
On Index Selection Schemes for Nested Object Hierarchies

Sudarshan S. Chawathe’, Ming-Syan Chen and Philip S. Yu

Computer Science Department*
Stanford University

Stanford, CA 94305

Abstract
In this paper we address the problem of devising a set of
indexes for a nested object hierarchy in an object-oriented
database to improve the overall system performance. It is
noted that the effects of two indexes could be entangled
in that the inclusion of one index might affect the benefit
achievable by the other index. Such a phenomenon is
termed index interaction. Clearly, the effect of index
interaction needs to be taken into consideration when a
set of indexes is being built. The index selection problem
is first formulated and four index selection algorithms are
evaluated via simulation. The effects of different objective
functions, which guide the search in the index selection
algorithms, are also investigated. It is shown by simulation
results that the greedy algorithm which is devised in light
of the phenomenon of index interaction performs fairly well
in most cases. Sensitivity analysis for various database
parameters is conducted.

Index Term: Object-oriented databases, indexing,
nested object hierarchy, index interaction.

1 Introduction

Due to the increasing demand for sophisticated data
modelling capabilities by many database applications,
object-oriented databases (OODB’s) have recently at-
tracted a significant amount of attention in academic
and industrial communities [5, 11, 141. As opposed to
the query-based (typically SQL) approach used by re-
lational databases,’ an OODB renders efficient access
to pointer-based data structures by permitting direct
manipulation of data via program control. However,

Pcrmirrion to copy without fee all or part of thir material ir
granted provided that the copier arc not made OF dirtributcd for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and itr date appear, and notice ir
given that copying ir by pcrmirrion of the Very Large Data Bare
Endowment. To copy other&e, or to rvpublirh, nquirvr a fee
and/or special permirrion from the Endowment.

Proceedings of the 20th VLDB Conference, Santiago,
Chile, 1894

IBM Thomas J. Watson Research Center
P.O.Box 704

Yorktown Heights, NY 10598

it has been noted in [M] that declarative data access
is desirable in OODBs since it not only offers ease of
programming but also allows the database system to
improve the query processing for faster query execu-
tion.

Unlike the query optimisation in a relational database
which has well-developed theoretical results, query pro
cessing in an OODB is still in its infancy [lo]. The
problem is complicated due to the lack of universally-
accepted data models and query languages [15]. In
a “flat” (or first normal form, in relational database
terminology) data model, an attribute can only be a
primitive data type. However, in object-oriented data
models the value of an attribute of one object may be a
set of values or another object. This nesting of objects
through attributes leads to the nested object hieramhy
[8], also known aa the &ass-attribute hieTarchy [3]. An
example of a nested object hierarchy is extracted from
[3] and shown in Figure 1, where an attribute of any
class can be viewed as a nested attribute of the root
class. Note that the nested object hierarchy is intrin-
sically different from the class hierarchy. In such an
OODB environment, how to utiliee the pointer-based
data structures to devise proper indexing schemes and
retrieve objects efficiently has been identified as a very
important issue to further improve the system perfor-
mance [ll, 121.

Several indexing schemes have been proposed for
nested attribute queries [l, 2, 3, 8, 9, 131. Three in-
dex organisations for use in the evaluation of a query
in an OODB are introduced in [3]. As an extension to
[3], performance of path indexes for queries containing
several predicates is evaluated in [2]. In [9] query pro-
cessing in an OODB system is improved by maintaining
separate structures to redundantly store objects which
are frequently traversed by database queries. A hy-
brid indexing technique, called a generalised index, is

331

SW V8hlcleDrhmtraln

Figure 1: An example for nested object hierarchy.

proposed in [8] to support class hierarchy with complex
and primitive objects. Indexing in Gemstone OODB ia
described in [13]. In [6], an optimal index configuration
for a path is achieved by splitting the path into sub-
path8 and optimally indexing each subpath. It is noted
that most of these prior Works only considered indexing
along a single path in a nested object hierarchy. How-
ever, a8 will be shown later, the effects of two indexes
could be entangled. Specifically, the inclueion of one
index could a&t the benefit achievable by the other
index. Such a phenomenon is termed index interaction
in this paper. A detailed example for index interaction
is given in Section 3.3. Clearly, the effect of index inter-
action need8 to be taken into consideration when a ad
of indexes is being built. Note that while affecting the
indexing in a single query path, the index interaction
phenomenon has a larger performance impact when the
global effect of indexing multiple query path8 is con-
sidered. However, whereas building an index along a
single path ha8 been extensively studied, the problem
of building a set of indexes for a group of queries while
considering index interaction, despite its importance,
ha8 not been fully explored. This is mainly due to the
inherent difficulty of this problem, since when many in-
dexes are evaluated as a whole, the interaction among
indexes significantly complicates the method to evalu-
ate their costs and benefit8 globally. Note that as the
granularity of data object8 in an OODB becomes finer
and the database schema tends to be more sophisti-
cated nowadays, it ha8 become increasingly important
to explore the effect of building a eet of indexee.

Consequently, we address in thie paper the problem
of devising a set of indexes for a neated object

hierarchy with its given profile’ 80 a8 to improve
the overall performance for executing a group of
queries. Performance is measured using the metric8
of retrieval, update and storage costs. Specifically, we
shah focus on a common type of query, called the nested
attribute query: Select all object8 of a certain class
that have a nested attribute equal to a given value.
An example of such a path query is given in Figure
2. The index selection problem is first formulated
and some important parameters are identified. Then,
four index selection algorithm8 for queries in a nested
object hierarchy are presented, i.e., a naive acheme, an
algorithm based on profit ordering, a greedy algorithm,
and then a more sophisticated look-ahead one. The
naive scheme essentially correspond8 to a random
inclusion of indexes, which is used for a comparison
purpose. The algorithm on profit ordering sort8
the profits of individual indexes in descending order
firat, and then include8 as many indexes as possible
according to the sorted index liet, subject to the storage
constraint. The greedy algorithm is similar to the one
on profit ordering in that it also includes as many
indexes as possible baaed on a sorted index list, but
different from the latter in that the sorted index list
used by the greedy algorithm is revised after every
inclusion of an index, thus taking index interaction into
consideration. The look-ahead algorithm goes beyond
the greedy algorithm by looking ahead to evaluate
the combined benefit of several indexes before adding
one into the index list. In addition, three objective
functions, which guide the search in the index selection
algorithms, are alao propoeed. A detailed description
of index selection algorithm8 and objective function8
can be found in Section 3.

To conduct the performance study, an OODB system
simulator is coded in C++ to model the detail of
data retrieval8 under different indexed environments.
The four index selection algorithm8 and the three
objective functions are comparatively evaluated. To
conduct a sensitivity analysis for various parameters,
different values for the storage constraint for indexing,
update and storage cost& and attribute selectivity
are employed in the simulation and their effects are
evaluated. It is shown by simulation result8 that
deepite their maintenance cost, indexes provide a net
benefit over a wide range of database parameters. It is

‘The profile of a nerted object hierarchy include8 the
cardimdity of each clam, the relectivity of each attribute, a
certain amount of 8torage available for indexing, and some other
information on acce88 phtterm.

332

Figure 2: An example path query: select vehicle
where manufacturer division location = “city name.”

observed that the greedy algorithm devised performs
fairly well in most cases, which in fact agrees with
the very nature of index interaction we identify in this
study. We not only conduct an extensive performance
study for index selection algorithms, but also explore
the effect of index interaction to deal with this global
optimiration problem.

This paper is organised as follows. Notation,
cost model and assumptions are given in Section 2.
Index selection algorithms and objective functions are
described in Section 3. Performance study is conducted
in Section 4. This paper concludes with Section 5.

2 Notation and Assumptions
As pointed out in [3], an important element common
to an OODB is the view that the value of an attribute
of an object can be an object or a set of objects. A
class C(1) consists of a number of attributes, and the
value of an attribute A of an object belonging to class
C(1) can be an object or a set of objects belonging to
another class C(2). The class C(2) is called the domain
of attribute A of class C(1). Certainly, C(2) may in
turn consist of a number of attributes whose domains
are other classes. A path in the nested object hierarchy
is represented as ‘c(l).A(l).A(2)A(n), where C(1)
is the class whose objects will be retrieved based on
the nested attribute lookup. A(1) is an attribute of
C(1) and A(i) is an attribute of the class associated
with C(l).A(l).A(S). . ..A(i - l), for i = 2.. .n. We
denote the length of the path by n. For example,
in the path “vehicle.manufacturer.division.location,”
C(1) is “vehicle,” A(1) is “manufacturer,” A(2) is
Udivision,” and A(3) is “location.” A nested index
on the path vehicle.manufacturer.division.location will

associate a distinct value of the location attribute,
say “Ann Arbor”, with a list of object identifiers of
vehicles, each of which has its manufacturer that is an
instance of the company class whose division’s location
is ‘Ann Arbor.”

The OODB system considered in this study has
read-only queries and also retrievals/updates using
program controlled traversals. Note that queries can be
quite complex, involving many attributes and Boolean
combinations of lookup conditions. As mentioned
earlier, we focus on a common type of query, called the
nested &tribute query: “Retrieve all objects of class
C(1) such that C(l).A(l).A(2).....A(n) = v,” where
v is a given value of interest. This has been referred
to as the implicit join operation in the literature [2].
Note that despite their simplicity, such queries form
building blocks for more complex queries, and it is
thus very important to implement them efficiently.
Updates by traversals are modeled by considering the
update costs for those attributes on the path indexes
being maintained. Insertions and deletions are modeled
similarly. For example, with an index from Division to
Vehicle in Figure 2 the following query can be answered
efficiently.

Ql: select vehicle where manufacturer division
location = “Ann Arbor”

The formulas we use in this study for the retrieval,
update and storage costs of an index are basically the
same as those for nested indezes on a B-tree impk
mentation described in [3], with some modifications.
Readers interested in the derivation of these formulas
are referred to [3]. The difference between the formulas
in [3] and those in this study lies in the estimation of
the average number of instances of class C(1) that have
the same value for the nested attribute A(n). (Such a
number is denoted by Ic(1, n).) Note that it is assumed
in [3] that there are no partial instantiations of C(l),
and the formula of h(1, n) is thus simplified in [3]‘.
Such an assumption is not made in this paper. As a
result, we employ the original formula for &(l, n) with-
out resorting to any simplification. Such an assump
tion relaxation in fact allows us to take into account the
object reference topologies of different database popu-

lThe formulak(l,n) = n;=, k(i), for the average number of
instances of clau C(1) that have the same value for the nested
attribute A(n), ir aimpl%ed to IC(l)I/IA(n)l in [3] under the
awumption that there are PO partial imtantiatiom of C(1). Note
that k(i) is the average number of instances of class C(i) that
have the same value for the nested attribute A(i).

333

lations in our simulation study, thus leading to more
general results. The database and system parameters
used in the cost formulas for the indexes are summa-
rized in Table 6 of Section 4 where the performance
study is conducted.

Same as other related studies, some assumptions are
made to facilitate our discussion. First,, all attributes
are bidirectional. Explicitly, for each attribute link
from class C(i) to class C(j), there is a Teueme
reference from C(i) to C(i). Also, all key values have
the same length, which in turn means that all nonleaf
index records have the same length in all indexes.
The values of an attribute are uniformly distributed
among the objects of the class which defines that
attribute [7]. In addition, each attribute is equally
likely to be updated and all attributes have the same
selectivity. Note that these assumptions are mainly
made to ease our implementation as well as to simplify
our discussion, and are believed not to affect the
relative merits of the index selection methods we shall
evaluate in this paper.

3 Index Selection Schemes

In this section we describe the objective functions and
the index selection algorithms that we shall evaluate.
The index selection problem can be viewed as a search
problem where the search space consists of all possible
subsets of indexes. All the indexing schemes select
indexes to optimize the objective function employed,
subject to the constraint that the indexes included
cannot consume more than a specified amount of
storage. Three objective functions will be presented
in Section 3.1, four index selection algorithms are
described in Section 3.2, and illustrative examples are
given in Section 3.3.

3.1 Objective Functions

We shall evaluate three different objective functions
which guide the search for candidate indexes. The
first objective function is baaed on profit., the second
is based on return ratio, and the third is a combined
version of the first two. These objective functions are
applied to individual indexes to decide which index
should be included into the set of selected indexes.

l The objective function on “profit,” denoted by P(e),
is based on the difference between the correspond-
ing reduction in the retrieval cost provided by the
index and the associated increase in the update
cost. In other words, P(I) corresponds to the ra

duction in the global dynamic cost due to the in-
clusion of index I, where the dynamic cost mealis
the sum of the retrieval cost of database queries and
the update cost for indexes in response to database
updates. Note that because of the phenomenon of
index interaction this value varies as the selected
index set changes. Specifically, we have,

P(I) = retreivaLbenefit(1) - update-cost(I).

The objective function on “return ratio,” denoted
by R(s), is baaed on the ratio of P(e) to the storage
cost of the index. It can be seen that by taking
into account the amount of storage required by an
index, this function will prefer small indexes than
large ones.

R(I) = P(I)
storage-cost(l) ’

In order not to penalize large indexes unnecessarily
when there is a lot of storage available, a mixed
objective function ikf(.), which according to the
amount of storage available, adaptively selects its
formula to evaluate indexes, is also employed in our
study. A&(.) is formulated as below.

M(I) =
P(I) if ..~:~2~;;~Eage ’ cr,
R(I) otherwise,

where 0 < a! 5 1 denotes a threshold for the
ratio of the remaining storage to the original
available storage. M(1) is initially the same as
P(I). However, when such a ratio on the remaining
storage is less than cy, meaning that there is no large
amount of storage available, M(I) will be used,
instead of P(I), as the objective function for index
selection such that storage can henceforth be used
more prudently.

3.2 Four Index Selection Algorithms

3.2.1 Naive algorithm (NV)

As mentioned earlier, the naive algorithm (NV) is used
for a comparison purpose. NV tries to include as
many indexes with positive profits as possible, until
the amount of available storage is exhausted.

3.2.2 Algorithm on profit ordering (PO)

Clearly, indexes included could be more profitable than
those selected by NV if some provisions are made
during the index selection. The algorithm on profit
ordering (PO) will first statically evaluate the objective

334

function values for all the indexes and sort indexes in
descending order of these values. PO then selects from
the sorted index list as many indexes as allowed by the
available storage in a topdown manner.

3.2.3 Greedy algorithm (GD)

This greedy algorithm (GD) used is essentially a greedy
search applied to the index-subset search space. GD
also sorts indexes according to their objective function
values first. Then, at each step, GD adds the most
profitable index to the current set of selected indexes,
and revises the objective function values for all the
remaining indexes, thereby taking the index interaction
into account. GD can be outlined below, where S is the
set of selected indexes and A is the set of remaining
indexes.

Algorithm GD: Greedy index selection
Input: Set A of all indexes and the objective

function F.
Output: Set of indexes to be built.
s := 0;
repeat (

Evaluate the objective function values for all
indexes in A - S;

Let I be the index with the maximal objective
function value;

if F(I) 2 0 return S;
s= SU(I};
A = A - {I};

3

3.2.4 Lookahead algorithm (LH)

Note that GD may choose a locally optimal solution
and overlook those that are globally better. To remedy
this, lookahead schemes, which explore more search
space before making a decision on determining which
index to be included into the selected set, are employed.
Basically, by considering the effect of adding more than
one index to the curient set of indexes, the index chosen
for inclusion can be thought of as the one that could
lead to a better solution a few steps later. Based on
this concept of looking ahead, we can obtain a family
of search algorithms, denoted by LH(m,n), where tn
and n are two parameters associated with the search
complexity. Let S be the current set of selected indexes.
In each step, LH(m,n) considers the effect of adding
to S an index subset which has a cardinality less than
or equal to n and is made up of the m best indexes.
After the effects of all such index subsets are evaluated,

the most beneficial index subset is identified. Then,
within this most beneficial index subset, the most
beneficial index is added into S. Suppose we have four
indexes to be considered, and (il, ir, i*, is) denotes
the descending order of the objective function values of
these four indexes. LH(3,2) will consider the benefits
of the six index sets: (iz), {il), (id), (ia, il), (iz, i43,
and (ir, i43. Suppose {iz, il) is the most beneficial one
among them. Then the more beneficial one of il and il
will be included into S. Formally, LH can be described
as follows, where the objective function F could be P
(on profit), R (on return ratio), or M (mixed) described
in Section 3.1.

Algorithm LH: Lookahead(m,n) index selection
Input: Set A of all indexes and the objective

function F.
Output: Set of indexes to be built.
s := 0;
repeat (

Evaluate the objective function values for all
indexes in A - S;

Sort indexes in A - S according to the
descending order of their objective function
values;

Let L be the first m indexes in the sorted
index list;

Identify all subsets with cardinalities no greater
than n from L.
Let T be the set of all such subsets.

Let IS be the subset with the maximal
objective function value among T;

if F(IS) 2 0 return S;
Let I be the index with the maximal objective

function value among those in IS.
S=SU(l);
A = A - (13;

3

3.3 Illustrative Examples

To illustrate the algorithms we described thus far,
consider the schema graph in Figure 3 where queries
q1 and qa have occurrence frequencies 0.8 and 0.2,
respectively. Suppose that the four indexes (ir, is,
is, ia) shown in Figure 3 are the four most beneficial
ones to consider for these queries. Let the maximal
storage available for indexing be 12. Also, assume that
the update cost, storage cost and retrieval benefit of
each index are those given in Table 1. Note that the
retrieval benefit is the reduction in the retrieval cost

335

iz ,/---.,
i, i,

*.-.-.-. .-/ /@ --.-.--.

b y/-l 9

4

\\
4

-.-.-._

Figure 3: Schema graph with queries and indexes.

Index Update Cost Storage Retrieval Benefit
il 0.25 6 3
i2 0.2 4 2
i3 0.1 2 2
i4 0.2 5 2

Table 1: The costs, storage overheads and retrieval
benefits for the four example indexes.

for a query utilising that index. It can be seen that
query ql benefits from neither ir nor ia. Based on this
profile, we shall show the operations of NV, PO, GD
and LH(4,2), assuming the objective function on profit
is employed.

Algorithm NV: First, consider algorithm NV. NV
tries to include as many of these indexes as possible.
Since the storage for indexing is limited to 12, it
follows from Table 1 that the final selection by NV
is (ir, ia,is}. It can then be seen that q1 saves three
units of retrieval cost by using ir (i.e., from 7 steps that
are required without using indexes to 4 steps by using
ii), and qs saves two units of retrieval cost by using ia.
The reduction in retrieval cost of the queries provided
by this index set is 0.8 x 3 + 0.2 x 2 = 2.8. Note that is
is redundant since q1 can be evaluated with a lower cost
by ir, and that ir and ia cannot be used together to
evaluate ql. Also, qs only benefita from ia. The update
cost of the selected index set is 0.25 + 0.2 + 0.1 = 0.55.
The overall reduction in the cost resulted from using
(ir, il, is} is thus 2.8 - 0.65 = 2.25.

By sorting the indexes according to the descending
order of their objective function values, PO obtains
(il, i4, i2, i3). It then selects as many indexes as
possible from the top of the sorted list. Subject to
the available storage 12, it can be verified that the
final selection by PO is (ir, ia). The reduction in
retrieval cost of the queries provided by this index set
is 0.8 x 3 + 0.2 x 2 = 2.8. The update cost of the
selected index set is 0.25 + 0.2 = 0.45, and the overall
reduction in the cost resulted from using (ir, id) is thus
2.8 - 0.45 = 2.35.

Algorithm GD: In the first iteration of the greedy
algorithm the retrieval benefits and the objective
function values for these indexes are the same as those
shown in Table 1. Index ir has the maximal value for
the objective function and is thus added to the set of
selected indexes. Hence, we have S = (ir), and the
retrieval benefits of the remaining indexes are revised
accordingly. The objective function values after the
inclusion of ir are shown in Table 3. Note that selecting
il reduces the benefits of il and G, showing the effect
of index interaction. Index is now has the maximal
objective function value and is thus added to S in the
second iteration, leading to S = (ii, is).

Algorithm PO: Next, consider the index selection In the third iteration, the benefits for the remaining
algorithm. based on profit ordering. Table 2 indicates indexes are again m-evaluated and there is actually no

Retrieval Benefit Objective Function

Table 2: The original objective function value for each
index.

Index Retrieval Benefit Objective Function
i2 0.8 x 0 + 0.2 x 0 = 0 0 - 0.2 = -0.2
i3 0.8 x 0 + 0.2 x 2 = 0.4 0.4 - 0.1 = 0.3
i 4 0.8 x 0 + 0.2 x 2 = 0.4 0.4 - 0.2 = 0.2

Table 3: The objective function values for indexes after
ir is selected by GD.

the retrieval benefit and the objective function value
(i.e., retrieval benefit - update cost) for the four indexes
prior to any index selection.

336

change for the objective function values of il and il.

Note that at this point, set S uses 6 + 2 = 8 units
of storage. Since the maximal storage allowed is 12,
there are only 4 units of storage available. Because
i4 is the only beneficial index remaining and needs
a storage of 5, GD terminates at this stage, giving
S = {ii, is}. The update cost of the selected index
set is 0.25 + 0.1 = 0.35. The reduction in the query
retrieval cost is 0.8 x 3 + 0.2 x 2 = 2.8. The overall
reduction in the cost resulted from using (ir, is} is thus
2.8 - 0.35 = 2.45, larger than those resulted from NV
and PO.

Algorithm LH: Now, consider the application of
LH(4,2) to this problem. In contrast to considering
individual indexes as GD, LH(4,2) takes into consider-
ation all subsets of the set (ir, is, is, id) of cardinality
less than or equal to two. The four singleton sets cor-
responding to the four indexes will have their costs and
benefits identical to those shown in Table 1. In addi-
tion, the following subsets of indexes are evaluated in
Table 4.

The set (is, i4) has the largest objective function
value among all the candidate sets, and is therefore
selected as the set IS. After i2 and i4 in IS being
evaluated, id is included into S for its better perfor-
mance. It is worth mentioning that the lookahead has
led us to select id first, which has a smaller individual
objective function value than il. Given S = (id}, we
obtain the results in Table 5 by revising the be&t
numbers. Next, it is obtained from Table 5 that the
set (is, is} is the one with mtimal objective function
value to be chosen as IS, which in turn leads to the
inclusion of ia. Thus, S = (is, id},

Following the above procedure, is will be added
into S in the next iteration, completing the search
by LH(4,2). The final solution obtained by LH(4,2)
is S = {&,is,&}. This set has an update cost of
0.2 + 0.2 + 0.1 = 0.5, and the overall reduction in the
query evaluation cost is 0.8 x (2 + 2) + 0.2 x 2 = 3.6,
meaning that the net benefit of utilising {ia, ia, ir} is
3.6 - 0.5 = 3.1, larger than those resulted by the
previous schemes. As a matter of fact, it can be verified
that the solution by LH(4,2) is the optimal one for the
given database profile.

4 Performance Study

We conduct a performance study for index selection
algorithms in this section. The methodology employed

Figure 4: Schema graph used in the simulation.

is described in Section 4.1. Experiments and their
results are shown in Section 4.2. Different values for
the amount of storage for indexing, the update and
storage costs, and the attribute selectivity are used
in the simulation to conduct a sensitivity analysis for
these parameters.

4.1 Methodology

An OODB system simulator is built in C++ to model
the detail of data retrievals under different indexed
environments. The input to the simulator consists
of a schema graph and a number of logical database
parameters. Using these database parameters, the
database population for our simulation is randomly
generated. However, since we believe OODB schema
graphs have certain important properties that random
graphs do not possess in general, the schema graph
is not generated randomly. Instead, we employ in
our simulation the schema graph shown in Figure 4,
which is essentially based on the one reported in the
007 benchmark [4], except two modifications. First,
for ease of exposition, we do not consider the effect
of subtyping which is in fact orthogonal to the main
theme of this study. Hence, the superclass of two
classes in the benchmark in [4] is represented as a
separate class, denoted by an extra node (node 9)
in Figure 4. Second, we have included an additional
attribute, represented by the arc between node 1 and
node 6 in Figure 4, in order to have large cycles in the
schema graph, thus providing more general results.

Note that each edge actually represents a pair of at-
tributes, i.e., the forward attribute and the correspond-
ing reverse reference. A path query is specified by a
path in the schema graph. Since the schema graph

337

Index set Retrieval Benefit Objective Function
(il, is} 0.8 x 3 + 0.2 x 2 = 2.8 2.48 - (0.25 + = 1.95
(il, i3)

0.2)
0.8 x 3 + 0.2 x 2 = 2.8 2.48 - (0.25 + = 2.45 0.1)

{il, i4) 0.8 x 3 + 0.2 x 2 = 2.8 2.48 - (0.2 + 0.25) = 2.35
{ia, i3) 0.8 x 2 + 0.2 x 2 = 2 2 - (0.2 + 0.1) = 1.7
{hid} 0.8 x (2 + 2) + 0.2 x 2 = 3.6 3.6 - (0.2 + 0.2) = 3.2
(h,i4} 0.8x2+0.2x(2+2)=2.4 2.4-(0.2+0.1)=2.1

Table 4: The objective function values of index subsets of cardinality no greater than two.

Index set Retrieval Benefit Objective Function
fill 0.8 x 1 + 0.2 x 0 = 0.8 0.8 - 0.25 = 0.55 I
(iSI 0.8 x 2 + 0.2 x 0 = 1.6 1.6 - 0.2 = 1.4
{ia) 0.8 x 0 + 0.2 x 2 = 0.4 0.4 - 0.1 = 0.3

(il,ia} 0.8 x 2 + 0.2 x 0 = 1.6
{il,i3) 0.8x1+0.2x2=1.2

1.6 1.2-(0.25+0.1{=0.85’ - 0.25+ 0.2 = 1.15

is, i3 } 0.8 x 2 + 0.2 x 2 = 2.0 2.0 - (0.2 + 0.1) = 1.7

Table 5: The objective function values for LH(4,2) after i4 is included.

is actually a multigraph, there can be many differ-
ent queries with the same starting and ending nodes.
Queries are randomly generated as follows. First, the
query length is randomly determined between the pa-
rameters C&en,+, and QZen,,,,,. Then, the starting
node of the query is randomly selected from those in
the schema graph. A path is thus formed by a ran-
dom walk in the schema graph, which starts from the
starting node and moves via a random outgoing arc
to its neighboring node in each step until the path
length is reached. The number of queries generated
is equal to a predetermined number, NumQueries.
Each query is assigned a frequency for its occurrence
in such a way that the sum of all the frequencies is
equal to one. Node cardinalities and sires are deter-
mined randomly from the ranges [Car&n, Curd,&
and [Size,i, , Size,,,], respectively. Similarly, arc up
date frequencies art randomly assigned such that their
sum is equal to one. Each attribute is assigned with
a selectivity, k, which corresponds to the ratio of the
number of different attribute values to the cardinality
of the target class. Simulation parameters and their
typical values are given in Table 6.

4.2 Experiments and Their Results

Four algorithms, NV, PO, GD and LH, will be
comparatively studied in Section 4.2.1. Three objective
functions are evaluated in Section 4.2.2. The effect

Figure 5: Performance of four index selection schemes.

of update frequency and storage overhead is studied
in Section 4.2.3. Due to the nature of random
generation, two simulation runs based on the same set
of parameters might yield different results. Therefore,
for the same set of data, several simulation runs are
performed, and the final statistics are obtained by
averaging those from all runs.

338

Parameter Typical Value Meaning
NumQueries 10 number of aueries nenerated

..___~
512 ’

1 node size range (bytes)
:n ratio of retrieval queries to updates

valFrac 0.8 attribute selectivitv
arcInsFrac 0.3
arcDelF’rac 0.2
arcUpdFrac 0.5
OIDL 8
kl 8
kll 2
rl 2

I

fraction of arc modifications that are insertions
fraction of arc modifications that are deletions
fraction of arc modifications that are updates
length of object identifier
key length
size of key-length field
size of record-lennth field

nuid
P

2 size of “number if OIDs” field
4096 Datze size

PP
d

(4
I 146

1 page pointer size
I order of a nonleaf node

fanout 1 218 average fanout from a nonleaf B-tree node

Table 6: Values of some database and system parameters used in the simulation.

4.2.1 Comparison for index selection
algorithms

Four algorithms, NV, PO, GD and LH, are compara-
tively studied. Recall that NV corresponds to a random
inclusion of indexes, and PO selects indexes according
to their individual profits without dynamically revising
those profits. In contrast, CD revises the profits of all
the remaining indexes after every inclusion of an index,
thus taking index interaction into account. At the cost
of higher search complexity, LH evaluates the profits
of indexes several steps ahead before their potential in-
clusion into the index lit. Performance of four index
selection schemes using the objective on profit3 is given
in Figure 5, where the ordinate is the ratio of the dy-
namic cost with indexing to that without indexing and
the abscissa denotes the amount of storage overhead
allowed4. Recall that the dynamic cost is the sum of
the retrieval cost of database queries and the update
cost for indexes in response to database updates.

It can be seen from Figure 5 that the dynamic
cost required by an indexed system is in general
decreasing as the amount of storage available for

‘Rem&s from using the other two objective functions do not
provide additional insights, and are thus omitted here.

‘For clarity, the amount of storage overhead allowed indicated
in the abscissa is the one nommlisedby the original database rise.

indexing increases, meaning that more improvement
on the dynamic cost can be achieved by allowing a
larger storage for indexing. Failing to consider the
effect of index interaction, NV and PO are clearly
outperformed by GD and LH. In this experiment LH
is implemented as LH(IO,50), a very extensive search,
which we believe will mostly lead to the optimal
solution. However, it can be seen that even with the
high search order of LH, GD performs fairly close to
LB, except when the amount of storage for indexing is
small, showing that GD is very practically useful and
the necessity of employing a high order search needs
further justification. More insights into the reason for
the good performance of GD will be provided in Section
4.3. Nevertheless, when the amount of storage for
indexing is small, meaning that only very few indexes
could be built, LH outperforms GD for its prudent
selection for indexes.

4.2.2 Comparison for the objective functions

Three objective functions, which guide the search for
profitable indexes, are evaluated. The effects of the
three objective functions are shown in Figure 6, where
GD is used and the parameter Q for M(s) is chosen to
be 0.5 for its good performance. It can be seen from
Figure 6 that the mixed objective function M(a), which
based on the amount of storage available, adaptively

339

Eadonpmlll Bwdonmtum Mbmd
P R M

.---II..
Alporlmm GD

Figure 6: Comparison of three objective functions. Figure 8: Storage overhead by indexing schemes.

Figure 7: The effect of indexing for different storage
overheads.

selects its formula to evaluate indexes, emerges as the
winner. It is interesting to see that P(.) performs
better than R(.), except when the amount of storage is
small. Clearly, when the amount of storage is limited, it
is important to consider the storage overhead to select
indexes. On the other hand, when there is an adequate
amount of storage available it is better to consider
the profit than the return ratio for index selection.
Note that for the same amount of available storage for
indexing, P(.) usually includes a few indexes with large
profits, whereas R(.) tends to include more indexes,
each of which, though consuming a fewer amount of
storage, is less profitable. The more indexes, the more
severe the effect of index interaction could be, thus
accounting for the results in Figure 6.

.:<;::I

~~~ 

--.---.~.~.l.-.--.-.-- 
011 

10% 
I I I 1 , 

20% 

Max. Storage GLeacl AllovZ 
noslmg9Iti 

4.2.3 Effect of update frequency and storage 
overhead 

Indexing in the nested object hierarchy could be costly 
in terms of the storage required and the update cost 
incurred. In this experiment we study the effect of 
varying the amount of storage allowed and also that of 
varying the retrieval-update ratio on the performance 
of indexing. Basically, indexing will facilitate query 
retrieval, but incurs an additional update cost in 
response to database updates. The relative dynamic 
cost for different storage overheads allowed for indexing 
is shown in Figure 7, where different retrieval-update 
ratios are investigated under GD with the objective 
function M(q). It is again observed that increasing 
the amount of storage allowed increases the benefit of 
indexing in general. However, this benefit is essentially 
bound by the update rate. For a retrieval-update ratio 
of 32, which corresponds to an environment with a high 
update rate, it can be seen from Figure 7 that having 
more storage does not yield any improvement since the 
solution index set is bound by the update cost. As 
the retrieval-update ratio increases, meaning that the 
relative update ratio decreases, the solutions tend to 
become more storage-bound, and having more storage 
thus yields better solutions. 

Figure 8 shows the actual storage used by the 
selected indexes. It can be seen that having fewer 
updates leads to a better solution up to the point where 
the solution becomes storage-bound. As a matter of 
fact, it can be verified from Figure 8 that as the 
amount of storage increases and also as the update 
rate increases, the ratio of the actual storage used to 
the maximal storage allowed (i.e., the slope of a curve) 

340 



decreases. 

5 Conclusion 

We studied in this paper the problem of devising 
a set of indexes for a nested object hierarchy to 
improve the overall system performance. Performance 
was measured in terms of the retrieval, update and 
storage costs of an indexed system. The index 
selection problem was first formulated and four index 
selection algorithms were evaluated via simulation. 
The effects of objective functions, which guide the 
search for candidate indexes, were also investigated. 
It has been shown by simulation results that GD 
which is devised in light of the phenomenon of index 
interaction performs fairly well in most cases, which in 
fact agrees with the very nature of index interaction 
we identified in this study. Sensitivity analysis for 
various parameters was conducted. We not only 
conducted an extensive performance study for index 
selection algorithms, but also explored the effect of 
index interaction to deal with this global optimization 
problem. 

References 

[l] E. Bertino. Optimiaation of Queries Using Nested 
Indices. In International Conference on E&ending 
Database Technology, March 1990. 

[2] E. Bertino and C. Guglielmina. Optimization 
of Object-Oriented Queries Using Path Indices. 
In Second International Workshop on Research 
Issues on Data Engineering: Bansaction and 
Query Processing, pages 140-149, February 1992. 

[3] E. Bertino and W. Kim. Indexing Techniques for 
Queries on Nested Objects. IEEE fiansactions on 
KnowZedge and Data Engineering, 1(2):196-214, 
June 1989. 

[4] M. J. Carey, D. J. Dewitt, and J. F. Naughton. 
The 007 Benchmark. Proceedings of ACM 
SIGMOD, May, 1993. 

[5] R. G. G. Cattell. Object Data Management: 
object-oriented and e&ended relational database 
systems. Addison-Wesley Publishing Company, 
Inc., 1991. 

[6] S. Choenni, E. Bertino, H. M. Blanken, and 
T. Chang. On The Selection of Optimal Index 
Configuration in 00 Databases. Proceedings 
of the 10th International Conference on Data 
Engineering, pages 526-537, February 1994. 

[7] S. Christodoulakis. Implication of Certain 
Assumptions in Database Performance Evalua- 
tion. ACM nansactions on Database Systems, 
9(2):163-186, June 1984. 

[8] F. Fotouhi, T.-G. Lee, and W. I. Grosky. The 
Generalized Index Model for Object-Oriented 
Database Systems. In 10th Annual International 
Phoeniz Conference on Computers and Commu- 
nication, pages 302-308, 1991. 

[9] A. Kemper and G. Moerkotte. Access Support 
Relations: An Indexing Method for Object Bases. 
Information Systems, 17(2):117-145, 1992. 

[lo] K.-C. Kim, W. Kim, and A. Dale. Cyclic Query 
Processing in Object-Oriented Databases. In 
IEEE International Conference on Data Engineer- 
ing, pages 564-571, 1989. 

[ll] W. Kim. Inlroduction to Objected-Oriented 
Databases. The MIT Press, Cambridge, Mas- 
sachusetts, 1990. 

[12] C. C. Low, H. Lu, and B. C. Ooi. Efficient Ac- 
cess Methods in Deductive and Object-Oriented 
Databases. In International Conference on De- 
ductive and Object-Oriented Databases, 1991. 

[13] D. Maier and J. Stein. Indexing in an Object- 
Oriented DBMS. In PTOC. Int. Workshop on 
OODB Systems, pages 171-182, 1986. 

[14] D. Maier, J. Stein, A. Otis, and A. Purdy. Devel- 
opment of an Object-Oriented DBMS. In OOP- 
SLA, conference on Object-oriented Programming 
Systems, Languages and Applications, pages 472- 
482, July 1986. 

[15] M. T. 05s~. Query Processing Issues in Object- 
Oriented Database Systems-Preliminary Ideas. 
In 1991 Symposium on Applied Computing, pages 
312-324, 1991. 

[16] J. D. Ullman. A Comparison Between Deductive 
and Object-Oriented Database Systems. In In- 
ternational Conference on Deductive and Object- 
Oriented Databases, December 1991. 

341 


