contain (CourseId, Facul-
tyld) pairs for courses that do not yet have any stu-
dents. Line 2 of Algorithm 1 tests whether CFS covers
the relation teaches. As long as there is no inclusion

dependency from teaches to attends, the CFS gmap
will be rejected.

Equation (3) can be used for deletions as well as
insertions, provided each gmap whose target does not
functionally determine its other attributes maintains
its data as a multiset (that is, it records duplicate in-
sertions or a count of them).

6 Applications

In Section 2, we demonstrated how gmaps subsume
the facilities of primary and secondary storage struc-
tures in conventional database systems. In this sec-
tion, we outline a variety of other applications that
use the integrated query translation-optimization en-
gine for queries and updates.

6.1 Database Loading

Existing DBMSs often provide special features to sup-
port bulk loading of data. These facilities tend to be
ad hoc and impose restrictions on the format of the
imported data. The user must manually translate all
imported data into files that match the primary stor-
age structures and then load each one individually. If
the imported data can be described as a psj-query on
the logical schema, initial loading can be viewed as a
special case of updates. The imported data files can
be viewed as inefficient gmap structures. The “real”
gmaps used to store the data permanently are loaded
by running their queries against the imported files.

6.2 Accelerating Complex Structure Updates

Although path indices are useful for accelerating com-
mon queries, they are expensive to maintain. Previous
proposals for the maintenance of complex access paths
suggest using ad hoc techniques to accelerate expen-
sive updates, such as internal links between instances
in nested indices and field replication [23, 21 or links
from instances to their collections [16, 181. We can
achieve the same effect by using simple gmaps along
the paths that need to be traversed during the up-
date propagation. Gmaps placed at points where ex-
pensive joins are performed act like join accelerators
in the same way that internal links accelerate joins.
These gmaps can accelerate not only updates to the
structure concerned, but any other query or update
to which they apply. If usage patterns change so that
the cost of maintaining the accelerators exceeds their
benefit, we can simply remove them. In the hardwired
approach, we will always be stuck with the same ma-
chinery. Furthermore, our approach allows the user to
place join accelerators at specific points. It is much
harder to achieve this flexibility with the hardwired
approach.

6.3 Other applications

Using update queries to describe the schema of the
modified data facilitates the handling of complex ob-
jects. A complex object insertion can be described

374

as an update gmap whose query describes the com-
plex object schema. If the inserted object consists of
several tuples of data, the tuples are not inserted one
at a time. Instead, the query plan treats the update
gmap like any other physical data container and per-
forms bulk operations. The result of the query plan
execution is a set of tuples to be inserted into each
physical storage structure. Any available bulk-loading
interfaces to these structures can be exploited.

In Section 6.1, we discussed how to create a thin
“veneer” over imported text files to make them behave
like gmaps. This idea can be extended to support het-
erogeneous storage organizations by hiding their dif-
ferences under the gmap abstraction. As long as the
data contents of all these distinct sources can be de-
scribed by psj-queries over a single logical schema, the
query optimizer can translate logical queries into ac-
cess plans over them. This strategy is similar to the
ADMS handling of database interoperability [19, 201.

Another application of gmaps is to support cached
data in transient main-memory data structures such as
arrays or hash tables. If the contents of the structure
can be described by a psj-query on the logical schema,
it can be treated like a gmap.

7 Implement at ion

To verify the applicability and practicality of our al-
gorithms and obtain a feeling for their performance,
we built a prototype implementation of our system
on top of SHORE [4]. SHORE is an object-oriented
database system under construction at the University
of Wisconsin. Logical schema definitions are parsed
and stored in a logical-schema catalog. Physical stor-
age structures are created from gmap definitions. The
parsed gmap query is stored persistently in a second
physical-schema catalog. The data organization, keys,
and record format are also determined by the gmap
definition. The gmap is created and populated by pro-
cessing an update request.

We built a query processor using the algorithms in
Sections 3 and 4. For all the examples presented in this
paper, query translation added only a negligible over-
head to the overall query cost. The query processor
also contains hooks to support the update processor,
as outlined in Section 5. The update processor accepts
three lists of gmaps: update gmaps, target gmaps to
be updated, and database gmaps that may be used
to supply data for the updates. For simple updates,
the first list contains just one gmap and the target
and database lists each contain all of the gmaps in the
physical-schema catalog. Other combinations of argu-
ments support other applications described in Section
6.

We designed a simple common interface for storage
structures, including operations to store and retrieve
data and to make cost inquiries. We implemented this
interface on top of existing SHORE facilities (B+-trees
and heaps) as well as Unix files (for importing and
exporting data) and main-memory structures (for up-

date gmaps). To support the use of the algorithm in
Section 5 for deletions, we also modified the SHORE
B+-tree facility to maintain a count of duplicate inser-
tions rather than rejecting them.

8 A Performance Demonstration

In this section, we describe experiments with a test
database that illustrate that for a plausible mix of
queries and updates, our techniques can provide better
performance than either relational or object-oriented
databases. As we observed in Section 2, gmaps can be
used to describe the relations and the primary and sec-
ondary indices of relational databases, as well as the
class extents, object sets, and path indices of object-
oriented databases. Thus, we are able to use our sys-
tem to simulate two “conventional” configurations, one
based on a normalized relational design and one follow-
ing a typical object-oriented database design. All of
our results are reported in terms of counts of I/O oper-
ations, since absolute performance in “real” databases
would be affected by a variety of implementation-
dependent features that are beyond our control.

In the experiment, we used an extended version of
the university database presented earlier. We popu-
lated one department with actual data describing the
Computer Sciences Department at the University of
Wisconsin-Madison and generated synthetic data for
99 more departments to create a database of reason-
able size. While the actual database used for the ex-
periment includes additional fields, for simplicity we
only discuss the logical schema as presented in Fig-
ure 1. A few interesting parameters of the data are
presented in Table 2.

Table 2: Parameters of the database

Faculty Students courses TAs Depts
Instances 5000 50000 10000 2000 100
KB/inst 1 0.8 1 0.85 3

8.1 The Workload

The workload contains multiple runs of eight queries
and five updates. The actual number of runs was de-
termined by various factors. We tried to maintain a
balance between expensive queries and simple ones,
hold the update load at about a third of the total
load for most of the configurations, and make the rel-
ative frequencies as realistic for a university environ-
ment as possible. Tables 3 and 4 briefly describe each
query and update. For example, the workload con-
tains three runs of query QS. The last two columns
contain the total cost attributed to all runs of query
QS when it is processed on two different configurations
of the database: a relational one (Section 8.2) and an
object-oriented one (Section 8.3). Note that each up-
date inserts a single pair of values. For example, when
a student adds a course (U3), the inserted pair would
be (student id, course id).

375

Table 3: Queries in the workload
INolMixlGiven
I

l Find IRe11001
Ql 10 faculty name field, dept 30 30
Q2 10 faculty name courses taught 30 30
Q3 10 student name year, dept, advisor 50 50
Q4 10 TA name support level, course 40 40
Q5 3 faculty area students advised 57 57
Q6 3 student name courses, teachers 39 42
0.7 2 course name students attendine 84 80

id81 1 ldent name Icourses taught 1 641 591

Table 4: Updates in the workload
I Nol Mixl Undate Descriution IRellOOl

To obtain I/O counts, we instantiated queries and
updates using random values for the input parameters
and the inserted pairs. Then, we used the actual plans
obtained by our system to perform the query or update
and recorded the size of the result as well as the sizes
of all intermediate results used in joins. From these
data, we calculated I/O counts using a simple model
of the B+-tree and the heap storage structures based
on the assumptions that the page size is 8KB and that
4MB are used for buffers. The analytical approach was
chosen in favor of measuring actual response times,
since the underlying SHORE system was still under
development.

8.2 Relational Design

The relational configuration follows a textbook trans-
lation of the logical schema into relations. We added
secondary indices as needed, to improve joins and se-
lections, and we clustered favorably the records in the
heaps. The total database size for this configuration
is 74MB. Running the full workload on that database
costs 613 page I/OS, 64% caused by queries and 36%
by updates. The exact contribution of all runs of each
query and update in the total cost is shown in Tables
3 and 4.

8.3 Object-Oriented Design

The physical schema for the object-oriented configura-
tion includes one extent file for each internal domain
in the logical schema. The relationship attends is
stored both as part of student objects and as part of
the course objects, i.e., students contain pointers to
all courses they attend, and courses contain pointers
to the students attending them. This duplication al-
lows efficient execution of queries QS and Q7. Each
other relationship is stored as part of the domain clos-
est to the edge label in Figure 1. The total database
size for this configuration is 75MB. Running the full

workload on the database costs 583 page I/OS, 68%
caused by queries and 32% by updates. The last col-
umn of Tables 3 and 4 show the costs for all runs of .
each query and update.

8.4 Object-Oriented Design with Complex
Access Paths

The previous two configurations do not use any com-
plex access path such as path indices1 or field replica-
tion. In this section, we consider the case of an object-
oriented DBMS equipped with such access paths. For
the given workload, field replication can be applied in
three cases, as shown in Table 5. Each row of the ta-
ble describes what is replicated, the additional space
required in MB, the affected queries (no update is af-
fected by these additions), and the savings that can be
attributed to the replication for all runs of the affected
query.

Table 5: Conventional complex path techniques

“Faculty.workin.name” Faculty 0.2a

+I
“Student enrolled name” Student 2

The rest of the physical schema is identical to
the earlier object-oriented schema. The data replica-
tion adds 2MB of additional space bringing the total
database size to 77MB. The new database offers a 7%
performance gain over the previous one. It is interest-
ing to note that the technique of field replication as
originally described [ll, 231 cannot be applied to any
other field in our database because it is restricted to
edges from classes to single-valued attributes. Similar
restrictions also prohibit any useful application of path
indices in our database. The restrictions are there for a
reason: the implementation of these access paths and
the task of propagating updates would be far more
complex without them.

8.5 A Configuration with Gmaps

In this section, we consider our approach, i.e., a
database fully equipped with gmaps. Instead of de-
signing a physical organization from scratch, we show
how we can make incremental changes on the object-
oriented physical schema to improve its performance.

First, we replicate attributes over paths that tra-
verse relationships both in the inverse direction (from
attribute to class), and in the forward direction (from
class to attribute). Such a replication brings cost sav-
ings in queries Q3 and Q7. Then, we consider repli-
cating attributes over paths that are not functional by
associating multiple values with each instance of the
root of the path. Such replication is very beneficial for
our workload since it can eliminate the most expensive

‘We use the term path indices collectively for what Bertino
and Kim [2] call path indices, nested indices, and multi-indices.

376

step of the medium and large queries Q5, Q7, and QS.
The exact cost savings and overheads that are caused
by each additional access path are shown in Table 6.

Table 6: Applications of gmaps

These modifications offer a significant total gain of
204 I/OS, or 35% over the cost of the initial object-
oriented approach. If we add to these savings those of
the previous section (with gmaps simulating field repli-
cation) the total gain climbs to 42%. It is interesting
to note the low update overhead of all these replica-
tions. The reason is that we replicated attributes,
like student .name, that are static, i.e., do not get
updated. As a result, the only updates that are af-
fected are those on the intermediate links of the path.
The attends relationship, for example, is the most
volatile relationship in the schema, so we expect that
the slightest update overhead would overwhelm any
savings gained. However, since the attends relation-
ship is bi-directional (stored as an attribute of both
the student and the course), both extents need to be
updated anyway. Reading and writing one more at-
tribute, student .name, does not add any overhead.

The space overhead is also low in all but one case:
replicating the student names in each course more than
doubles the size of the course extent. Whether or
not the space-time trade-off is worthwhile depends on
the application. The total increase in space usage is
15.4MB, bringing the total database size to 92.4MB.
Table 7 compares the query cost, update cost, and

Table 7: Summary costs

disk usage of all four approaches. For the gmap con-
figuration, we show the results both with and without
replication of student names, always including the en-
hancements of the configuration with complex paths.

9 Related Work

Most existing database systems do not provide true
data independence, since every construct of the logi-
cal schema corresponds directly to a primary physical
structure. For example, every relation in most rela-
tional systems, every class extent in extent-based 00

systems (e.g., Orion [15] and Zoo [lo]) and every collec-
tion in collection-based 00 systems (e.g., Gemstone
[16], Extra/Excess [5], and ObjectStore [18]) is stored
in a separate file. The main flexibility at the physical
level comes from secondary access paths to these files.

Several extensions of both the primary physical
structure and the secondary access paths have been
recently proposed in the literature that allow storing
together data from more than one logical construct. In
Sections 2 and 8, we discussed path indices [2, 14, 161,
join indices [26], and field replication [ll, 231, noting
their restrictions and comparing their performance to
our scheme. Another approach to decomposing the
database is hierarchical join indices [27], a generaliza-
tion of join indices that allows one to build an index
over identity surrogates that populate trees of the logi-
cal schema graph. Access Support Relations (ASR) of-
fer a different generalization of join indices [12], which
allows the definition of indices over the instances of
arbitrary chains of logical schema nodes. This scheme
offers a higher degree of flexibility and allows the def-
inition of indices that store both complete and partial
instances of each chain. Except for the last feature,
the contents of both hierarchical join indices and ASRs
can be represented as psj-queries, and can thus be de-
fined as a gmap. However, since gmap queries do not
support unions, they cannot represent outer joins, and
therefore cannot store incomplete instances of chains.

With respect to the translation algorithm, our work
most closely resembles research at the University of
Waterloo on materialized views [3, 281. Our algorithm
supports a more restricted query language, but uses
information about inclusion and functional dependen-
cies as well as “topological” information implicit in a
graph-based logical schema. This information allows
us to identify solutions that would be missed by the
more general algorithm. Section 5 contains an exam-
ple of a solution that can only be found when inclusion
dependencies are taken into account. Similarly, our
handling of functional and multivalued dependencies
is more general than that of the algorithm of Yang and
Larson, which simply uses the primary key information
for each relation. Unless all non-trivial dependencies
are generated by superkeys (i.e., unless all relations
are in at least 4th Normal Form), our scheme will find
more solutions.

With respect to the integration with the rest of
the query optimizer, most earlier efforts use a two-
stage approach, where the queries are first translated
into queries over physical structures., and the resulting
queries are then optimized one-by-one by a conven-
tional optimizer. In addition to the work on material-
ized views [3, 281, such efforts include research whose
goal was not physical data independence but simply
processing efficiency. Examples include research on
reusing common subexpressions within a query [9] or
between multiple queries [22], reusing results of previ-
ous queries [8], and using integrity constraints for se-
mantic query optimization [S]. Kemper and Moerkotte
[13] opt for a unified approach of translation and op-

377

timization for the ASRs by extending a rule based op-
timizer to include appropriate rewriting rules. Our
approach of enhancing a conventional optimizer with
the necessary translation steps takes advantage of full
cost information available to the optimizer to perform
early pruning of inferior solutions, while keeping the
overall optimization cost low.

10 Conclusions
We have presented a new approach to physical schema
design that uses a declarative language to describe the
contents of storage structures. Carefully restricting
the language allows efficient algorithms to translate
queries over the logical schema into access plans using
the physical data structures. We have shown how to
integrate the query translation algorithm into a con-
ventional query optimizer. A simple modification of
the query translation algorithm supports propagation
of updates to the database. A prototype system that
incorporates the major aspects of this approach is cur-
rently operational. We have used it to demonstrate in
a realistic environment how our approach can achieve
significant performance gains over more conventional
ones.

In the future, we plan to extend the translation al-
gorithm to take into account additional integrity con-
straints and also permit the translation of queries into
unions of other queries. We would also like to incorpo-
rate storage structures that offer a hierarchical inter-
face, and study the feasibility of using the query op-
timizer to exploit in-memory data storage structures.
Finally, the increase of available choices in the phys-
ical schema design puts the burden on the database
administrator to make the correct choices. We need to
design tools that guide the administrator in choosing
the appropriate combination of storage structures.

References
[l] A. Aho, Y. Sagiv, and J. Ullman. Equivalences Among

Relational Expressions. SIAM Journal of Computing,
8(2):218-247, 1979.

[2] E. Bertino and W. Kim. Indexing Techniques for Queries
on Nested Objects. IEEE tinsactions on Knowledge and
Data Engineering, 1(2):196-214, June 1989.

[3] J. Blakeley, N. Coburn, and P. Larson. Updating de-
rived relations. ACM tinsactions on Database Systems,
14(3):369-?Ob, Sept. 1989.

[4] M. Carey, D. Dewitt, M. Franklin, N. Hail, M. McAuliffe,
J. Naughton, D. Schuh, M. Solomon, C. Tan, 0. TsataIos,
S. White, and M. Zwilling. Shoring Up Persistent Applica-
tions. In Proc. of the ACM SIGMOD, May 1994.

[5] M. Carey, D. Dewitt, and S. Vandenberg. A Data Model
and Query Language for Exodus. In Proc. of the ACM
SIGMOD, pages 413-423, Chicago, IL, June 1988.

[6] U. Chakravarthy. Logic-Based Approach to Semantic
Query Optimization. ACM %nsactions on Database Sys-
tems, 15(2):163-207, June 1990.

[7] A. Chandra and P. Merlin. Optimal implementation of con-
junctive queries in relational data bases. In Proceedings of
Annual ACM Symposium on Theory of Computing, pages
77-90, May 1977.

[8] S. Finkelstein. Common expression analysis in database
applications. In Proc. of the ACM SIGMOD, 1982.

[9] P. Hall. Optimization of a single relational expression in
a RDBMS. IBM Journal of Research and Development,
20(3), May 1976.

[lo] Y. Ioannidis, M. Livny, E. Haber, R. Miller, 0. Tsataios,
and J. Wiener. Desktop Experiment Management. IEEE
Data Engineering Journal, 16(1):19-23, Mar. 1993.

[ll] K. Kato and T. Masuda. Persistent Caching. IEEE tins-
actions on Software Engineering, 18(7), July 1992.

[12] A. Kemper and G. Moerkotte. Access Support in Object
Bases. In Proc. of the ACM SIGMOD, 1990.

[13] A. Kemper and G. Moerkotte. Advanced Query Process-
ing in Object Bases Using Access Support Relations. In
Proc. of the Int’l VLDB Conf., pages 290-301, Brisbane,
Australia, 1990.

[14] W. Kim, E. Bertino, and J. Garza. Composite Objects
Revisited. In Proc. of the ACM SIGMOD, 1989.

[15] W. Kim, J. F. Garza, N. Ballou, and D. Woelk. Archi-
tecture of the ORION Next-generation Database System.
IEEE tinsactions on Knowledge and Data Engineering,
2:109-124, Mar. 1990.

[16] D. Maier and J. Stein. Indexing in an Object-Oriented
DBMS. In 2nd Int’l Workshop on Object-Oriented
Database Systems, pages 171-182, Asilomar, CA, Sept.
1986.

[17] R. Miller, Y. Ioannidis, and R. Ramakrishnan. The Use of
Information Capacity in Schema Integration and Transla-
tion. In Proc. of the Int’l VLDB Conf., 1993.

[18] J. Orenstein, S. Haradhvala, B. Marguiles, and D. Saka-
hara. Query Processing in the ObjectStore Database Sys-
tem. In Proc. of the ACM SIGMOD, San Diego, CA, 1992.

[19] N. Roussopoulos. View Indexing in Relational Database.
ACM tinsactions on Database Systems, 7(2), June 1982.

[20] N. Roussopoulos, N. Economou, and A. Stamenas. ADMS:
A Testbed for Incremental Access Methods. IEEE nansac-
tions on Knowledge and Data Engineering, 5(5):762-773,
Oct. 1993.

[21] P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, and
T. Price. Access Path Selection in a Relational Database
Management System. In Proc. of the ACM SIGMOD,
pages 23-34, 1979.

[22] T. Sellis. Global Query Optimization. In Proc. of the ACM
SIGMOD, pages 191-205, 1986.

[23] E. Shekita and M. Carey. Performance Enhancement
Through Replication in an Object-Oriented DBMS. In
Proc. of the ACM SIGMOD, pages 325-336, 1989.

i24] 0. TsataIos and Y. Ioannidis. A Unified Framework fo
Indexing in Database Systems. In Int’l Conf. on Database
and Expert System Applications, Sept. 1994.

[25] 0. Tsatalos, M. Solomon, and Y. Ioannidis. Enhanced Stor-
age Structures for OODBMSs. Unpublished manuscript,
available from the authors, Feb. 1994.

[26] P. Valduriez. Join Indices. ACM ZFansactions on Database
Systems, 12(2):218-246, June 1987.

[27] P. Valduriez, S. Khoshafian, and G. Copeland. Implemen-
tation Techniques of Complex Objects. In Proc. of the Int’l
VLDB Conf., pages 101-109, Kyoto, Japan, 1986.

[28] H. Yang and P. Larson. Query transformation for PSJ-
queries. In Proc. of the IntS VLDB Conf., 1987.

378

