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Abstract 

Physical data independence is touted as a central fea- 
ture of modern database systems. Both relational and 
object-oriented systems, however, force users to frame their 
queries in terms of a logical schema that is directly tied to 
physical structures. Our approach eliminates this depen- 
dence. All storage structures are defined in a declarative 
language based on relational algebra as functions of a log- 
ical schema. We present an algorithm, integrated with a 
conventional query optimizer, that translates queries over 
this logical schema into plans that access the storage struc- 
tures. We also show how to compile update requests into 
plans that update all relevant storage structures consis- 
tently and optimally. Finally, we report on experiments 
with a prototype implementation of our approach that 
demonstrate how it allows storage structures to be tuned to 
the expected or observed workload to achieve significantly 
better performance than is possible with conventional tech- 
niques. 

1 Introduction 

Physical data independence is usually described as the 
ability to write queries without being concerned with 
how the data are actually structured on disk. In cur- 
rent database systems (DBMSs), however, queries are 
tied to logical constructs such as relations, class ex- 
tents, or object sets, that closely track the physical 
organization of data. In a relational database, for ex- 
ample, each relation is usually stored as a file, perhaps 
with a primary index. The database administrator can 
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improve performance by adding secondary indices or 
by specifying the clustering of files, but more extensive 
improvements require modifying the logical schema, 
for example by de-normalizing tables. Such modifica- 
tions necessitate rewriting queries and thus physical 
data independence is lost. 

Our goal is to improve physical data independence 
by decoupling physical decisions such as clustering and 
replication from the logical data model, so that the 
physical organization can be altered without chang- 
ing the logical schema or queries written against it. 
A more subtle benefit is that it places a wider range 
of possibilities for data organization at the disposal 
of the database administrator. For example, the fact 
that the data are described in a traditional normal- 
ized relational schema should not preclude a repli- 
cated, nested physical organization, if that organiza- 
tion would achieve better performance for the antici- 
pated mix of queries and updates. 

Assume that data are stored in files of records, pos- 
sibly implemented by an index structure such as a B+- 
tree. Instead of requiring a one-to-one correspondence 
between logical data constructs and physical storage 
structures (e.g., relation c) file), we allow the contents 
of each file to be defined as a function of the logical 
schema, specified by a restricted relational-algebra ex- 
pression. We call the combination of a file and its def- 
inition a gmap (pronounced gee-map and an acronym 
for Generalized Multilevel Access Path.) In the sim- 
plest cases, gmaps correspond to traditional storage 
structures such as an unordered file of the tuples in 
a relation or an index on that file. Gmaps, however, 
can also be used to partition the database vertically 
and horizontally and add multiple access paths, gen- 
eralizing path indices. Since gmaps are allowed to con- 
tain overlapping data, they can also capture redundant 
storage structures. Gmaps are invisible at the logical 
layer, so their definitions affect only the performance 
of queries and not their semantics. 

In this paper, we restrict both gmap definitions and 
queries to project-select-join (psj) expressions over a 
simple semantic data model. We demonstrate that 
such expressions are powerful enough to express most 
conventional storage structures, as well as more “ex- 
otic” techniques such as path indices [2,16], field repli- 
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cation [ll, 231, and more. We present an algorithm 
to translate user queries, expressed as psj-queries over 
structures in the logical schema, into relational expres- 
sions over the gmaps. We also show how this transla- 
tion can be integrated into a conventional query opti- 
mizer . 

One of the benefits of our approach is that gmaps 
may store redundant data to improve the performance 
of queries. Thus, updates may need to change mul- 
tiple gmaps in a consistent manner. We show how a 
simple modification of the query translation algorithm 
can produce plans to perform these updates. We also 
demonstrate how this flexibility can be used in sev- 
eral other areas, e.g., acceleration of bulk loading of 
the database and acceleration of updates of complex 
objects. 

All of the algorithms presented in this paper have 
been implemented in a prototype system. We re- 
port on experiments with a test database that illus- 
trates that for a plausible mix of queries and up- 
dates, our techniques allow the physical representa- 
tion to be tuned to provide better performance than 
what could be achieved through standard relational or 
object-oriented methods. 

2 The Gmap Definition Language 

In this section, we introduce our data model and the 
corresponding data definition language. The data defi- 
nition language (DDL) has two parts, the logical DDL, 
which defines the logical schema capturing the concep- 
tual organization of the data, and the physical DDL, 
which defines the storage structures containing the 
data that instantiate the logical schema. We present 
the model in two notations, a semantic one (resembling 
the ER model) and a formal relational one. The two 
notations are equivalent; the semantic notation is more 
intuitive as a user interface, but all of our algorithms 
manipulate the relational forms of schemas. 

2.1 The Logical Data Definition Language 

In the semantic notation, schemas are displayed as 
graphs. Throughout this paper we will illustrate our 
approach with an example database describing a uni- 
versity and its personnel (see Figure 1). 

assists TA 

Figure 1: The logical schema 
Nodes in this graph represent domains and solid 

edges represent relationships between them. Leaves 

represent primitive domains such as integers, character 
strings, or real numbers. Internal nodes represent do- 
mains populated with identity surrogates (tuple or ob-‘ 
ject identifiers). In our example schema, these domains 
are Dept (department), Faculty, Student, Course, 
and TA (teaching assistant). To reduce clutter in the 
figures, these domain names are abbreviated to their 
initials. Functional dependencies are indicated by ar- 
row heads. Inclusion dependencies (formally defined 
in Section 3) can also be expressed but are not shown 
for simplicity. ISA associations are denoted by dashed 
arcs pointing to the supertype. For our purposes, they 
are simply relationships with certain functional and 
inclusion dependencies implied by default. A name of 
the form D.d is used to denote both a primitive domain 
and its relationship to an internal domain. For exam- 
ple, Course. level names both a primitive domain of 
integers and its relationship to the Course domain. 

In the relational form of the data model, each edge 
of a schema graph from domain A to domain B is rep- 
resented as a binary relation with attributes A and B. 
Because of this correspondence, we often use the term 
“attribute” to refer to domains (nodes in the graph) 
and “base relation” to refer to relationships (edges). 
Because our algorithms operate on the (binary) rela- 
tional form of the schema, they apply to any semantic 
model that can be represented by binary relations with 
functional and inclusion dependencies. 

2.2 The Physical Data Definition Language 

In our system, all physical storage structures are de- 
fined as gmaps. A gmap consists of a set of records 
(the gmap data), a query that indicates the seman- 
tic relationships among the attributes of these records 
(the gmap query), and a description of the data struc- 
ture used to store the records (the gmap structure). 
Although the actual database stores gmap data rather 
than the base relations, the gmap data may be thought 
of as the result of running the gmap query on the base 
relations. 

Gmap queries are expressed in a simple SQL-like 
language. For example, the gmap 

def-gmap cs-faculty-by-area as btree by 
given Faculty.area 
select Faculty 
where Faculty works-in Dept and 

Dept = cs-oid 

stores a set of pairs containing Faculty identifiers and 
the corresponding area names. Only faculty in the 
Computer Sciences department (identified by the con- 
stant cs-oid) are included. The gmap structure is 
a B+-tree indexed by Faculty. area. The entire by 
clause defines the gmap query. Attributes following 
the given and select keywords are called input and 
output attributes, respectively, and the selection Dept 
= cs-oid is called a restriction. Input attributes form 
the search key for gmap structures that allow sssocia- 
tive access. 

The gmap query can also be expressed graphically 
as a subgraph of the schema graph called the query 
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graph (see Figure 2). Shaded edges correspond to re- 
lationships explicitly mentioned in the where clause 
or implicitly mentioned as part of primitive attribute 
names. Input attributes are indicated by small arrows, 
and output attributes are indicated by double circles 
around nodes. Restrictions are described as annota- 
tions on the corresponding nodes. 

a 

TA 

Figure 2: A collection based index 
Each query expressible in this language is equivalent 

to a restricted project-select-join (psj) query on the 
relational form of the logical schema : 

Q = TAO,& W R2 W .a. W &). 

In this example, 

Q = ~~,~.~~~c~~=~~-~id(F.area w works-in). 

Expressible queries obey three restrictions: 
l They are range-restricted, i.e., all attributes in S 

and A are attributes of the relations &, 
0 selections are conjunctions of comparisons (= , > ,> 

, <, 5) between attributes and constants, and 
l joins are natural, i.e., only attributes with the same 

name are joined and all attributes maintain their 
name in the result. 

In the rest of the paper, we use the term psj-query 
to refer to a query that conforms to these restrictions. 

2.3 The Query Language 

We often use the term logical query to refer to queries 
posed on the logical schema. We currently require log- 
ical queries to be written in the same language we use 
for gmap queries. That is, they must be restricted 
psj-queries. In addition, each query must be trans- 
latable into a psj-query over gmaps or projections of 
them. Thus, we do not handle cases where logical 
queries need to be translated into unions or arbitrary 
sequences of psj-queries. Note that translated logical 
queries involve relations with arbitrary arity (the gmap 
data), while gmap queries involve binary relations only 
(corresponding to relationships). 

2.4 Examples 
Gmaps can be used ta define arbitrary physical repro- 
sentations, including those of a conventional normal- 
ized relational database, an object-oriented database, 
or any combination of the two. 

To illustrate the object-oriented approach, suppose 
we want to cluster together all information about 

each faculty member. Given the object identifier of 
a Faculty object, we should be able to retrieve per- 
sonal information as well as the object identifiers of the 
faculty member’s department, advisees, and courses 
taught. A gmap that meets these specifications may 
be defined and drawn as in Figure 3. 

def-gmap faculty-data as heap by 
given Faculty select Student, Dept. 

Course, Faculty.area, Faculty.name 
where Faculty works-in Dept and 

Faculty advises Student and 
Faculty teaches Course 

Figure 3: The Faculty class extent 
A secondary index in a relational system can also be 

defined easily in our language. For example, an index 
on the faculty area is defined as in Figure 4. 

def-gmap faculty-index-on-area as btree by 
given Faculty.area select Faculty 

a 

Figure 4: A Faculty index on “area” 
Note that the index is not defined in terms of the 

previous gmap, as would be the case in a relational 
database, but in terms of the logical schema. 

In the facultydata example, it might be desir- 
able to include in a faculty member’s record the de- 
partment name in addition to the department id, be- 
cause for example, the department name is frequently 
printed along with the name of the faculty member. 
The department name is in this case a nested attribute 
of the Faculty domain. This essentially implements 
field replicdion [ll, 231, which has been shown to of- 
fer several advantages. The only change necessary is 
to add “Dept .name” to the select clause. 

In the previous examples, the gmap data included 
all Faculty instances. However, there are cases where 
we frequently access only some instances of a domain. 
Object-oriented systems that store instances in explicit 
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collections rather than class extents (5, 16, 181 allow 
the creation of collection indices, which provide fast 
access paths only to the subsets of the domains that 
are included in the collection. Our gmap definition 
language is powerful enough to express such indices 
by using restrictions. An example of this technique 
was shown in Figure 2 above. 

Many more indexing schemes can be specified us- 
ing gmaps, e.g., nested indices, replication of non- 
functional nested attributes, and indices with com- 
posite keys where each key component is a path. A 
complete taxonomy of existing indexing schemes and 
other advanced storage structures that can be defined 
by using gmaps is presented elsewhere [24]. 

3 Query translation 

Before presenting the actual translation algorithm, we 
first introduce some additional notation and defini- 
tions, and also discuss two auxiliary problems that 
arise as part of query translation. 

3.1 Notation 

For convenience, we use a triplet (QT,QS,Qp) as an 
alternative way of representing a psj-query Q. The set 
Qr contains the joined binary relations, the set Qs con- 
tains the selection predicates, and the set Qp contains 
the projected attributes. We call the set Qp the query 
target, and its members target atttibutes. Given a 
query Q, we frequently deal with its part that includes 
only relations in a set R, denoted Q[reZ E R]. Sim- 
ilarly, the subset of Qs that mentions only attributes 
in a set A is denoted Q,[attr E d]. The set of a at- 
tributes in a set of relations R is denoted A(R). 

3.2 Definitions 

The natural join of two psj-queries P and Q, denoted 
P W Q, is the natural join of their result relations. The 
add-join of two psj-queries P and Q, denoted P 6~ Q, 
is the psj-query P ~3 Q = (P, U Q,., P, U Q8, Pp U Qp). 
The add-join differs from the natural join in that the 
projections of P and Q are performed after all joins of 
base relations rather than being interleaved with them. 

Let RI (a, p), Rz(P, 7) be two relations with a com- 
mon attribute ,0. An inclusion dependency from RI to 
Rz exists, denoted RI.@ C Rg.p, if every value of p in 
RI appears also in Rz. 

Multivalued dependencies are not meaningful in bi- 
nary relations, but are important in n-ary results of 
psj-queries, such as the gmap data. Since lossless join 
decompositions imply multivalued dependencies and 
gmap data are the result of joining base relations, we 
can infer certain multivalued dependencies for each 
gmap. An algorithm that generates a cover of the 
multivalued dependencies that hold on the gmap re- 
lation is described in a longer version of this paper 
[25]. Multivalued dependencies are important because 
they help determining the pieces of the gmap relation 
that can be used to answer a user query. 

3.3 Query Equivalence 

When translating a logical query into a query over 
gmaps, we often need to test the equivalence of psj- 
queries. Two psj-queries Qi and Qs a.re equivalent, 
denoted Qi q Q2, if they produce the same result 
for any valid instance of the database schema. Equiv- 
alence testing of arbitrary conjunctive queries, even 
without taking into account any dependencies, is NP- 
complete [l, 73. On the other hand, we can efficiently 
compare two psj-queries syntactically to see if they are 
identical (up to trivial differences such as the ordering 
of the join terms). This is a sufficient condition for 
equivalence, which we use in our translation algorithm. 
We are also interested in two special cases of equiva- 
lence testing, where psj-queries of specific forms are 
involved and various types of dependencies are taken 
into account. These are discussed in the next two sub- 
sections, where sufficient conditions for equivalence are 
provided. 

3.3.1 Coverage 
A query Q covers a set of relations R if 

QW E RI = rA(R)(Q) (1) 

For e=wle, if RI (a, P) = ~,,&RI (a, P) W JW, Y)) 
then RI W Rz covers {RI}. In general, the result of 
the left-hand side query is a superset of that of the 
right-hand side query. When (1) holds, the part of 
the query that involves relations not in R (relation 
R2 in our example) has no effect on ?rA(R)(Q), in the 
sense that it does not filter out any tuples produced by 
the rest of the query. An algorithm that implements 
a sufficient condition for testing coverage is presented 
elsewhere [25]. The algorithm makes use of the inclu- 
sion dependencies of the schema. Its running time is 
linear in the size of Q and quadratic in the number of 
inclusion dependencies between relations in Q. 

3.3.2 Natural join vs. Add-Join 
In general, if P and Q are two psj-queries, P $ Q C 

P W Q. However, in the presence of certain integrity 
constraints P CB Q z P W Q. For example, sup- 
pose R(Q, PI, W, r> are two relations, P is the query 
?r,dR) = R, and Q is the query rr,-, (R W S). Then 
P @ Q is r,+,(R W R W S) = R W S, which is not 
in general the same as R W r,,(R W S). If, however, 
p is functionally determined by a in R (that is, cx is 
a key for R), the two joins are equal. Intuitively, the 
information “lost” by projecting away the p attribute 
in P W Q can be completely recovered from the re- 
maining a attributes. 

Detecting when the natural join of two psj-queries 
is equivalent to a psj-query is very important in our 
query translation algorithm, since it allows us to 
rewrite the join of two gmaps (which are psj-queries) as 
a psj-query. The algorithm iteratively performs such 
rewritings in order to express the join of several gmaps 
as a psj-query, which is then checked syntactically for 
equivalence with the user query. As a sufficient con- 
dition for guaranteeing that the natural join of two 
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queries is a psj-query, we test if it is equivalent to 
the add-join of the queries in question. An algorithm 
that implements a sufficient condition for testing this 
equivalence is presented elsewhere [25]. The algorithm 
makes use of multivalued dependencies and of query 
coverage and its running time is quadratic in the size 
of queries and in the size of multivalued dependencies. 

3.4 Query Translation Algorithm 

Below we present an algorithm to translate a logical 
psj-query into a query over gmaps. To simplify the 
presentation, we omit most considerations of efficiency. 

Algorithm 1 Given a psj-query Q and a set of psj- 
queries E, find subsets {G1,. . . , Gn} C_ 9, s.t. 
Q -=Q~~Q.(~A(Q~)G W*** W~A(Q,.)G~> 

1. letN={GEOs.t. G,nA(Q,nG,)#@and 
2. G,[attr E A( U Q,[attr E GP] = 

Q&ttr E A(G,)] and 
3. G covers QT} 
4. for each subset {Gl, . . . . Gn} of 3t do 
5. let S= {~A(Q,)~Q~G~,...,~A(Q~)~Q.G~} 
6. while there is G, H E S s.t. G W H = G @ H 
7. replace G and H in S by G W H 
8. if S = {&‘} where TQ,(&‘) = Q accept 

current subset of 3c as a solution 
0 

The algorithm first narrows down its search space to 
gmaps that have something to do with the query (lines 
l-3). More specifically, a gmap must have at least one 
relation in common with the query, with at least one 
attribute of the relation included in the gmap result 
(line 1); the query selections on attributes of the gmap 
relations must be either on the target attributes of the 
gmap (so that they can be applied on them) or must 
be identical to selections that the gmap itself has (line 
2); and the gmap must cover the common relations 
with the query (otherwise, the gmap will not have all 
the information needed by the query) (line 3). 

Each possible subset of the relevant gmaps (line 4) 
gives rise to a single candidate translation (assuming 
that selections are always pushed through the joins): 

'Q,('U(Q#'Q.G~ w **- w ~A(Q#'Q.G~). (2) 

The rest of thi algorithm tests whether or not this 
query expression is equivalent to the given logical 
query. Each join operand in the above equation is a 
projection and a selection on a gmap. Since we verified 
earlier (line 2) that the query selections can be pushed 
through the gmap projections, the join operands are 
psj-queries. The algorithm tries to express their join 
as a psj-query as well. The join operands are scanned 
(line 5) and any pair whose natural join is equivalent 
to their add-join (line 6) is replaced by a single join 
operand which is again a psj-query (line 7). The set 
of join operands thus keeps reducing. At some point, 
we can no longer reduce the set either because there is 
just one psj-query left or because there is no pair that 
satisfies the equivalence test (line 6). In the former 

case, the remaining psj-query is equivalent to the ini- 
tial join expression (2) after performing one final pro- 
jection step (7rQ,) and can be syntactically checked for 
equivalence (line 8) with the logical query. In the latter 
case, the subset chosen in line 4 is rejected. Algorithm 
1 satisfies the following. 
Proposition 1 Given a psj-query Q and a set of psj- 
queries Q, for any subset {GI, . . . , G,) c 6 generated 
by Algorithm 1, the following holds: 

Q E ~Q,~Q.(~A(Q,.)GI W *..W~A(Q,)G~) 

Because there are exponentially many subsets of R, 
the whole algorithm runs in exponential time. How- 
ever, checking if a given subset of gmaps can form 
a solution (lines 5-8) takes polynomial time. In the 
next section, we show how we can run the algorithm 
in conjunction with a conventional optimizer to avoid 
enumerating all subsets. 

An example may help illustrate the algorithm. Con- 
sider a query Q that asks for all 500-level courses, 
the names and department id’s of students attending 
them: 
def-query Q by select Student.name, Dept 

where Student attends Course and 
Student enrolled Dept and Course.level = 500. 

The database consists of three gmaps: an index Gl 
from the names of students to their departments, an 
index G2 from the names of students to courses they 
attend and the levels of those courses, and an index G3 
from a course-level to courses at that level, together 
with the departments that supply students to them. 
def-gmap Gl as btree by 

given Student.name select Dept 
where Student enrolled Dept 

def-gmap G2 as btree by 
given Student.name select Course, Course.level 
where Student attends Course 

def-gmap G3 as btree by 
given Course.level select Dept, Course 

where Student attends Course and Student enrolled Dept. 

All three gmaps are relevant to the query (they pass 
the tests of lines l-3). For example Gl can provide val- 
ues for two attributes needed by the query (Dept and 
Student .name) so it passes line 1, it trivially satisfies 
the constraint test of line 2, and it covers the relations 
enrolled and Student .name, so it passes the test on 
line 3. 

The algorithm considers subsets of the relevant 
gmaps Gl , G2, G3. Consider, for example, the subset 
{ Gl, G2 }. The candidate solution corresponding to 
this combination is the natural join of Gl and G2 fol- 
lowed by a selection for Course. level = 500 followed 
by a projection. The loop of lines 6 and 7 will be ex- 
ecuted once to check whether Gl W G2 = Cl $ G2. 
This test will fail unless Student .name functionally 
determines Student; otherwise two tuples that join 
on the Student .name need not join on their Student 
id as well. If Student .na.me functionally determines 
Student, then the join on the Student id is irrelevant: 
we can project out that attribute before performing 
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the join, which implies that the add-join is equivalent 
to the natural join (line 6). Eventually line 8 of Algo- 
rithm 1 will conclude that the candidate solution is a 
correct one. 

Following the same process, the algorithm would re- 
ject the subsets { Cl, G3 } and { G2, G3 }, because 
the necessary multivalued dependencies do not hold. 
However, the combination { Gl , G2, G3 } is a correct 
solution. During the course of the loop of lines 6 and 7, 
the algorithm will test all pairs of gmaps in this subset 
to check whether or not their add-join is equivalent to 
their natural join. As we saw, all the pairs will fail ex- 
cept Gl @ G2. In the next iteration, the pair (Gl @ G2, 
G3) is considered and it is confirmed that its add-join 
is equivalent to its natural join. 

Interestingly, the solution using all three gmaps is 
likely to be more efficient than the one that uses only 
Gl and G2, because the index on Course. level in G3 
will accelerate the selection in the query. The next 
section shows how a gmap-aware optimizer identifies 
and prunes the inferior plan. 

4 Integration with a Query Optimizer 

The presentation of Algorithm 1 emphasizes clarity at 
the expense of efficiency. It implies that all subsets of 
the gmaps are enumerated in random order and each 
is tested to see if it provides a solution to the equation. 
All subsets that pass the test are feasible plans. The 
version of the algorithm that is actually implemented 
by our system is considerably more sophisticated. It is 
integrated with a conventional dynamic-programming 
query optimizer [21], which controls the order in which 
subsets are evaluated and uses cost information and 
intermediate results to prune the search space. 

A conventional dynamic-programming optimizer it- 
eratively finds optimal access plans for increasingly 
larger parts of a query. We follow these steps in more 
detail, showing at each step what needs to be changed 
for a gmap-equipped database (Table 1). We then 
identify the pieces of Algorithm 1 that correspond to 
these changes. In what follows, for simplicity, we avoid 
any discussion of “interesting orders” [21]. We also use 
the term complete solution to refer to a gmap access 
plan (i.e., a specific sequence of joins, together with the 
method used for each join) that is equivalent to the log- 
ical query, and partial solution for a gmap access plan 
that could potentially be enhanced to become a com- 
plete solution. A partial solution does not necessarily 
have to be a psj-query; it may be that no reordering 
of its joins makes them equivalent to add-joins. 

Like a conventional optimizer, the gmap optimizer 
only attempts to join a partial solution with gmaps 
that share projected attributes with it, thus avoiding 
Cartesian products. Each step in the gmap optimizer 
corresponds to part of Algorithm 1. Step (al) of the 
first iteration corresponds to lines l-3 of Algorithm 
1; it finds all gmaps that are relevant to the query. 
The remaining steps of all iterations represent the rest 
of the algorithm. Moving from iteration to iteration 

and step (c) of each iteration corresponds to a specific 
implementation of line 4, where all subsets of relevant 
gmaps that are not pruned on the way are regularly 
explored in increasing size. After the first iteration, 
step (al) forms the joins of these subsets (solutions) 
and step (a2) corresponds to lines 6-8, where these 
solutions are examined for completeness. Step (a2) can 
be implemented incrementally taking into account the 
results of earlier iterations on smaller partial solutions. 

Note that step (b) of each iteration has no counter- 
part in the translation algorithm because it deals only 
with pruning the search space and not with transla- 
tion. Implementing this step is not straightforward 
because it involves not only the cost but also the con- 
tribution of solutions to the query. Contributions of 
partial solutions can be compared on the basis of their 
pieces that correspond to psj-queries and the set of at- 
tributes in their result. When each piece of a partial 
solution has subsets of the relations and projected at- 
tributes of a piece of another partial solution, then the 
former contributes less and can therefore be removed 
from further consideration if it also has a higher cost. 
Query signatures, an encoding of the names of all the 
relations used by the query, can be used to perform 
these comparisons efficiently [8]. 

It is interesting to see how the new algorithm be- 
haves when it is given a set of gmaps that represents 
a traditional relational physical schema. Assume for 
example that one gmap is a file containing the extent 
of the Faculty relation with all associated attributes, 
def-gap faculty-relation as heap by 

given Faculty select Faculty.name, Faculty.area, Dept 
where Faculty works-in Dept 

while another gmap is a secondary index on the 
Faculty. area field, 
def-gmap faculty-index-on-area as btree by 

given Faculty.area select Faculty. 

Assume that the logical query requests the names of 
all faculty in the database area. During the first itera- 
tion both gmaps are considered. Scanning the relation 
extent would be far more expensive than accessing the 
index, but the two solutions are not comparable. Since 
the index simply returns Faculty ids, it is not ade- 
quate to answer the query, while the extent is. During 
the second iteration, the index (the only partial solu- 
tion left) is considered for a join with the Faculty ex- 
tent. The join would be less expensive than scanning 
the Faculty extent while both plans are equivalent 
to the logical query. Thus, the solution found dur- 
ing the first iteration is eliminated in the second. At 
that point, there is no partial solution left and the al- 
gorithm ends. This example demonstrates that access 
plans that are pruned in the conventional optimizer are 
also pruned in its enhanced version. However, since an 
access plan considered at iteration n in the old version 
may combine more than n gmaps, it may be considered 
at a later iteration in the new version, thus delaying 
potential prunings. In general, we expect the perfor- 
mance of the modified optimizer to be similar to the 
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Table 1: Step by step comparison of a conventional optimizer vs. one designed for a gmap-equipped database 

Conventional optimizer 

Iteration 1 
For each query relation: 
a) Find all possible access paths. 

Gmap optimizer 

Iteration 1 

al) Find all gmaps that are relevant to the query. 
a2) Distinguish between partial and complete solutions among them. 

b) Compare their cost and keep the least ex- b) Compare all gmaps among themselves. If one has neither greater 
pensive. contribution to the query than another nor a lower cost, prune it. 
c) If the query involves only one relation, stop. c) If there are no partial solutions, stop. 

Iteration 2 Iteration 2 
For each query join: 
a) Consider joining the relevant access paths al) Consider joining all partial solutions found in the previous iteration 
found in the previous iteration using all possi- with another gmap using all possible join methods. 
ble join methods. a2) Distinguish partial and complete solutions among resulting joins. 
b) Compare the cost of the resulting join plans b) Compare all generated solutions among themselves and to any earlier 
and keep the least expensive. solution. If any single gmap or gmap combination has neither a greater 

contribution to the query than another nor a lower cost, prune it. 
c) If the query involves only two relations, stop. c) If there are no partial solutions, stop. 

Iteration 3 Iteration 3 
. . . . . . 

performance of the original one. Our experience ob- 
tained by using the optimizer for the examples shown 
in Section 8 supports the prediction. 

5 Update propagation 

Relational systems mitigate dependencies between the 
logical and the physical schema through the use of 
stored queries called wiews, and users express their 
queries in terms of the views. With this approach, 
the logical schema becomes a (relational) function of 
the physical schema. View updates, however, are dif- 
ficult or impossible to support. The usual solution is 
to require updates to be expressed in terms of the un- 
derlying schema. 

Our approach is the inverse. We define the physi- 
cal structures as functions of the logical schema. Al- 
though query translation is more complicated, we have 
shown above that it is still possible, and it can be in- 
tegrated with the optimization stage of a conventional 
system adding little overhead to the preparation of 
query plans and no overhead to the execution of those 
plans. Updates, however, are much simpler. Trans- 
lating them into the physical schema turns into the 
materialized view maintenance problem, which accepts 
simple solutions. 

As discussed elsewhere [3], propagating updates into 
materialized views requires the execution of queries 
over the base relations and the inserted or deleted tu- 
ples. However, here we do not necessarily have the 
base relations stored, and the actual data are repli- 
cated in many places. In this section, we illustrate 
how the query translation algorithm described above 
can be adapted to translate an update request over the 
logical schema into the corresponding physical plan. 
Our algorithm produces optimal update plans, using 
existing gmaps to accelerate update propagation where 

possible. 

5.1 Specifying Updates 

Insertions are specified by supplying a query (the up- 
date query) and a set of tuples to be inserted (the up- 
date data), corresponding to the target attributes of 
the query. The database must be updated in such a 
way that the change in the results of the query between 
the original and updated database is precisely the set 
of tuples in the update data. Deletions are defined 
similarly, with the roles of “original” and “updated” 
database reversed. Note the difference from the query 
used when specifying updates in SQL-like languages, 
in which the query is used to generate the update tu- 
ples. The query here describes only the “schema” of 
the tuples. Since the update data can be the result of 
another query, no generality is lost. 

For example, students can become enrolled in 
courses by supplying a set of (StudentId, CourseId) 
pairs and the update query 

def-query enroll-student as 
select Student, Course where Student attends Course. 

Allowing arbitrary queries to be used in update 
gmaps would re-introduce all the problems of updat- 
ing through views. Therefore, we disallow projections 
and explicit selections from update queries and im- 
pose a few other restrictions described in more detail 
elsewhere [25]. Although the semantics of the update 
query depends only on the logical schema, its valid- 
ity may depend on the choice of gmaps used to define 
the physical schema. For example, the physical schema 
must have sufficient “information capacity” to hold the 
inserted data [17]. These issues are not addressed in 
this paper. 
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5.2 The Algorithm 

Given an update query U, a set AU of tuples, and 
a gmap G in the physical schema, we need to find 
the change AG in the value of G corresponding to 
the change AU in the value of U. Suppose we find a 
collection of psj-queries Hi, . . . , H, that are invariant 
under changes to U such that 

G=TG~~.G,(UWH~ b4.a*WH,). 

Let Gprev be the value of G before the update and 
Gnsvr the value after. Then 

hew = KG, UG, ((U + AU) W HI W * - . W I&) 
= TG,UG, (AU W HI W * * * W H,) + Gprev 

or equivalently 

AG = ~G,,uG~(AU W HI W a** W H,). (3) 
In other words, the updates to G can be found by eval- 
uating the right-hand side of (3). As shown elsewhere 
[25], we can use Algorithm 1 to find HI,. . . , Hm. Here, 
we illustrate the algorithm with an example. 

Consider the update query enroll-student pre- 
sented earlier 
def-query enroll-student as select Student, Course 

where Student attends Course. 

Assume that our database consists of two gmaps, one 
that maps faculty members to the courses they teach, 
defgmap FC as btree by given Faculty select Course 

where Faculty teaches Course, 

and one that records the students and teacher of each 
course, 
defgmap CFS as btree by 

given Course select Faculty, Student 
where Faculty teaches Course and 

Student attends Course. 

To propagate the update to the database, we consider 
each database gmap separately. The gmap FC is not 
affected by the update since it has no common rela- 
tions with the update query. The updates to gmap 
CFS depend both on the update data and on the exist- 
ing contents of FC. We need to enhance the (CourseId, 
StudentId) pairs in the update data with the faculty 
members who teach the courses before they are added 
to CFS. The algorithm constructs the tuples to be in- 
serted by considering the part of the gmap that is not 
affected by the update, i.e., the query 
def-query Q by select Course, Faculty 

where Faculty teaches Course, 

and trying to find a translation for it. Q can definitely 
be answered by using gmap FC, and thus the tuples to 
be inserted into CFS are found by joinmg the update 
gmap enroll-student and the gmap FC. Gmap CFS 
may not be used as the source of the needed informa- 
tion because CFS will not contain (CourseId, Facul- 
tyld) pairs for courses that do not yet have any stu- 
dents. Line 2 of Algorithm 1 tests whether CFS covers 
the relation teaches. As long as there is no inclusion 

dependency from teaches to attends, the CFS gmap 
will be rejected. 

Equation (3) can be used for deletions as well as 
insertions, provided each gmap whose target does not 
functionally determine its other attributes maintains 
its data as a multiset (that is, it records duplicate in- 
sertions or a count of them). 

6 Applications 

In Section 2, we demonstrated how gmaps subsume 
the facilities of primary and secondary storage struc- 
tures in conventional database systems. In this sec- 
tion, we outline a variety of other applications that 
use the integrated query translation-optimization en- 
gine for queries and updates. 

6.1 Database Loading 

Existing DBMSs often provide special features to sup- 
port bulk loading of data. These facilities tend to be 
ad hoc and impose restrictions on the format of the 
imported data. The user must manually translate all 
imported data into files that match the primary stor- 
age structures and then load each one individually. If 
the imported data can be described as a psj-query on 
the logical schema, initial loading can be viewed as a 
special case of updates. The imported data files can 
be viewed as inefficient gmap structures. The “real” 
gmaps used to store the data permanently are loaded 
by running their queries against the imported files. 

6.2 Accelerating Complex Structure Updates 

Although path indices are useful for accelerating com- 
mon queries, they are expensive to maintain. Previous 
proposals for the maintenance of complex access paths 
suggest using ad hoc techniques to accelerate expen- 
sive updates, such as internal links between instances 
in nested indices and field replication [23, 21 or links 
from instances to their collections [16, 181. We can 
achieve the same effect by using simple gmaps along 
the paths that need to be traversed during the up- 
date propagation. Gmaps placed at points where ex- 
pensive joins are performed act like join accelerators 
in the same way that internal links accelerate joins. 
These gmaps can accelerate not only updates to the 
structure concerned, but any other query or update 
to which they apply. If usage patterns change so that 
the cost of maintaining the accelerators exceeds their 
benefit, we can simply remove them. In the hardwired 
approach, we will always be stuck with the same ma- 
chinery. Furthermore, our approach allows the user to 
place join accelerators at specific points. It is much 
harder to achieve this flexibility with the hardwired 
approach. 

6.3 Other applications 

Using update queries to describe the schema of the 
modified data facilitates the handling of complex ob- 
jects. A complex object insertion can be described 
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as an update gmap whose query describes the com- 
plex object schema. If the inserted object consists of 
several tuples of data, the tuples are not inserted one 
at a time. Instead, the query plan treats the update 
gmap like any other physical data container and per- 
forms bulk operations. The result of the query plan 
execution is a set of tuples to be inserted into each 
physical storage structure. Any available bulk-loading 
interfaces to these structures can be exploited. 

In Section 6.1, we discussed how to create a thin 
“veneer” over imported text files to make them behave 
like gmaps. This idea can be extended to support het- 
erogeneous storage organizations by hiding their dif- 
ferences under the gmap abstraction. As long as the 
data contents of all these distinct sources can be de- 
scribed by psj-queries over a single logical schema, the 
query optimizer can translate logical queries into ac- 
cess plans over them. This strategy is similar to the 
ADMS handling of database interoperability [19, 201. 

Another application of gmaps is to support cached 
data in transient main-memory data structures such as 
arrays or hash tables. If the contents of the structure 
can be described by a psj-query on the logical schema, 
it can be treated like a gmap. 

7 Implement at ion 

To verify the applicability and practicality of our al- 
gorithms and obtain a feeling for their performance, 
we built a prototype implementation of our system 
on top of SHORE [4]. SHORE is an object-oriented 
database system under construction at the University 
of Wisconsin. Logical schema definitions are parsed 
and stored in a logical-schema catalog. Physical stor- 
age structures are created from gmap definitions. The 
parsed gmap query is stored persistently in a second 
physical-schema catalog. The data organization, keys, 
and record format are also determined by the gmap 
definition. The gmap is created and populated by pro- 
cessing an update request. 

We built a query processor using the algorithms in 
Sections 3 and 4. For all the examples presented in this 
paper, query translation added only a negligible over- 
head to the overall query cost. The query processor 
also contains hooks to support the update processor, 
as outlined in Section 5. The update processor accepts 
three lists of gmaps: update gmaps, target gmaps to 
be updated, and database gmaps that may be used 
to supply data for the updates. For simple updates, 
the first list contains just one gmap and the target 
and database lists each contain all of the gmaps in the 
physical-schema catalog. Other combinations of argu- 
ments support other applications described in Section 
6. 

We designed a simple common interface for storage 
structures, including operations to store and retrieve 
data and to make cost inquiries. We implemented this 
interface on top of existing SHORE facilities (B+-trees 
and heaps) as well as Unix files (for importing and 
exporting data) and main-memory structures (for up- 

date gmaps). To support the use of the algorithm in 
Section 5 for deletions, we also modified the SHORE 
B+-tree facility to maintain a count of duplicate inser- 
tions rather than rejecting them. 

8 A Performance Demonstration 

In this section, we describe experiments with a test 
database that illustrate that for a plausible mix of 
queries and updates, our techniques can provide better 
performance than either relational or object-oriented 
databases. As we observed in Section 2, gmaps can be 
used to describe the relations and the primary and sec- 
ondary indices of relational databases, as well as the 
class extents, object sets, and path indices of object- 
oriented databases. Thus, we are able to use our sys- 
tem to simulate two “conventional” configurations, one 
based on a normalized relational design and one follow- 
ing a typical object-oriented database design. All of 
our results are reported in terms of counts of I/O oper- 
ations, since absolute performance in “real” databases 
would be affected by a variety of implementation- 
dependent features that are beyond our control. 

In the experiment, we used an extended version of 
the university database presented earlier. We popu- 
lated one department with actual data describing the 
Computer Sciences Department at the University of 
Wisconsin-Madison and generated synthetic data for 
99 more departments to create a database of reason- 
able size. While the actual database used for the ex- 
periment includes additional fields, for simplicity we 
only discuss the logical schema as presented in Fig- 
ure 1. A few interesting parameters of the data are 
presented in Table 2. 

Table 2: Parameters of the database 

Faculty Students courses TAs Depts 
Instances 5000 50000 10000 2000 100 
KB/inst 1 0.8 1 0.85 3 

8.1 The Workload 

The workload contains multiple runs of eight queries 
and five updates. The actual number of runs was de- 
termined by various factors. We tried to maintain a 
balance between expensive queries and simple ones, 
hold the update load at about a third of the total 
load for most of the configurations, and make the rel- 
ative frequencies as realistic for a university environ- 
ment as possible. Tables 3 and 4 briefly describe each 
query and update. For example, the workload con- 
tains three runs of query QS. The last two columns 
contain the total cost attributed to all runs of query 
QS when it is processed on two different configurations 
of the database: a relational one (Section 8.2) and an 
object-oriented one (Section 8.3). Note that each up- 
date inserts a single pair of values. For example, when 
a student adds a course (U3), the inserted pair would 
be (student id, course id). 
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Table 3: Queries in the workload 
INolMixlGiven 
I 

l Find IRe11001 
Ql 10 faculty name field, dept 30 30 
Q2 10 faculty name courses taught 30 30 
Q3 10 student name year, dept, advisor 50 50 
Q4 10 TA name support level, course 40 40 
Q5 3 faculty area students advised 57 57 
Q6 3 student name courses, teachers 39 42 
0.7 2 course name students attendine 84 80 

id81 1 ldent name Icourses taught 1 641 591 

Table 4: Updates in the workload 
I Nol Mixl Undate Descriution IRellOOl 

To obtain I/O counts, we instantiated queries and 
updates using random values for the input parameters 
and the inserted pairs. Then, we used the actual plans 
obtained by our system to perform the query or update 
and recorded the size of the result as well as the sizes 
of all intermediate results used in joins. From these 
data, we calculated I/O counts using a simple model 
of the B+-tree and the heap storage structures based 
on the assumptions that the page size is 8KB and that 
4MB are used for buffers. The analytical approach was 
chosen in favor of measuring actual response times, 
since the underlying SHORE system was still under 
development. 

8.2 Relational Design 

The relational configuration follows a textbook trans- 
lation of the logical schema into relations. We added 
secondary indices as needed, to improve joins and se- 
lections, and we clustered favorably the records in the 
heaps. The total database size for this configuration 
is 74MB. Running the full workload on that database 
costs 613 page I/OS, 64% caused by queries and 36% 
by updates. The exact contribution of all runs of each 
query and update in the total cost is shown in Tables 
3 and 4. 

8.3 Object-Oriented Design 

The physical schema for the object-oriented configura- 
tion includes one extent file for each internal domain 
in the logical schema. The relationship attends is 
stored both as part of student objects and as part of 
the course objects, i.e., students contain pointers to 
all courses they attend, and courses contain pointers 
to the students attending them. This duplication al- 
lows efficient execution of queries QS and Q7. Each 
other relationship is stored as part of the domain clos- 
est to the edge label in Figure 1. The total database 
size for this configuration is 75MB. Running the full 

workload on the database costs 583 page I/OS, 68% 
caused by queries and 32% by updates. The last col- 
umn of Tables 3 and 4 show the costs for all runs of . 
each query and update. 

8.4 Object-Oriented Design with Complex 
Access Paths 

The previous two configurations do not use any com- 
plex access path such as path indices1 or field replica- 
tion. In this section, we consider the case of an object- 
oriented DBMS equipped with such access paths. For 
the given workload, field replication can be applied in 
three cases, as shown in Table 5. Each row of the ta- 
ble describes what is replicated, the additional space 
required in MB, the affected queries (no update is af- 
fected by these additions), and the savings that can be 
attributed to the replication for all runs of the affected 
query. 

Table 5: Conventional complex path techniques 

“Faculty.workin.name” Faculty 0.2a 

+I 
“Student enrolled name” Student 2 

The rest of the physical schema is identical to 
the earlier object-oriented schema. The data replica- 
tion adds 2MB of additional space bringing the total 
database size to 77MB. The new database offers a 7% 
performance gain over the previous one. It is interest- 
ing to note that the technique of field replication as 
originally described [ll, 231 cannot be applied to any 
other field in our database because it is restricted to 
edges from classes to single-valued attributes. Similar 
restrictions also prohibit any useful application of path 
indices in our database. The restrictions are there for a 
reason: the implementation of these access paths and 
the task of propagating updates would be far more 
complex without them. 

8.5 A Configuration with Gmaps 

In this section, we consider our approach, i.e., a 
database fully equipped with gmaps. Instead of de- 
signing a physical organization from scratch, we show 
how we can make incremental changes on the object- 
oriented physical schema to improve its performance. 

First, we replicate attributes over paths that tra- 
verse relationships both in the inverse direction (from 
attribute to class), and in the forward direction (from 
class to attribute). Such a replication brings cost sav- 
ings in queries Q3 and Q7. Then, we consider repli- 
cating attributes over paths that are not functional by 
associating multiple values with each instance of the 
root of the path. Such replication is very beneficial for 
our workload since it can eliminate the most expensive 

‘We use the term path indices collectively for what Bertino 
and Kim [2] call path indices, nested indices, and multi-indices. 
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step of the medium and large queries Q5, Q7, and QS. 
The exact cost savings and overheads that are caused 
by each additional access path are shown in Table 6. 

Table 6: Applications of gmaps 

These modifications offer a significant total gain of 
204 I/OS, or 35% over the cost of the initial object- 
oriented approach. If we add to these savings those of 
the previous section (with gmaps simulating field repli- 
cation) the total gain climbs to 42%. It is interesting 
to note the low update overhead of all these replica- 
tions. The reason is that we replicated attributes, 
like student .name, that are static, i.e., do not get 
updated. As a result, the only updates that are af- 
fected are those on the intermediate links of the path. 
The attends relationship, for example, is the most 
volatile relationship in the schema, so we expect that 
the slightest update overhead would overwhelm any 
savings gained. However, since the attends relation- 
ship is bi-directional (stored as an attribute of both 
the student and the course), both extents need to be 
updated anyway. Reading and writing one more at- 
tribute, student .name, does not add any overhead. 

The space overhead is also low in all but one case: 
replicating the student names in each course more than 
doubles the size of the course extent. Whether or 
not the space-time trade-off is worthwhile depends on 
the application. The total increase in space usage is 
15.4MB, bringing the total database size to 92.4MB. 
Table 7 compares the query cost, update cost, and 

Table 7: Summary costs 

disk usage of all four approaches. For the gmap con- 
figuration, we show the results both with and without 
replication of student names, always including the en- 
hancements of the configuration with complex paths. 

9 Related Work 

Most existing database systems do not provide true 
data independence, since every construct of the logi- 
cal schema corresponds directly to a primary physical 
structure. For example, every relation in most rela- 
tional systems, every class extent in extent-based 00 

systems (e.g., Orion [15] and Zoo [lo]) and every collec- 
tion in collection-based 00 systems (e.g., Gemstone 
[16], Extra/Excess [5], and ObjectStore [18]) is stored 
in a separate file. The main flexibility at the physical 
level comes from secondary access paths to these files. 

Several extensions of both the primary physical 
structure and the secondary access paths have been 
recently proposed in the literature that allow storing 
together data from more than one logical construct. In 
Sections 2 and 8, we discussed path indices [2, 14, 161, 
join indices [26], and field replication [ll, 231, noting 
their restrictions and comparing their performance to 
our scheme. Another approach to decomposing the 
database is hierarchical join indices [27], a generaliza- 
tion of join indices that allows one to build an index 
over identity surrogates that populate trees of the logi- 
cal schema graph. Access Support Relations (ASR) of- 
fer a different generalization of join indices [12], which 
allows the definition of indices over the instances of 
arbitrary chains of logical schema nodes. This scheme 
offers a higher degree of flexibility and allows the def- 
inition of indices that store both complete and partial 
instances of each chain. Except for the last feature, 
the contents of both hierarchical join indices and ASRs 
can be represented as psj-queries, and can thus be de- 
fined as a gmap. However, since gmap queries do not 
support unions, they cannot represent outer joins, and 
therefore cannot store incomplete instances of chains. 

With respect to the translation algorithm, our work 
most closely resembles research at the University of 
Waterloo on materialized views [3, 281. Our algorithm 
supports a more restricted query language, but uses 
information about inclusion and functional dependen- 
cies as well as “topological” information implicit in a 
graph-based logical schema. This information allows 
us to identify solutions that would be missed by the 
more general algorithm. Section 5 contains an exam- 
ple of a solution that can only be found when inclusion 
dependencies are taken into account. Similarly, our 
handling of functional and multivalued dependencies 
is more general than that of the algorithm of Yang and 
Larson, which simply uses the primary key information 
for each relation. Unless all non-trivial dependencies 
are generated by superkeys (i.e., unless all relations 
are in at least 4th Normal Form), our scheme will find 
more solutions. 

With respect to the integration with the rest of 
the query optimizer, most earlier efforts use a two- 
stage approach, where the queries are first translated 
into queries over physical structures., and the resulting 
queries are then optimized one-by-one by a conven- 
tional optimizer. In addition to the work on material- 
ized views [3, 281, such efforts include research whose 
goal was not physical data independence but simply 
processing efficiency. Examples include research on 
reusing common subexpressions within a query [9] or 
between multiple queries [22], reusing results of previ- 
ous queries [8], and using integrity constraints for se- 
mantic query optimization [S]. Kemper and Moerkotte 
[13] opt for a unified approach of translation and op- 
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timization for the ASRs by extending a rule based op- 
timizer to include appropriate rewriting rules. Our 
approach of enhancing a conventional optimizer with 
the necessary translation steps takes advantage of full 
cost information available to the optimizer to perform 
early pruning of inferior solutions, while keeping the 
overall optimization cost low. 

10 Conclusions 
We have presented a new approach to physical schema 
design that uses a declarative language to describe the 
contents of storage structures. Carefully restricting 
the language allows efficient algorithms to translate 
queries over the logical schema into access plans using 
the physical data structures. We have shown how to 
integrate the query translation algorithm into a con- 
ventional query optimizer. A simple modification of 
the query translation algorithm supports propagation 
of updates to the database. A prototype system that 
incorporates the major aspects of this approach is cur- 
rently operational. We have used it to demonstrate in 
a realistic environment how our approach can achieve 
significant performance gains over more conventional 
ones. 

In the future, we plan to extend the translation al- 
gorithm to take into account additional integrity con- 
straints and also permit the translation of queries into 
unions of other queries. We would also like to incorpo- 
rate storage structures that offer a hierarchical inter- 
face, and study the feasibility of using the query op- 
timizer to exploit in-memory data storage structures. 
Finally, the increase of available choices in the phys- 
ical schema design puts the burden on the database 
administrator to make the correct choices. We need to 
design tools that guide the administrator in choosing 
the appropriate combination of storage structures. 
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