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Abstract 

This paper describes the design and imple- 
mentation of NAOS, an active rule compo- 
nent in the object-oriented database system 
02. The contribution of this work is re- 
lated to two main aspects. The first concerns 
the integration of the rule concept within the 
02 model, providing a way to structure appli- 
cations. Rules are part of a schema and do not 
belong to a class. Program execution and data 
manipulation, including method calls, can be 
driven on rules. The second aspect concerns 
the way NAOS interacts with the kernel of 
the 02 system. To support a reactive capa- 
bility the object manager semantics has been 
extended, thus providing an efficient event de- 
tection. Applications produce events and the 
subscribed event types react to these events. 
As a result, rules are triggered. 

1 Introduction 

The work presented in this paper concerns the in- 
tegration of active rules in the 02 object-oriented 
database system [BDK92]. It is part of the GOOD- 
STEP project’ whose goal is to provide a platform 
suited for Software Engineering Environments (SEE) 
built using the 0s system. The aim of SEE is to 

Permission to copy without fee all or part of this material is 
granted provided that the copies are not made or distributed for 
direct commercial advantage, the VLDB copyright notice and 
the title of the publication and its date a&war, and notice is 
given that ctipying is by permission of the Very Large Data Base 
Endowment. To copy otherwise, or to republish, requins a fee 
and/or special permission from the Endowment. 

Proceedings of the 20th VLDB Conference 
Santiago, Chile, 1994 

‘GOODSTEP is the Esprit III project No. 6115. 

help users through the software engineering process. 
In SEE data are typically strongly interrelated thus 
implying sophisticated and safe update propagation 
mechanisms. Also, data updates may correspond to 
different levels of granularity: changing an attribute 
value, editing a procedure, compiling a module, etc. 
Therefore, in SEE it is necessary to manage links be- 
tween entities and to support in a uniform way auto- 
matic change propagation. High-level operations (i.e., 
tools invocation) also have to be propagated and con- 
trolled. For example, the system may support policies 
such as the one concerning change of a source code 
module: ‘whenever a source code module change is 
validated (1) call the compiler with the module as pa- 
rameter and (2) call the linker with the object code 
of the module as a parameter as well as other ob- 
ject codes associated with this module.” Such a pol- 
icy contributes to controlling, monitoring and assisting 
teams in performing their activities. In order to sup- 
port such policies, different approaches have been pro- 
posed based on AI techniques, process programming 
and rules [BK91, OZT90]. 

In the framework of GOODSTEP, active rules have 
been incorporated into 0s as a means of supporting 
SEE semantics, mainly for: (i) notifying users, i.e., 
programmers of SEE or end-users, (ii) application ac- 
cess logging, (iii) organizing related application pro- 
grams, (iv) tools communication, (v) change propaga- 
tion, and (vi) maintaining data consistency. In NAOS 
(02 Native Active Object System), rules are Event- 
Condition-Action (ECA) rules. An event of type E is 
able to trigger multiple rules. For each triggered rule, 
if the condition C holds, then execute action A. The 
main features of our work are as follows: 

l Rules constitute a programming paradigm which 
allows applications to be structured. Rules are 
considered at a higher level than programs, meth- 
ods and data manipulation. They are defined as 
elements of a schema, at the same level as class or 
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application definitions. This approach allows to 
control the execution of more general operations 
than method calls, i.e., updates of collections, pro- 
gram executions, etc. Rules respect encapsulation 
and transparency : they are triggered by autho- 
rized operations related to persistent or transient 
entities. Conditions and actions of rules are per- 
mitted to operate on persistent or transient en- 
tities. Rules can be exported/imported, increas- 
ing reusability. For the purpose of programming 
guidelines, rules are isolated from programs and 
.methods: a rule can be activated or deactivated 
only through rules. 

The execution of a rule takes place within an 
application, more precisely within user-defined 
transactions and programs (read-only transac- 
tions) and interacts with one or more databases. 
Two kinds of rules are considered: Immediate 
rules which .have an instance oriented semantics 
and defemzd rules which have a set oriented se- 
mantics. Rule execution is based on the notion 
of execution cycles. A cycle describes the exe- 
cution of a sequence of operations belonging to 
a user-defined transaction, a program or a rule. 
Every execution cycle is associated with a delta 
structu~ containing data related to the trigger- 
ing operation(s). 

NAOS has three main components: a rule def- 
inition module, an event detector and an exec- 
utive module. The rule definition module offers 
a specific interface for rule programming. This 
interface offers direct access to the rule manipu- 
lation primitives for allowing dynamic creation or 
modification of rules within an application. Also, 
direct access to the event detector allows for dy- 
namic event types subscriptions and thus for rule 
enabling. With this approach, NAOS can be used 
by 02 application developers or software integra- 
tors. 

General rule structures are stored as persistent 
objects while conditions and actions are stored as 
methods. For efficiency reasons, runtime struc- 
tures are built for rule execution avoiding multi- 
ple access to the object manager when rules are 
executed. This approach makes it possible to al- 
ter rule definitions of a schema without interfering 
with the execution of applications. 

This paper is organized in the following way. Sec- 
tion 2 presents the decisions we made for integrating 
rules in the 02 system. It also summarizes the main 
features of some research prototypes supporting active 
rules in order to motivate the design and implementa- 
tion of our rule system. Section 3 concentrates on the 

resulting rule language. Section 4 discusses our rule 
execution model. Section 5 presents some aspects of 
the architecture of our system. Brief conclusions and 
future research directions are given in Section 6. 

2 Integrating rules in 02 

This section first reviews the main characteristics of 
the 0s system. The reader may find further details 
in [BDK92, AC93]. Then, the decisions we made for 
integrating rules in the 02 system, are introduced. 

2.1 Features of the 02 Data model 

An 02 schema is a set of definitions. The main struc- 
ture of a schema consists of a set of classes related by 
inheritance links and/or composition links. A schema 
also contains definitions of types, functions and appli- 
cations. An 0s base groups together objects and values 
which have been created in compliance with a schema. 

An object has an identity, a value and a behavior de- 
fined by its methods. Objects are class instances and 
values are type instances. In the remainder of this pa- 
per, the entity concept is used for referencing either 
objects or values. The value of an entity corresponds 
to the content of an 02 value or to the value of an 
02 object. A given object can be shared (referenced) 
by several entities. By default, objects and values cre- 
ated during program execution are not persistent. To 
become persistent, i.e., stored in a database, an entity 
must be directly or indirectly attached to a name, i.e., 
a persistent root belonging to a schema. 

A clcrss definition consists of a type definition and 
a set of methods. A type is defined recursively from 
atomic types (integer, boolean, char, string, real, and 
bits) or classes and constructors (tuple, list and set). 
Methods are coded using the OzC2 language which 
allows to express manipulations on persistent entities 
as well as non-persistent entities. OzSQL, the query 
language of the system, can be used to express boolean 
expressions on entities as well as SQL-like queries on 
collections. 

An 02 application is a set of programs whose exe- 
cution take place in reference to a schema and to one 
or more associated databases. When an application 
starts up, it opens a read-only transaction. Programs 
of the application executed within this transaction can 
manipulate transient entities (apply methods, modify 
values, etc.) but is restricted to read-only access to 
persistent entities. A (read-write)tra;nsaction must be 
initiated before updating persistent entities in order 
to ensure consistency. Transactions in 02 are flat 
atomic transactions. Commands such as transaction, 

202 and all product names derived from it (OzC, 02AP1, 
02SQL) are registered trademarks of 02 Technology. 
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validate, conmit and abort are provided for managing 
transactions. 

Encapsulation is provided at different levels. First, 
properties (attributes or methods) are private to their 
class by default. Also, programs are private to their 
application. Encapsulation is also provided at the 
schema level as elements of a schema cannot be used 
by another schema. In order to increase reusability, 
02 provides an import/export mechanism. 

The following is an example of 02 schema. The 
Person class describes persons; The wloyee class is a 
subclass of Person and describes employees of a com- 
pany. The Task class characterizes a task of a project 
including the employees participating in this task and 
the set of documents (modules) produced for realizing 
the task. An instance of class Document is basically a 
text; it belongs to a task and can refer to (or be re 
ferred to by) other documents. The-boss and GP are 

names of instances of classes Employee and Task, re- 
spectively. Application pro j actmanagement includes a 
public program create-Task for creating a new instance 
of Task. An instance of Employee is given to this pro- 
gram when it is invoked by the manage-Task program. 

class Person public type tuple ( 
name: tuple(familyname: string, 

firstname: string), 
spouse: Person, 
age: integer) 

end ; 
class Employee inherits Person 
public type tuple ( 

profile: list (string), 
salary: integer)) 

end ; 
class Task public type tuple ( 

name: string, 
manager: Employee, 
group: set(Employee), 
documents: set(Document)) 

end; 
class Document type tuple ( 

name: string, 
content: Text., 
project: Task, 
used-by: set(Document), 
uses: eet(Document)) 

method public compile 
end; 
name TheBoss: Employee; 
name GP: Task; 
application projectmanagement 
program getinformation-Manag~ger(m:Employee), 

getinformationXask(t:Task), 
public create-Taek(m:Employee), 
public manage2aak, 

end ; 
. . . 

2.2 Design choices and motivations 

From the simple ECA paradigm, different kinds 
of active rules and therefore different kinds of ac- 
tive systems have already been proposed. The fea- 
tures of these systems depend upon whether the 
rules are defined for a general purpose database sys- 
tem or for specific applications [ACC+93]. In de- 
signing our rule system we took into consideration 
works on database procluction rules which have fo- 
cused on (i) relational systems: Postgres[SJGPSO, 
SK91], Starburst[LLPSSl, AWH92] and Ariel[Han92] 
and (ii) object-oriented systems: HiPAC [DBM88, 
DHLSO, Day88, HLM88, MD89, Cha89], Ode [GJ91, 
GJS92b, GJS92aJ, 02 [MP9113, SAMOS [GGDSl], 
Sentinel [AMC93] and TriGS [KRRV94]. We also 
consider specific approaches for incorporating rules in 
software engineering environments: Marvel [BK91], 
ALF [OZT90] and Adele [EBAM92]. 

The following provides a motivation for our ap- 
proach based on the characteristics and limitations 
of the existing systems, especially the object-oriented 
ones. Issues in designing a rule language are consid- 
ered in Section 2.2.1. The rule processing semantics 
with respect to transaction management is discussed 
in Section 2.2.2. The integration of rules with object- 
oriented concepts is discussed in Section 2.2.3. Issues 
in rule implementation are discussed in Section 5. 

2.2.1 Rule definition 

The main aspects for defining a rule language concern 
event specification, condition and action definitions, 
and the binding between rule parts. This section also 
describes the operations we allowed on rules. 

Event specification 

The event part of a rule specifies a type of events, 
These events are usually divided into two cate- 
gories: primitives (called basics in Ode) and compos- 
ites pay88, GGD91, GJS92a]. Three kinds of prim- 
itive events are considered: internal events related 
to database operations, temporal events and external 
events. Composite events are made up of other com- 
posite or primitive events. In HiiAC, SAMOS and 
Sentinel, events are mostly related to the state of ob- 
jects and to the actions applied to them. They may 
occur whenever a database operation takes place, such 
as an access to an object, an attribute value update, 
a method execution or the call of a transaction primi- 
tive. In SAMOS, temporal events and abstract events 
(named and defined by the application) are considered 

%I order to distinguish between this earlier work done in the 
framework of the 02 prototype and our rule system NAOS, we 
will refer to the prior as ProtoOz. 

134 



as well. SAMOS’s abstract event is called external no- 
tification in HiPAC. In Ode events are not considered 
(propositions in [GJS92b] have not been integrated in 
the Ode prototype). ProtoOs supports only message 
and time related events (neither composite events nor 
events related to transactions are provided). In ‘BiGS, 
only message events are considered. 

Although composite events and temporal. events 
have been studied, they are not part of the cur- 
rent implementation of NAOS and therefore, this pa- 
per only concerns primitive event types related to 
(i) read/write operations on entities or parts of en- 
tities, and (ii) code execution (method execution, and 
program/application/transaction processing). Event 
types are parts of rule structures. They can be seen as 
class attributes as in [BM91]. However, within NAOS, 
event types are objects and they can be dynamically 
created, modified or deleted. As we will see events (in- 
stances of event types) also exhibit the properties of 
objects as in [AMC93] and may become persistent. 

Conditions 

Conditions are made up of predicates over the data- 
base state. These predicates involve query language 
expressions (the simplest being retrieving an attribute 
value), method calls and simple logical expressions. In 
some systems, such as Ode, conditions are part of the 
event specification as a mask which qualifies the event 
and can refer to parameters of the method call defin- 
ing the event. In TriGS, conditions are queries against 
the triggering object or the parameters of the trigger- 
ing method. In NAOS, conditions are predicates over 
persistent or transient entities, defined as 0s queries. 
The target of a query is the actual database or the 
data associated with the triggering operation (an en- 
tity, the parameters of a method or a program). Also 
queries may use methods. However, we cannot elimi- 
nate side-effects produced by update of entities while 
evaluating a condition like in SAMOS, but the rule 
system ensures that the evaluation of a condition can- 
not trigger another rule. This is done by deactivating 
the detection of all events while evaluating a rule con- 
dition. 

Actions 

In the context of object-oriented systems, actions are 
messages to objects, database operations or procedure 
calls. Depending on the level at which a rule is de- 
fined, the scope of its action is a class or a hierarchy of 
classes. In NAOS, actions are pieces of OsC code that 
may operate on persistent and transient entities. The 
action scope of a rule is defined by the class hierar- 
chy of the schema to which the rule belongs. It is not 
restricted, like in Ode, to a class. As in HiPAC, our 

approach gives a far better flexibility because we can 
either have very simple actions (e.g. a transaction’s 
abort, a method invocation, the signal of a user-defined 
event) or arbitrary composition of actions which may 
trigger other rules. A rule can also contain a call to 
a program, Such a rule can be executed only in the 
framework of the application to which the program 
belongs. This means that the rule will have to be de- 
activated for any other application. 

Event-condition-action binding 

There are different notions of binding. In HiPAC and 
Sentinel, conditions and actions may refer to param- 
eters specified in the event part of the rule. These 
parameters generally refer to the object on which the 
triggering operation occurred. However, no mecha- 
nism is provided for accessing the “old” value of the 
object. In HiPAC, an additional mechanism is used for 
referencing in actions the results of queries of condi- 
tions. In Sentinel, it is not clear that actions can refer 
results of conditions. In Ode there is no mechanism for 
condition-action binding. Only the object concerned 
with the event is accessible. In SAMOS data related to 
the triggering operations are not visible in actions. In 
NAOS, data related to events are stored in delta struc- 
tures whose type depends on the kind of the triggering 
operation and the type of the rule. The rule language 
provides a means to name these structures and to ma- 
nipulate them in conditions and actions. Actions can 
also refer the result of queries of conditions. 

Operations on rules 

NAOS offers specific operations for manipulating rules. 
By means of the create, delete, modify, display, 
rename commands, rules can be manipulated as well 
as other elements of an 0s schema. When an applica- 
tion of a schema is executed, the rules belonging to this 
schema are enabled. However, all these rules may not 
be relevant to the application execution. The enable 
and disable operations allow a rule to be activated or 
deactivated, respectively. The syntax used for specify- 
ing such operations is similar to the one used for apply- 
ing a method to an object. For example, R->disable 
will deactivate rule R. This correspond to unsubscribe 
its corresponding event type. To conclude, in order 
to treat only events of interest for an application, a 
rule may have to be triggered after the start of the 
application for deactivating some rules. 

2.2.2 Rules and transactions 

In most rule systems, user-defined transactions trig- 
ger rules and it is natural to view a triggered rule as a 
sub-transaction of the triggering transaction. EC and 
C-A coupling modes proposed in HiiAC define how an 
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event, a condition and an action, i.e., sub-transactions 
relate to each other and the transaction having trig- 
gered the rule. The links with transaction processing 
can be defined in different ways. For example when 
a triggered sub-transaction (a condition) is scheduled 
right after the occurrence of an event, the EC cou- 
pling mode is said to be immediate. On the other 
hand, the triggered sub-transaction can be scheduled 
for execution at the end of the triggering transaction. 
This is called a deferred coupling mode. Several com- 
binations of these coupling modes have been defined 
in HiPAC and SAMOS. Coupled and decoupled execu- 
tions of triggered transactions have also been consid- 
ered. In Ode a week EA coupling mode is provided: 
the action is executed after (but not immediately af- 
ter) the event. In ProtoOz, only immediate EC and 
C-A coupling modes are provided. In Sentinel, im- 
mediate and deferred rules are proposed but the links 
between these kinds of rules and the transactions are 
not clearly described. ‘IYiGS supports immediate and 
deferred coupling modes. Furthermore, it provides a 
separate coupling mode. In such a mode, a rule is ex- 
ecuted within a new transaction, independently of the 
triggering .transaction. No dependencies are consid- 
ered between the triggering method and the separated 
rule. 

In NAOS the 02 transaction model serves as a basis 
for defining when and how rules are executed. Condi- 
tions and actions are coupled sub-transactions of the 
triggering transaction. As the 02 model does not 
provide a nested transaction mechanism, these sub- 
transactions are not real transactions : ‘they are units 
of execution for rules, so called execution cycles. The 
initial cycle is defined as a sequence of operations be- 
fore the actual execution of a rule. This allows us 
to consider immediate rules triggered by operations 
which take place in a read-only transaction and/or a 
read-write transaction, and deferred rules triggered by 
operations which take place in a read-write transac- 
tion. Every execution cycle is associated with an event 
history used to build the delta structure of each rule 
considered in the cycle. 

2.23 Rules and Object-Oriented concepts 

In NAOS, rules are components of a schema and are 
defined at the same level as classes and applications. 
This approach offers the possibility of specifying rules 
triggered by events concerning one or more entities, 
possibly from different types. We do not provide ex- 
ternal/global and internal/local rules as in SAMOS 
and TriGS which can be confusing from the program- 
mer’s point of view. Further, providing rules as part of 
a class definition leads to class update problems when 
modifying rules. 

In most of the rule systems based on object-oriented 
systems, rules are first class objects. However, the in- 
tegration of the rule concept with the classical proper- 
ties (encapsulation, inheritance, overriding and over- 
loading) of object-oriented concepts is not clearly dis- 
cussed. In NAOS, two levels are clearly considered: 
the model level where rules are not objects and the 
implementation level where rules are objects. When 
defining rules in a schema using the rule language, 
the programmer does not consider rules as objects or 
methods. However, using the Rule Programming In- 
terface, the programmer sees rules as objects. The 
only operations available on these rule objects are 
those introduced in Section 2.2.1. 

Considering encapsulation, rules of NAOS respect 
encapsulation: only public operations (methods, pro- 
grams, update, etc.) can generate events. The 02 per- 
sistency transparency principle is also respected when 
programming rules. Rules can be triggered by oper- 
ations on entities which may or may not be persis- 
tent. As a part of a schema, a rule definition can refer 
all the other definitions of the schema(classes, types, 
name objects or values, etc.). Rules can be imported 
and reused in another schema assuming the elements 
used in its definition are imported as well. 

For the purpose of inheritance, rules are classified 
by their relationship to classes. In fact only event types 
are considered and propagated across the class hierar- 
chy. Let us consider the event type, say E = op(C) of a 
rule r. Such an event type characterizes an operation 
op on an instance of C. If one of the sub-classes of c is 
CI then the event type E is inherited in CI. As a result, 
when an operation op occurs on an instance CI, rule 
r is triggered and any rule ri with event type OP(CI) 
is also triggered. 

For the purpose of overriding and overloading, let 
us consider rule P with the event type E as defined 
above, the condition c and the action A. As in TriGS, 
the signature of such a rule can be represented as the 
function r:E->@->A). Overriding means overriding 
the event type E and the type of @->A) in a subclass 
of C. 02 inheritance is defined with a subtyping se- 
mantics. Changing the type of E means that the trig- 
gering class may be changed by any of its subclasses. 
The current prototype allows the programmer to de- 
fine the de r’:El->(Cl->Al) where El= op(C1) is a 
sub event type of E and Cl->A1 overrides C->A. As a 
result, when an operation op occurs on an instance CI, 
rules r’and rare triggered. More work is necessary for 
allowing the overriding and overloading of rules as the 
new rule r’cannot have the same name as rule r. How- 
ever, priorities can be defined between r’ and r and, 
rule r’may be disabled in action of rule r. With this 
approach, only rule r’ will be executed but it is the 
programmer’s responsability to enforce the overriding. 
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Ram an application development point of view, 
rules are considered at a higher level than 02 pro- 
grams, methods and data manipulations. This means 
for example that the beginning or the end of a pro- 
gram execution may trigger rules. But programs can- 
not explicitly manipulate rules except when they use 
the rule programming interface. Therefore, when us- 
ing our rule language, a rule can be manipulated only 
through rules, e.g., the activation and the deactivation 
of rules cannot be done directly in the body of a pro- 
gram but only in actions. With this approach the pro- 
grammer is forced to specify the rules well separated 
from methods and programs thereby avoiding undesir- 
able linkage between two programming paradigms. 

3 Rule language 

3.1 General structure 

The overall structure of a rule definition is as follows: 

[create] rule <rule name> 
[precedes <list of rule names>] 
[coupling <coupling mode>] 
[in < ezecution mode>] 
on <event type> 
[with <name of the associated delta &ructure>] 
[ii <condition>] 
do [instead] <action> 

rule name 
l&h rule has a name in the schema it belongs to. 

list of rules 
As one event may trigger several rules there is a 
need for ordering between the rules of a schema. 
A default total ordering is based on the order in 
which rules were defined. As in [ACLSl], priori- 
ties between rules allows to depe a total ordering 
for rule processing. This order endows the rule 
system with deterministic behavior. 

coupling mode 
The <immediate,immediate> combination means 
that a condition is evaluated right after event 
detection and, if it holds, action is immediately 
scheduled for execution. This (default) combma- 
tion characterizes immediate rules which respond 
to operations on a single entity. The <deferwd, 
immediate> combination means that the condi- 
tion evaluation and action execution take place 
after the last operation of the triggering trans- 
action, but before it validates or commits. This 
combination characterizes deferred rules which re- 
spond to aggregate and cumulative changes to an 
entity. Deferred rules are set-oriented. Note that 
the C-A coupling mode can be omitted as it is 
always <immediate>. 

w execution mode 
Execution mode has to be given only for imme- 
diate rules. It specifies whether an immediate 
rule has to be triggered by an event which occurs 
within a read-only transaction(r&utz), a read- 
write transaction(nu&uns), or both(r&w&uns). 
For deferred rules, the execution mode is always 
rwtmna and can be omitted. It is clear that the 
in clause may be not necessary when considering 
composite events with the sequence operator. In 
that case, the first event type of the sequence is 
an application event type transactionbegin (see 
bellow). 

- event type 
Events may be connected to manipulating 
database entities or executing transactions, pro- 
grams or applications. An event type charac- 
terizes a particular situation detectable by the 
OzEngine, the kernel of the 02 system. Prim- 
itive event types proposed in NAOS have been 
described in [CHCA94]. Entity manipulation 
event types characterize events which are pro- 
duced when manipulating entities, i.e., when ob- 
jects are created (new) or deleted, values are mod- 
ified, entities become persistent or transient, and 
messages are send to objects. The rules defined 
with these event types may either be immedi- 
ate or deferred. Application event types are re- 
lated to the execution of 02 applications. These 
event types characterize the events generated by 
the beginning and end of application, program or 
transaction execution respectively. The rules trig- 
gered by events of these types are always immedi- 
ate rules as deferred execution gives no meaning 
in this case. NAOS also considers user-defined 
event tarpes that characterize situations which are 
not necessarily associated with entity manipula- 
tion operations, program executions, etc. Such 
event types are defined independently from a rule 
definition. They belong to an 02 schema and are 
uniquely identified by their names. A user-defined 
event is explicitly generated by using the signal 
operation in a code. 

An event type specification also describes the mo- 
ment of generation (befonz or after) when an event 
of this type has to be generated with respect to 
the actual triggering operation. The default gen- 
eration moments is always after if this is possible 
for the operation concerned. 

- delta structure name 
The with clause of a rule enables programmers to 
name the delta structure which will be associated 
with the rule at runtime. This delta structure con- 
tains data related to the triggering operation(s). 
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According to whether the-rule is immediate or de- 
ferred the structure is known as a delta element 
or a delta collection. Section 4.2 introduces the 
types of the delta structures and the operations 
such as new, old, cnrrent.provided for referencing 
data contained in a structure without having to 
know about its type. 

create rnle compile-propagate 
couplingdeierred 
on methodAnd Document->compile with d 
if range of docfoxomplle is set(Document) 

select doe->used,by 
from doe in d 
where doe->used-by != set0 

do (02 Document dd; 

m condition for(dd in flatten(doc,toxompile)) dd->compile; 
. 

The condition is a formula composed of predi- 
cates on objects and values. A predicate is an 
O#QL query. A predicate is true when the cor- 
responding query’s result is true or non-empty. 
A predicate may refer the delta structure of the 
event part. The result of a query can be denoted 
by a variable declared in the if clause. 

- action 
The action can be an executable OZC code; it 
may abort the current transaction in which the 
corresponding event occurred. The most simple 
form of an action is a method applied to the ob- 
ject concerned by the corresponding event. More 
generally, an action may use the delta structure 
of the event part of the rule and the result of the 
query of the condition. 

instead 
When a rule is executed it may sometimes be de- 
sirable to cancel the triggering operation. How- 
ever, the cancellation of a triggering operation 
only makes sense if rule execution is immediate. 
Further, as the 02 transaction manager does not 
provide nested transactions, the cancellation is 
reasonable only if the rule involved is triggered 
prior to execution of the triggering operation. 
Therefore, only rules with before event types are 
considered. The cancelling of a before event is ma- 
terialized as in [SK911 by instead as part of the do 
clause of a rule. When a rule with such a clause is 
executed, the triggering operation is cancelled and 
the actions of the do instead clause are executed. 

3.2 Examples of rules 

The following rules belong to the 02 schema of Sec- 
tion 2.1. They are used to control salaries of employees 
participating in the GP’s task and to propagate the ex- 
ecution of a compile method on a document. 

create rnle UpdateAmployecAalary 
couplingiamediate 
in r-w-tram3 
on before update Employee>ealary with e 
if new(e)->salary > 2 * e->salary 
do instead{ 

notifyincrease.Aalary(The~oss, e); 
1 

create rnle create-Taskauthorization 
coupling immediate 
in r-Wane 
on programbegin create/Task(m) 

in application projectmanagement with p 
if arg(p)->m != TheBoss 
do instead { dlsplay(nYou are not authorized 

to create a task”); 
1 

The event type of the first rule is BBPOBB UPDATE 

(Employee, salary). It characterizes the modification 
of the salary attribute of an Employee’s instance. This 
instance may be persistent or transient as the rule will 
be executed within a read-write transaction. When 
rule UpdateAmployeeAalary is triggered, its associated 
delta element is made up of the Employee’s instance 
whose salary attribute has to be modified, and the 
new value for this attribute. e denotes the instance of 
Employee before modification and new(e) denotes the 
instance of Employee after modification. The condi- 
tion holds if the updated employee belongs to the GP 
group and has a salary with a value twice its previ- 
ous value. If the condition holds, the employee named 
TheBose is notified instead of updating the salary of a. 

The Compilepropagate rule specifies a propagation 
policy for document compiling. The event type of this 
rule is AFTER NFZBODBNB compile0xnment). At the 
end of a transaction, possibly including multiple com- 
piling of different documents, the rule is triggered. Its 
associated delta collection d is a set of tuples, each of 
them describing the execution of a compile method on 
a document dot. The condition holds if at least one 
compiled document is used by other documents. The 
results of the query, dot-to-compile is a set of sets of 
“used-by” documents. The action of the rule flattens 
this set. Then, every document of the resulting set is 
compiled. 

The create-TarkAuthorization rule specifies au au- 
thorization checking for the execution of program 
createAsk( The event type of this rule is BBPOBB 
PROGBANEBGIN createrark ( project- management, m) . 
The rule is only triggered when the createJask pro- 
gram is called within a read-only transaction of the 
projectmanagement application. When the rule is trig- 
gered, its associated delta element p describes the ac- 
tual call of createrask. argfp) denotes a tuple de- 
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scribing the actual parameters of the program. If at- 
tribute m of this tuple does not reference the object 
TheBoss, the execution of the program is refused. 

4 Rule execution 

The rule execution model covers the aspects of (i) cou- 
pling modes, (ii) multiple rules triggered by the same 
event, (iii) cascading rule execution, (iv) delta struc- 
tures and (v) net effect of events. Section 3.1 intro- 
duced the coupling modes we provide and the prece- 
dence relationship for managing multiple rule execu- 
tions. In this section cascading will be explained for 
immediate and deferred rules respectively. Then we 
will briefly present delta structures and net effect. 

4.1 Cascading execution 

Executions of immediate and deferred rules take place 
in execution cycles. An execution cycle describes the 
execution of a series of operations which belong to a 
transaction, a program or to the condition and action 
part of a rule. Whatever the coupling mode under con- 
sideration, the rules triggered are always executed in 
a new execution cycle distinct from the one to which 
the triggering operation belongs. Furthermore, if more 
than one rule is executed in a single cycle, they are ex- 
ecuted in an order corresponding to their respective 
priorities. Figure 1 and 2 show the execution of rules 
r,, r, triggered by event al of type El, ria and rib trig- 
gered by event e2 of type E2. Rule rs, is triggered by 
event ea. These rules are defined under the following 
precedence (<) relationships: r, < r, and r,, <r, <r, b. 

4.1.1 Immediate rules 

Immediately triggered rules are executed depth Srst. 
This approach is closely related to the one proposed 
in [WCLSl] but rules considered in NAOS respond to 
operations on a single entity. The sequence of oper- 
ations executed up to the triggering event defines an 
initial execution cycle. Then, every subsequent rule 
execution defines a new nested execution cycle. 

In Figure 1, the rules are considered to be imme- 
diate assuming a transaction in which an event al of 
type El occurs. The operations of the current transac- 
tion executed before ei defines cycle 0 the initial ex- 
ecution cycle. In the case of an after event type, this 
cycle also includes the triggering operation. When el 
occurs, rules r1 and r, are triggered. r1 having the 
highest priority is executed first and defines a new ex- 
ecution cycle, cycle l(a) in Figure 1. In this cycle, the 
condition of r1 is checked and assuming it is true, the 
action part is executed. As one can see in Figure 1, 
r1 produces event e2 of type E2 which in turn triggers 
rules rio and fib (rIa precedes rIa). Both rule exe- 
cutions define (sub) execution cycles, cycle 2(a) and 

._/ . . . . 
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Figure 1: Execution cycles for immediate rules 

cycle 2(b), respectively. The depth first execution or- 
der implies that events produced in an execution cycle 
are treated without considering rules already triggered 
but still to be executed. For example, when event e2 
occurs, selection of rules concerns r,, and rib and we 
consider the precedence relationship between these two 
rules only. We do not add rl,, and rlb to the initial set 
of triggered rules. Finally, re is executed taking into 
account the composition of the initial execution cycle 
(cycle 0) and the ri execution cycle(cycle I(a)) with 
its subcycles cycle 2(a) and cycle 2(b). 

4.1.2 Deferred rules 

Deferred rules are executed at the end of the trans- 
action in which the triggering event occurs but before 
its commit or validate. Operations of the transaction 
constitute cycle 0, while cycle 1 will contain the execu- 
tion of the rules triggered in cycle 0. Thereafter, cycle 
n+l executes the rules triggered in cycle n, thereby 
enforcing the width first execution order. 

Evmt 01 

/\ 

Figure 2: Execution cycles for deferred rules 

In Figure 2 all rules are considered to be deferred. 
Event ei occurring in cycle 0 triggers rules ri and 
rs which are then scheduled for execution in cycle 1. 
The execution of rule r1 triggers the two rules ria and 
fl) , but these are not executed until all the rules of 
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cycle 1 are finished. In other words, rule rs is executed 
before any of these, producing event e4 which triggers 
rule rso. Cycle 2 is then initiated to execute the rules 
in the order ria , rs, and rib. Assuming that these rules 
do not trigger any deferred rules, cycle 3 will never be 
created. Rules ria and rl* see the effects of the opera- 
tions executed in the initial cycle (cycle 0) and in the 
ri and rs execution cycles (cycle 1). More generally, 
deferred rules of a cycle see the effect of operations per- 
formed since the beginning of the transaction. When 
there are no more deferred rules to be considered, the 
transaction is validated or committed. 

The examples given are rather simple. One may 
have immediate rules being triggered during the exe- 
cution of deferred rules. Thus, a rule may be charac- 
terized as “the rule deferred cycle 2, immediate cycle 
4”. The nesting may in theory be infinite, there are 
no limitations on the number of immediate cycles, or 
deferred cycles, nor is there any theoretical limit to 
the number of rules that may be triggered by any one 
event. 

4.2 Delta structures 

4.2.1 Delta elements 

The execution environment of an immediate rule is 
known as a delta element. It contains (i) the entity 
which is concerned with the operation producing the 
event and, (ii) the inserted, deleted or updated data 
or the actual parameters of a method or a program. 

Data contained in a delta element is accessible even 
though the programmer does not know the details of 
the type of this element. The name of a delta element 
(cf. Section 3.1) may be used to construct views which 
give a simplified description of the information con- 
tained in the designated delta structure. In order to 
construct these views five operators are proposed, i.e., 
new, old, current, delta and arg. The current opera- 
tor is the one assumed if none is specified. The arg op- 
erator is used with event types related to methods and 
programs. The delta operator is used with event types 
characterizing insertion/deletion of elements in/from 
sets, lists or bags. 

Let us consider rule Update-amployeesalarrp of Set- 
tion 3.2. The delta element associated with this rule 
is e with type: tuple(ENTITY: Employee, 

CIJNPONENT: integer) 
The condition of this rule could also have been writ- 

ten new(e)->stiary > 2 * current(e)->sdlary. At 
runtime, current(e) refers the ENTITY part of e and 
new(e)->salary refers the COMPONENT part of e. 

4.2.2 Delta collections 

A deferred rule responds to cumulative changes to en- 
tities. When a deferred rule with event type E is exe- 

cuted, the system considers every event of type E which 
has occurred during the previous execution cycle(s). 
These events may concern the same entity or different 
entities. Therefore, the execution environment of a de- 
ferred rule reflects the changes that have occurred on 
a set of entities. These changes are necessarily of the 
same type. To each entity is associated the modified, 
inserted or deleted data. The resulting delta collection 
is in other words also a set of delta elements. The op- 
erators we introduced in the previous section can also 
be used to refer data of delta collections. In that case, 
the operators build set of entities. 

4.3 Net effect of events 

Two of the main tasks of a rule system are (i) to deter- 
mine which rules have to be executed and, (ii) to build 
their corresponding delta structures. These two tasks 
are realized considering the net effect of a sequence 
of operations performed in the triggering transaction. 
For instance, if a rule is triggered by the creation of 
an entity, but thii same entity happens to be deleted 
before the actual execution of the rule, the rule should 
not be executed. Further, during a cascading execu- 
tion of rules, such as the one in figure 1, the execution 
of a rule (e.g., rib) may nullify the effect of an event 
(ei) having triggered a rule (rs) so that the latter no 
longer has reason to execute. Also the execution of 
a rule may change the value of the entity on which 
the triggering event occurred. For example, when rule 
r, in Sgure 1 is executed, it sees the net effect of all 
operations executed on the entity in previous execu- 
tion cycles. NAOS computes the net effect of events 
based on the classical composition of pairs of opera- 
tions applied to the same entity. If the net effect was 
not taken into account, we would have a rule system in 
which some rules would be executed while they should 
not and in which incorrect results could be obtained 
because of inconsistent execution environments. 

5 Implement at ion 

Figure 3: Architecture of the rule system 
The overall structure of the implementation is depicted 
in Figure 3. Module 1 (Rule definition) creates the per- 
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&tent representations of a rule (Compiled rules). It 
basically compiles rule definitions into 02 objects and 
02C methods. It also offers the possibility of dizplay- 
ing, renaming, modifying or removing previously de- 
fined rules. Module 2 (Event detection) detects events. 
When a schema is chosen, subscriptions are sent to the 
OzEngine for all event types associated with the rules 
of this schema. Then, it starts up the “Rule execu- 
tion” module. The latter is then able to process rules 
in response to events of the subscribed types occur- 
ring during the execution of an application. For each 
of the detected events this module constructs the delta 
structure and sends it to the execution module. Mod- 
ule 3 (Rule execution) receives detected events from 
module 2 and executes the concerned rules taking into 
account the coupling modes, cascading in the sense 
of execution cycles, priorities between rules, and the 
calculation of net effect. 

5.1 Rule definition 

The rule definition module is a modular tool which 
offers a language for rule programming and a rule pro- 
gramming interface for dynamic creation or modifi- 
cation of rules within an application. The program- 
ming interface is useful for programmers who want to 
use reactive processing for implementing specific lan- 
guages or tools, e.g., declarative integrity constraint 
languages, tools communication or change propagation 
facilities. Figure 4 shows the architecture of the rule 
definition module. 

Figure 4: Architecture for the rule definition module 

The top layer allows rule definitions to be written 
using the syntax shown in Section 3. It principally 
contains module 1, the rule analyzer, which realizes 
the classical tasks of a language analyzer. from the 
source code written by the programmer it produces 
two outputs, (i) the static characteristics of a rule that 
will specify, for instance, when and how the rule should 
be executed and (ii) the OzC methods representing the 
conditions and actions of the rules. These methods 
belong to two classes named Conditions and Actions. 

These two classes do not have attributes, they simply 
act as place-holders for the conditions and actions. 

The bottom layer represents the minimum require- 
ments of the rule definition module. It contains the 
OzC compiler and the rule constructor. The OzC 
compiler provides an executable version of the con- 
dition and action, while the rule constructor takes the 
static characteristics of a rule as input and creates the 
corresponding 02 objects. These objects are stored 
in persistent 02 lists ordered by the priority of their 
corresponding rules. These two modules together al- 
low the creation and manipulation of rule definitions 
through a rule programming interface. This interface 
is a set of C functions, based on the 02 Application 
Programming Interface (OzAPI). 

To conclude, the representation of rules as persis- 
tent objects in 02 lists provides three main advantages. 
First it allows the use of clusters and indexes which 
provide easy and efficient selection of rules through 
OzSQL for manipulating rules. Second, at runtime, it 
allows a fast rule set initialization because the liits con- 
taining the rules are ordered (cf. Section 5.2). Also at 
runtime, rules are basically compiled OzC code which 
allows for efhcient evaluation of conditions and execu- 
tion of actions. 

5.2 Event detection and rule execution 

The event detector is a most vital part of NAOS for 
two major reasons. First of all, there can be no rule ex- 
ecutions without events, but at the same time it is the 
part most susceptible to a huge performance penalty 
unless a very efficient checking technique is employed. 
The event detection module of NAOS is incorporated 
into the 02 engine to minimize the overhead of event 
checking. Also, to speed up actual rule execution, a 
C++ snapshot of the rule definitions is created when 
an application is executed and more precisely when a 
schema is set. With this approach, there is only one 
access to the object manager for each rule. 

Figure 5: Event detection and rule execution 
The event detector is based on a subscription mech- 

anism. As we already said when a schema becomes 
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active, a subscription is made for each of the event 
types concerned. For each subscription, the address 
of a handling function is supplied, thereby making for 
a dynamic subscription mechanis’m that may also be 
used by applications other than our rule system. This 
function will necessarily relate to our event types and 
delta structures. The 02 object manager regards all 
operations on objects as potential occurrences of the 
subscribed event types. 

After the subscription process is finished, the event 
detector, module 8, starts its surveillance of database 
operations. Only at the arrival of an event of a sub- 
scribed event type will further actions take place, i.e., 
the appropriate delta structure is sent to the function 
supplied at subscription time. 

The call of a function associated to an event type 
starts the rule execution module. As shown in figure 
5, a number of C++ classes, modules 1 through 7, 
have been conceived to implement all the features of 
our rule model. Module 1 manages a class hierarchy 
representing all possible event types. In each object 
representing an event type, there is an ordered list of 
rules which can be triggered by this event type, what 
we call “rule indexing”. Rule indexing can be seen as 
an transposition of the Rete algorithm [For821 which is 
used in Artificial Intelligence for object pattern match- 
ing. It avoids running through all the rules to find the 
one to be triggered when an event occurs. Module 
2 and 5 takes care of immediate rule execution while 
module 3 and 4 are in charge of execution of deferred 
rules. Class Rule, module 6, is actually a run-time 
snapshot of the persistent 02 rule definitions, created 
to increase performance and improve accessibility. 

6 Conchsion 

This paper introduced the NAOS component for the 
02 Database System. It described the model, the 
language and its first implementation. In NAOS, 
event types are related to manipulation of entities and 
code execution (methods, programs and transactions). 
Also, an event associated with the manipulation of a 
certain attribute can be tracked and not only the ma- 
nipulation of the entire entity. Consequent work has 
been done concerning ECA binding by introducing the 
notion of delta structures and how to access these delta 
structures in conditions and actions. 

Performance has widely been taken into account in 
the implementation of NAOS, as it is an important 
issue in proving the usefulness of an active rule sys- 
tem: (i) the event detector is part of the OpEngine and 
treats only events for which the event type has been 
subscribed to, (ii) the executive module uses a dy- 
namic C++ snapshot of the persistent 02 objects rep- 
resenting the rules and the trigger indexing technique 
to find the rules to be executed, and (iii) condition and 

action parts of rules are compiled into OpC methods. 
This allows for efficient evaluation of conditions and 
execution of actions. 

In the immediate futur we plan to expand our event 
detector to take into account temporal and compos- 
ite events, and to consider a more flexible transaction 
model, as the one proposed in [ADF+93], for rule ex- 
ecution. We also wants to investigate how to provide 
some parallel execution of rules. Further research di- 
rections includes (i) investigating the notion of inheri- 
tance and overridii in NAOS, (ii) speci@ing and im- 
plementing a rule programming environment including 
debugging and visualization tools. These tools may be 
considered as a partial answer to theoretical problems 
such as termination and more generally understanding 
of rule behavior. 

Acknowledgements 

This work grew out of earlier research with 
P. Habraken; discussions with him were helpful 
and greatly appreciated. We also want to thank 
A. Chabert for the coding of the rule definition lan- 
guage analyzer and M. Adiba, P. Dechamboux and 
C. Roncancio for useful discussions about our work. 

References 
[AC931 

[ACC+93] 

[ACLSl] 

[ADF+93] 

[AMC93] 

[AWH92] 

[BDK92] 

M. Adiba and C. Collet. Objets et Bases de 
Donntes : Le SGBD 02. Hermes, 1993. 
M. Adiba, C. Collet, T. Coupaye, 
P. Habraken, J. Machado, H. Martin, and 
C. Roncancio. Trigger Systems: Different ap- 
proaches. Rapport de Recherche Aristote- 
SURO07, LGI-IMAG, France, June 1993. 
R. Agrawal, R. Cochrane, and B. Lindsay. On 
Maintaining Priorities in a Production Rule 
System. In Pfoc. of Ihe 17th Zn2emotional 
Conference on Vet-g Large Data Bases, pages 
479-487, Barcelona, Spain, September 1991. 
T. Atwood, J. Duhl, G. Ferran, M. Loomis, 
and D. Wade. Object Database Standanl: 
ODMG-93. Kaufmann, San Mateo, Califor- 
nia, 1993. 
E. Anwar, L. Maugis, and S. Chakravarthy. A 
New Perspective on Rule Support for Object- 
Oriented Databases. In Pwx. of the 1999 
ACM-SZGMOD, pages 99-108, Washington, 
DC, May 1993. ACM press. 
A. Aiken, J. Widom, and J. M. Hellerstein. 
Behavior of Database Production Rules: Ter- 
mination, Confluence, and Observable Deter- 
minism. In Proc. of the 1999 ACM-SZGMOD, 
pages 59-69, San Diego - USA, May 1992. 
ACM Press. 
F. Bancilhon, C. Delobel, and P. Kanellakis. 
Building an Object-Oriented Database - The 
story of 4. Morgan Kaufmann, 1992. 

142 



[BK91] 

[BM91] 

[Cha89] 

[CHCA94] 

[Day881 

[DBMS81 

[DHLSO] 

[EBAM92] 

[For821 

[GGDSl] 

[GJ91] 

N.S. Barghouti and G.E. Kaiser. Scaling up 
Rule-Based Software Development Environ- 
ments. In Proc. of the 3rd European Software 
Engineering Conj., ESEC’91, Milan - Italy, 
October 1991. 

C. Beeri and T. Milo. A Model for Active 
Object Oriented Database. In Proc. of the 
17th Zntemotional CJonjetwace on Vey Large 
Data Bose, pages 337-349, Barcelona, Spain, 
September 1991. 

S. Chakravarthy. Rule Management and 
Evaluation : An Active DBMS Perspec- 
tive. SZGMOD Record, 18(3):20-28, Septem- 
ber 1989. 

C. Collet, P. Habraken, T. Coupaye, and 
M. Adiba. Active rules for the Software en- 
gineering platform GOODSTEP. In Proc. of 
the 2nd International Workshop on Dotabwe 
and Software engineering - 16th intemo- 
tional conference on Software Engineering, 
Sorrento, Italy, May 1994. 

U. Dayal et al. The IIIPAC Project: Com- 
bining Active Databases and Timing Constra 
ints. SZGMOD Record, 17(l), March 1988. 

U. Dayal, A. Buchmann, Ad D. McCarthy. 
Rules Are Objects Too : A Knowledge Model 
For An Active, Object-Oriented Database 
System. In Z+oc. 2nd International Work- 
shop on Object-Oriented Datobwe Systems, 
pages 129-143, September 1988. 

A. Dayal, M. Hsu, and R. Ladin. Organiz- 
ing Long-Running Activities with T&gers 
and Transactions. In Proc. of the ACM SZG- 
MOD International Conference on Afonoge- 
ment of Data, pages 204-214, Atlantic City, 
USA, May 1990. 

J. Estublier, N. Beikhatir, M. Ahmed-Nacer, 
and W.L. Melo. Process Centered SEE and 
Adele. In Proc. of the 5th Znt. Workshop on 
CASE, Montreal - Quebec, July 1992. 

C. L. Forgy. R.&e: A Fast Algorithm for the 
Many Pattern/Many Object Pattern Match 
Problem. J. Artificial Intelligence, l&17-37, 
1982. 

S. Gatziu, A. Geppert, and K.R. Dittrich. 
Integrating Active Concepts into an Object- 
Oriented Database System. In Pfoc. of 
the 3rd International Workshop on Dotobwe 
Pmgramming Languages: Bulk %a d Per- 
&tent Data, pages 399-415, Nafplion, 1991. 
Morgan Kaufmann. 

N. Gehani and H.V. Jagadish. Ode as an 
Active Database: Constraints and ‘I&gers. 
In Proc. of the 17th Zntemotional Conjer- 
ence on Vey Large Data Base, pages 327-36, 
Barcelona, Spain, September 1991. 

[GJS92a] 

[GJS92b] 

[Han921 

[HLM88] 

[KRRV94] 

[LLPSSl] 

[MD891 

[MP91] 

[OZT99] 

[SJGPSO] 

[SK911 

[WCLSl] 

N. Gehani, H.V. Jagadish, and 0. Shmueli. 
Composite Event Specification in an Active 
Databases: Model and Implementation. In 
PTVC. of the 18th International Conference on 
Vey Large Data Base, pages 327-338, Van- 
couver, USA, 1992. 
N. Gehani, H.V. Jagadish, and 0. Shmueli. 
Event Specification in an Active Object- 
Oriented Database. In Proc. of the ACM 
SZGMOD International Conference on Mon- 
cagement of Data, pages 81-90, San Diego, 
USA, 1992. 
E. Hanson. Rule Condition Testing and Ac- 
tion Execution in Ariel. In Proc. of the A CM- 
SZGMOD, pages 281-290, June 1992. 
M. Hsu, R. Ladin, and D. McCarthy. An 
Execution Model for Active Database Man- 
agement Systems. In Proc. 3rd Zntemational 
Conference on Data and Knowledge Bwea, 
pages 171-179, June 1988. 
G. Kappel, S. I&us&Schott, W. R&s- 
chitzegger, and S. Vieweg. TriGS making 
a Passive Object-Oriented Database System 
Active. JOOP - To be pub&shed, 1994. 

G. M. Lehman, B. Lindsay, H. Pirahesh, and 
K. B. Schiefer. Extensions to Starburst: ob- 
jects, types, functions, and rules. Communi- 
cations of the ACM, 34(10):94-109, October 
1991. 
D. McCarthy and U. Dayal. The Architecture 
of An Active Data Base Management System. 
In Proc. of the ACM SZGMOD, pages 215- 
223, May 1989. 
C.B. Medeiros and P. Pfeffer. Object In- 
tegrity Using Rules. In Proc. of the ECOOP 
- LNCC 512, pages 219-230, 1991. 
F. Oquendo, JD. Zucker, and G. Tassart. 
Suppport for software tool integration and 
process-centered software engineering envi- 
ronments. In Proc. of the third Zntemo- 
tional workshop on Sojtware Engineering and 
ita Applications, Toulouse, France, December 
1999. 
M. Stonebraker, A. Jhingran, J. Goh, and 
S. Potamianos. On rules, procedures, caching 
and views in data base systems. In Proc. of 
the ACM SZGMOD, pages 281-290, Atlantic 
City, USA, May 1990. ACM Press. 
M. Stonebraker and G. Kemnitz. The 
Postgres next generation database manage- 
ment system. Communications of the ACM, 
34( 10):78-93, October 1991. 
J. Widom, R.J. Cochrane, and B.G. Lind- 
say. Implementing set-oriented production 
rules as an extension to Starburst. In Proc. 
of the 17th VLDB, pages 275-285, Barcelona 
- SP, September 1991. 

143 


