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Abstract 

Full-text information retrieval systems have tradi- 
tionally been designed for archival environments. 
They often provide little or no support for adding 
new documents to an existing document collec- 
tion, requiring instead that the entire collection be 
re-indexed. Modem applications, such as infor- 
mation filtering, operate in dynamic environments 
that require frequent additions to document collec- 
tions. We provide this ability using a traditional 
inverted file index built on top of a persistent ob- 
ject store. The data management facilities of the 
persistent object store are used to produce effi- 
cient incremental update of the inverted lists. We 
describe our system and present experimental re- 
sults showing superior.incremental indexing and 
competitive query processing performance. 

Keywords: full-text document retrieval, incre- 
mental indexing, persistent object store, perfor- 
mance 

1 Introduction 
Full-text information retrieval (IR) systems are well estab- 
lished tools for satisfying a user’s information need when 
the information base is a relatively static collection of doc- 
uments. However, modem information management sys- 
tems must be able to handle a steady influx of new informa- 

*This work is supported by the National Science Foundation Center 
for Intelligent Information Retrieval at the University of Massachusetts. 
Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct commercial 
advantage, the VLDB copyright notice and the title of the publication and 
its date appeas and notice is given that copying is by permission of the 
Very Large Data Base Endowment. To copy otherwise, or to republish, 
requires a fee and/or special permission from the Endowment. 

Proceedings of the 20th VLDB Conference 
Santiago, Chile, 1994 

tion. Applications such as information filtering and daily 
news feed services are constantly processing new docu- 
ments. If IR systems are to support such applications, they 
must be able to manage continually growing document col- 
lections. 

A prerequisite to supporting a growing document collec- 
tion is the ability to update the data structures used to index 
the collection. An indexing structure used by many IR sys- 
tems is the inverted file index [SM83, Fal85, HFRYL921. 
An inverted file index consists of a record, or inverted list, 
for each term that appears in the document collection. A 
term’s inverted list stores a document identifier and weight 
for every document in which the term appears. The weight 
might simply be the number of times the term appears in 
the document, or a more sophisticated measure of the sig- 
nificance of the term’s appearance in the document. Addi- 
tionally, the location of each occurrence of the term in the 
document may be stored in order to support queries based 
on the relative positions of terms within documents. 

When a batch of new documents is added to an existing 
document collection, a small number of the terms in the 
batch will be new to the collection, while the majority of 
the terms in the batch will already have inverted lists in the 
index. These lists must be updated by appending to them 
the term occurrences found in the new documents. This task 
is made difficult by the size characteristics of inverted lists 
and the techniques used to manage them in traditional IR 
systems. The inverted lists for a multi-gigabyte document 
collection will range in size from a few bytes to millions of 
bytes, and they are typically laid out contiguously in a flat 
inverted file with no gaps between the lists. 

Adding to inverted lists stored in such a fashion requires 
expensive relocation of growing lists and careful manage- 
ment of free-space in the inverted file. Rather than update 
existing inverted lists when adding new documents, many 
IR systems simply rebuild the inverted file by adding the 
new documents to the existing collection and indexing the 
entire collection from scratch. This technique is expensive 
in terms of time and disk space, resulting in update costs 
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proportional to the size of the total collection after the addi- 
tion. Instead, we would prefer the cost of the update to be 
proportional to the size of the new documents being added. 

The INQUERY full-text information retrieval sys- 
tem [TC91, CCH92] provides this desirable update per- 
formance using the Mneme persistent object store [Mos90] 
to manage its inverted file index [BCCM94]. The key to 
providing fast incremental indexing is i unique inverted file 
structure made possible by the data management facilities 
of the persistent object store. Inverted lists are allocated in 
fixed size objects with a finite range of sizes, limiting the 
number of relocations a growing list will experience. When 
an inverted list has exceeded the largest object size, addi- 
tional large objects are allocated and chained together in a 
linked list. Experimental results show that our system is 
able to provide superior incremental indexing performance 
in terms of both time and space, with only a small impact 
on query processing. 

In the next section we briefly describe the main archi- 
tectural features of INQUBRY and Mneme. In Section 3 
we discuss our inverted file structure in detail, including 
the motivation for the design. We present experimental re- 
sults in Section 4 comparing the performance of our system 
with traditional techniques. In Section 5 we discuss related 
work, and we offer concluding remarks in Section 6. Con- 
tributions of our work include a technique for supporting 
incremental update of inverted lists in full-text informa- 
tion retrieval systems, along with an empirical analysis of 
a working implementation. Also, we continue to demon- 
strate that data management facilities for IR systems need 
not be custom built to obtain superior performance. Rather, 
IR systems can be effectively supported using appropriate 
“‘off-the-shelf data management software. 

2 Architecture 
In this section we highlight some of the basic features 
of INQUERY and Mneme that are relevant to this work. 
Throughout the paper we will refer to the system as it is 
described here as the “old” version. 

2.1 INQUERY 

INQUERY is a probabilistic information retrieval system 
based upon a Bayesian inference network model [TC91, 
CCH92]. The power of the inference network model is the 
consistent formalism it provides for reasoning about evi- 
dence of differing types, allowing multiple retrieval models, 
document representations, and query representations to be 
combined simultaneously. Extensive testing has shown IN- 
QUERY to be one of the best IR systems, as measured by the 
standard IR metrics of recall and precision [Har94, TC921. 
INQUERY is fast, scales well to large document collections, 
and can be embedded in specialized applications. 

In INQUBRY, document retrieval is accomplished by 
combining evidence from the document collection with ev- 

idence from the query to produce a ranking of the documents 
in the collection. The evidence for a document collection 
is pre-computed and stored as the weights and locations in 
an inverted file index. During retrieval, the inverted list for 
each term in the query is accessed and the evidence in the 
lists is accumulated and combined as dictated by the opera- 
tors in the query. The inverted list for a term is obtained by 
looking up the term in the term dictionary. The term dic- 
tionary is built as a hash table with open-chaining conflict 
resolution. A term’s entry in the dictionary contains col- 
lection statistics for the term and a reference to the term’s 
inverted list. Inverted lists are stored as Mneme objects, 
where a single object of the exact size is allocated for each 
inverted list. 

2.2 Mneme 

The Mneme persistent object store [Mos90] was designed 
to be efficient and extensible. The basic services provided 
by Mneme are storage and retrieval of objects, where an 
object is a chunk of contiguous bytes that has been assigned 
a unique identifier. Mneme has no notion of type or class 
for objects. The only structure Mneme is aware of is that 
objects may contain the identifiers of other objects, resulting 
in inter-object references. 

Objects are grouped into files supported by the operat- 
ing system. Within files, they are physically grouped into 
physical segments. A physical segment is the unit of trans- 
fer between disk and main memory and is of arbitrary size. 
Objects are also logically grouped into pools, where a pool 
defines a number of management policies for the objects 
contained in the pool, such as how large the physical seg- 
ments are, how the objects are laid out in a physical segment, 
how objects are located within a file, and how objects are 
created. Object format is determined by the pool, allowing 
objects to be stored in the format required by the applica- 
tion that uses the objects (modulo any translation that may 
be required for persistent storage, such as conversion of 
main memory pointers to object identifiers). Pools provide 
the primary extensibility mechanism in Mneme. By imple- 
menting new pool routines, the system can be significantly 
customized. 

The base system provides a number of fundamental 
mechanisms and tools for building pool routines, includ- 
ing a suite of standard pool routines for file and auxiliary 
table management. Support for sophisticated buffer man- 
agement is provided by an extensible buffering mechanism. 
Buffers may be defined by supplying a number of standard 
buffer operations (e.g., allocate and free) in a system defined 
format. How these operations are implemented determines 
the policies used to manage the buffer. 

3 Indexing 
The old version of INQUBRY uses the traditional method 
of indexing a document collection and building the inverted 
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Figure 1: Traditional indexing process. 

file [HFBYL92]. This method is referred to as the alferna- 
rive scheme in [STGM94]. The process involves multiple 
steps, diagramed in Figure 1. The input to the process is a 
file of documents, which in INQUERY may currently be at 
most 256 Mbytesl. Collections larger than this limit must 
be broken up into multiple files. In step 1, document pars- 
ing assigns an identifier to each document and extracts the 
terms from the documents, stemming each term to its root 
and eliminating any stop words (words too frequent to be 
worth indexing). A surviving term must then be located or 
inserted in the term dictionary to obtain its term identifier 
and update the statistics stored there. After each document 
is parsed, it is inverted in main memory and a temporary 
file of trunsacfions is generated for the document. A trans- 
action consists of a term identifier, the document identifier, 
and the locations of each occurrence of that term in the 
document, representing the portion of the inverted list for 
the term that is contributed by the document. 

To convert the transactions into inverted lists, all of the 
per document inverted list portions for each term,must be 
combined by sorting on the term identifier and document 
identifier. The transaction files may be over one-and-a-half 
times the size of the document files, however, so for large 
(multi-gigabyte) collections, it is impractical or impossible 
to combine the transactions for all of the documents into a 

‘This is due to the current encoding method used for document file 
byte offsets. The largest number that can be encoded is 228. 
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Figure 2: Cumulative distributions over inverted list size 
for TIPSIER volume 1, with 627072 lists and 420 Mb total. 

single file. Instead, the transactions are stored in multiple 
files, one for each document file. 

The transaction file from each document file is sorted in 
step 2, and the sorted transaction file is split one or more 
times into head and tail segments in step 3. All of the 
transaction files are split at the same term tk, such that the 
head segment for each transaction file will contain terms 
it1 . . . tk} and the tail segment for each transaction file 
will contain terms {tk+l . . . t,}, where there are n terms 
in the vocabulary. The corresponding segments for each 
transaction file can then be merged in step 4 to produce 
a fully sorted set of transactions for the entire document 
collection, broken up into multiple segments. 

The final step is to build the inverted file. This is simply 
a matter of reading each inverted list from the sorted trans- 
actions, compressing the list, creating a Mneme object for 
the list, and storing the object identifier for the list in the 
term dictionary entry for the term. In step 5, the transaction 
segments are processed in order and the inverted lists are 
created. Obviously, steps 3 and 4 are required only when 
there are too many transactions from the document collec- 
tion to handle in a single file. These steps may be eliminated 
when indexing smaller collections. 

Since the entries in each inverted list are sorted by doc- 
ument identifier, if new documents are always assigned in- 
creasing document identifiers, their inverted list entries may 
simply be appended to any existing inverted lists. There- 
fore, adding new documents to an existing collection does 
not necessarily require that the entire document collection 
be re-indexed. However, it does require the ability to grow 
inverted lists. Providing this functionality is non-trivial, 
such that many IR systems, the old INQUERY included, 
simply re-index the entire collection. 

Using the full functionality of Mneme, however, we can 
create a more sophisticated inverted file structure that will 
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in fact support growing inverted lists. To guide this design, 
we first consider some of the characteristics of inverted lists, 
all of which can be derived from the early observations of 
Zipf [Zip49]. Figure 2 shows the distribution of inverted 
list sizes for the TIPSIER volume 1 document collection 
used in our performance evaluation below (see Table 1). 
For a given inverted list size, the figure shows how many 
lists in the inverted file are less than or equal to that size, 
and how much those lists contribute to the total file size. 
Our first observation is that over 90% of the inverted lists 
are less than 1000 bytes (in their compressed form), and 
account for less than 10% of the total inverted file size. 
Furthermore, nearly half of all lists are less than 16 bytes. 
This means that many inverted lists will never grow after 
their initial creation. Therefore, they should be allocated 
in a space efficient manner, i.e., reserving extra space for 
these lists in anticipation of growth would be a mistake. 
Also, it is well known that the vocabulary will continue to 
grow indefinitely [Hea78], so we must always be prepared 
to create more of these small inverted lists. 

Most of the inverted file size is accounted for by a 
very small number of large inverted lists. These in- 
verted lists will experience continuous, possibly vigorous 
growth. We have also observed that these large lists have 
a high probability of being accessed during query process- 
ing [BCCM94], so they must be allocated in a manner that 
affords efficient access. 

The main extension we make to the old inverted file 
structure is this; instead of allocating each inverted list in 
a single object of the exact size, we allocate lists using a 
range of fixed size objects, where the sizes range from 16 
to 8192 bytes by powers of 2 (i.e., 16, 32, 64, . . . . 8192). 
When a new list is created, an object of the smallest size 
large enough to contain the list is allocated. A list can then 
grow to fill the object. When it exceeds the object, a new 
object of the next larger size is allocated, the contents of the 
old object are copied into the new object, and the old object 
is freed. When a list exceeds the largest object size (8192 
bytes), rather than copy the list into an even larger object, 
we start a linked list of 8192 byte objects. Inverted list 
growth is then accomplished by appending to the tail object 
in the linked list, and adding a new object to the linked list 
when the tail is full. 

The largest objects are each allocated in their own phys- 
ical segment and managed by a large object pool. The 
smallest (16 byte) objects are stored in 4 Kbyte physical 
segments, 255 objects per segment, and managed by a smull 
object pool. The remaining objects are stored in 8 Kbyte 
physical segments, where each segment stores objects of 
only one size, and contains as many objects of that size as 
will fit. These objects are managed by a medium object 
pool. 

This scheme efficiently allocates the large number of rel- 
atively small inverted lists in the small and medium object 
pools, limits the number of times a list will be relocated due 

to growth, and most importantly, needs to access only the 
tail object when growing a large inverted list, leaving the 
majority of the data in the inverted file untouched during an 
update. 

Now, the inverted file index can be built incrementally. 
To add a batch of documents to the index, we parse just 
the new batch, sort the generated transaction file to cre- 
ate inverted lists for the new documents, and then add the 
inverted lists to the existing inverted file, creating and grow- 
ing inverted lists as described above. This corresponds to 
steps 1.2, and 5 in Figure 1, with step 5 modified appropri- 
ately. The first two steps are performed independently of 
the existing index. They are also disk oriented operations, 
with small main memory requirements. Furthermore, they 
produce complete inverted lists for the new documents. 
During the final step an inverted list in the index will be 
updated only once, minimizing the number of costly relo- 
cations. Consequently, best performance is achieved when 
new documents are added to the index in the largest batches 
possible, reducing the overall number of updates. 

4 Performance Evaluation 
To evaluate our new inverted file structure, we measured 
incremental indexing speed, disk space requirements, and 
query processing speed using the resulting inverted file. 
For comparison, we also measured the same costs using 
traditional techniques. Below we describe our experimental 
platform, the test collection used, and the results of our 
measurements. 

4.1 Platform 

All of our experiments were run as superuser with logins 
disabled on an idle DECSystem 3000/400 (Alpha AXP CPU 
clocked at 133 MHz) running OSF/l V1.3. The system 
was configured with 64 Mbytes of main memory and six 
1.3 Gbyte RZ58 SCSI disks. The executables were com- 
piled with the DEC C compiler driver 3.11 using optimiza- 
tion level 2. All of the data files and executables were 
stored on the local disks, and a 64 Mbyte “chill file” was 
read before each batch update or query processing run to 
purge the operating system file buffers and guarantee that 
no inverted file data was cached by the file system across 
runs. All times reported below are real (wall clock) time. 

4.2 Test Collection 

For our experiments, we used volume 1 of the TIPSTER 
document collection, a standard test collection in the IR 
community. Volume 1 is a 1.2 Gbyte collection of full-text 
articles and abstracts, divided into seven main files. Table 1 
gives the relevant statistics for each of the files. The first 
three files contain Wall Street Journal articles from years 
1987, 1988, and 1989 respectively, doe contains Depart- 
ment of,Energy abstracts, ziff contains articles and abstracts 
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Table 1: TIPSIER volume 1 file characteristics. Terms are 
new with respect to all files earlier in the table. 

File 11 Mb 1 Dots 1 Posts I Terms 1 

1 total 11 1197.0 1 510887 1 105932530 1 627072 1 

from various periodicals, ap contains Associated Press ar- 
ticles, and fr contains Federal Register articles. For all 
indexing and query processing, we use stemming to re- 
duce words to roots, and a stop words list to eliminate the 
frequent words not worth indexing. 

4.3 Large Updates 

Our first experiment treats each of the seven files as a sepa- 
rate batch update and incrementally indexes the volume one 
file at a time, in the order listed in Table 1. The results are 
plotted in Figure 3. For the two “per update” lines (“Old, 
per update” and “New, per update”), each point represents 
the time required to add the respective batch to the existing 
index (the first batch creates the initial index), where the 
points moving left to right correspond to the files in Table 1 
moving top to bottom. The per update times are plotted 
against the total number of posts in the indexed collection 
after the update. 

“Old” is the traditional scheme that re-indexes the entire 
collection each time a new batch is added. The figure indi- 
cates that the time to add a batch is proportional to the size 
of the entire collection after the update. This scheme clearly 
does not scale well with the size of the collection. “New” is 
the new scheme which builds the inverted lists for an update 
batch separately and then adds them to the existing index, 
using the new inverted file structure. The time to add a 
batch is more proportional to the size of the batch, yielding 
incremental update times that are significantly better than 
in the old scheme. 

Each point for the old scheme also gives the total time 
required to index a collection of the cumulative size in one 
batch (since the entire collection is re-indexed). The com- 
parable times for the new scheme are the cumulative times 
for the incremental updates, shown as “New, cumulative”. 
This plot shows that the total time to incrementally index 
the entire volume in the given batches with the new scheme 
is actually less than the time required by the old scheme to 
index the entire volume in a single batch. This rather sur- 
prising result is due to the elimination in the new scheme 

50 

z 40 

ii 30 

Q 
c 
g 20 

F 

10 

0 

- Old, per update - 
New, cumulative -+--- 
New, per update --w. 

e ___............... D....‘- ..__...... .a- . . . . . .._....._...._. D _ 

. . 
W’ 

., 

0 20 40 60 60 100 

Cumulative Postings Indexed (millions) 

Figure 3: Per batch update times for files in TIPSTER 
volume 1, plotted versus the total number of postings in the 
indexed collection after the update. 

of a number of sequential passes over the temporary trans- 
action files. Recall from Figure 1 that in order to handle 
a large document collection, the old scheme must split and 
merge transaction files in steps 3 and 4. The new scheme 
eliminates these steps, saving up to four sequential passes 
through the large temporary files. This represents a fairly 
significant constant factor and the difference in the slope of 
the “Old, per update” and “New, cumulative” lines. Note 
that a cumulative plot for the old scheme is not shown. 
Clearly, that plot would quickly shoot up off of the top of 
the chart in a super-linear fashion. 

In Figure 4 we show the batch update time per posting for 
the two schemes. This is the time required to add the batch 
to the index divided by the number of postings in the batch. 
Here we can more clearly see that the update cost of the 
old scheme grows with the size of the existing index, while 
the update cost of the new scheme remains nearly constant. 
The large peak for the old scheme during the wsj89 update 
is due to the relatively small size of the update compared 
to the size of the existing collection. The slight dip for 
both schemes (in Figures 3 and 4) during the fr update 
occurs because the documents in fr are relatively large. 
Compared to a similar size batch with smaller documents, 
there are fewer document identifier/weight entries in the 
inverted lists for the same number of postings, and the per 
posting update cost is reduced. 

4.4 Small Updates 

The batches used above might be considered large for ap- 
plications that support periodic updates to the document 
collection. Therefore, we also measured our new scheme 
on a range of small batch sizes. We used TIPSIER volume 1 
for our existing indexed collection, and generated new doc- 
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Figure 4: Update time per posting for batch updates in 
TIPSTER volume 1. 

Table 2: Characteristics of batches built from TIPSIER 
volume 2. Terms are new with respect to all batches earlier 
in the table, with TIPSIER volume 1 as the base. 

1 Batch 11 Mb 1 Dots 1 Posts I Terms 1 

total 11 127 1 27343 .I 11371306 1 39524 ] 

ument batches from volume 2 of the TIPSIER collection, 
which contains the same types of files as volume 1. To 
build the batches, we selected documents from the different 
file types in round robin fashion until we had built seven 
batches ranging in size from 1 Mbyte to 64 Mbytes, by 
powers of 2. Statistics for the batches are given in Table 2. 

Figure 5 shows the time required to incrementally index 
each of the batches and cumulatively add them to the exist- 
ing index. The data points moving left to right correspond 
to batches 1 through 7 in Table 2, and are plotted against 
the cumulative postings from the batches. We also plot the 
time per posting for each batch update in Figure 6. The 
figures show that as the size of the batch increases, the cost 
per posting decreases. This is due to the following factors. 
First, when building new inverted lists for a batch, enough 
(maybe all) of the term dictionary must be read in to identify 
all of the terms in the batch and make entries for new terms. 
Similarly, the dictionary must again be read in during the 

-I 
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Cumulative Postings Indexed (millions) 

Figure 5: Per ‘batch update times for range of batch sizes 
cumulatively added to TIPSIER volume 1 index, plotted 
versus the cumulative postings from the batches. Batches 
range in size from 1 Mbyte to 64 Mbytes by powers of 2. 

build phase when adding the new lists to the existing in- 
dex. With larger batches, this cost is amortized over more 
postings. Second, larger batches will benefit from locality 
in the small and medium object pools. The inverted lists 
in these pools are clustered in segments, such that reading 
in a list to modify it causes all lists in the same segment 
to be read in. The cost of reading in the segment can then 
be amortized over any updates to other lists in the same 
segment that occur before the segment is flushed out. 

In an effort to better accommodate small batch updates, 
we implemented an in-memory version of our system which 
performs updates on-line. Rather than build complete in- 
verted lists for the batch off-line and add them to the index 
in a second step, the in-memory version builds the inverted 
lists for the batch in main memory as the documents in 
the batch are parsed. When the main memory inverted list 
buffer becomes full, the partial inverted lists for the batch 
are added to the existing index. The rationale behind this 
scheme is that we will eliminate redundant I./O caused by 
writing transactions, sorting off-line to build the inverted 
lists, and then reading the lists again to add them to the 
index. To test this scheme, we allocated 10 Mbytes for the 
inverted list buffer (which accommodates around 800,000 
compressed postings), 20 Mbytes of Mneme buffer space 
for the existing inverted index, and 24 Mbytes of Mneme 
buffer space for the term dictionary. We found, however, 
that for batch sizes up to 8 Mbytes the in-memory version 
was no faster than the off-line version, and much worse 
for larger batches. The poor performance on batches larger 
than 8 Mbytes is due to the inverted list buffer being flushed 
to the index multiple times per update. The surprisingly 
mediocre performance for batches that fit entirely in the in- 
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Figure 6: Update time per posting for range of batch sizes 
cumulatively added to TIPSIER volume 1 index. 

vet-ted list buffer is attributed to insufficient main memory. 
Besides the buffers mentioned above, the on-line version 
requires additional space to parse the documents and build 
the inverted lists in the main memory buffer. We suspect 
that the system is paging excessively, although due to a bug 
in OSFA V1.3, we could not obtain process resource usage 
statistics to confirm this. We did observe, however, that run- 
ning the in-memory version with a 20 Mbyte inverted list 
buffer on a DECSystem 3000/500 with 128 Mbytes of main 
memory gave much improved performance. Therefore, we 
suggest that this technique bears further investigation and 
may be appropriate for certain applications with adequate 
resources and small updates. 

4.5 Space Considerations 

In addition to time, we must consider the disk space re- 
quired by each indexing scheme. There are two aspects 
to disk space: permanent space consumed by the index 
files, and additional temporary space required for indexing. 
To reduce the amount of permanent space consumed by 
the inverted file, the inverted lists are compressed in a two 
step process. First, the location information associated with 
each document entry for a given term is run-length encoded, 
where the first location is stored as an absolute value and all 
subsequent locations are stored as deltas from the previous 
location. This yields numbers of significantly smaller mag- 
nhude. Then, all numbers (document identifiers, weights, 
and encoded locations) are represented in base 2 using the 
minimum number of bytes (up to four), with a continuation 
bit reserved in each byte. This results in variable length 
numbers where the largest representable number is 228. 

Compression yields the same space savings for both the 
old and new indexing schemes. However, the old scheme 
allocates objects exactly of the required size, while the new 

scheme allocates fixed size objects for the variable length 
lists. Therefore, we would expect a certain amount of in- 
ternal fragmentation and an increase in inverted file size 
for the new scheme. The inverted file created in seven 
batches by the new scheme for TIPSIER volume 1 con- 
sumes 473 Mbytes, of which 420 Mbytes is inverted list 
data. Internal object fragmentation, or free space in ob- 
jects that could be allocated in the future, accounts for 
50 Mbytes, or about 12% of the size of the real data. The 
remaining 3 Mbytes is Mneme overhead, including auxil- 
iary file structures and links between objects, a relatively 
insignificant 0.8% overhead. The total overhead is quite 
tolerable, and other results show that as the index becomes 
even larger, the overhead decreases slightly due to the full 
utilization of all but the tail objects in the linked lists for 
large inverted lists. 

The difference in temporary disk space requirements be- 
tween the two schemes during indexing is much more sig- 
nificant. The transaction files generated by the old scheme 
for TIPSIER volume 1 consume a total of 1.7 Gbytes, or 
nearly 50% more disk space than the raw document collec- 
tion. Each time an update is made, the transaction files for 
the entire collection must be generated, resulting in tem- 
porary disk space costs proportional to the size of the total 
collection. The new scheme only requires enough space to 
generate and sort the transaction file for the new documents, 
yielding temporary disk space requirements proportional to 
the size of the update. Both schemes could benefit from us- 
ing suitable compression techniques on the transaction files 
to reduce temporary disk space requirements, but again the 
old scheme will still require temporary disk space propor- 
tional to the size of the existing database. 

4.6 Query Processing 

The last performance issue is query processing, which we 
evaluate by comparing query processing speeds on the in- 
verted files built in Section 4.3. Since the new scheme must 
assemble large inverted lists with multiple disk reads, we 
expect its query processing performance to suffer. How- 
ever, the allocation strategy for large lists, combined with 
the small number of batch updates to build the index, work 
to reduce this effect. Here is why. Large inverted lists allo- 
cated in a linked list of large objects are grown by adding 
new large objects to the tail of the list. New large objects are 
each created in their own physical segment, and new phys- 
ical segments are allocated at the end of the file. Therefore, 
all objects added to a given linked list during a single batch 
update will be allocated sequentially at the end of the file. 
Since the index was built in seven batch updates, a large 
inverted list will consist of at most seven separate blocks 
of contiguous large objects, greatly reducing the disk seek 
costs to assemble the list. 

To further explore this effect, we measured query pro- 
cessing performance on an index built using the on-line 



scheme described in Section 4.4 with a main memory in- 
verted list buffer of 10 Mbytes. This produced an inverted 
file laid out as if it had been built with many small batch up- 
dates, where each batch contained approximately 800,000 
postings. 

The query set we used was generated locally from TZP- 
STER topics 51-100 using automatic and semi-automatic 
methods. We report the average of running the query set 
on each scheme six times, where each run differed from 
the average by less than 5%. The old scheme, with each 
list stored as a single contiguous object, required 975 sec- 
onds. The new scheme built on-line to simulate many small 
hatches required 1256 seconds, or 28.8% longer than the 
old scheme. The new scheme built off-line with seven batch 
updates required 1033 seconds, or only 5.9% longer than 
the old scheme. 

The results for the new index structure are surprisingly 
good. The improvement from the second to third scheme 
above indicates that query processing can be greatly im- 
proved by simple periodic reorganization of the inverted 
file to sequentially arrange the objects in linked lists. We 
expect that query processing can be further improved for 
the following reasons. First, the query processing model 
used in these experiments is “term-at-a-time”, where the 
entire inverted list for a term is read and processed all at 
once. Many modem systems have adopted “document-at- 
a-time” processing [Wil84], which calculates the complete 
score for one document before proceeding to the next. In 
this model, the inverted lists are read in small chunks, a 
technique ideally suited to the linked list structure. Sec- 
ond, our inverted file structure might be combined with 
the query optimization techniques proposed by Wong and 
Lee [WL93] and Moffat and Zobel [MZ94b], who describe 
methods for eliminating processing on portions of inverted 
lists. Again, the linked list structure could be used to avoid 
I/O on these portions of the lists. Third, buffer management 
has not been tuned for the new file structure. Fourth, we 
have not considered any low level optimizations, such as 
overlapping I/O with processing, sophisticated pre-fetching 
schemes, or disk optimizations such as striping, all of which 
will reduce the time to assemble large inverted lists. 

5 Related Work 

Efficient management of full-text database indexes has re- 
ceived a fair amount of attention. Faloutsos [Fal85] gives an 
early survey of the common indexing techniques. The two 
techniques that seem to predominate are signature files and 
inverted files. Since INQUERY uses an inverted file index, 
we do not discuss signature files. Zobel et al. [ZMSD92] 
investigate the efficient implementation of an inverted file 
index for a full-text database system. Their focus is on 
compression techniques to limit the size of the inverted file 
index. These techniques could be usefully incorporated 
into our system. They also address updates to the inverted 

file using large fixed length disk blocks, where each block 
has a heap of inverted lists at the end of the block and a 
directory into the heap at the beginning of the block. As 
inverted lists grow they are rearranged in the heap or copied 
to other blocks with more space. Techniques for handling 
inverted lists larger than a disk block are not discussed, nor 
is the disk block technique fully evaluated. Our experience 
indicates that efficient management of large inverted lists is 
critical to performance, and we present experimental results 
demonstrating the effectiveness of our solution. 

Tomasic et al. [TGMS94] propose a new data structure 
to support incremental indexing, and present a detailed sim- 
ulation study over a variety of disk allocation schemes. The 
study is extended with a larger synthetic document collec- 
tion in [STGM94], and a comparison is made with the tra- 
ditionalindexing technique. Their data structure manages 
small inverted lists in buckets (similar to the disk blocks 
in [ZMSD92]) and dynamically selects large inverted lists 
to be managed separately, not unlike our use of different ob- 
ject pools for different sized lists @3CCM94]. Their simula- 
tion results indicate that the best long list allocation scheme 
for update performance is to write the new portion of a long 
list in a new chunk at the end of the file. This is essentially 
what we do with our linked lists. However, they predict 
that query performance with this strategy will be poor. On 
the contrary, we have shown with an actual implementation 
that our linked list strategy can in fact provide good query 
performance, while simultaneously providing superior up- 
date performance. Moreover, their simulations assume that 
all buckets can fit in main memory during indexing, po- 
tentially requiring significant main memory resources. Our 
scheme makes no such assumption, requiring substantially 
less main memory. 

Another scheme that handles large lists distinctly from 
small lists is proposed by Faloutsos and Jagadish [FJ92a]. 
In their scheme, small lists are stored as inverted lists, while 
large lists are stored as signature files. Again, we are pri- 
marily concerned with inverted lists and do not consider sig- 
nature file solutions. In [FJ92b], Faloutsos and Jagadish ex- 
amine update and storage costs for a family of long inverted 
list implementations, where the general case is their “HY- 
BRID” scheme. The HYBRID scheme essentially chains 
together chunks of the inverted list and provides a num- 
ber of parameters to control the size of the chunks and the 
length of the chains. At one extreme, limiting the length 
of a chain to one and allowing chunks to grow results in 
contiguous inverted lists, where relocation of the inverted 
list into a larger chunk is required when the current chunk 
is filled. At the other extreme, fixed size chunks and unlim- 
ited chain lengths give a standard linked list. Our overall 
scheme does not fit into this model since we initially grow 
chunks and then chain fixed size chunks. However, our 
small lists can be modeled as chains of length one where 
chunks are doubled in size during relocation, and our large 
lists can be modeled as unlimited length chains with fixed 



size chunks. Rather than argue analytically, we have shown 
experimentally that our scheme provides good update and 
search costs, with acceptable space overheads. 

Cutting and Pedersen [CP90] investigate optimizations 
for dynamic update of inverted lists managed with a B- 
tree. For a speed optimization, they propose accumulating 
postings in a main memory postings buffer, and give both 
analytical and experimental results. It is difficult to make 
comparisons with their experimental results due to the size 
of the collections used. We present results for a collection 
nearly 100 times larger. We agree that updates should be 
batched, but our experience with an in-memory scheme 
indicates that as soon as the batch becomes too large to 
invert in main memory (i.e., partial inverted lists for the 
batch must be flushed to the index before the rest of the batch 
can be processed), an off-line scheme will provide better 
performance. Again, this requires further research. They 
also propose storing the smallest inverted lists directly in the 
B-tree index. An equivalent scheme using our hash term 
dictionary would be advantageous only if the dictionary 
did not increase in size. Increasing I/O and main memory 
costs for the term dictionary for the sake of rarely accessed 
inverted lists would be disastrous. 

A number of other approaches to document indexing 
have been proposed. Fox and Lee [FL911 describe a tech- 
nique that eliminates the sorting involved in indexing by 
making multiple passes over the input documents. Index- 
ing is divided into loads, where a load is a contiguous chunk 
of the final inverted file. First, an initial pass over the input 
is made to determine the load boundaries. Then, a sub- 
sequent pass is made for each load, processing only terms 
that fall within the boundaries of the load and building the 
inverted lists for those terms in main memory. At the end 
of the pass, the inverted lists for the load can simply be 
appended to the inverted file. 

Wttten et al. [WMB94] present a variety of indexing al- 
gorithms, including an extended version of Fox and Lee’s 
algorithm. They also enhance the traditional sort-based 
method with compression techniques and in-place and mul- 
tiway merging to greatly improve efficiency in terms of 
main memory, disk space, and time. Results of applying 
some of these techniques to the TESTER document col- 
lection are presented in [MZ94al. 

All of these other approaches were developed for large 
static document collections, and do not directly support in- 
cremental indexing. Some of the techniques, such as the 
sorting enhancements and making multiple passes through 
the input to “‘pre-allocate” the output, might be usefully 
incorporated into an incremental system. Their benefit, 
however, would be dependent on the size of the incremen- 
tal batches, with larger batches deriving more benefit. A 
better integration might use one of the above algorithms 
the first time a large collection is indexed, and switch to an 
incremental technique thereafter. 

Properly modeling the size distribution of inverted lists 

is addressed by Wolfram in [Wol92a, Wol92b]. He suggests 
that the informetric characteristics of document databases 
should be taken into consideration when designing the files 
used by an IR system. We follow this advice, as can be seen 
in Section 3, with what we consider to be very satisfactory 
results. 

6 Conclusions 

If IR systems are to satisfy the demand for applications that 
can manage an ever increasing repository of information, 
they must be able to efficiently add documents to large ex- 
isting collections. The main bottleneck in that operation is 
updating the index structure used to manage the collection. 
The traditional solution to this problem is to re-index the 
entire collection, an operation with costs proportional to 
the size of the whole collection. This solution is clearly 
unacceptable. 

We have proposed an alternative solution that yields 
costs proportional to the size of the update. Using the 
data management facilities of a persistent object store, we 
have designed a more sophisticated inverted file index that 
provides fast incremental updates. More importantly, we 
have implemented our scheme in an operational full-text 
information retrieval system and verified its performance 
empirically. 

The results we present show that our scheme maintains 
a nearly constant per posting update cost as the size of the 
collection grows, indicating excellent potential for scale. In 
fact, we have used our scheme to index the full 2 Gbyte TIP- 
SIER collection in 13 batches and have found the trends 
described in Section 4 to hold. Our scheme requires con- 
siderably less disk space during indexing than traditional 
techniques, and allows much of the processing for a new 
batch of documents to be done independently from the ex- 
isting index. This last point is particularly important for 
the eventual support of simultaneous query processing and 
collection updating, since the period of time during which 
index structures must be locked for updating can be mini- 
mized. 

We found that best performance is achieved when docu- 
ments are added in the largest batches possible, both in terms 
of incremental indexing time and resultant query process- 
ing speed. We have also shown that our scheme provides 
a good level of performance with small batch updates, and 
have suggested techniques to improve both small batch up- 
date and query processing performance. These techniques 
bear further investigation and represent future work. 

Finally, we have achieved these results using “off-the- 
shelf” data management technology, continuing to show 
that the data management facilities in IR systems need not 
be custom built to achieve high performance. 
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