
Indexing Multiple Sets

Christoph Kilger Guddo Moerkotte

Universitiit Karlsruhe, Fakultiit fur Informatik, D-76128 Karlsruhe, Germany
email: [kilger]moer]Oirs.uka.de

Abstract

Index structures for multiple sets can be classi-
fied into those that group entries according to
their key values and those that group entries
according to their set membership. The former
are particularly suited for exact match queries
on all indexed sets, the latter especially support
range queries on a small number of all indexed
sets. The goal is to thoroughly evaluate the per-
formance of both grouping strategies.
There exist two reasons for adding a new in-
dex structure to the evaluation: (1) The perfor-
mance potentials of set grouping index struc-
tures are not yet fully exploited. (2) Up to
now, the database administrator has to choose
between key grouping an

l-l
set grouping index

structures, supporting eit er exact match or
range queries. What is needed is a more flexi-
ble index structure that can be tuned to a giv-
en query mix containing both, exact match and
range queries. These two reasons led us to the
development of the CG-tree. The focus of the
paper is on introducing the CG-tree and on a
thorough performance analysis of the CH-index
[7’J, the H-tree [8, 91 and the CGtree.

1 Introduction

Index structures facilitate the fast direct access to large
sets of records by some key attribute. “Fast” means
that the number of pages to be read to retrieve the
qualifying records is small compared to the total num-
ber of pages the records occupy. Besides the direct
access to records (et& m&h queties) an index struc-
ture should also support queries for records whose key

Pennirrion to copy without fee all or part of this material ir
granted pwvided that the copier an not made or dirtribded for
direct conimercial advantage, the VLDB copsright notice and
the title of the publication and it8 date appear, and notice is
given thai copying io by pennirrion of the Very Large Data Base
Endowment. To copy otherwire, or to npublirh, requires a fee
and/or rpyzial penniesion from the Endowment.
Proceedkgs of the 20th VLDB Conference
Santiago, Chile, 1994

is within a given range (range queries). The best gen-
eral purpose index structure for exact match and range
queries known so far is the B+-tree [l].

Typically, B+-trees index the elements of a single
set. However, in many applications, there exists the
necessity of indexing multiple sets by a common key.
For example, in the relational model, the computation
of an equi join of two relations requires the access to
those records in both relations matching the join con-
dition, i.e., having the same join attribute values. As
shown by Hlirder [4] and Valduriez [12] a join opera-
tion is effectively supported using one combined index
structure for both relations. Hiirder has generalized
this idea to an arbitrary number of relations (Gener-
alized Access Path Structure).

Index structures for multiple sets are also useful in
object bases where objects are members of classes. The
clssses are related by the subclass relationship, which
may form a hierarchy or a directed acyclic graph. Of-
ten, a subset relationship is tied to the subclass re-
lationship. Queries in object bases may be evaluated
on a single class, i.e., the set of the direct members
of the class, or on a class including all its subclass-
es. Moreover, many query languages (e.g., O#QL [3]
or GOMql [5]) allow queries to be formulated on ar-
bitrary sets. As shown in [7, 8, 91 the access to the
members of several classes by a common key attribute
may be supported by a multiple set index structure
for these classes. In the context of object bases two
index structures based on the B+-tree for supporting
multiple set indexing have been proposed: the class
hierarchy index (Cl?-indez) [7’j and the H-tree [8, 91.

If multiple sets are indexed on a common key, there
exist two choices for grouping: grouping by key and
grouping by set membership. A key grouping index
(e.g. the CH-index) stores all entries (of all indexed
sets) with the same key in one leaf page record. With-
in each leaf page record, a set directory is used to keep
track of set membership. For exact match and range
queries, the retrieval costs are independent of the num-
ber of sets queried.’ If not all indexed sets are queried,
an overhead exists since elements in sets not queried

‘This only holds if no leaf page record exceeds the page
capacity.

180

Exact match A

n -
Number of queried sets

Ranee query

Number of queried sets I1

- - - - - Grouping by key n: Number Of
----------I Grouping by set indexed sets

Figure 1: Grouping by key vs. grouping by set

are clustered together with those queried. Hence, for
range queries, more pages than necessary are read.

A set grouping indez (e.g. the H-tree) first groups
all members of all sets by their set membership. Mem-
bers of a single set are then grouped at the leaf page
level according to their key values. Hence, leaf pages
are occupied by members of one indexed set only. This
implies that the retrieval costs are directly proportion-
al to the number of sets queried.

Fig. 1 summarizes the above performance consider-
ations for both multiple set indexing techniques. The
experimental validation of this figure is given in the
next section.

Within the.rest of the paper, we consider multiple
set index structures based on the B+-tree. (For a dii
cussion of possible alternatives see Section 2). One
goal is to sssess the performance of key and set group-
ing B+-based indexes under various conditions.

Since the H-tree - the only set grouping index
structure - does not fully exploit the potential of the
set grouping approach, we introduce a new set group-
ing index. Besides performance arguments, there ex-
ists another reason to introduce a new multiple set
indexing technique. As can be seen from Figure 1, the
database administrator who has to decide which in-
dexing technique to apply, finds herself in a dilemma.
As soon as the application profile on hand consists of
a mix of exact match and range queries which do not
comprise the full number of indexed sets, there is none
but a bad choice favoring only half of the application.
What’s missing is the possibility to tune a given index
structure according to the application profile on hand.
These considerations together with the potential for
faster set grouping indexes led us to the development
of a new set grouping index called CG-tree.

The rest of the paper is organized as follows. Sec-
tion 2 briefly reviews the CH-index and the H-tree, and

gives a first experimental validation of Figure 1. Sec-
tion 3 introduces the CG-tree., Section’4 evaluates the
retrieval costs of all three multiple set indexes. Sec-
tion 5 introduces the flexibility necessary to allow the
database administrator to appropriately tune the CG-
tree, and presents benchmark results,for the tunable
version of the CG-tree. Section 6 concludes the paper.

2 Multiple Set Indexing Techniques

Before reviewing the CH-index and the H-tree, we
should reflect whether well-known single-set or multi-
dimensional index structures could be employed. Us-
ing ordinary single-set index structures for multiple
set indexing, e.g., the B+-tree, has been shown to be
inefficient by Kim et al. [7j.

Considering set membership of the entries as one
key dimension, multi-dimensional index structures like
the Grid-File [lo] or the Buddy-Tree [ll] can also be
used for multiple set indexing. Multi-dimensional in-
dex structures were designed for large, ordered, open
key domains. However the key domain representing
the indexed sets is small, unordered, and its values are
known in advance. This additional knowledge should
be exploited by the index structure. Furthermore,
there often exists a strong correlation between key val-
ues and set membership. As pointed out in [ll] the
performance of most multi-dimensional index struc-
tures strongly degrades if there is a correlation between
the key dimensions.

These considerations led us to investigate only spe-
cial multiple set index structures.

2.1 Grouping By Key

Key grouping index structures, e.g., the Generalized
Access Path Structure [4] and the CH-index [7], store
all elements of the indexed sets having the same key
in one leaf page record. The elements stored in the
same record are grouped by their set membership and
a set directory is maintained containing for each set
the offset of the corresponding group in the leaf page
record. In the Generalized Access Path Structure the
set-directory has one entry for each indexed set. In the
CH-index the directory of the leaf page record with key
K has one entry for each set that contains some ele-
ment with key K. The layout of the leaf page records
of the CH-index is shown in Fig. 2.

If the size of a leaf page record exceeds the page size,
additional overtlow pages are allocated. In this case,
the offsets of the set directory refer to byte positions
within the record’s pages. In the CH-index, a leaf page
and its overflow pages form a simple linked lit.

The non-leaf pages in a key grouping index have the
same layout as in the B+-tree.

181

record number overflow elements elements
length

key
value of sets *.* page 81 offset - - - Sk offset of set 51 of set Sk

Figure 2: Layout of the leaf page records of the C&index

2.2 Grouping by Set

Index structures that group elements by set have sep-
arate leaf pages for each of the indexed sets. Every
leaf page stores elements of just one set and, hence, no
set directories have to be maintained in the leaf page
records.

The only set grouping index is the H-tree [8,9]. The
H-tree was proposed as an indexing structure for class
hierarchies and requires the indexed sets to form a hi-
erarchy. The H-tree maintains one B+-tree for each
set. These are nested according to the set hierarchy.
Nesting is implemented via link pointers referring from
a non-leaf node of the parent tree to a (leaf or non-leaf)
node of the child tree. Fig. 3 illustrates the nesting of
four set-trees. The links also reflect subset relation-
ships on key ranges. For further details the reader is
referred to [8, 91. sl

set grouping and the key grouping index approach
(for both, exact match and range queries) can be
achieved.

Exact Match Queries

22
20

B 18

N 16

g i;

8
g 6

4
2
0’ I

1 2 3 4 6 8
Number of Queried Sets

Raoge Queries (Search Range 10 % of AU Key Values)

(-H ..e .__.._

H --

1 2 3 4 6 8
Number of Queried Sets

Figure 3: Nesting of set-trees in the H-tree

Figure 4: Query performance of the CH-index and the
H-tree (8 indexed sets, with 600,000 entries in total,
20,000 key values, no overflow pages)

2.3 Validation of Figure 1

Fig. 4 gives an experimental validation of the theoret-
ical considerations outlined in the introduction. (For
details of the database, see Sec. 4.) The similarity of
Figures 1 and 4 is striking. If for exact match queries
all 8 indexed sets are queried, the performance of the
H-tree is 7 times worse than that of the CH-index
(Fig. 4, first plot). On the other hand, if only 1 set
is queried with a range query, the H-tree performs al-
most 7 times as good as the CH-index (Fig. 4, second
plot). These observations give the motivation of our
work:

3 The CG-Tree

3.1 The Data Structure

The CG-tree is a set grouping index. Its organization
is described from bottom to top. Its leaf pages (level
1)2 are organized into n doubly linked lists - one list
for each indexed set. Leaf pages exhibit the same lay-
out as in the B+-tree, and, hence, do not contain a set
directory like the CH-index.

1. We designed the CG-tree in order to improve
the performance of set grouping indexes on ex-
act match queries thereby preserving their good
performance on range queries.

The records of the non-leaf pages at level 2 contain
a vector (called set direc2ory) of leaf page references
of length n - one reference for each indexed set. The
pages at level 2 are called direcloy pages. The internal
structure of a directory page is given in Fig. 5. The i-th
component of the set directory Rj (denoted by Ri.si)
references the leaf page containing those elements of

2. Flexibility is added to the CG-tree such that in- %.af pages are at level 1, non-leaf pages are at levels 2 and
termediate states between the performance of the above.

182

k-2
R2

R2.51 I 1

. . .
--. R2.s, KmR $?,R s m* 1 ??a* n

Figure 5: Internal structure of directory pages

set 8i whose keys are in [Kj,Kj+i). If si does not
contain any such element, Rj.si is null.

The remaining non-leaf pages at levels 3 and above
are called non-directory pages. They exhibit the
same structure as the non-leaf pages in the B+-tree:
each page contains a sequence of records of the form
(WI, RI), - . . , (K,, &)) where & references the root
of the subtree containing all entries whose keys are in
the range [Ki, Ki+i).

Sharing of Leaf Pages

The cardinalities of the indexed sets and their distri-
bution of key values may be non-uniform. In thii case,
the average filling degree of some leaf pages is low if
each directory reference #NULL points to its own non-
shared leaf page. For this reason, leaf pages may be
shared by several (neighbored) directory page records.
Consider the CG-tree depicted in Fig. 6 (a), and as-
sume that all records of Lr and La fit on one page. To
increase the filling degree, all elements of set si with
keys in the range [Ki, Ks) are stored on one leaf page
LIZ as shown in Fig. 6 (b). Only leaf pages storing el-
ements of the same set may be shared. Thii condition
is relaxed in Section 5.

Figure 6: Sharing of leaf pages

Linkiig of Directory Pages

On the occurrence of a leaf page overflow, the leaf page
is split and the directory page records referencing this
leaf page have to be updated. In order to be able to
efficiently determine all directory page records refer-
encing some leaf page the directory pages are doubly
linked by the prev and ned fields in the header of a
directory page (see Fig. 5).

Null Pointers in Directory Pages

If the indexed sets are disjoint, most of the references
in the directory page records will be null. Hence, the
fan-out is rather low. In order to increase the fan-out
of directory pages, the set directories are internally
stored as variable length records, containing only non-
null directory components and the corresponding set
identifiers (see Fig. 7). The record length (measured
in the number of non-null directory components) and
the set identifiers are represented with poga(n)]-bits,
where n is the number of indexed sets.

Ri
Ri.31 1 NULL 1 NULL I Ri.34 I NULL

(a) Conceptual Representation

(b) Physical Representation

Figure 7: Representation of directory entries

3.2 Retrieval

The retrieval algorithm produces k output streams
01 ,..., Ok,OnefOreachOfthequeried%?tssi ,..., Sk.
Stream Oi contains all elements of 8i whose keys are in
the queried range [Ki,, &b). The retrieval is easily de-
scribed. First, the tree is descended until the directory
page for key Ka is reached. Second, for each of the
searched sets si, the leaf page Li is determined con-
taining the elements of si with the smallest key > &.
Third, starting at the leaf pages Ll, . . . , Lk the linked
lists of leaf pages are traversed as long as keys in the
queried range are found.

3.3 Updates

The initial CG-tree consists of a single directory page
containing (-co, (NULL,. . . ,NULL)) as the only entry.
In the sequel we discuss insertion. The detailed inser-
tion and the deletion algorithm are beyond the scope
of this paper. The reader is referred to [6].

Insert

For inserting a new entry (K,,,, En,,), Enew E sne,,,,
into the tree, it is descended until the directory page D
for key Knew is reached. Let (Ki , &) be the entry of D
such that Ki is the largest key 5 Knew. If &.s,,, =

183

9

&-&k<~

(a) Befoe balancing L with L’ (b)AfterbalalKingLwithL

Figure 8: Balancing of leaf pages

NULL then we can either create a new leaf page or
reuse (via sharing) an existing leaf page for set snaw .

In order to keep the average filling degree of leaf
pages high, we first try to reuse an existing leaf page.
The sequence of directory page records is traversed
to the right starting at (Ki, &) until the first non-null
reference for set sncur is found. If no leaf page is found,
or if the found leaf page is full and cannot be split
(because all records have the same key), the search
restarts to the left of (Ki, a). Only if no existing
leaf page can be reused, a new leaf page is created.
&.sneur is set to reference the reused or newly created
leaf page, respectively.

Let L be the leaf page referenced by &.sncu,. If
(Knew, E,,,) fits into L, it is inserted. Otherwise, if
all records have the same key K, and K equals Knew,
the new entry is inserted into one of L’s ovedow pages
(if necessary, a new one is created); else L is split.

Let us review the search for a reusable leaf page
to store a member of set sncw in some more detail.
The search for a leaf page to be reused is stopped once
the first non-null directory component for set sncu, is
encountered. Leaf pages further to the right (or left)
are not used. This is the case because the following
two properties of the CG-tree - which are essential for
efficient retrieval and update - are always guaranteed:

A directory page record with key Kj contains a
non-null leaf page reference for the i-th indexed
set if and only if the 6th set contains an element
whose key is in the range [Kj, Kj+l).

The lit of directory pages and the lists of leaf
pages are ordered by ascending keys.

These properties imply that if there are two direct*
ry page records (KI , RI) and (KS, R2) referencing the
same leaf page L belonging to set 8i then for all direc-
tory page records (K, R) with K1 < K < K2, either
R.Si = L or R.Si = NULL holds.

Balancing of Loaf Pages

If a new entry cannot be inserted into the appropriate
leaf page, balancing with neighbor pages is tried first.
Only if this does not work either, splitting is applied.

Let L be a leaf page holding elements of set 8. Note
that s is determined by L, since each leaf page holds
elements of a single set only. For a given L, we denote
by < (Kdh),..., (K,,,, R,,,) >L the sequence of all
directory page records with

1. Ki < Ki+l (1 5 i < m),

2. R1.s = &,,.8 = L,
tlI<i<m: &.s=L V &.s=NULL,and

3. for all directory page records (K, R) of the tree

R.8 = L * (K, R) E { (KI, RI), . . . , (Km, Rm))

The sequence < (KI , RI), . . . , (Km, &) >L is called
the sequence of directory page records of leaf page L.
Because of the above properties of the CG-tree, this
sequence is well defined for each leaf page. It contains
exactly those directory page entries relevant to L.

As an example, consider the CG-tree depicted in
Fig. 8 (a). The sequence of directory page records of
L is < (20, Ra), (35, R3) >L.

Assume that the new entry (K,,,, , I?,,,,,) does not
fit into L. If the sequence of directory page records
of L contains more than one record, we first try to
balance L with one of its neighbors instead of creating
a new leaf page.

For example consider the insertion of a record with
key 36 into page L of the CG-tree shown in Fig. 8 (a).
The page capacity is 4 records. L can be balanced
with its left neighbor L’, since all records of L whose
keys are in the range [20,35) fit into L’. Fig. 8 (b)
shows the CG-tree after balancing L with L’. Now,
the record with key 36 can be inserted into L.

We consider the balancing of leaf pages only if there
are at least two directory page records referencing the
leaf page; thus, just one directory component has to
be adapted. Opposed to the,,B+-tree balancing of leaf
pages, balancing in the CGtree does never require the
reorganization of the whole index up to the root.

Splitting of Leaf Pages

If L cannot be balanced with one of its neighbors a
new leaf page L,,, is created, a separation key K’

184

(a) Before the split (b) After the split

Figure 9: Splitting of leaf pages (separation key from directory page records)

for the records of L is determined (see below), and all
records whose keys are greater or equal K* are moved
from L to L,,,.

The insertion of the new leaf page requires some
directory page records to be adapted in order to keep
the tree correct with respect to the above properties.
Consider the CG-tree shown in Fig. 9. The separation
key K’ is 30. After moving the leaf page records, the
directory record (30, Rs) must be updated to point to
the new leaf page L,,, . In thii example, the separa-
tion key K’ = 30 was chosen from the keys present in
the directory page records.

If K* is not chosen from the keys of the directory
page records a new directory page record (K*, R&,,)
is created and inserted. As an example, consider the
CG-tree depicted in Fig. 10. We choose K’ = 25. The
leaf page references for set 82 are adapted the same way
as before. But the insertion of the new directory page
record (K* , R,,,,) also effects the leaf page pointers for
sets 81 and 8s. For example, RI references leaf page
B (belonging to 8s) before the split because the key
range of RI is [10,30) (Fig. 10 (a)). After the split,
the key range of RI is [lo, 25) (Fig. 10 (b)). Since leaf
page B does not contain any record with a key within
this range Rl.83 must be set to null. The same holds
for &cw.81: Rncw.81 is set to null, because leaf page
A contains no element within the range [25,30).

Note, that - due to the sharing of leaf pages -
all leaf pages of some set Si can be split independently
from the leaf pages of the other indexed sets.

Choosing a Separation Key

In the B+-tree the separation key for splitting leaf page
L is chosen such that nearly half of L’e records are
moved to the new page. In the CG-tree there is the
additional objective to choose the separation key -
whenever feasible - from the keys of the directory
page records referencing page L, in order to keep the
number of directory page records small.

To explain the method for choosing a separation
key, we need some additional abbreviations. The size
of the record of leaf page L with key K is denoted by
RecSizeL(K). If there is no record with key K in L
then RecSixeL(K) = 0. Let Kf,,. . . , KI be the keys of

the records of leaf page L in
we define

AccuRecSise~(K) :=

ascending order. Then,

K;<K
lil

AccuRecSizeL(K) denotes the accumulated sizes of all
records of L whose keys are less than K. If L is split
with key K as separation key, AccuRecSize~(K) bytes
remain on L.

The separation key is determined as follows: For
< (Kl,&),..., (Km, R,,,) >L we determine Ki* E
WI, . . . , K,,, }, s.t. the term

] Acc&cSizet(Ki.) - 0.5 * c RecSizeL(Ki) 1
l<i,<I

is minimized. I.e., Ki* is-among the keys of the di-
rectory page records-the best choice for dividing the
records of L into two subsets of approx. the same sire.

However,\ Ki* may be a “bad,, separation key, di-
viding the records of L into two extremely different-
ly sized subsets. In our implementation, we require
AccuRecSizet(Kp) to be within the range of 30 %
and 70 % of the page size. In this case, K* := Ki*.
Otherwise, we arbitrarily determine K’ such that L is
divided into two even subsets.

Splitting of Non-Leaf Pages

The splitting algorithm for non-leaf pages is the same
as for the B+-tree. This also holds for the directory
pages with the additional maintenance of the directory
page lit.

4 Performance Evaluation

4.1 Benchmark Description

We implemented the CH-index, H-tree, and CG-tree
in C++ using the Exodus Storage Manager [2]. In-
dex nodes are represented as small Exodus objects of
4008 bytes. For all experiments reported in this paper,
the database contained 600,000 entries of 12 bytes (we
used Exodus OIDs as entries). The entries were dis-
tributed over either 8 indexed sets or 40 indexed sets.

185

(a) Before the split

- - -b leaf page xeference for set 1
e leaf mite reference for set 2

A L L-new B

---WkafPagerefexmceforset3 @) After the split

Figure 10: Splitting of leaf pages (arbitrary separation key)

The key size was 4 bytes, the size of a page reference 4
bytes. The number of different key values varies in the
experiments from 100 to 600,000. In case of 600,000
key values, there is exactly one index entry for each
key value (unique index).

We measured the number of page accesses of the
index structures for exact match queries and range
queries. For range queries, the search range comprises
10% of all key values.

The CH-index and the CG-tree do not require any
additional structure over the set of indexed sets but the
H-tree needs a definite set hierarchy. Hence, we defined
a left-deep hierarchy for the 8-&s databases and a
balanced hierarchy for the 40-sets databases (Fig. 11).

We measured the performance of the three index
structures for several kinds of exact match queries and
range queries: downward and upward. In the down-
ward (upward) case, the queried sets are selected ac-
cording to increasing (decreasing) set indices. This
corresponds to a top to bottom (bottom to up) traver-
sal of the set hierarchy. More specifically, the queried
sets for the 8 and 40 indexed sets databases are:

Mets Databases

IO-Sets Databases

1 81 *40
2 &r&a 539,340
4 51,*..,34 337,**.,340
8 e,...,+ 333,...,340

12 ~1,....312 s29,.-.,a40
20 91,. .,320 * 32lr...r340
30 e?...,~30 Ql,...,YO
40 91,-.*,840 31,...,d40

The Number of Queried Sets will be used to label the
x-axis of subsequent figures.

Kim et al. [7] identified three types of key distri-
butions. In a disjoint distribution each key value is
found in only one set. In a total inclusive distribu-
tion each key value is found in all sets. In a partial
-inclusive distribution each key value is found in some
of the indexed sets-- Besides the distribution of key
values among set members, the cardinalities of the in-
dexed sets and the (set specific) distributions of the
key values have a strong impact on the performance of
the multiple set index structures.

Due to lack of space, we present only part of the
benchmark results. More results including thorough
analysis’ of the influence of several different distribu-
tions, the influence of the set hierarchy on the perfor-
mance of the H-tree, the number of leaf and non-leaf
pages, and the heights of the three different multiple
set index structures can be found in [S].

First, we report the experiments where all sets have
the same size, i.e., 600,000/n with n being the number
of indexed sets, the key values are uniformly distribut-
ed across the indexed sets, and 100 and 600,000 key
values are used.

For 100 key values, we have a total inclusive distri-
bution. For 600,000 key values, the keys are unique
and, hence, we have a disjoint distribution. These two
cases are extreme cases, challenging all three multi-
ple set index structures. The results for a moderate
database with 20,000 key values are described in the
next section (see also Fig. 4 in Sec. 2). All experiments
were repeated 50 times and the results were averaged.

4.2 Benchmark Results

In the following figures, the x-axis of the plots is la-
beled with the Number of Queried Sets, the y-axis
with the number of page accesses. The different curves
within each figure are labeled by the according multi-
ple set index structure CH, H, or CG. In parentheses,
the kind of the selection of the queried sets, i.e., down-
wards or upwards, is specified by down or up, respec-
tively. If an index structure X is not sensitive to the
selection of the queried sets, there is only one curve

186

/‘\
/“\ 3

/“\ 5 /f\ /1\ /t\
Y 7 A\ /I\ /I\ A\ A\ /Y\ A /‘I”\ /‘I”\
8 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

*Figure 11: Set Hierarchies for the 8-Sets and 40-Sets Databases

labeled by X(down t3 up).

Uniform set sizes

The first row of Fig. 12 gives the results for exact
match queries with unique key values. With constantly
3 page accesses, the CH-index exhibits the best perfor-
mance. The CG-tree reads 2+n pages, where n is the
number of queried sets. The performance of the H-tree
depends on the selection of the queried sets. This is
due to the implied differences in traversing the links
between the nested set trees (cf. Fig. 3 in Sec. 2.2).
The CG-tree clearly outperforms the H-tree in both
(up and down) cases. If all sets are queried, the CH-
index outperforms the CG-tree by a factor of 3 (14) in
case of 8 (40) indexed sets.

The second row of Fig. 12 gives the results for range
queries with unique key values. Both set grouping in-
dexes (H- and CG-tree) clearly outperform the CH-
index. This is due to the clustering of all entries of all
indexed sets in the CH-index. Additional overhead oc-
curs within the CH-index for the set directories being
maintained in every leaf page record. For 8 indexed
sets, the performance of the H- and the CG-tree is
almost equal. For 40 indexed sets, the CG-tree per-
forms about 15% better than the H-tree - due to the
expensive link traversals of the H-tree.

The third row of Fig. 12 gives the results for ex-
act match queries with 100 different key values. This
database contains for a given key value more entries
than would fit on one leaf page. Since the CH-index
clusters the elements of all indexed sets by key, many
overflow pages have to be allocated. Due to the or-
ganization of the overflow pages into a simple linked
list, this introduces a dependency on the queried sets.3
In the best case (down), where the queried sets corre-
spond to the first pages of the list of overflow pages,
the CH-index performs slightly better than the CG-
tree (about 10%). In the worst case (up) - where
sets ss and 640 are queried and, hence, all overflow
pages are accessed - the CH-index is clearly outper-
formed by the CG-tree, if only part of the indexed

3The entries in the (large) leaf page records (aud their lists
of overflow pages) of the CH-index are ordered by their set-ids,
I.e., 81, $2, . . . , sn. Thus, exact match queries involving set
s; (i 5 n) have to traverse all pages of the accessed leaf page
record occupied by the entries of the sets al, . . . , s; .

sets have to be queried. The break even points are 7
(25) queried sets for 8 (40) indexed sets. The CG-tree
clearly outperforms the H-tree in all cases.

The fourth row Fig. 12 gives the figures for range
queries with 100 different key values. Due to itslink
traversals, the H-tree is outperformed by the CG-tree.
In case of 8 indexed sets, the CH-index in its best case
(down) performs better than the CG-tree. The break
even point between the worst case (up) of the CH-
index and the CG-tree still is at 7 queried sets. For 40
sets the CG-tree performs better than the CH-index.

Note that for uniform set sizes, the CG-tree is the
most robust index structure since it is the only one
independent of the selection of the queried sets.

Child-weighted set sizes

Now, we investigate the performance of the index
structures under varying, child-weighted set sizes: for
the 8 indexed sets case, set si+i contains twice as many
elements as set si, 1 5 i < 8. For the 40 indexed sets
case, set si contains i times the number of elements of
the root set 81. Hence, the child sets in the set hierar-
chy have larger cardinalities than their parent sets.

As the indexed sets are of different cardinalities,
the sizes of the result sets depend on the queried sets.
Hence, the number of pages to be read for exact match
queries in case of overflow pages, and for range queries
depend on the selection of the queried sets.4

The exact match query results for unique key values
are qualitatively the same as those from the uniformly
distributed databases (first row of Fig. 13). If all sets
are queried, the CH-index outperforms the CG-tree by
a factor of 3.3 (14) in case of 8 (40) indexed sets.

For the next rows of Fig. 13 the results differ. The
plots of the second row visualize the results for range
queries. Both, the H-tree and the CG-tree clearly out-
perform the C&index. In all cases, the CG-tree needs
less page accesses than the H-tree. Note the strong cor-
relation between the H-tree and CG-tree results and
the size of the queried sets. This correlation is non-
existent for the CH-index since - in this database -
it does not allocate any overflow pages. The CH-index

‘Note, that the CH-index (in the case of overflow pages) and
the H-tree additionally depend on the selection of the queried
sets for the reasous stated earlier.

187

01 I
I 2 3 4 6 8

8Indexcd~-600000RcyVder-RQ(l0%)

550 -

500:
. m *__.._. * ._._,..................... * .

450 -

“1 2 3 4 6 8
8lmkcdSm-1UlKcyVd~-EMQ

40 co(dawn&op)--
I

o-
1 2 3 4 6 8

250
225

1:
- WI
i!
F ‘25
2
f ‘O”

75
50
25
0

8IrdcmedSeu-100RayVdua-RQ(10%)

A

1 2 3 4 6 8

4OIndedSm-6OOOOORqVduu-EMQ

Q e #g *___

124 8 12 20
4Otn6excd~-smmOReyVduc~-R~~~O~)

a.

550 e...* Q ._..._.. * . .._.............. * . * ._._............
500

430

50

0
124 8 12 20 30 40

4OladexedsFQ-loOKcyVdw-EMQ

124 8 12 20 30
~h6ydScts-1oOr(cjVdu~-RQ~lO+) 3M ,, ,

,!

. . ,

300

0
124 8 12 m 30 40

Figure 12: Uniform set sizes

188

16

14

1 12

‘s
IO

1 a

2 6

4

2

,I-.-
6 a

0’ I
I 2 3 4 6 8

8lndcxcdsen-looKcvvd~-Ro(1o%~

o-’ I
1 2 3 4 6 8

124 8 12 40

. * / .._.........._

so
n
-124 8 40

124 8 12 20 30 40

124 8 12 20 30 40

Figure 13: Child-weighted set &es

189

accesses over 500 pages independently of the number
and selection of the queried sets.

The third row contains the plots for exact match
queries with 100 key values. In case of 8 indexed
sets, the small number of key values results in overflow
pages for all index structures. For the down case, the
CH-index outperforms the CG-tree by approximately
20%, and the CG-tree outperforms the H-tree by about
40%. In the up case, the CG-tree performs best for less
than 5 queried sets - the .break even point. After the
break even point, the CH-index performs best. In case
of 40 indexed sets, only the CH-index needs overflow
pages. It outperforms all other index structures in the
down case. In the up case, there exists a break even
point at 23 queried sets. Before this point, the CG-tree
performs best; afterwards the CH-index.

The figures for range queries in the loo-keys
database (fourth row) are more complex. The CH-
tree needs overflow pages and, again, its performance
strongly reacts to the up vs. down selection of the
queried sets. In the down case, it slightly outperforms
the CG-tree if more than 4 (12) sets are queried -
for less than 4 (12) queried sets, the CG-tree performs
best. In the up case, if only one set is queried, the CH-
index is outperformed by the CG-tree by a factor of
about 70 (40 indexed sets). This drastic figure dimin-
ishes with an increasing number of queried sets. The
break even point is reached at 30 queried sets. In all
cases, the CG-tree needs less page accesses than the
H-tree.

5 Grouping of Indexed Sets

As we have seen in the previous section, the relative
performance of the CH-index and the CG-tree strongly
depends on the application profile. The differences can
be an order of magnitude, e.g., for an exact match vs.
range query profile. Hence, the database administrator
finds herself in a dilemma. For a mix of exact match
and range queries, only one extreme can be chosen:
either support exact match queries or range queries.
Hence, we propose a refinement of the CG-tree that
exploits a grouping scheme for the indexed sets in order
to provide the flexibility necessary for its tuning to a
given application profile.

The idea is based on the observation, that in
many applications, the indexed sets can be grouped
such that all sets being members of the same group
are often accessed together. For example, consider
a personnel database containing the sets TechStaR,
Programmer, ProjLeader, GroupLeader, and Manag-
er. We assume that many applications execute sepa-
rate queries to retrieve the administrative employees,
the project related employees, and the technical staff.
Thus, we can identify three groups of indexed sets -

{ GroupLeader, hfanager}, {Programmer, ProjLeader},
and { TechStan - that are often co-accessed.

In order to support applications where groups of
sets are often accessed together, the CG-tree is adapt-
ed as follows. Let 91, . . . , gm be the grouping of the in-
dexed sets. Instead of having one list of leaf pages for
each of the indexed sets, there is one list of leaf pages
for each group. Every leaf page belongs to exactly one
group, and stores only elements of the member sets of
that group. There are two kinds of leaf pages:

1. For leaf pages that belong to a singleton group,
no set directory is maintained in the leaf page
records.

2. The records of leaf pages belonging to a group
with more than one set contain a set directory,
i.e., they have the same layout as in the CH-index.

The directory page records contain directories with m
components, one for each group.

In the above example, the records of the leaf
pages for the groups { GroupLeader, Manager} and
{Programmer, ProjLeader} maintain set directories,
whereas the records of the leaf pages belonging to the
group { TechStag) do not have a set directory.

Benchmark Results

We only give a brief validation of the grouping ap-
proach. We have chosen the moderate case with 20,000
key values, since these experiments also complete the
benchmark results of the previous section. Again, we
distinguish exact match queries and range queries, and
selection of the queried sets by downward and upward
traversal of the set hierarchy (ref. to the tables in
Sec. 4.1). Because of space restrictions we included
only the plots for the 40-&s databases; the results for
the 8-sets databases can be found in [S].

The results are plotted in Fig. 14. For the CG-tree,
three curves are shown corresponding to the different
number of groups, i.e., 0,4, and 10 groups. We applied
the following grouping scheme:

40-Sets Databases

“E2-i”’
Group Definition

4 31,...,SlO 9 e-*9 {d31,...rS4OJ
10 Sl,...,S4 , 337,...,340

The first plot of Fig. 14 shows that for exact match
queries, the performance of the CG-tree with a small
number of groups comes close to the performance of
the CH-index. As shown by the second plot, the per-
formance degradation on range queries is within ac-
ceptable limits.

6 Conclusion

We introduced a new set grouping multiple set index
structure called CG-tree. The CG-tree outperforms

190

I
124 8 12 20 30 40

~OIM~~~~~~-~OCOOK~~V~UCS-RQ(~~%)
4501’ I I I

’ ’ I
124 8 12 20 30 40

Figure 14: Grouping of indexed sets (the plots for the
CG tree apply to both kinds of queries, down 8z up)

the also set grouping H-tree [8, 91 in all cases. Es-
pecially on exact match queries, the CG-tree shows a
much better performance than the H-tree.

For exact match queries, the key grouping CH-index
[7] is superior to the CG-tree in many cases; for range
queries, the CG-tree is superior. Hence, the principle
performance considerations for key and set grouping
index structures depicted in Figure 1 are still valid.

These observations led us to the refinement of the
CG-tree, where sets can be grouped according to their
access probabilities. It was shown that with a small
number of groups, the performance of the CG-tree on
exact match queries comes close to that of the CH-
index. The performance losses for range queries were
moderate. This flexibility allows the database admin-
istrator to tune the CG-tree to better support applica-
tion profiles containing exact match and range queries.

The following rules, being valid for a large variety of
databases, summarize the results of our experiments:

0 If no range queries occur, i.e., all queries are exact
match queries, the CH-index should be applied.

l If the application contains range queries and the
number of indexed sets’is small, the CG-tree with-
out grouping should be applied.

l If the application contains range queries and the
number of indexed sets is large, the CG-tree with
grouping should be applied.

Acknowledgments

We thank Kurt Moos for his help in implementing the
index structures and extensive benchmarking.

References

PI

PI

PI

PI

[51

PI

[71

PI

PI

PI

Pll

WI

R. Bayer and E. McCreight. Organization and
maintenance of large ordered indices. Acta Infor-
matica, 1(3):173-189, 1972.

M. J. Carey, D. J. Dewitt, J. E. Richardson, and
E. J. Shekita. Object and file management in the
EXODUS extensible database system. In Proc. of
VLDB, pages 91-100, Kyoto. Japan, Aug 1986.

S. Cluet and C. Delobel. A general framework
for the optimization of object-oriented queries. In
Proc. of SIGMOD 1992, pages 383-392.

T. Hiirder. A generalized access path structure.
ACM TODS, 3(3):285-298, Sep 1978.

A. Kemper and G. Moerkotte. Object-Oriented
Database Management. Prentice Hall, N.J., 1994.

C. Kilger and G. Moerkotte. A performance eval-
uation of index structures for multiple sets. TR
6/94, Fak. f. Informatik, Univ. Karlsruhe, 1994.

W. Kim, K. C. Kim, and A. Dale. Indexing tech-
niques for object-oriented databases. In Object-
Oriented Concepts, Databases, and Applications,
pages 371-394, 1989. Addison Wesley.

C. Low, H. Lu, B. Ooi, and J. Han. Efficient
access methods in deductive and object-oriented
databases. In Proc. of DOOD 1991, pages 68-84.

C. Low, B. Ooi, and H. Lu, H-trees: A dynamic
associative search index for OODB. In Proc. of
SIGMOD 1992, pages 134-143.

J. Nievergelt, H. Hinterberger, and K. C. Sevcik.
The grid file: An adaptable, symmetric multikey
file structure. ACM TODS, 9(1):38-71, 1984.

B. Seeger and H. P. Kriegel. The buddy tree:
An efficient and robust access method for spatial
data base systems. In Proc. of VLDB 1990, pp
590-601.

P. Valduriez. Join indices. ACM TODS, 12(2):
218-246, June 1987.

191

