A Top-Down Approach For Two Level Serializability

M. OUZZANI
Institut d'Informatique - USTHB

El Alia B.P. No. 32 Bab Ezzouar
ALGER ALGERIE

Fax: (213-2) 75-82-01

ALGER

Abstract
Concurrency control has received
considerable attention in
multidatabase systems because of
their such as
heterogeneity
Particulary, various concurrency
control protocols have been
developped in the litterature. In this
paper, we present a protocol that
guarantees the two
serializability criterion and built up
according to the
approach.

characteristics

and autonomy.

level

top-down

1. Introduction

A multidatabase is a collection of pre-existing
databases. Each database is controlled by a particular
local DBMS (LDBMS) that is automomous and
eventually distributed. The system permitting the logic
integration of this DBMS is called multidatabase system

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 20th VLDB Conference
Santiago, Chile, 1994

M.A.ATROUN
Institut d'Informatique - USTHB
El Alia B.P. No. 32 Bab Ezzouar

Fax: (213-2) 75-82-01

N.L.BELKHODJA
Institut d'Informatique - USTHB

El Alia B.P. No. 32 Bab Ezzouar
ALGER ALGERIE

Fax: (213-2) 75-82-01

ALGERIE

(MDBS). The LDBMSs are heterogeneous in the sense
that they can use different data models, query languages,
transaction management strategies, ...etc. The local
autonomy of the LDBMSs constitutes the principle
characteristic of these environments, it can be viewed
under different aspects [SL90]: Design autonomy,
execution autonomy, communication autonomy and
association autonomy.

Two types of transactions are present in the
multidatabase, the local transactions derived from pre-
existing local applications, and global tramsactions
derived from the new global applications that span data
located in several LDBMSs. Hence, the global
transaction manager (GTM) should guarantee the
correct execution of global transactions, even in the
presence of local transactions of which the GTM is not
aware. This task becomes complicated because of the
autonomy requirements of LDBMSs. These LDBMSs are
not willing to co-operate with the GTM for correction of
global executions.

The transaction management in multidatabases is
considered as hierarchical [ED90]. At each site there is
a local DBMS that manages transactions executed in the
local site. On top of these DBMSs, there is a - global
DBMS (or GTM) that manages global transactions
accessing than LDBMS

more onec

226

and that "co-ordinates” local executions to ensure correct
execution of elobal transactions.

An execution of global transactions is considered as
correct with respect to a correctness criterion. The GTM

should synchronise these transactions so that this
criterion is ensured. Several criteria have been proposed
in multidatabase environments, they derived all from the
classical criterion of serializability. These various
criteria can be distinguished by the level of correction
they permit and by the restrictions they impose. The first
criterion used is the global serializability. This criterion
is [GM91, MRKS91, DE89] difficult to maintain and
proposed algorithms result in a poor performances. It is,
hence necessary to adopt a weaker correctness criterion.
To achieve this, we have first the notion of quasi
serializability [DEK91, DE89]. Based on the integrity
constraints, another weaker criterion has been proposed
in [MRKS91], the two level serializability. This
criterion defines a greater set of correct schedules than
the first two criteria and has also the advantages of being
simple, allowing a high degree of concurrency, and not
violating the local autonomy.

By its hierarchical nature, the concurrency control in
multidatabases can be characterised by two different
approaches: the top-down approach and the bottom-up
approach. The former has better advantages for
multidatabases. In this paper, we propose a new protocol
of concurrency control that maintains the two level
serializability with respect to a top-down approach,

The remainder of the paper is organised as follows. In
section 2, we define a model for multidatabases and

some concepts related to these environments. A two level

serializability correctness criterion is described in section
3. Section 4 treats the global concurrency control and the
top-down approach. We describe in section 5 our new
protocol. In section 6, we compare the protocol with
another proposed in [MRKS91]. We conclude by
enumerating perspectives for our work.

227

2. Preliminary Definitions

Global Transactions

IGTMI

D3MS;

F‘Lﬁ‘MSi
Lo |

Sitel ite n
Fig 2.1 The MDBS Model

Two types of transaction are supported in the
multidatabase:

o Local transactions, which access data managed by
only a single DBMS. These transactions are executed by
the LDBMS, outside of MDBS control.

+ Global transactions, which are those executed under
MDBS control. A global transaction consist of a number
of subtransactions, each of which is an ordinary local
transaction from the point of view of the LDBMS where
it is executed.

The GTM is the part of MDBS responsible for global
transactions management. The various servers constitute
the interface MDBS/LDBMS. Global subtransactions are
submitted by GTM to these servers and then to the
LDBMS. We have then two level of control, the GTM
and the LDBMSs, this leads to the definition of two types
of schedules.

Definition 2.1:

A local schedule at site sk, denoted Sk, is a sequence of
local and global transactions operations resulting from
their execution at site sk. O

Definition 2.2;
A global schedule S is a partial ordered set of all
operations belonging to local and global transactions

such that, for any local site sk, a projection of S on the
set of global and local transactions executing at site sk is
the local schedule Sk. In fact, S={8,, Sy, ..., Sy}. Q

In general, two types of integrity constraints may be
present in the multidatabase:

¢ Global integrity constraints: they may span more
than one site.

o Local integrity constraints: they can involve only
items at a single site.

We can also partition the data of a LDBMS in two
layers:

o Global data: the set of data involved in a global
integrity constraint.

o Local data: the set of data not involved in a global
integrity constraint.

It is clear that the local transactions may not modify
global data, otherwise the global consistency may be not
ensured, since the pre-existing local transactions are not
aware about these new global integrity constraints.

3. Two Level Serializability

A correctness criterion precise the conditions under
which a concurrent execution of transactions is
considered correct. The level of correction can change
from one criterion to anbther, but in general, it should
preserve the database consistency and guarantees that the
transactions "see" consistent data. Consistency is defined
by a set of integrity constraints that links data items, The
correction concerns, in multidatabases, the global
schedule but also the local schedules. The global
serializability criterion has been first used [GRS91
,BS88, AGMS87, Sug87]. The inherent problems of this
criterion have lead to new criterion that are adapted for
multidatabases. These criterion derive all from the
notion of serializability. They can be distinguished by the
level of correction and also by the imposed restrictions.
First, we have the notion of quasi-serializability
[DEK91, DE89]. Later on, another criterion based on

integrity constraints have been proposed. Their objective
is to guarantee that accepted global schedules are
strongly correct.

Definition 3.1 [MRKS92):
An execution is strongly correct if the final state
produced is consistent and the state read by each
transaction is consistent. O

T snultidatalhacss trma avtescmran Anass Aane ha ool
A1 MIUIUUALaGUAdLY, LWU VAULVILILD Vaded Lall W WLIDIUUIW

i) No global integrity constraints. The local DBMSs are
independent.

ii) There exist some integrity constraints that link data
located in different LDBMSs.

In the former case, it suffice to ensure that a schedule is
strongly correct if all local schedules are serializable. We
obtain then the local serializability criterion.

Definition 3.2 [BGMS92]:
A global schedule S is locally serializable (LSR) if for
every site s;, the local schedule is serializable. O

However this criterion is applicable only if [BGMS92]
the transactions (global and local) are Local Database
Preserving (LDP). A transaction is LDP if it preserves
consistency of a given site regardless of the state of other

sites.

For the second case, it is presented in [MRBKS91] the
Two Level Serializability criterion. It is defined as

follows.

Definition 3.3 [MRKS91]:

A global schedule S is Two Level Serializable (2LSR) if
all local schedules are serializable and the projection of S
on global transactions is serializable. O

This criterion has been designed to reach the two
following requirements, 1) it should be easily
implementable, and 2) schedules satisfying the criterion
must preserve database consistency. The preservation of
consistency depend on the nature of transactions and
integrity constraints. The ease of implementation is

228

provided by the fact that the control can be made over
global transactions regardiess of local
Nevertheless, the strong correction is guaranieed only
under some conditions that depend on permitted accesses

for global and local transactions.

Oones.

In [BGMS92], the authors require that transactions are
LDP and Global Database Preserving (GDP). A
transaction is GDP if it preserves global constraints
regardless of the state of local data items. It may be
possible to relax these requirements in some particular
cases.

To simplify the work required to guarantee the 2LSR, we

can state a theorem for 2LSR similarly to those for global -

serializability [BS88].

Theorem 3.1:
Let S be a global Schedule. S is 2LSR, iff:

i) the local schedulgs are serializable, and

ii) the projections of local schedules on the
global subtransactions define the same relative
serialization order for global transactions. Q

The concurrency controller must ensure that the global
transactions are serialized, among them solely, in the
same order in all sites. We see that the 2LSR criterion
flexible control than global
serilizability. In this paper, we develop a new protocol of
global concurrency control for 2LSR that adopt a top-
down approach,

offers us a more

4. The Top-Down Approach For
Concurrency Control

Concurrency control is an activity that co-ordinates
concurrently executed transactions so that they interfere
with each other in a correct manner. The autonomy
property complicates this task in multidatabase
environments. Indeed, the synchronisation of global
transactions, that are also under control of various
autonomous LDBMSs, cannot be done in co-ordination

with this LDBMSs. The concurrency control in

229

multidatabases is hierarchical, we can classify the
adopted strategies into two categories: bottom-up and

top-down.

PRy Vg memcmanm e Lo comclmeaa T Y o) W (< DR Tghy. N Py

In boitom-up approach, the various LDBMSs schedule
independently the global transactions. It is the GTM
responsibility to detect and resolve the incompatibilities
among local orders. This approach suffers from high rate
of abortion of global transactions, due to
incompatibilities among local executions. In contrary, in
the top-down approach, the GTM determines a global
serialization order of global transactions before
submitting them to local sites. This order is then
enforced at the local sites with, possibly, different
techniques. The comparison of the two approaches
[ED90] points out the advantages of top~down approach
over bottom-up one. The advantages are: free global
deadlock, no abortion and weak load of communication.
However, the bottom-up approach is best in terms of

concurrency.

A detailed study of top-down approach and its
applications for global serializability and quasi
serializability are presented in [ED90]. We resume here
the principal aspects of this study. There are two basic
steps in a top-down approach:

1) determining an order (O) of global
transactions at global level, and

2) enforcing this order at local level.

The problem is with enforcing an order at the LDBMSs.
The solution of this problem depends on the concurrency
control strategies LDBMSs used and also on the
autonomy requirements of LDBMSs.

Enforcing a global pre-specified order can be achieved
by two different ways:
eEnforcing the order by controlling the
submission of global transactions.
oEnforcing the order by controlling the
execution of global transactions.

The second technique is applicable only if the LDBMS
relax their autonomy requirements. The figure 4.1
depicts a protocol that controls the submission of global
subtransactions at local level by use of a server process.
Gj(O) is the set of global subtransactions that are
submitted with a pre-specified order O.

(Gi,0) |
sle
SERVER|

N

Gi(0)

N

LDBMSi

Ei(0)
Fig 4.1 Enforcing a pre-specified order O by a server

process.

The server process can be considered as a function that
has global subtransactions and a pre-specified order as
inputs and that delivers a submission policy as output.
This policy is constituted of two components:

1) The order of global subtransactions
submission

2) The conditions under which each global
subtransaction is submitted. This conditions depend on
the correction criterion and the local concurrency

controllers.

5. The Protocol

The study of top-down approach and its useful
advantages for global concurrency control in
multidatabases lead us to design a new protocol of
concurrency control that adopts this approach.To ensure
the 2LSR, it only needs to guarantee that the projection
of a global schedule on the global tramsactions is
serializable. To do so, we must ensure that the
projections of all schedules on global subtransactions are

compatible. The pre-specified order is a serialization

order relative to only global transactions. We assume
complete autonomy of LDBMSs, the pre-specified order
is then enforced, if necessary, by controlling the
submission of global transactions. We determine now the
condition under which a global subtransaction is
submitted. This condition depends on two aspects:

1) The knowledge of serialization orders of a
global subtransactions in a local schedule.

2) When is necessary to enforce a serialization
order among two global subtransaction.

5.1. Knowledge Of Serialization Orders

This knowledge depends closcly on types of local
schedules. We consider then the case when this type is

known and the contrary case.

5.1.1. Unknown Local Schedules

We assume only that the local schedules are serializable.
It is then possible to use the idea of ticket developed in
[GRS91]. The ticket is a particular object in a LDBMS
that gives the serialization order of each global
transaction that update it. In our case, we use the fact
that the execution order of conflicting operations over a
given object is compatible with their serialization order.
Therefore, at each site, a particular object "SR" is
inserted. The object "SR" is, of course, undere the
LDBMS controls. This object is updated every time a
global subtransaction accesses the site, and an
acknowledgement is send to the server. The submission

strategy in this case is then:

230

Order: The global subtransactions are submitted to
the LDBMS in an order compatible with the pre-

specified order. O

Condition1: A global subtransaction will not be
submitted to the LDBMS until all previous ones have

updated the object "SR". O

5.1.2. Particular Local Schedules

In this case, we assume that the type of local schedules is
known. We describe, in subsequent, the submission
strategies for two types of schedules that are useful in

multidatabase systems.

a) Serialization Points And Dependencies

A serialization point (or serialization event) is a
particular action that determines the serialization order
of a transaction in a schedule. In 2PL method [BHG87),
the action of obtaining the last lock can be considered as
a serialization point. For TO [BHG], this particular
action corresponds to timestamping.

Definition 5.1 [BGMS92):
Let S be a serializable schedule consisting of transactions
{T1,T2,...,Tn}. We say that schedule S is a scrialization
point-schedule if and only if there exist a mapping sp
from transactions to actions such that:

1. sp(T}) = ok where ok € Tj; and

2. If sp(Tj)occurs before sp(Tj) in S, then there
exist a serial schedule equivalent to S in which T;j
precedes Tj. O

The GTM should know for each LDBMS, the action that
corresponds to the serialization point. This point can be
determined by inserting a communication statement
[ED90] in the global subtransaction, or directly if the
operations are submitted separately.

231

The submission strategy is then:

Order: The global subtransactions are submitted to
the LDBMS in an order compatible with the pre-

specified order. O

Condition2: A global subtransaction will not be
submitted to the LDBMS until all previous ones have

reached their serialization points. O

b)Rigorous schedules

Definition 5.2 [BGMS92]: We say that schedule S
is rigorous if, for all pairs of transactions Tj and Tj , if Tj
is in indirect conflict with Tj in S and Tj commits in S,
then Tj does not execute its conflicting operation before

Tj commits. Q

In this type of schedule, the serialization order
corresponds to the validation order. The submission

strategy is then:

Order: The global subtransactions are submitted to
the LDBMS in an order compatible with the pre-

specified order, O

Condition3: A global subtransaction will not be
submitted to the LDBMS until all previous ones have
been committed. O

In the three cases, the subtransactions are submitted
sequentially when a particalar event occurs. A
subtransaction waits that this event occurs for all
subtransactions that precéde it in the pre-specified order.
This waiting can be relaxed if we known the set of data
items that each subtransaction accesses.

For the second point, two transactions Gj and G; conflict
if there exist two operations 0jeGj and 0jeGj such that
oj conflicts with oj, ie. these two operations access the
same data item and one of them is a write operation. The
conflict involve a dependency among the two
transactions and hence a serialization order. Those two
transactionsared;pendentiftheyacoessinoonﬂictthe
same data. We say that two transactions Gj and Gj access
in conflict a common data at a site Sk if:

O1(G)) n Oe(Gj) # D or

Oe(Gi) N Oe(Gj) = D or

O¢e(Gi) N O1(Gj) » D

Or(T) and OwW(T) are respectively the set of object that
are accessed by T in read and write mode respectively.

We note the precedent relation:
Dk(G) N D(Gj) = D where
Di(Gi) = O1(Gj) v Oe(Gj) ate site Sk
K et %
is the conflict intersection.

The protocol should then enforce a serialization order
over global subtransactions that access common data in
conflict. It should then guarantee that the dependency
among two global subtransactions at a given site do not
jeopardize the pre-specified order.

In contrary, if two transactions Gj and G;j do not access
in conflict any common data directly (i.e., DK(Gi) ¢
Dx(Gj) =), or indirectly (i.e., there is no global
subtransactions G1,G2,...Gl such that Di(G) ng
Dk(GD) #2 , DK(G1) ¢ Dk(G2) #3, ..., DK(GD ¢
Di(Gj) #(), then this two transactions can be submitted
in an arbitrary order even if the pre-specified order
stipulate for example, that Gj must precede Gj. Indeed,
there cannot exist any dependency among Gj and Gj
(directly or indirectly). The two transactions can be
scheduled in an arbitrary manner, any order can exist
among them from the point of view of the GTM that
ensure the 2LSR. Although the pre-specified order is a
total order over global transactions, the order enforced

over global subtransactions at each site is partial, it links
only global subtransactions that have common data in
conflict.

S5.2. The Submission Method

We can now state the submission strategy for our
protocol.
Order: The global subtransactions are submitted to the
LDBMS in an order compatible with the pre-specified
order. C
Condition: A global subtransaction will not be submitted
to the LDBMS until all previous ones that access
common data in conflict, have reached their serialization
points.
In order to implement the condition, we need a data
structure that can interpret two aspects of the
submission:

i) the pre-specified order, and

ii) the existence of common data in conflict
among global transactions.

The latter aspect can be interpreted by a binary relation
that links two transactions with conflict common data.
For the former aspect, it suffices to orient this relation.
We define then an oriented graph, called Oriented
Conflict Data Access Graph or OCDAG. This graph is
defined = for each site of multidatabase.
OCDAGK=(Gk,Vk), where Gk is the set of global
subtransactions executed at site Sk and Vi is the set of
edges such that Gj — G; iff Dx(Gj) n¢ Dk(Gj) # O et Gj
precedes Gj in the pre-specified order. For each node Gj ,
we associate the following attributes:

o Set of Access Data
o Status: Status of a global subtransaction at site Sk, it
has the following values:

Idle: Gj has not yet submitted to the LDBMS.

Before: Gj has been submitted but has not yet:

232

i) updated the object "SR", or
ii) reached their serialization point, or
iii) been committed.

After: Gj has:
i) updated the object "SR", or

ii) reached their serialization point, or

iii) been committed.

By use of OCDAG, we can reformulate the condition of
submission as follows:
Condition: A global subtransaction that arrives at a site
Sk or that waits in this site can be submitted if the global
subtransactions that precede it in OCDAG have the
status equal to After (i.c.. they have all reached their
serialization points).
Proof:
We should proof that a global execution E, obtained by
our strategy of submission, is 2LSR, i.e.:

i) Ey is serializable for each site Sk , 1<k<n.

ii) The projection of E on G is serializable.

The serializability of local executions is ensured by
assumption over the multidatabase. To proof that the
projection of E on global transactions is serializable, it
suffices to proof that the projections of Ex on Gk
(Ex/Gk) are serializable in a compatible order, in our
case this is the pre-specified order. We must then proof
that the serialization order of all Ex/Gk are compatible
with the pre-specified order O. This means that two
global subtransactions, Gj and Gj, at the same site Sk,
ordered by the pre-specified order O, by example G;j
<0Gij, cannot be submitted in a fashion to lead to a
dependency, directly or indirectly by solely interposed
global subtransactions, that is in contradiction with the
pre-specified order O.

Let be Gj and Gj two global subtransactions at site Sk
such that:

233

Gj <0 Gj, -

Gj arrives first at site Sk, and

Gj arrives after and G; has not yet submitted.
Three cases are then possible.

First case:

There is a path Cjj in OCDAGk that links Gj to Gj. An
inverse path cannot exist by construction since Gj <o G;j.
In order to submit G; it should that at least the global
subtransaction that directly precedes Gj in the path Cjj
has reached its serialization point. Hence, gradually
nearer and nearer in the path, Gj can be submitted if Gj
has been submitted and has reached its serialization
point. The induced dependency on local schedule cannot
be incompatible with the pre-specified order, we have

always Gj—...-Gj.

Second case:

There isn't a path in OCDAGg that links Gj to Gj, the
two global subtransactions have not common data in
conflict. Hence, it cannot exist a dependency among
them. In this case, Gj and Gj are not linked, they can be
submitted in an arbitrary order. Because the induced
dependency, on locale schedule, do not links Gj and G;,
it cannot jeopardise the compatibility of the projection of
local schedule on global subtransactions with the pre-
specified order.

Third case:
Let Gj be a third global subtransaction that arrives at site
Sk after G;. it follows necessarily Gj and Gj in the pre-
specified order, it cannot create a dependencies among
them, the only possible dependencies are:

Gj—...»G] and/or Gj—>...5G).

Algorithm:

At each site a server act as an interface between the
GTM and the LDBMS. This server must reply to two
events:

1) Reception of a global subtransaction from the
GTM.

2) Acknowledgement that a certain global
subtransaction has reached its serialization point.

The scheduler is then constituted from two procedures:
Procedure Arrival(Gj): it is called when a global
subtransaction G; arrives at the site.

Procedure Waking(spj): it is called when the scheduler
know that a global subtransaction Gj has reached its
serialization point. This procedure can wake up some
other global subtransactions that wait to be submitted by

the server.

Algorithm Scheduler,
When G; arrives at site Sk
Then

Arrival (Gj)
EndWhen
AND
When receive ack(sp;i)
Then

Waking(spj)
EndWhen
End

Procedure Arrival(Gj)
Create a node for Gj in OCDAGY;
Status(Gj)=idle;
For Gj in OCDAGk such that Dy(Gi)\:Dk(Gj}»2
Do
Insert (Gj—»Gi) in OCDAGk; /*the
sense of the edge interpret the pre-specified
order*/
EndDo
/*check to submit Gj*/
If (VGj in OCDAGK such that Gj—>Gj € OCDAG,
Status(Gj)=After)
Then
Status(G;)=Before:
Submit(Gj);
EndIf
End.

Procedure Waking(spj);
Status(Gj)=After;
/*check of waiting global subtransactions */
For Gj in OCDAG such that Gi—Gj € OCDAGK
Do
If (VG in OCDAGk such that Gj—-G;j €
OCDAGY, Status(Gj)=After)
Then
Status(Gj)=Before:
Submit(Gj);
EndIf
EndDo
End.

6. Performances

The proposed protocol has many advantages because it
adopts the top-down approach for global concurency
control. First the flexibility of the scheduler, the global
concurrency control is done at local site without global
co-ordination by use of the pre-specified order. In
addition, it has the following advantages:

No global deadlock.

No inter-sites communication.

No global transactions abortion due to global

concurrency control.

In order to point out the interest of the protocol, we
compare it with another one described in [MRKS91], we
call this latter 2PLG and our protocol TD2L. First, we
briefly describe 2PLG.

In the 2PLG protocol, the GTM maintains global locks
for global transactions. It ;hen ensures that schedules are
2LSR as follows:

1) global transactions follow the 2PL strategy while
obtaining and releasing global locks.

2) A global lock is held by a global transaction at least
until the completion of the operation, at the local site, for
which the lock was obtained.

234

We present now an informal comparative study based on
various aspects of performances [ED90, VW92]:
Concurrency
Giobai deadiock
Transaction abortion
Communication
Restrictions
Concurrency

The concurrency of a scheduler S, noted C(8), is defined
[ED90] as the set of schedules that can be generated by
this scheduler. In a multidatabase, a global schedule is
composed of several local schedules. Therefore, the
concurrency of the GTIM is determined by the
concurencies of local schedules. In general, the top-down
unable to provide the maximum
concurrency. Since the 2LSR order, the pre-specified
order, is determined at global level, only those local
schedules which are compatible with this order are

approach is

permitted.

For 2PLG protocol, a global transaction waits the release
of global locks on data that it will accede. Since the
global locks are managed by a 2PL strategy, a global
transaction cannot be submitted until all global
transactions that have lock a data that it needs, have
reached their global locking points. In TD2L protocol, a
global subtransaction waits that all global
subtransactions that have common data in conflict with
it, have reached their serialization points. The waiting is
finer than in 2PLG, since it concerns only the
subtransactions not the entire global transaction.

Global deadlock

In the top-down approach a global deadlock cannot
occur. The 2LSR order has been determined before the
submission of giobal transactions to local sites, the local
schedulers will serialize them in an order compatible
with the pre-specified one. A global subtransaction only
waits global subtransactions that precede it in the pre-

235

specified order. Since the 2PLG protocol manages the
global locks in a 2PL manner, a global deadlock is

possible.
Transaction Aborts

Global transactions cannot be aborted, in the TD2L
protocol, for the purposes of concurrency control. This is
because no global tramsaction is aborted due to the
inconsistency of local schedules. For 2PLG, global
transactions may be aborted due to a global deadlock.

Communication (

No inter-sites communication is necessary for global
concurrency control, except the sending of global
subtransactions with the pre-specified order. Again, this
is because the 2LSR order is pre-specified at global level.
Local schedules can reach an agreement without any
communication. The 2PLG protocol needs frequently
communication with the GTM and the various sites to
manage the global locks.

Restrictions

The 2PLG protocol make no assumptions on local
schedules. We need in contrary serialization point based
on local schedules. We should review our protocol in
general case.

7. Conclusion

in multidatabases is
hierarchical due to the local autonomy requirements.

The concurrency control

Two approaches are then possible to construct a protocol
of concurrency control: top-down approach and bottom-
up approach. The former have several useful advantages
for multidatabases: global
deadlock free, ...etc. in contrary, the latter is better in

simplicity of protocol,

terms of concurrency.

We have then designed a new protocol based on top-
down approach that ensure the two level serializability.
This protocol should secrialize global transactions

independently from local ones with respect to a pre-
specified order. This is done at each site over global
subtransactions by a server process. This process control
the submission of global subtransactions by imposing a
precedence constraints over only the global
subtransactions that can have a dependency relation
among them. These are those that access common data
in conflict. The submission is then based on serialization
points that give the serialization orders of transactions in
a local schedule.

The protocol presented in this paper constitutes only one
step to design a complete multidatabase transaction
manager, several other aspects can be shown as
perspectives. In our study, we have omitted to mention
the moment when a node of OCDAG is removed. In fact,
this will be done by the validation-recovery module. This
module should ensure atomicity and durability of global
transactions in presence of failures. Another perspective
is to extend the protocol to other type of schedules that
are not based on serialization points. Nevertheless, the
assumption over local schedules is not restrictive since
mostb commercial DBMS (e.g: 2PL) produce
serialization point based schedules. It is interesting to
note also that a top-down approach permits to use the
appropriate process server at each site , since the co-
ordiiiation among thié vanous servers 1§ done by the pre-

specified order.

References

[AGMS87] R.Alonso, H.Garcia-Molina, and K.Salem.
Concurrency control and recovery for global procedures
in federated database systems.

In IEEE Data Eng. Bulletin, pp. 5-11, September 1987.

(BGH87] P.Bernstein, V.Hadzilacos, and N.Goodman.
Concurrency Control and Recovery in Databases
Systems.

Addison-Wesley Publishing Co., 1987.

11

[BGMS92] Y .Breitbart, H.Garcia-Molina and

A Silberschatz.

Overview ot Multidatabase Transaction Management.
Dept. of Computer Science, Stanfors University, Report
N°. STAN-CS-92-1432, May 1992,

[BS88] Y.Breitbart and A.Silberschatz.

Multidatabase update issues.

In Proc. of ACM SIGMOD Intl. conf. on Management of
Data, June 1988.

(DE89] W.Du and A K Elmagarmid.

Quasi Serialisability: a Correctness Criterion for Global
Concurrency control in Interbase.

In Proc. of the 15th Intl. conf. on Very Large DataBases,
pp.347-355, Amesterdam 1989,

[DEK91] W.Du, A K.Elmagarmid and W.Kim.
Maintaining Quasi Serializability; in Multidatabase
System.

In Proc. of the 7th Intl. conf. on Data Eng. (IEEE),
pp-360-367, Japan 1991.

[ED90] A K.Elmagarmid and W.Du.

A Paradigm for Concurrency Control in Heterogeneous
Distributed Database Systems.

In Proc of the Sixth Intl. Conf. on Data Eng, pp.37-46,
1990.

[GM91] H.Garcia-Molina.

Global Consistency Considered Harmful for
Heterogeneous Database Systems.

In Proc. of 1st Intl. Workshop on Interoperability in
Multidatabase Systems (IMS91), Kyoto, Avril 91.

[GRS91] D.Geogakoupoulos, M.Rusinkiewicz, and
A.Sheth.

On Serializability of Multidatabase Transactions through
Forced Local Conflicts.

In Proc. of the 7th Intl. conf. on Data Eng, (IEEE),
pp.360-367, Japan 1991.

236

[MRBKS92] S.Mehrotra, R Rastogi, Y Breitbart,
H.F.Korth and A.Silberschatz.

The Concurrengv Control Problem in Multidatabases:
Characteristics and Solutions.

In Proc. of the 1992 ACM SIGMOD Intl. Conf. on
Management of Data, pp. 288-297, San Diego, CA,
1992,

[MRKS91] S Mehrotra, R Rastogi, H.F.Korth and

A Silberschatz.
Non-Serializable Executions in Hetergeeneous

Distributed Database Systems.

In Proc. of the 1st Intl. Conf. on Parallel and Distributed
Information Systems, Miami-Beach, FL, December
1991.

[Pu88] C.Pu.

Spperdatabases for composition of heterggeneous
databases.

In Proc. of the Intl Conf on Data Epg, po. 548-555.
February 1988.

{SL90] A.Sheth and J.Larson.

Federated Database Svstems for Mangeine Distributed.
Heterogeneous, and Autonomous Databases.

ACM Computing Surveys, Special Issue on
Heterogeneous Databases, Vol. 22, No. 3, pp. 183-236,
Sept. 1990.

{Sug87] K.Sugihara.
Concurrency control based on cycle detection.
In Proc. of the Intl. Conf. on Data Eng., pp. 267-274,
February 1987.

[VW92] J.Veijalainen and A Wolski.

Prepare and Commit Certification for Decentralized
Transaction Management in Rigorous Heterogeneous
Multidatabases.

In Proc. of the 8th Intl. Conf. on Data. Eng. Phoenix, pp.
470479, AZ 1992 |

237

