
NAOS
Efficient and modular reactive capabilities

in an Object-Oriented Database System

C. Collet T. Coupaye TSvensen
Christine.ColletQimag.fr Thierry.CoupayeQimag.fr Thomas.SvensenQimag.fr

LGI-IMAG, University of Grenoble, BP 53 38041 Grenoble cedex 9, fiance.

Abstract

This paper describes the design and imple-
mentation of NAOS, an active rule compo-
nent in the object-oriented database system
02. The contribution of this work is re-
lated to two main aspects. The first concerns
the integration of the rule concept within the
02 model, providing a way to structure appli-
cations. Rules are part of a schema and do not
belong to a class. Program execution and data
manipulation, including method calls, can be
driven on rules. The second aspect concerns
the way NAOS interacts with the kernel of
the 02 system. To support a reactive capa-
bility the object manager semantics has been
extended, thus providing an efficient event de-
tection. Applications produce events and the
subscribed event types react to these events.
As a result, rules are triggered.

1 Introduction

The work presented in this paper concerns the in-
tegration of active rules in the 02 object-oriented
database system [BDK92]. It is part of the GOOD-
STEP project’ whose goal is to provide a platform
suited for Software Engineering Environments (SEE)
built using the 0s system. The aim of SEE is to

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date a&war, and notice is
given that ctipying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requins a fee
and/or special permission from the Endowment.

Proceedings of the 20th VLDB Conference
Santiago, Chile, 1994

‘GOODSTEP is the Esprit III project No. 6115.

help users through the software engineering process.
In SEE data are typically strongly interrelated thus
implying sophisticated and safe update propagation
mechanisms. Also, data updates may correspond to
different levels of granularity: changing an attribute
value, editing a procedure, compiling a module, etc.
Therefore, in SEE it is necessary to manage links be-
tween entities and to support in a uniform way auto-
matic change propagation. High-level operations (i.e.,
tools invocation) also have to be propagated and con-
trolled. For example, the system may support policies
such as the one concerning change of a source code
module: ‘whenever a source code module change is
validated (1) call the compiler with the module as pa-
rameter and (2) call the linker with the object code
of the module as a parameter as well as other ob-
ject codes associated with this module.” Such a pol-
icy contributes to controlling, monitoring and assisting
teams in performing their activities. In order to sup-
port such policies, different approaches have been pro-
posed based on AI techniques, process programming
and rules [BK91, OZT90].

In the framework of GOODSTEP, active rules have
been incorporated into 0s as a means of supporting
SEE semantics, mainly for: (i) notifying users, i.e.,
programmers of SEE or end-users, (ii) application ac-
cess logging, (iii) organizing related application pro-
grams, (iv) tools communication, (v) change propaga-
tion, and (vi) maintaining data consistency. In NAOS
(02 Native Active Object System), rules are Event-
Condition-Action (ECA) rules. An event of type E is
able to trigger multiple rules. For each triggered rule,
if the condition C holds, then execute action A. The
main features of our work are as follows:

l Rules constitute a programming paradigm which
allows applications to be structured. Rules are
considered at a higher level than programs, meth-
ods and data manipulation. They are defined as
elements of a schema, at the same level as class or

132

application definitions. This approach allows to
control the execution of more general operations
than method calls, i.e., updates of collections, pro-
gram executions, etc. Rules respect encapsulation
and transparency : they are triggered by autho-
rized operations related to persistent or transient
entities. Conditions and actions of rules are per-
mitted to operate on persistent or transient en-
tities. Rules can be exported/imported, increas-
ing reusability. For the purpose of programming
guidelines, rules are isolated from programs and
.methods: a rule can be activated or deactivated
only through rules.

The execution of a rule takes place within an
application, more precisely within user-defined
transactions and programs (read-only transac-
tions) and interacts with one or more databases.
Two kinds of rules are considered: Immediate
rules which .have an instance oriented semantics
and defemzd rules which have a set oriented se-
mantics. Rule execution is based on the notion
of execution cycles. A cycle describes the exe-
cution of a sequence of operations belonging to
a user-defined transaction, a program or a rule.
Every execution cycle is associated with a delta
structu~ containing data related to the trigger-
ing operation(s).

NAOS has three main components: a rule def-
inition module, an event detector and an exec-
utive module. The rule definition module offers
a specific interface for rule programming. This
interface offers direct access to the rule manipu-
lation primitives for allowing dynamic creation or
modification of rules within an application. Also,
direct access to the event detector allows for dy-
namic event types subscriptions and thus for rule
enabling. With this approach, NAOS can be used
by 02 application developers or software integra-
tors.

General rule structures are stored as persistent
objects while conditions and actions are stored as
methods. For efficiency reasons, runtime struc-
tures are built for rule execution avoiding multi-
ple access to the object manager when rules are
executed. This approach makes it possible to al-
ter rule definitions of a schema without interfering
with the execution of applications.

This paper is organized in the following way. Sec-
tion 2 presents the decisions we made for integrating
rules in the 02 system. It also summarizes the main
features of some research prototypes supporting active
rules in order to motivate the design and implementa-
tion of our rule system. Section 3 concentrates on the

resulting rule language. Section 4 discusses our rule
execution model. Section 5 presents some aspects of
the architecture of our system. Brief conclusions and
future research directions are given in Section 6.

2 Integrating rules in 02

This section first reviews the main characteristics of
the 0s system. The reader may find further details
in [BDK92, AC93]. Then, the decisions we made for
integrating rules in the 02 system, are introduced.

2.1 Features of the 02 Data model

An 02 schema is a set of definitions. The main struc-
ture of a schema consists of a set of classes related by
inheritance links and/or composition links. A schema
also contains definitions of types, functions and appli-
cations. An 0s base groups together objects and values
which have been created in compliance with a schema.

An object has an identity, a value and a behavior de-
fined by its methods. Objects are class instances and
values are type instances. In the remainder of this pa-
per, the entity concept is used for referencing either
objects or values. The value of an entity corresponds
to the content of an 02 value or to the value of an
02 object. A given object can be shared (referenced)
by several entities. By default, objects and values cre-
ated during program execution are not persistent. To
become persistent, i.e., stored in a database, an entity
must be directly or indirectly attached to a name, i.e.,
a persistent root belonging to a schema.

A clcrss definition consists of a type definition and
a set of methods. A type is defined recursively from
atomic types (integer, boolean, char, string, real, and
bits) or classes and constructors (tuple, list and set).
Methods are coded using the OzC2 language which
allows to express manipulations on persistent entities
as well as non-persistent entities. OzSQL, the query
language of the system, can be used to express boolean
expressions on entities as well as SQL-like queries on
collections.

An 02 application is a set of programs whose exe-
cution take place in reference to a schema and to one
or more associated databases. When an application
starts up, it opens a read-only transaction. Programs
of the application executed within this transaction can
manipulate transient entities (apply methods, modify
values, etc.) but is restricted to read-only access to
persistent entities. A (read-write)tra;nsaction must be
initiated before updating persistent entities in order
to ensure consistency. Transactions in 02 are flat
atomic transactions. Commands such as transaction,

202 and all product names derived from it (OzC, 02AP1,
02SQL) are registered trademarks of 02 Technology.

133

validate, conmit and abort are provided for managing
transactions.

Encapsulation is provided at different levels. First,
properties (attributes or methods) are private to their
class by default. Also, programs are private to their
application. Encapsulation is also provided at the
schema level as elements of a schema cannot be used
by another schema. In order to increase reusability,
02 provides an import/export mechanism.

The following is an example of 02 schema. The
Person class describes persons; The wloyee class is a
subclass of Person and describes employees of a com-
pany. The Task class characterizes a task of a project
including the employees participating in this task and
the set of documents (modules) produced for realizing
the task. An instance of class Document is basically a
text; it belongs to a task and can refer to (or be re
ferred to by) other documents. The-boss and GP are

names of instances of classes Employee and Task, re-
spectively. Application pro j actmanagement includes a
public program create-Task for creating a new instance
of Task. An instance of Employee is given to this pro-
gram when it is invoked by the manage-Task program.

class Person public type tuple (
name: tuple(familyname: string,

firstname: string),
spouse: Person,
age: integer)

end ;
class Employee inherits Person
public type tuple (

profile: list (string),
salary: integer))

end ;
class Task public type tuple (

name: string,
manager: Employee,
group: set(Employee),
documents: set(Document))

end;
class Document type tuple (

name: string,
content: Text.,
project: Task,
used-by: set(Document),
uses: eet(Document))

method public compile
end;
name TheBoss: Employee;
name GP: Task;
application projectmanagement
program getinformation-Manag~ger(m:Employee),

getinformationXask(t:Task),
public create-Taek(m:Employee),
public manage2aak,

end ;
. . .

2.2 Design choices and motivations

From the simple ECA paradigm, different kinds
of active rules and therefore different kinds of ac-
tive systems have already been proposed. The fea-
tures of these systems depend upon whether the
rules are defined for a general purpose database sys-
tem or for specific applications [ACC+93]. In de-
signing our rule system we took into consideration
works on database procluction rules which have fo-
cused on (i) relational systems: Postgres[SJGPSO,
SK91], Starburst[LLPSSl, AWH92] and Ariel[Han92]
and (ii) object-oriented systems: HiPAC [DBM88,
DHLSO, Day88, HLM88, MD89, Cha89], Ode [GJ91,
GJS92b, GJS92aJ, 02 [MP9113, SAMOS [GGDSl],
Sentinel [AMC93] and TriGS [KRRV94]. We also
consider specific approaches for incorporating rules in
software engineering environments: Marvel [BK91],
ALF [OZT90] and Adele [EBAM92].

The following provides a motivation for our ap-
proach based on the characteristics and limitations
of the existing systems, especially the object-oriented
ones. Issues in designing a rule language are consid-
ered in Section 2.2.1. The rule processing semantics
with respect to transaction management is discussed
in Section 2.2.2. The integration of rules with object-
oriented concepts is discussed in Section 2.2.3. Issues
in rule implementation are discussed in Section 5.

2.2.1 Rule definition

The main aspects for defining a rule language concern
event specification, condition and action definitions,
and the binding between rule parts. This section also
describes the operations we allowed on rules.

Event specification

The event part of a rule specifies a type of events,
These events are usually divided into two cate-
gories: primitives (called basics in Ode) and compos-
ites pay88, GGD91, GJS92a]. Three kinds of prim-
itive events are considered: internal events related
to database operations, temporal events and external
events. Composite events are made up of other com-
posite or primitive events. In HiiAC, SAMOS and
Sentinel, events are mostly related to the state of ob-
jects and to the actions applied to them. They may
occur whenever a database operation takes place, such
as an access to an object, an attribute value update,
a method execution or the call of a transaction primi-
tive. In SAMOS, temporal events and abstract events
(named and defined by the application) are considered

%I order to distinguish between this earlier work done in the
framework of the 02 prototype and our rule system NAOS, we
will refer to the prior as ProtoOz.

134

as well. SAMOS’s abstract event is called external no-
tification in HiPAC. In Ode events are not considered
(propositions in [GJS92b] have not been integrated in
the Ode prototype). ProtoOs supports only message
and time related events (neither composite events nor
events related to transactions are provided). In ‘BiGS,
only message events are considered.

Although composite events and temporal. events
have been studied, they are not part of the cur-
rent implementation of NAOS and therefore, this pa-
per only concerns primitive event types related to
(i) read/write operations on entities or parts of en-
tities, and (ii) code execution (method execution, and
program/application/transaction processing). Event
types are parts of rule structures. They can be seen as
class attributes as in [BM91]. However, within NAOS,
event types are objects and they can be dynamically
created, modified or deleted. As we will see events (in-
stances of event types) also exhibit the properties of
objects as in [AMC93] and may become persistent.

Conditions

Conditions are made up of predicates over the data-
base state. These predicates involve query language
expressions (the simplest being retrieving an attribute
value), method calls and simple logical expressions. In
some systems, such as Ode, conditions are part of the
event specification as a mask which qualifies the event
and can refer to parameters of the method call defin-
ing the event. In TriGS, conditions are queries against
the triggering object or the parameters of the trigger-
ing method. In NAOS, conditions are predicates over
persistent or transient entities, defined as 0s queries.
The target of a query is the actual database or the
data associated with the triggering operation (an en-
tity, the parameters of a method or a program). Also
queries may use methods. However, we cannot elimi-
nate side-effects produced by update of entities while
evaluating a condition like in SAMOS, but the rule
system ensures that the evaluation of a condition can-
not trigger another rule. This is done by deactivating
the detection of all events while evaluating a rule con-
dition.

Actions

In the context of object-oriented systems, actions are
messages to objects, database operations or procedure
calls. Depending on the level at which a rule is de-
fined, the scope of its action is a class or a hierarchy of
classes. In NAOS, actions are pieces of OsC code that
may operate on persistent and transient entities. The
action scope of a rule is defined by the class hierar-
chy of the schema to which the rule belongs. It is not
restricted, like in Ode, to a class. As in HiPAC, our

approach gives a far better flexibility because we can
either have very simple actions (e.g. a transaction’s
abort, a method invocation, the signal of a user-defined
event) or arbitrary composition of actions which may
trigger other rules. A rule can also contain a call to
a program, Such a rule can be executed only in the
framework of the application to which the program
belongs. This means that the rule will have to be de-
activated for any other application.

Event-condition-action binding

There are different notions of binding. In HiPAC and
Sentinel, conditions and actions may refer to param-
eters specified in the event part of the rule. These
parameters generally refer to the object on which the
triggering operation occurred. However, no mecha-
nism is provided for accessing the “old” value of the
object. In HiPAC, an additional mechanism is used for
referencing in actions the results of queries of condi-
tions. In Sentinel, it is not clear that actions can refer
results of conditions. In Ode there is no mechanism for
condition-action binding. Only the object concerned
with the event is accessible. In SAMOS data related to
the triggering operations are not visible in actions. In
NAOS, data related to events are stored in delta struc-
tures whose type depends on the kind of the triggering
operation and the type of the rule. The rule language
provides a means to name these structures and to ma-
nipulate them in conditions and actions. Actions can
also refer the result of queries of conditions.

Operations on rules

NAOS offers specific operations for manipulating rules.
By means of the create, delete, modify, display,
rename commands, rules can be manipulated as well
as other elements of an 0s schema. When an applica-
tion of a schema is executed, the rules belonging to this
schema are enabled. However, all these rules may not
be relevant to the application execution. The enable
and disable operations allow a rule to be activated or
deactivated, respectively. The syntax used for specify-
ing such operations is similar to the one used for apply-
ing a method to an object. For example, R->disable
will deactivate rule R. This correspond to unsubscribe
its corresponding event type. To conclude, in order
to treat only events of interest for an application, a
rule may have to be triggered after the start of the
application for deactivating some rules.

2.2.2 Rules and transactions

In most rule systems, user-defined transactions trig-
ger rules and it is natural to view a triggered rule as a
sub-transaction of the triggering transaction. EC and
C-A coupling modes proposed in HiiAC define how an

135

event, a condition and an action, i.e., sub-transactions
relate to each other and the transaction having trig-
gered the rule. The links with transaction processing
can be defined in different ways. For example when
a triggered sub-transaction (a condition) is scheduled
right after the occurrence of an event, the EC cou-
pling mode is said to be immediate. On the other
hand, the triggered sub-transaction can be scheduled
for execution at the end of the triggering transaction.
This is called a deferred coupling mode. Several com-
binations of these coupling modes have been defined
in HiPAC and SAMOS. Coupled and decoupled execu-
tions of triggered transactions have also been consid-
ered. In Ode a week EA coupling mode is provided:
the action is executed after (but not immediately af-
ter) the event. In ProtoOz, only immediate EC and
C-A coupling modes are provided. In Sentinel, im-
mediate and deferred rules are proposed but the links
between these kinds of rules and the transactions are
not clearly described. ‘IYiGS supports immediate and
deferred coupling modes. Furthermore, it provides a
separate coupling mode. In such a mode, a rule is ex-
ecuted within a new transaction, independently of the
triggering .transaction. No dependencies are consid-
ered between the triggering method and the separated
rule.

In NAOS the 02 transaction model serves as a basis
for defining when and how rules are executed. Condi-
tions and actions are coupled sub-transactions of the
triggering transaction. As the 02 model does not
provide a nested transaction mechanism, these sub-
transactions are not real transactions : ‘they are units
of execution for rules, so called execution cycles. The
initial cycle is defined as a sequence of operations be-
fore the actual execution of a rule. This allows us
to consider immediate rules triggered by operations
which take place in a read-only transaction and/or a
read-write transaction, and deferred rules triggered by
operations which take place in a read-write transac-
tion. Every execution cycle is associated with an event
history used to build the delta structure of each rule
considered in the cycle.

2.23 Rules and Object-Oriented concepts

In NAOS, rules are components of a schema and are
defined at the same level as classes and applications.
This approach offers the possibility of specifying rules
triggered by events concerning one or more entities,
possibly from different types. We do not provide ex-
ternal/global and internal/local rules as in SAMOS
and TriGS which can be confusing from the program-
mer’s point of view. Further, providing rules as part of
a class definition leads to class update problems when
modifying rules.

In most of the rule systems based on object-oriented
systems, rules are first class objects. However, the in-
tegration of the rule concept with the classical proper-
ties (encapsulation, inheritance, overriding and over-
loading) of object-oriented concepts is not clearly dis-
cussed. In NAOS, two levels are clearly considered:
the model level where rules are not objects and the
implementation level where rules are objects. When
defining rules in a schema using the rule language,
the programmer does not consider rules as objects or
methods. However, using the Rule Programming In-
terface, the programmer sees rules as objects. The
only operations available on these rule objects are
those introduced in Section 2.2.1.

Considering encapsulation, rules of NAOS respect
encapsulation: only public operations (methods, pro-
grams, update, etc.) can generate events. The 02 per-
sistency transparency principle is also respected when
programming rules. Rules can be triggered by oper-
ations on entities which may or may not be persis-
tent. As a part of a schema, a rule definition can refer
all the other definitions of the schema(classes, types,
name objects or values, etc.). Rules can be imported
and reused in another schema assuming the elements
used in its definition are imported as well.

For the purpose of inheritance, rules are classified
by their relationship to classes. In fact only event types
are considered and propagated across the class hierar-
chy. Let us consider the event type, say E = op(C) of a
rule r. Such an event type characterizes an operation
op on an instance of C. If one of the sub-classes of c is
CI then the event type E is inherited in CI. As a result,
when an operation op occurs on an instance CI, rule
r is triggered and any rule ri with event type OP(CI)
is also triggered.

For the purpose of overriding and overloading, let
us consider rule P with the event type E as defined
above, the condition c and the action A. As in TriGS,
the signature of such a rule can be represented as the
function r:E->@->A). Overriding means overriding
the event type E and the type of @->A) in a subclass
of C. 02 inheritance is defined with a subtyping se-
mantics. Changing the type of E means that the trig-
gering class may be changed by any of its subclasses.
The current prototype allows the programmer to de-
fine the de r’:El->(Cl->Al) where El= op(C1) is a
sub event type of E and Cl->A1 overrides C->A. As a
result, when an operation op occurs on an instance CI,
rules r’and rare triggered. More work is necessary for
allowing the overriding and overloading of rules as the
new rule r’cannot have the same name as rule r. How-
ever, priorities can be defined between r’ and r and,
rule r’may be disabled in action of rule r. With this
approach, only rule r’ will be executed but it is the
programmer’s responsability to enforce the overriding.

136

Ram an application development point of view,
rules are considered at a higher level than 02 pro-
grams, methods and data manipulations. This means
for example that the beginning or the end of a pro-
gram execution may trigger rules. But programs can-
not explicitly manipulate rules except when they use
the rule programming interface. Therefore, when us-
ing our rule language, a rule can be manipulated only
through rules, e.g., the activation and the deactivation
of rules cannot be done directly in the body of a pro-
gram but only in actions. With this approach the pro-
grammer is forced to specify the rules well separated
from methods and programs thereby avoiding undesir-
able linkage between two programming paradigms.

3 Rule language

3.1 General structure

The overall structure of a rule definition is as follows:

[create] rule <rule name>
[precedes <list of rule names>]
[coupling <coupling mode>]
[in < ezecution mode>]
on <event type>
[with <name of the associated delta &ructure>]
[ii <condition>]
do [instead] <action>

rule name
l&h rule has a name in the schema it belongs to.

list of rules
As one event may trigger several rules there is a
need for ordering between the rules of a schema.
A default total ordering is based on the order in
which rules were defined. As in [ACLSl], priori-
ties between rules allows to depe a total ordering
for rule processing. This order endows the rule
system with deterministic behavior.

coupling mode
The <immediate,immediate> combination means
that a condition is evaluated right after event
detection and, if it holds, action is immediately
scheduled for execution. This (default) combma-
tion characterizes immediate rules which respond
to operations on a single entity. The <deferwd,
immediate> combination means that the condi-
tion evaluation and action execution take place
after the last operation of the triggering trans-
action, but before it validates or commits. This
combination characterizes deferred rules which re-
spond to aggregate and cumulative changes to an
entity. Deferred rules are set-oriented. Note that
the C-A coupling mode can be omitted as it is
always <immediate>.

w execution mode
Execution mode has to be given only for imme-
diate rules. It specifies whether an immediate
rule has to be triggered by an event which occurs
within a read-only transaction(r&utz), a read-
write transaction(nu&uns), or both(r&w&uns).
For deferred rules, the execution mode is always
rwtmna and can be omitted. It is clear that the
in clause may be not necessary when considering
composite events with the sequence operator. In
that case, the first event type of the sequence is
an application event type transactionbegin (see
bellow).

- event type
Events may be connected to manipulating
database entities or executing transactions, pro-
grams or applications. An event type charac-
terizes a particular situation detectable by the
OzEngine, the kernel of the 02 system. Prim-
itive event types proposed in NAOS have been
described in [CHCA94]. Entity manipulation
event types characterize events which are pro-
duced when manipulating entities, i.e., when ob-
jects are created (new) or deleted, values are mod-
ified, entities become persistent or transient, and
messages are send to objects. The rules defined
with these event types may either be immedi-
ate or deferred. Application event types are re-
lated to the execution of 02 applications. These
event types characterize the events generated by
the beginning and end of application, program or
transaction execution respectively. The rules trig-
gered by events of these types are always immedi-
ate rules as deferred execution gives no meaning
in this case. NAOS also considers user-defined
event tarpes that characterize situations which are
not necessarily associated with entity manipula-
tion operations, program executions, etc. Such
event types are defined independently from a rule
definition. They belong to an 02 schema and are
uniquely identified by their names. A user-defined
event is explicitly generated by using the signal
operation in a code.

An event type specification also describes the mo-
ment of generation (befonz or after) when an event
of this type has to be generated with respect to
the actual triggering operation. The default gen-
eration moments is always after if this is possible
for the operation concerned.

- delta structure name
The with clause of a rule enables programmers to
name the delta structure which will be associated
with the rule at runtime. This delta structure con-
tains data related to the triggering operation(s).

137

According to whether the-rule is immediate or de-
ferred the structure is known as a delta element
or a delta collection. Section 4.2 introduces the
types of the delta structures and the operations
such as new, old, cnrrent.provided for referencing
data contained in a structure without having to
know about its type.

create rnle compile-propagate
couplingdeierred
on methodAnd Document->compile with d
if range of docfoxomplle is set(Document)

select doe->used,by
from doe in d
where doe->used-by != set0

do (02 Document dd;

m condition for(dd in flatten(doc,toxompile)) dd->compile;
.

The condition is a formula composed of predi-
cates on objects and values. A predicate is an
O#QL query. A predicate is true when the cor-
responding query’s result is true or non-empty.
A predicate may refer the delta structure of the
event part. The result of a query can be denoted
by a variable declared in the if clause.

- action
The action can be an executable OZC code; it
may abort the current transaction in which the
corresponding event occurred. The most simple
form of an action is a method applied to the ob-
ject concerned by the corresponding event. More
generally, an action may use the delta structure
of the event part of the rule and the result of the
query of the condition.

instead
When a rule is executed it may sometimes be de-
sirable to cancel the triggering operation. How-
ever, the cancellation of a triggering operation
only makes sense if rule execution is immediate.
Further, as the 02 transaction manager does not
provide nested transactions, the cancellation is
reasonable only if the rule involved is triggered
prior to execution of the triggering operation.
Therefore, only rules with before event types are
considered. The cancelling of a before event is ma-
terialized as in [SK911 by instead as part of the do
clause of a rule. When a rule with such a clause is
executed, the triggering operation is cancelled and
the actions of the do instead clause are executed.

3.2 Examples of rules

The following rules belong to the 02 schema of Sec-
tion 2.1. They are used to control salaries of employees
participating in the GP’s task and to propagate the ex-
ecution of a compile method on a document.

create rnle UpdateAmployecAalary
couplingiamediate
in r-w-tram3
on before update Employee>ealary with e
if new(e)->salary > 2 * e->salary
do instead{

notifyincrease.Aalary(The~oss, e);
1

create rnle create-Taskauthorization
coupling immediate
in r-Wane
on programbegin create/Task(m)

in application projectmanagement with p
if arg(p)->m != TheBoss
do instead { dlsplay(nYou are not authorized

to create a task”);
1

The event type of the first rule is BBPOBB UPDATE

(Employee, salary). It characterizes the modification
of the salary attribute of an Employee’s instance. This
instance may be persistent or transient as the rule will
be executed within a read-write transaction. When
rule UpdateAmployeeAalary is triggered, its associated
delta element is made up of the Employee’s instance
whose salary attribute has to be modified, and the
new value for this attribute. e denotes the instance of
Employee before modification and new(e) denotes the
instance of Employee after modification. The condi-
tion holds if the updated employee belongs to the GP
group and has a salary with a value twice its previ-
ous value. If the condition holds, the employee named
TheBose is notified instead of updating the salary of a.

The Compilepropagate rule specifies a propagation
policy for document compiling. The event type of this
rule is AFTER NFZBODBNB compile0xnment). At the
end of a transaction, possibly including multiple com-
piling of different documents, the rule is triggered. Its
associated delta collection d is a set of tuples, each of
them describing the execution of a compile method on
a document dot. The condition holds if at least one
compiled document is used by other documents. The
results of the query, dot-to-compile is a set of sets of
“used-by” documents. The action of the rule flattens
this set. Then, every document of the resulting set is
compiled.

The create-TarkAuthorization rule specifies au au-
thorization checking for the execution of program
createAsk(The event type of this rule is BBPOBB
PROGBANEBGIN createrark (project- management, m) .
The rule is only triggered when the createJask pro-
gram is called within a read-only transaction of the
projectmanagement application. When the rule is trig-
gered, its associated delta element p describes the ac-
tual call of createrask. argfp) denotes a tuple de-

138

scribing the actual parameters of the program. If at-
tribute m of this tuple does not reference the object
TheBoss, the execution of the program is refused.

4 Rule execution

The rule execution model covers the aspects of (i) cou-
pling modes, (ii) multiple rules triggered by the same
event, (iii) cascading rule execution, (iv) delta struc-
tures and (v) net effect of events. Section 3.1 intro-
duced the coupling modes we provide and the prece-
dence relationship for managing multiple rule execu-
tions. In this section cascading will be explained for
immediate and deferred rules respectively. Then we
will briefly present delta structures and net effect.

4.1 Cascading execution

Executions of immediate and deferred rules take place
in execution cycles. An execution cycle describes the
execution of a series of operations which belong to a
transaction, a program or to the condition and action
part of a rule. Whatever the coupling mode under con-
sideration, the rules triggered are always executed in
a new execution cycle distinct from the one to which
the triggering operation belongs. Furthermore, if more
than one rule is executed in a single cycle, they are ex-
ecuted in an order corresponding to their respective
priorities. Figure 1 and 2 show the execution of rules
r,, r, triggered by event al of type El, ria and rib trig-
gered by event e2 of type E2. Rule rs, is triggered by
event ea. These rules are defined under the following
precedence (<) relationships: r, < r, and r,, <r, <r, b.

4.1.1 Immediate rules

Immediately triggered rules are executed depth Srst.
This approach is closely related to the one proposed
in [WCLSl] but rules considered in NAOS respond to
operations on a single entity. The sequence of oper-
ations executed up to the triggering event defines an
initial execution cycle. Then, every subsequent rule
execution defines a new nested execution cycle.

In Figure 1, the rules are considered to be imme-
diate assuming a transaction in which an event al of
type El occurs. The operations of the current transac-
tion executed before ei defines cycle 0 the initial ex-
ecution cycle. In the case of an after event type, this
cycle also includes the triggering operation. When el
occurs, rules r1 and r, are triggered. r1 having the
highest priority is executed first and defines a new ex-
ecution cycle, cycle l(a) in Figure 1. In this cycle, the
condition of r1 is checked and assuming it is true, the
action part is executed. As one can see in Figure 1,
r1 produces event e2 of type E2 which in turn triggers
rules rio and fib (rIa precedes rIa). Both rule exe-
cutions define (sub) execution cycles, cycle 2(a) and

._/

i
Ewy i . A.:
+

Figure 1: Execution cycles for immediate rules

cycle 2(b), respectively. The depth first execution or-
der implies that events produced in an execution cycle
are treated without considering rules already triggered
but still to be executed. For example, when event e2
occurs, selection of rules concerns r,, and rib and we
consider the precedence relationship between these two
rules only. We do not add rl,, and rlb to the initial set
of triggered rules. Finally, re is executed taking into
account the composition of the initial execution cycle
(cycle 0) and the ri execution cycle(cycle I(a)) with
its subcycles cycle 2(a) and cycle 2(b).

4.1.2 Deferred rules

Deferred rules are executed at the end of the trans-
action in which the triggering event occurs but before
its commit or validate. Operations of the transaction
constitute cycle 0, while cycle 1 will contain the execu-
tion of the rules triggered in cycle 0. Thereafter, cycle
n+l executes the rules triggered in cycle n, thereby
enforcing the width first execution order.

Evmt 01

/\

Figure 2: Execution cycles for deferred rules

In Figure 2 all rules are considered to be deferred.
Event ei occurring in cycle 0 triggers rules ri and
rs which are then scheduled for execution in cycle 1.
The execution of rule r1 triggers the two rules ria and
fl) , but these are not executed until all the rules of

139

cycle 1 are finished. In other words, rule rs is executed
before any of these, producing event e4 which triggers
rule rso. Cycle 2 is then initiated to execute the rules
in the order ria , rs, and rib. Assuming that these rules
do not trigger any deferred rules, cycle 3 will never be
created. Rules ria and rl* see the effects of the opera-
tions executed in the initial cycle (cycle 0) and in the
ri and rs execution cycles (cycle 1). More generally,
deferred rules of a cycle see the effect of operations per-
formed since the beginning of the transaction. When
there are no more deferred rules to be considered, the
transaction is validated or committed.

The examples given are rather simple. One may
have immediate rules being triggered during the exe-
cution of deferred rules. Thus, a rule may be charac-
terized as “the rule deferred cycle 2, immediate cycle
4”. The nesting may in theory be infinite, there are
no limitations on the number of immediate cycles, or
deferred cycles, nor is there any theoretical limit to
the number of rules that may be triggered by any one
event.

4.2 Delta structures

4.2.1 Delta elements

The execution environment of an immediate rule is
known as a delta element. It contains (i) the entity
which is concerned with the operation producing the
event and, (ii) the inserted, deleted or updated data
or the actual parameters of a method or a program.

Data contained in a delta element is accessible even
though the programmer does not know the details of
the type of this element. The name of a delta element
(cf. Section 3.1) may be used to construct views which
give a simplified description of the information con-
tained in the designated delta structure. In order to
construct these views five operators are proposed, i.e.,
new, old, current, delta and arg. The current opera-
tor is the one assumed if none is specified. The arg op-
erator is used with event types related to methods and
programs. The delta operator is used with event types
characterizing insertion/deletion of elements in/from
sets, lists or bags.

Let us consider rule Update-amployeesalarrp of Set-
tion 3.2. The delta element associated with this rule
is e with type: tuple(ENTITY: Employee,

CIJNPONENT: integer)
The condition of this rule could also have been writ-

ten new(e)->stiary > 2 * current(e)->sdlary. At
runtime, current(e) refers the ENTITY part of e and
new(e)->salary refers the COMPONENT part of e.

4.2.2 Delta collections

A deferred rule responds to cumulative changes to en-
tities. When a deferred rule with event type E is exe-

cuted, the system considers every event of type E which
has occurred during the previous execution cycle(s).
These events may concern the same entity or different
entities. Therefore, the execution environment of a de-
ferred rule reflects the changes that have occurred on
a set of entities. These changes are necessarily of the
same type. To each entity is associated the modified,
inserted or deleted data. The resulting delta collection
is in other words also a set of delta elements. The op-
erators we introduced in the previous section can also
be used to refer data of delta collections. In that case,
the operators build set of entities.

4.3 Net effect of events

Two of the main tasks of a rule system are (i) to deter-
mine which rules have to be executed and, (ii) to build
their corresponding delta structures. These two tasks
are realized considering the net effect of a sequence
of operations performed in the triggering transaction.
For instance, if a rule is triggered by the creation of
an entity, but thii same entity happens to be deleted
before the actual execution of the rule, the rule should
not be executed. Further, during a cascading execu-
tion of rules, such as the one in figure 1, the execution
of a rule (e.g., rib) may nullify the effect of an event
(ei) having triggered a rule (rs) so that the latter no
longer has reason to execute. Also the execution of
a rule may change the value of the entity on which
the triggering event occurred. For example, when rule
r, in Sgure 1 is executed, it sees the net effect of all
operations executed on the entity in previous execu-
tion cycles. NAOS computes the net effect of events
based on the classical composition of pairs of opera-
tions applied to the same entity. If the net effect was
not taken into account, we would have a rule system in
which some rules would be executed while they should
not and in which incorrect results could be obtained
because of inconsistent execution environments.

5 Implement at ion

Figure 3: Architecture of the rule system
The overall structure of the implementation is depicted
in Figure 3. Module 1 (Rule definition) creates the per-

140

&tent representations of a rule (Compiled rules). It
basically compiles rule definitions into 02 objects and
02C methods. It also offers the possibility of dizplay-
ing, renaming, modifying or removing previously de-
fined rules. Module 2 (Event detection) detects events.
When a schema is chosen, subscriptions are sent to the
OzEngine for all event types associated with the rules
of this schema. Then, it starts up the “Rule execu-
tion” module. The latter is then able to process rules
in response to events of the subscribed types occur-
ring during the execution of an application. For each
of the detected events this module constructs the delta
structure and sends it to the execution module. Mod-
ule 3 (Rule execution) receives detected events from
module 2 and executes the concerned rules taking into
account the coupling modes, cascading in the sense
of execution cycles, priorities between rules, and the
calculation of net effect.

5.1 Rule definition

The rule definition module is a modular tool which
offers a language for rule programming and a rule pro-
gramming interface for dynamic creation or modifi-
cation of rules within an application. The program-
ming interface is useful for programmers who want to
use reactive processing for implementing specific lan-
guages or tools, e.g., declarative integrity constraint
languages, tools communication or change propagation
facilities. Figure 4 shows the architecture of the rule
definition module.

Figure 4: Architecture for the rule definition module

The top layer allows rule definitions to be written
using the syntax shown in Section 3. It principally
contains module 1, the rule analyzer, which realizes
the classical tasks of a language analyzer. from the
source code written by the programmer it produces
two outputs, (i) the static characteristics of a rule that
will specify, for instance, when and how the rule should
be executed and (ii) the OzC methods representing the
conditions and actions of the rules. These methods
belong to two classes named Conditions and Actions.

These two classes do not have attributes, they simply
act as place-holders for the conditions and actions.

The bottom layer represents the minimum require-
ments of the rule definition module. It contains the
OzC compiler and the rule constructor. The OzC
compiler provides an executable version of the con-
dition and action, while the rule constructor takes the
static characteristics of a rule as input and creates the
corresponding 02 objects. These objects are stored
in persistent 02 lists ordered by the priority of their
corresponding rules. These two modules together al-
low the creation and manipulation of rule definitions
through a rule programming interface. This interface
is a set of C functions, based on the 02 Application
Programming Interface (OzAPI).

To conclude, the representation of rules as persis-
tent objects in 02 lists provides three main advantages.
First it allows the use of clusters and indexes which
provide easy and efficient selection of rules through
OzSQL for manipulating rules. Second, at runtime, it
allows a fast rule set initialization because the liits con-
taining the rules are ordered (cf. Section 5.2). Also at
runtime, rules are basically compiled OzC code which
allows for efhcient evaluation of conditions and execu-
tion of actions.

5.2 Event detection and rule execution

The event detector is a most vital part of NAOS for
two major reasons. First of all, there can be no rule ex-
ecutions without events, but at the same time it is the
part most susceptible to a huge performance penalty
unless a very efficient checking technique is employed.
The event detection module of NAOS is incorporated
into the 02 engine to minimize the overhead of event
checking. Also, to speed up actual rule execution, a
C++ snapshot of the rule definitions is created when
an application is executed and more precisely when a
schema is set. With this approach, there is only one
access to the object manager for each rule.

Figure 5: Event detection and rule execution
The event detector is based on a subscription mech-

anism. As we already said when a schema becomes

141

active, a subscription is made for each of the event
types concerned. For each subscription, the address
of a handling function is supplied, thereby making for
a dynamic subscription mechanis’m that may also be
used by applications other than our rule system. This
function will necessarily relate to our event types and
delta structures. The 02 object manager regards all
operations on objects as potential occurrences of the
subscribed event types.

After the subscription process is finished, the event
detector, module 8, starts its surveillance of database
operations. Only at the arrival of an event of a sub-
scribed event type will further actions take place, i.e.,
the appropriate delta structure is sent to the function
supplied at subscription time.

The call of a function associated to an event type
starts the rule execution module. As shown in figure
5, a number of C++ classes, modules 1 through 7,
have been conceived to implement all the features of
our rule model. Module 1 manages a class hierarchy
representing all possible event types. In each object
representing an event type, there is an ordered list of
rules which can be triggered by this event type, what
we call “rule indexing”. Rule indexing can be seen as
an transposition of the Rete algorithm [For821 which is
used in Artificial Intelligence for object pattern match-
ing. It avoids running through all the rules to find the
one to be triggered when an event occurs. Module
2 and 5 takes care of immediate rule execution while
module 3 and 4 are in charge of execution of deferred
rules. Class Rule, module 6, is actually a run-time
snapshot of the persistent 02 rule definitions, created
to increase performance and improve accessibility.

6 Conchsion

This paper introduced the NAOS component for the
02 Database System. It described the model, the
language and its first implementation. In NAOS,
event types are related to manipulation of entities and
code execution (methods, programs and transactions).
Also, an event associated with the manipulation of a
certain attribute can be tracked and not only the ma-
nipulation of the entire entity. Consequent work has
been done concerning ECA binding by introducing the
notion of delta structures and how to access these delta
structures in conditions and actions.

Performance has widely been taken into account in
the implementation of NAOS, as it is an important
issue in proving the usefulness of an active rule sys-
tem: (i) the event detector is part of the OpEngine and
treats only events for which the event type has been
subscribed to, (ii) the executive module uses a dy-
namic C++ snapshot of the persistent 02 objects rep-
resenting the rules and the trigger indexing technique
to find the rules to be executed, and (iii) condition and

action parts of rules are compiled into OpC methods.
This allows for efficient evaluation of conditions and
execution of actions.

In the immediate futur we plan to expand our event
detector to take into account temporal and compos-
ite events, and to consider a more flexible transaction
model, as the one proposed in [ADF+93], for rule ex-
ecution. We also wants to investigate how to provide
some parallel execution of rules. Further research di-
rections includes (i) investigating the notion of inheri-
tance and overridii in NAOS, (ii) speci@ing and im-
plementing a rule programming environment including
debugging and visualization tools. These tools may be
considered as a partial answer to theoretical problems
such as termination and more generally understanding
of rule behavior.

Acknowledgements

This work grew out of earlier research with
P. Habraken; discussions with him were helpful
and greatly appreciated. We also want to thank
A. Chabert for the coding of the rule definition lan-
guage analyzer and M. Adiba, P. Dechamboux and
C. Roncancio for useful discussions about our work.

References
[AC931

[ACC+93]

[ACLSl]

[ADF+93]

[AMC93]

[AWH92]

[BDK92]

M. Adiba and C. Collet. Objets et Bases de
Donntes : Le SGBD 02. Hermes, 1993.
M. Adiba, C. Collet, T. Coupaye,
P. Habraken, J. Machado, H. Martin, and
C. Roncancio. Trigger Systems: Different ap-
proaches. Rapport de Recherche Aristote-
SURO07, LGI-IMAG, France, June 1993.
R. Agrawal, R. Cochrane, and B. Lindsay. On
Maintaining Priorities in a Production Rule
System. In Pfoc. of Ihe 17th Zn2emotional
Conference on Vet-g Large Data Bases, pages
479-487, Barcelona, Spain, September 1991.
T. Atwood, J. Duhl, G. Ferran, M. Loomis,
and D. Wade. Object Database Standanl:
ODMG-93. Kaufmann, San Mateo, Califor-
nia, 1993.
E. Anwar, L. Maugis, and S. Chakravarthy. A
New Perspective on Rule Support for Object-
Oriented Databases. In Pwx. of the 1999
ACM-SZGMOD, pages 99-108, Washington,
DC, May 1993. ACM press.
A. Aiken, J. Widom, and J. M. Hellerstein.
Behavior of Database Production Rules: Ter-
mination, Confluence, and Observable Deter-
minism. In Proc. of the 1999 ACM-SZGMOD,
pages 59-69, San Diego - USA, May 1992.
ACM Press.
F. Bancilhon, C. Delobel, and P. Kanellakis.
Building an Object-Oriented Database - The
story of 4. Morgan Kaufmann, 1992.

142

[BK91]

[BM91]

[Cha89]

[CHCA94]

[Day881

[DBMS81

[DHLSO]

[EBAM92]

[For821

[GGDSl]

[GJ91]

N.S. Barghouti and G.E. Kaiser. Scaling up
Rule-Based Software Development Environ-
ments. In Proc. of the 3rd European Software
Engineering Conj., ESEC’91, Milan - Italy,
October 1991.

C. Beeri and T. Milo. A Model for Active
Object Oriented Database. In Proc. of the
17th Zntemotional CJonjetwace on Vey Large
Data Bose, pages 337-349, Barcelona, Spain,
September 1991.

S. Chakravarthy. Rule Management and
Evaluation : An Active DBMS Perspec-
tive. SZGMOD Record, 18(3):20-28, Septem-
ber 1989.

C. Collet, P. Habraken, T. Coupaye, and
M. Adiba. Active rules for the Software en-
gineering platform GOODSTEP. In Proc. of
the 2nd International Workshop on Dotabwe
and Software engineering - 16th intemo-
tional conference on Software Engineering,
Sorrento, Italy, May 1994.

U. Dayal et al. The IIIPAC Project: Com-
bining Active Databases and Timing Constra
ints. SZGMOD Record, 17(l), March 1988.

U. Dayal, A. Buchmann, Ad D. McCarthy.
Rules Are Objects Too : A Knowledge Model
For An Active, Object-Oriented Database
System. In Z+oc. 2nd International Work-
shop on Object-Oriented Datobwe Systems,
pages 129-143, September 1988.

A. Dayal, M. Hsu, and R. Ladin. Organiz-
ing Long-Running Activities with T&gers
and Transactions. In Proc. of the ACM SZG-
MOD International Conference on Afonoge-
ment of Data, pages 204-214, Atlantic City,
USA, May 1990.

J. Estublier, N. Beikhatir, M. Ahmed-Nacer,
and W.L. Melo. Process Centered SEE and
Adele. In Proc. of the 5th Znt. Workshop on
CASE, Montreal - Quebec, July 1992.

C. L. Forgy. R.&e: A Fast Algorithm for the
Many Pattern/Many Object Pattern Match
Problem. J. Artificial Intelligence, l&17-37,
1982.

S. Gatziu, A. Geppert, and K.R. Dittrich.
Integrating Active Concepts into an Object-
Oriented Database System. In Pfoc. of
the 3rd International Workshop on Dotobwe
Pmgramming Languages: Bulk %a d Per-
&tent Data, pages 399-415, Nafplion, 1991.
Morgan Kaufmann.

N. Gehani and H.V. Jagadish. Ode as an
Active Database: Constraints and ‘I&gers.
In Proc. of the 17th Zntemotional Conjer-
ence on Vey Large Data Base, pages 327-36,
Barcelona, Spain, September 1991.

[GJS92a]

[GJS92b]

[Han921

[HLM88]

[KRRV94]

[LLPSSl]

[MD891

[MP91]

[OZT99]

[SJGPSO]

[SK911

[WCLSl]

N. Gehani, H.V. Jagadish, and 0. Shmueli.
Composite Event Specification in an Active
Databases: Model and Implementation. In
PTVC. of the 18th International Conference on
Vey Large Data Base, pages 327-338, Van-
couver, USA, 1992.
N. Gehani, H.V. Jagadish, and 0. Shmueli.
Event Specification in an Active Object-
Oriented Database. In Proc. of the ACM
SZGMOD International Conference on Mon-
cagement of Data, pages 81-90, San Diego,
USA, 1992.
E. Hanson. Rule Condition Testing and Ac-
tion Execution in Ariel. In Proc. of the A CM-
SZGMOD, pages 281-290, June 1992.
M. Hsu, R. Ladin, and D. McCarthy. An
Execution Model for Active Database Man-
agement Systems. In Proc. 3rd Zntemational
Conference on Data and Knowledge Bwea,
pages 171-179, June 1988.
G. Kappel, S. I&us&Schott, W. R&s-
chitzegger, and S. Vieweg. TriGS making
a Passive Object-Oriented Database System
Active. JOOP - To be pub&shed, 1994.

G. M. Lehman, B. Lindsay, H. Pirahesh, and
K. B. Schiefer. Extensions to Starburst: ob-
jects, types, functions, and rules. Communi-
cations of the ACM, 34(10):94-109, October
1991.
D. McCarthy and U. Dayal. The Architecture
of An Active Data Base Management System.
In Proc. of the ACM SZGMOD, pages 215-
223, May 1989.
C.B. Medeiros and P. Pfeffer. Object In-
tegrity Using Rules. In Proc. of the ECOOP
- LNCC 512, pages 219-230, 1991.
F. Oquendo, JD. Zucker, and G. Tassart.
Suppport for software tool integration and
process-centered software engineering envi-
ronments. In Proc. of the third Zntemo-
tional workshop on Sojtware Engineering and
ita Applications, Toulouse, France, December
1999.
M. Stonebraker, A. Jhingran, J. Goh, and
S. Potamianos. On rules, procedures, caching
and views in data base systems. In Proc. of
the ACM SZGMOD, pages 281-290, Atlantic
City, USA, May 1990. ACM Press.
M. Stonebraker and G. Kemnitz. The
Postgres next generation database manage-
ment system. Communications of the ACM,
34(10):78-93, October 1991.
J. Widom, R.J. Cochrane, and B.G. Lind-
say. Implementing set-oriented production
rules as an extension to Starburst. In Proc.
of the 17th VLDB, pages 275-285, Barcelona
- SP, September 1991.

143

