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Abstract 

The design of a distributed deductive 
database system differs from the design of con- 
ventional non-distributed deductive database 
systems in that it requires design of distribu- 
tion of both the database and rulebase. In this 
paper, we address the rule allocation problem. 
We consider minimisation of data communic& 
tion cost during rule execution as a primary 
basis for rule allocation. The rule allocation 
problem can be stated in terms of a directed 
acyclic graph, where nodes represent rules or 
relations, and edges represent either depen- 
dencies between rules or usage of relations by 
rules. The arcs are given weights represent- 
ing volume of data that need to flow between 
the connected nodes. We show that rule al- 
location problem is NP-complete. Next, we 
propose a heuristic for nonreplicated alloca- 
tion based on successively combining adjacent 
nodes for placement at same site which are 
connected by highest weight edge, and study 
its performance vib*vis the enumerative al- 
gorithm for optimal allocation. Our result8 
show that the heuristic produces acceptable 
allocations. We also extend our heuristic for 
partially replicated allocation. 
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1 Introduction 

Distributed deductive database systems have been an 
intensive field of research in the last few years. A Dis- 
tributed Deductive Database System (DDedDBS) con- 
sists of many autonomous deductive database systems 
[CGT90] connected by a computer network to facili- 
tate sharing of both databases and rulebases. Efforts 
‘are being focused on defining an architecture for such 
systems [CR91, HBH94, Li88, MS93cJ. 

Distribution design is a phase in the development 
of distributed applications concerned with the allow 
tion of data as well as rules and operations to the 
various processing sites according to the application’s 
requirements. Distribution of data in a distributed 
database system has already received considerable at- 
tention [CP86], while partitioning and allocation of 
rulebase in a DDedDBS has not yet been addressed 
adequately. The problem of rule allocation is com- 
plex and challenging when large number of rules and 
sites are involved. Sellis [SRNOO] quotes Hayes-Roth 
on expert systems reaching 100,000 rules by 1990 in 
applications such as engineering processes and man- 
ufacturing. Moss [Mos92] describes many individual 
applications (such as Airport management, Boeing’s 
Connector Assembly Specification Expert, Integrated 
Circuits Layout, etc.) written in Prolog and using very 
large number of rules. The rulebase will be much larger 
when we wish to build an integrated set of applica 
tions. 

In this paper, we illustrate the problem of partition- 
ing and allocation of rulebase to sites. The rule all* 
cation problem is defined by us as a mapping problem 
across a set of interconnected database systems so that 
for all possible execution of rules at various sites, the 
overall communication cost is minimised. A poorly 
designed rule allocation can lead to less eflicient com- 
putation and higher communication cost, whereas a 
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well-designed rule allocation can enhance the rulebase 
availability, diminish the access time, and minimize 
the communication cost. Thus, it is crucial to provide 
DDedDBSe with a good means to achieve rule alloca- 
tion. 

Given (a) a set of sites (a site is a physical loca 
tion of database system) with a possibly replicated 
allocation of relations to them, (b) the Global Rule- 
base (GRB) consisting of Datalog rules [CGTOO], and 
(c) rule execution information pertaining to trans- 
mission cost, the objective is to allocate the rules of 
GRB across the set of sites in such a way that the 
overall communication cost is minimised. Our ap 
proach assumes that the problems of distribution of 
data and rulebase can be treated separately. F’ur- 
ther, we assume that the former has already been done 
based on the dominant database queries (including up 
dates) and that the latter needs to be done based on 
database usage by rules and interrelationships between 
the rules. This is obviously a simplifying assumption, 
since the distribution of one affects the other. In dis- 
tributed databases, data allocation takes into account 
sites and frequencies of execution of read and update 
types of transactions at operational level. Here, exs 
cution of each transaction is independent of execution 
of other transactions. The objective of data alloca- 
tion problem is to minimise the overall communk 
tion cost. This problem has been extensively studied 
in [Ape88, CNW83, RW79]. The allocation of rules 
to sites in distributed deductive databases is not only 
baaed on usage of data stored at multiple sites and 
frequencies of execution of rules, but also based on in- 
terdependencies between rules. That is, allocation of 
rules depends on allocation of their dependent rules. 
The objective of rule allocation problem is also to min- 
imise the overall communication cost. 

Since a rule may refer to another rule or data stored 
at another site, the individual DedDBS must cooper- 
ate during the execution of that rule. This cooperation 
consists of resolution of rules and/or database access 
and transmitting data from one site to another. Min- 
imising communication cost for data is one important 
goal in allocation of rulebase. 

We show that the rule allocation problem is NP- 
complete [GJ79]. The NP-compleness is shown by 
transforming mvltiZennind cut problem [DJP+SZ] into 
a restriction of the rule allocation problem. This prob- 
lem has also been formulated as a 9-l integer program- 
ming with quadratic function in [MS93b]. Since the 
time complexity of the optimal allocation of rules is 
exponential, this situation just&s the use a of heuris- 
tic algorithm which provides a suboptimal solution for 
solving the rule allocation problem. We propose and 
evaluate a heuristic algorithm for nonreplicated allo- 
cation of rules, and compare the results of it with the 

exhaustive enumeration algorithm that produces all+ 
cations of rules with minimal communication cost. We 
also derive a heuristic for partial replication of rules 
which starts off with a given nonreplicated allocation. 

The results presented in this paper can be con- 
trasted with those of [DJP+92, SV91] which solve 
the so called partitioning problem for a graph. The 
partitioning problem for more than two partitions 
(say, k) has been used in a variety of applications 
[Bre77, Rri84, San89], most having to do with the min- 
imisation of communication costs in parallel comput- 
ing systems. In the literature, two types of graph parti- 
tioning problems are discussed, namely, k-cut problem 
[SV91] and tm&ifennin~ cut problem [DJP+92]. In 
[MS93a], we have shown that none of the solutions to 
any of the variations of graph partitioning problems 
are directly applicable to rule allocation problem and 
also shown that the mu&ikrmkd cut problem is the 
special case of rule allocation problem where each re- 
lation node is initially assigned to precisely one site. 
If rule allocation problem did not have replicated data 
allocation, then the approximation algorithm of muC 
titermind cut problem could have been used for rule 
allocation. The detailed comparison is discussed in 
[MS93a]. 

In section 2, some preliminaries are given. Section 
3 defines rule allocation problem more precisely. Sec- 
tion 4 contains the proof of NP-completeness of the 
rule allocation problem. A heuristic algorithm for al- 
location of rules to sites, which is based on the largest 
connection weight between two nodes, is presented in 
section 5. In section 6, we outline a heuristic procedure 
for partially replicated allocation of a rulebaee. The 
experimental reaultr for measuring effectiveness of our 
algorithm in finding near-optimal solutions are given 
in section 7. Finally, section 8 contains our conclusions 
and future plans. 

2 Preliminaries 

2.1 Definitions 

A Datalog rule hae the form 
Po(Xo) : -J3(&),...,JqXn) 

where Pi i a predicate name and Xi is a vector of 
terma, each involving a variable or a constant. Rach 
IFi ia called a literal. The left hand side of a rule 
is the head of rule. It is a derived predicate. The right 
hand side of the rule is the body. It contains either 
derived predicates or base predicates or both. A base 
predicate corresponds to a relation in the database. A 
query is a rule without a head. A rule is recursive if 
its head predicate appears in its body. A predicate P 
directly depends on predicate Q, if Q appears in the 
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body of P. The transitive dependence is called indirect 
dependence. 

A cluster is a collection of rules. It represents a 
partition of the global rulebase. As rules in a cluster 
will have same site allocation, the clusters can also be 
viewed as units for allocation. 

2.2 Issues in Replication 

Let us briefly characterise the application scenarios of 
DDedDBMSs envisaged by us. A DDedDBMS may 
serve a single large organisation, or multiple organi- 
sations may wish to share their data and rulebases 
for cooperative processing or profit. Assume a set of 
sites in these cases, each with a database. Either these 
database systems already exist as autonomous units or 
the data has been distributed across sites to meet their 
operational needs. A GRB is now given to be stored 
appropriately at the sites for eiBcient querying by the 
users. We are interested in applications where GRB 
may contain thousands of rules to be shared by users 
at tens of sites. The problem of replication of rules in 
DDedDBMS has been discussed at length in [MS93b]. 
It can be approached in various ways an ~ummarised 
below: 

(i) No replication: GRB can be partitioned 
into non-overlapping clusters, one for each site. 
If properly designed, most rules might compile 
and execute locally, without any communica- 
tion overheads. For rules using RB from mul- 
tiple sites, compilation can also exploit paral- 
lelism (which in effect corresponds to the access 
planning by Diitributed DBMS for distributed 
execution of a query). 

(ii) Full replication: Here, the GRB is stored 
fully at all sites. The rule allocation problem 
disappears in full replication, but can be justi- 
fied only when GRB is fairly static and of mod- 
erate sise. We note that partitioning of large 
RB even in single systems has been suggested 
for reducing search space and improving execu- 
tion time [RB92] as well as for simplifying ad- 
miniitration of BB [JF90]. Moreover, the GRB 
may be less time varying than the database, but 
it is not fully static, and we cannot ignore cost of 
updates in fully replicated RB. (We note further 
that full replication of even database catalogs is 
not always advocated in distributed database 
systems [CP86]). If GRB if fully replicated, 
rule compilation is completely local; however, 
the underlying distributed DBMS must perform 
access planning for distributed execution of the 
rule when it uses data from multiple sites. 

(iii) Controlled (i.e., part-) ~gplication: Thin 
approach falls in between the above two ap 
proaches. The replication may be at rule or 
cluster level. 

3 The Rule Allocation Problem 

We wish to allocate the rules of a rulebase to sites 
based on their usage of data stored at multiple’sites 
and on rule execution information pertaining to trans- 
mission cost. A rule that uses data and/or rules from 
only one site is best stored at that site. However, if 
a rule uses databases or rulebases at multiple sites, it 
must be stored at that site which minimises the com- 
munication cost. To minimise communication cost we 
need to consider some application specific data such as 
frequencies of executions, expected volume of results, 
etc. We propose the partitioning of a global rulebase 
into as many clusters as there are sites. We restrict the 
rules of a dependency cycle to be present at the same 
site. To meet this objective, we normalise the rules of 
GRB where a cycle is replaced by a single ‘compiled 
recursive’ rule. If the rules of a cycle are mapped to 
different sites, then participating sites have to com- 
municate at every intermediate step of execution until 
the termination point of execution is reached. Hence, 
keeping the rules of a cycle in one site might reduce 
the execution time as well as communication cost. 

To achieve this, we replace all the rules of a cycle by 
a single ‘compiled recursive’ rule. After allocation of 
the rules, the compiled recursive rules can be replaced 
back by the rules merged in their definitions. 

Lemma 1 Assignment of rmmive ruler to tites is 
not aflectcd if recw8ive predicate8 are removed j+om 
ihe bodies of des. 

Proof: If a recursive rule is executed, then it will 
be called by itself at the same site and there will not 
be any intersite communication cost due to recursive 
predicate. Therefore, recursive predicates do not affect 
the allocation of rules. I 

Input and Output Data 

The following matrices are related to rule execution 
information pertaining to computation of trant3mimion 
cost. They will be employed as input data in the rule 
allocation problem. Let n be the number of r&r, m 
be the number of sites and 1 be the total mrmber of 
relations stored at various sites. Let a, i +z J be index 
variables for rules, i for relations, and b, k & L’ for 
sites. 

Let P E (0, ljnxn be the rule-rule dependency ma- 
trix where Big = 1 if rule i is directly dependent on rule 

62 



i’, and piit = 0 otherwise. Let Q E (0, l}nx’ be the 
rule-relation dependency matrix where gij = 1 if rule i 
is directly dependent on relation j, and qij = 0 other- 
wise. Let A E (0, l}lXm be the relation-site allocation 
matrix where ajk = 1 if relation j is present at site k, 
and ojk = 0 otherwise. Each rule ri is associated with 
a relative execution frequency fik, which gives how fre- 
quently pi is executed at site k. The frequency matrix 
F is defined as F = (fik ll~i~?l and l<_k<m). 
We assume that frequencies are measured over a suit- 
able time frame. A relation size matrix T is defined 
a~ T = (tj 1 1 5 j < I), where tj is the size of re- 
lation j. The result size cost matrix, 2 is defined as 
2 = (q 1 1 5 i L n}, where zi is the average answer 
size returned by execution of rule i. 

Recall that the head of a rule may have many ar- 
guments, and in a query, one or more of these may be 
bound (i.e., instantiated), affecting size of result pro- 
duced by its execution. We consider average result size 
based on results produced by execution of same rule 
with different instantiations and different frequencies. 
(Note: we could have treated each instantiation as a 
different rule.) 

The matrices T and 2 will be used for computing 
communication costs, which, we assume, is directly 
proportional to the amount of data transferred from 
one site to another (and not on how the sites are con- 
nected by the topology). 

It must be m-iterated here that the allocation rc 
sults obtained would depend on how well we have char- 
acterized the usage pattern of data and rules in the 
application. This problem is faced in most problems 
concerned with allocation such as data/file allocation, 
load balancing, etc. We expect that the input param- 
eters chosen by the designer are representative of ex- 
pected usage. 

We first consider nonreplicated allocation of rules 
in this paper. That is, each rule should be assigned to 
only one site. The problem of replicated allocation is 
briefly discussed in section 6. 

Note: Rules with same head predicates, or rules form- 
ing a recursive cycle are merged or replaced as dis- 
cussed above. The input data should be prepared so 
as to take these into account. 

there are 3 rules and 2 sites. 

4 Complexity of the Rule Allo- 
cation Problem 

In this section, we show that the problem of rule al- 
location in distributed deductive database systems is 
NP-complete. In fact, our proof demonstrates that the 
rule allocation problem is NP-complete even if we do 
not allow replication of relations across the sites. 

4.1 Rulebase as a Dependency Graph 

A rulebase can be represented as a dependency graph 
Gr = (V, E) with relations as leaf nodes and rules as 
non-leaf nodes, and edges representing usage of rules 
and relations. Nodes are assigned with either relation 
sizes or result sizes. The dependency graph can be con- 
sidered as a Directed Acyclic Graph (DAG), since it 
does not contain any cycle (recall that recursive pred- 
icates are removed since they do not affect the alloca- 
tion). We define the depth of each node and the height 
of dependency graph in the following definitions. 

Definition 1 The depth for leaf nodes (i.e. relation 
nodes) is 0. The depth d of a node is defined as 
max( depth of descendents)+ 1. 

Definition 2 The height h of the dependency graph 
is defined as maximum depth of any node in the graph. 

Example 
The graph in figure 1 is the dependency graph of 

our running example. Here, the relation nodes at leaf 
level are shown by rectangles with the result of their 

Let the matrices given below be the input values for a allocation and weights in curly and small parentheses 
given rulebase. We will use this as a running example respectively. The rule nodes are represented by small 
to illustrate rule allocation problem. In this example, circles along with their weights in parentheses. 
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Figure 1: A dependency graph Gr 
4.2 Conversion to Dependency Graph 

with Edge Weights 

We reduce a dependency graph into another depen- 
dency graph having weights associated with edges 
rather than nodes. Thii graph is constructed in three 
steps. 

(4 Convert a dependency graph Gr having node 
weights W(U) into another graph Gz having 
edges weight w(e). The edge weight between 
nodes i’ and i in graph Gs represents the total 
volume of data flowing from node i’ to node i 
for all executions of i and ancestors of i. The 
procedure of calculating edge weight from i’ to 
i, where node i’ could be either a rule or relation 
node, is as follows: 

find out the set I of all ancestor nodes of 
node i in graph Gr; include i also in I, 

for each ancestor node a E I, find out the 
number of paths to reach to node i' from a 
in the dependency graph. Here the number 
of paths indicates that rule i’ will execute 
as many time as the number of paths if 
rule a is executed. This can be understood 
from the following dependency graph. 

5 s2 s3 

Here, when rule rr executes, rule r4 will 

execute two times, first as a dependent of 
r2 and second of ~3. There are two paths 
to reach to node r4 from rl. These are 
shown by the arrows in the above depen- 
dency graph. 

w(i’,i) = CcrEI Cy=r P& . 

fok ’ { 2; 
if node i' is a rule node 
if node i' is a relation node 

where Pait gives the total number of paths 
from a to 2. We calculate the weight of 
all edges of graph Gr of figure 1, which are 
shown in graph Ga of figure 2. 

r,EO) 

11) (1) (1) 12) 
WQ (80) (10) (80) 

(ii) 

(4 

04 

(4 

(iii) 

Figure 2: The graph Gs 

A rule stored at one site can be invoked from 
another site. To include the weight due to this, 
we do the following: 

add a set of specified nodes Sr , . . -, Sk (equal 
to the number of sites), where node sb corre- 
sponds to site b 

connect all non-specified nodes (rule nodes) of 
graph Ga with each newly added specified node 

calculate the weight of these newly edges as fol- 
lows: 
The weight of edge connecting rule node i to 
newly added node Sk is: 
w(i,k)=fik-2% (l<i<n, andl<k<m) 
where w(i, k) shows communication cost of 
sending results of rule i at site k, if it is ex- 
ecuted at remote site. 

The idea of adding a set of nodes equal to the 
number of sites is to include the cost of com- 
munication on account of execution of rules at 
remote sites. Thus, this new graph, say Ga, con- 
tains n + I + m nodes. We calculate the weight 
of all new edges which are shown in graph Gs 
of figure 3. 

Reduce n+Z+m nodes of graph Gs into another 
graph G having n + m nodes. We merge rela- 
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(11 111 (1) 121 
uw (80) (10) 030) 

Figure 3: The graph Gs 

tion nodes with specified site nodes where they 
are stored by a single node and connect edges to 
latter node. Those edges which have same end- 
points will be replaced by a single edge having 
weight equal to the sum of weights of replaced 
edges. If a relation node is stored at more than 
one site, then this node will be considered at all 
sites for replacement. 

An edge-weight matrix W can be obtained from 
graph G, which gives weights between nodes of 
graph G. The graph G in figure 4 is the final 
graph obtained at step (iii). In this graph, si 
and sz are specified nodes, and rr, rz and rz 
are nonspecified nodes. 

Figure 4: The graph G 

The edge-weight matrix W for graph G is 

Definition 3 
The multiterminal cut problem[DJP+92] can be de- 
fined as follows: 

Instance: Graph G = (V,E), a set S = 
{h,"' , tzk} of k specified vertices, also called termi- 
nals, {sr, - -. , ek) E V, and a positive weight for each 
edge e E E. 

Question : Find a minimum weight set of edges E’ s 
E such that removal of E’ from E disconnects each 
terminal hrn all the others. 

Lemma 2 Mdtiterminal cut problem for ang fized 
k 1 3 is NP-complete, even if all weights are equal 
to 1. 

Proof: When k=2 multiterminal cut problem re- 
duces to the well known Afin-cut problem which can 
be solved in polynomial time by standard network flow 
techniques [PS82]. The proof of NP-completeness of 
multiterminal cut problem for k >2 is by a transfor- 
mation from the Simple Mazcut problem [GJ79] and 
is given in [DJP+92]. I 

4.3 Proof of NP-completeness 

We are now ready to prove the NP-completeness of rule 
allocation problem. The following theorem proves the 
NP-completeness. 

Theorem 1 For any fized A 2 3, Rule Allocation 
Problem (RAP) is NP-complete. 

Proof: It is easy to see that RAP E NP, since a non- 
deterministic algorithm need only guess a set of edges 
E’ and check in polynomial time that sum of weights 
of the edges E’ from E that have one endpoint in one 
cluster and one endpoint in another cluster is mini- 
mized. 

The NP-completeness of RAP is proven by restriction. 
Each relation is restricted to be assigned to precisely 
one site. Now the restricted RAP is defined as follows: 

Instance : Graph G = (V, E), a set S = (~1, . . -, sk} 
of k specified site vertices (81, - - -, Sk) E V, and a pos- 
itive weight w(e) for each edge e E E. 
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Question : Find a partition of V into k disjoint clus- 
ters VI,..., vk such that ~1 E VI, . . . , Sk E vk and sum 
of the weights of the cutting edges across the clusters 
is minimized. 

It is easy to see that restricted RAP is in one-to-one 
correspondence with the multiterminal cul problem 
where site vertices correspond to terminals and rule 
vertices correspond to non-terminals. We obtain a re- 
stricted RAP identical to the mukiterminal cui prob- 
lem which has been shown to be NP-complete. Since 
a restriction on the general RAP is NP-complete, the 
RAP itself is NP-complete. I 

5 Algorithm for Nonreplicat ed 
Allocation of Rules 

We have shown in section 4 that the optimal rule allo- 
cation problem is NP-complete. Since the time com- 
plexity of the optimal allocation of rules is exponential, 
this situation justifies the use of heuristic algorithm. 
In this section, we propose a new heuristic method for 
rule allocation based on largest connection weight be- 
tween two nodes in a graph. Our heuristic algorithm 
can be used for nonreplicated allocation of thousands 
of rules to sites. 

5.1 A Heuristic Method for Allocation 

We propose a heuristic for solving the nonreplicated 
rule allocation problem represented by an edge weight 
graph. This heuristic is a based on assigning two 
nodes of a graph to the same site if they are con- 
nected by highest weight edge. If one of them is a 
specified (i.e., site) node, then the other node will be 
assigned to the same site of the specified node. Nodes 
are clubbed (merged) in the descending order of their 
connection weights. This continues until number of 
nodes becomes equal to the number of specified ver- 
tices (i.e. sites). The heuristic algorithm operates on 
the edge-weight matrix W, defined in section 4, which 
contains the weights of the connections between nodes 
of a graph. Since the edge-weight matrix W is sym- 
metric with respect to its diagonal, we consider the 
upper diagonal matrix for computations. This reduces 
the number of comparisons by half. The procedure of 
clubbing nodes and their assignment to sites is shown 
in figure 5. In this procedure, home is an output array 
and home(i) gives the site of rule i. 

The createallocation procedure gives us the al- 
location of rules to sites. It does not give the overall 
communication cost for executing rules over all sites at 
specified frequencies, because relations may be repli- 
cated at multiple sites which add more communication 

global data: 
input W: matrix; 
Output home: array; 

procedure createAlocation( ) 
A=m+n; 
ViE,9nerge(i) = i; 
/* merge(i) is a set of rule nodes which can be 

merged with i, initially assigned with i only. */ 
repeat 

w(i, i’) = Muz(w(j, j’)l(j > m or j’ > m) 
andl<j,j’<&}; 

/* find the two nodes i and i’ (at least one 
should be a non-specified node) with the 
largest connection weight between them 
(ties are broken arbitrarily).*\/ 

for t = 1 to I 

1 

w(i, t) = o 
{ 

w(i, t) + w(i’, t) if i’ # i 
otherwise 

/* combine rows i’ and i in matrix W */ 
If both i and i’ are nonspecified nodes, 
then merge(i) = merge(i) + merge(i’); 

/* merge i and i' and replace by i */ 
If i is specified node and i’ is nonspecified, 
then Vcr~mssge(~~) h(a) = i; 

/* gives home site i of rule a */ 

3 
end for 
V = V - (2); 
delete w(i’, t), w(t, i’); 

/* adjust W by dropping row and column */ 
i = A - 1; 

until E = m 
end-createallocation. 

Figure 5: 

cost. If the relations are not replicated, then the over- 
all communication cost will be the sum of the weights 
of the edges across the partitions. If relations are repli- 
cated, we have to compute communication cost sepa- 
rately. 

This procedure can have n iterations and ((n + 
m)(n + m - 1)/2) comparisons are required to find 
the maximum value in W. Thus, the complexity of 
this procedure is O(n(n + m)‘). 

5.2 Cost Estimation 

For a given allocation of rules (derived from cre- 
ateallocation procedure), we calculate the overall 
communication cost by the following equations. We 
calculate the cost for a rule in a bottom-up fashion 
with respect to the dependency graph. 

Let rule i be allocated at site k. The cost of exe- 
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cuting rule i at site k once is Example 

In figure 4, we first combine node rr and sr, because 
they have the largest connection weight. These nodes 
will be replaced by node sr. This implies that rr will 
be allocated at site 1. Next node rs and ss will be com- 
bined by node s2 as edge(rs, ~2) has maximum weight 
of 170 and then, node rg will combine with node ~2. 
Hence, rule rr is allocated to site 1, and rules t-2 and rg 
are allocated to site 2. For this allocation, we calculate 
the overall communication cost. The cost of executing 
rule rr at site 1 once is 

singZe(1, 1) = 0 
and net communication cost for executing rule rr over 
all sites at specified frequencies is 

Vol(1, 1) = 1 * 0 + .5 * 50 = 25. 
Likewise, singZe(2, 2) = lo+50 = 60, singZe(3, 2) = 
10 + 60 = 70, Vd(2, 2) = 1 * 60 + .5 * 20 = 70, and 
VaZ(3, 2) = 1 * 70 + .5 * 50 = 95. Therefore, the over- 
all communication cost will be 190. In this example, 
it is the same as the sum of the weights of the cutting 
edges among specified vertices as shown above. Note 
that relations are not replicated in this example. 

&gle(i, k) = 2 @j ’ (1 - Oj&) . tj + 

9% 

= (1 

:;I’+ single(i’, k’) if pig = 1, k # k’ 
single(i’, k’) if pi;’ = 1, k = k’ (1) 

i'=l, i#i' 0 if pii’ # 1 

Here, the first term gives communication cost of ac- 
cessing relations and the second term gives cost of ob- 
taining results of descendent rules which are stored at 
some other site. 

The rule i can also be executed from other sites. 
So, the execution site of i should send results to other 
sites. Hence, the net communication cost for executing 
rule i over all sites at specified frequencies is 

VoZ(i, k) = - single(i, k) + 

fik’ . zi (2) 

Here, the first term represents the cost of access- 
ing relations and rules, and the second term repre- 
sents the cost of sending results of executing rule i 
when it is invoked from other sites. The algorithm 
Rule-Allocation is described in figure 6. The com- 
plexity of createdlocation procedure is O(n(n + 
m)2). The complexity of calculating the overall com- 
munication cost is O(n). Hence, the overall time 
complexity of the heuristic algorithm will remain as 
O(n(n + m)‘). 
global data: 

input P, Q, A, F, !I’, 2, W: matrices; 
Output home: array; total-cost: real; 

procedure Rule-Allocation(); 
create-allocation( ); 
total-cost=0; 
for d = 1 to h do 

for each node i having distance d do 
r 

i 
k = home(i); 
compute singZe(i, k), VcrZ(i, k) as per 
equations 1 and 2 respectively; 
total-cost = total-cost + VoZ(i, k); 

1 
endfor 

endfor 
print home, total-cost; 

end-RuleMIocation. 

Figure 6: Algorithm for Rule Allocation 

6 Partially Replicated Alloca- 
tion of Rules 

The introduction of replication may be at rule and/or 
cluster level. The degree of replication is a design pa- 
rameter. That is, the degree of replication becomes 
a variable of the problem. In this section, we limit 
our discussion to replication at rule level and present 
a greedy heuristic method for introducing ‘additional 
replication’ of rules. We start with a given nonrepli- 
cated allocation and determine all beneficial sites for 
replication of a rule. A beneficial site k’ is a site other 
than home site (a site where the rule is allocated by 
the nonreplicated allocation algorithm) where the cost 
of allocating one copy of the rule and executing it at 
this site for specified frequency f# is less than the 
executing it at home site for the same frequency. 

As we have discussed in section 2.2, the introduc- 
tion of replication of rules in a distributed deductive 
database may lead to important advantages both from 
the viewpoint of performance and reliability of the sys- 
tem. However, there is price to be paid since replica- 
tion leads to an increase in the cost of rulebase man- 
agement due to the need for maintaining the consis- 
tency of redundant copies of the rules. 

Keeping replicated rules at multiple sites results in 
performance gains due to the fact that any copy of a 
replicated rule can be used for an execution. A higher 
level of knowledge availability can be achieved by stor- 
ing multiple copies of rules. The improved reliability 
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is obviously due to the availability of several redun- 
dant copies of the same information. We assume that 
the DDedDBMS access planner which determines the 
execution site of a rule selects the best site among the 
sites where it is stored based on the minimization of 
access and transmission cost. 

Rulebase distribution should reflect the cost and 
availability of storage at the different sites. There may 
be some sites which may not support much storage. 
However, we neglect this constraint in our algorithm. 

A heuristic algorithm for progressively introducing 
redundancy by replication of rules is discussed here. 
It starts with a nonreplicated allocation., These allo- 
cation will be referred as home sites of the rules. We 
place a rule i at all sites B’ where the cost of execut- 
ing rule i at site k’ with frequency &I and the cost of 
updation of this rule is less than the cost of accessing 
it for execution when stored elsewhere. The benefit of 
placing rule i at site k’ is evaluated as follow: 

benefit(i, k’) = singZe(i, k) . f;p + zi . f;hk’ - 

single(i, k’) . f;kn - Cm (copies(i) + 1 ). f; (3) 

where the constant C is a ratio of update cost to 
retrieval cost, copies(i) gives total number of copies 
of rule i, and fi is the update frequency of rule i. 
Recall that single(i, k) is the cost of executing rule i 
at site k once as discussed in section 5. If benefit(i, S’) 
is positive, then we replicate rule i at site k’. The 
algorithm PartialRuleAlocation is described in 
figure 7. In this procedure, copies is an array such 
that copies(i) gives total number of copies of rule i, 
non-home is a set such that non-home(i) gives a set 
of beneficial sites of rule i, and overall_cost gives the 
overall comm. cost for partially replicated rules. 

The complexity of this algorithm is O(mn), where 
m is the number of sites and n is the number of rules. 
This follows easily from the fact that we have choice 
of m sites for each rule. 

Example 

In our running example, rule 1‘s will be replicated to 
site 1 because 

benefit(3,l) = 70*.5+50*.5-80*.5-2*2*1 

= 60 - 44 = 16 

is positive. Thus, site 1 will be the non-home site of 
rule rs. Rules rl and rz will not be replicated to sites 
2 and 1 respectively. Now the overallrost will be 
overall-cost=total-cost-bnefit(3,2) = 190- 16 = 174. 

7 Experiments 

We have carried out a number of experiments to mea- 
sure the performance of the proposed heuristic algo- 

global data: 
input P, Q, A, F, Z’, 2: matrices; 

home:array; total-cost: real; 
Output copies: array; non-home: set; 

overall-cost: real; 
procedure PartialRuleAllocation(); 

overall-cosktotal-cost; 
for i = 1 to n do 

( 
copies(i) = 1 
k = home(i) 
nonh(i) = ( ) 

/* initially, this set is empty; */ 
for k’ = 1 to m and k’ # k do 

1 
compute singZe(i, k) as per equation 1; 
compute benefit(i, k’) as per equation 3; 
if knefit(i, k’) > 0, then 

f 
non-home(i) = nun-home(i) + {k’); 

copies(i) = copies(i) f 1; 
overall-coskoverall~ost-&nefit(i, k’); 

I 
endif 

1 
endfor 

I 
endfor 
print copies, nonJwme, overall~ost; 

endJbrtialRule4llocation. 

Figure 7: Algorithm for Partially Replicated Alloca- 
tion of Rules 

rithm for nonreplicated allocation of rules. The al- 
gorithm has been designed for carrying out the allo- 
cation efficiently in situations involving hundreds or 
thousands of rules and tens of sites. The running time 
of Exhaustive Enumeration (EE) algorithm in such sit- 
uations is expected to be unacceptable even though it 
produces an optimal allocation. This is due to the fact 
that the number of permutations to be examined are 
exponential in nature. The second objective in con- 
ducting our experiments was to measure the quality 
of the results given by our heuristic algorithm as com- 
pared to the optimal algorithm. In this section, we 
report our experimental results for these algorithms. 
They were coded in C and executed on the ICL/ICIM 
DRS 6000 machine (hazed on the RISC chip SPARC). 

The performance of the various algorithms for a set 
of randomly chosen RB hierarchies is given in tables 
1 and 2. Table 1 compares communication costs for 
the two algorithms, viz, optimal and heuristic. Each 
row represents one experiment. In each example, we 
decided on the number of rules and sites, but inter- 
relationships between the rules as well as between rules 
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Table 1: Compariaon between communication costs 

I Rules 1 Comm. cost of 1 Comm. cost of 1 
and Sites I optimal Solution I heuristic Solution 

12 rules, 2 sites I 66.52 66.52 

Table 2: Comparison of execution times 

Rules and Running time of Running time of 
Sites EE algo. heuristic algo. 

I 12 rules, 2 sites 
~ 34 rules, 3 sites 
i 20 rules, 4 site.8 

40 rules, 5 sites 
60 rules, 6 sites 
100 rules, 7 sites 
104 rules. 6 Rites 

(milliseconds 
26 

0.9 x los 
6.3 x lo1 
2.7 x 10’ 
1.6 x lo6 
9.5 x lo6 
3.6 x 107 

(milliseconds) 
12 
42 
35 
53 
74 
92 
96 

and relations were chosen randomly. We found that 
going beyond the 104 rules and 8 sites case resulted in 
very high execution time for the exhaustive enumera- 
tion algorithm. 

Effect of Height Figure 8: RB characterisation on height 
A rulebase may be large horisontally or vertically with 
reference to its hierarchical representation. That is, 
the RB may be ‘broad’ or ‘deep’ (as shown in fig- 
ure 8) or something in between. Intuitively, one feels 
that real-world rulebases will have many more nodes at 
lower levels (i.e., at lower distances d), and the heights 
of RB hierarchies will be quite limited. We were in- 
terested in observing the performance of our heuris- 
tic algorithms for rulebases of different heights. It is 
simple to show that for kl, the heuristic algorithm 
gives the optimal result. The proposed heuristic algo- 
rithm may deviate from optimum as height increases, 
since it considers only the largest connection weight 
edge. This is confirmed by our results in table 3, which 
compares communication costs of allocations obtained 
by our heuristic algorithm with optimal solution for a 
rulebase for 20 rules, 3 sites and 42 edges, arranged 
in hierarchies of heights 1 to 6. For lower heights, the 
heuristic algorithm gives allocations whose communi- 
cation costs are same as the optimal algorithm. 

(a) ‘Broad’ RB 

(b) ‘Deep’ RB 

Table 3: Comparison of Costs for different h 

Height (h) comm. cost of 
optimal 
solution 
315.70 
522.50 
560.70 
710.50 
828.50 
886.60 

comm. cost of 
proposed heuristic 

solution 
315.70 
522.50 
560.70 
792.50 
862.90 
932.70 
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8 Conclusions 

This paper has addressed the problem of allocat- 
ing rules in a distributed deductive database system, 
where rulebase (a collection of rules) and database are 
shared across autonomous sites. The problem is rel- 
evant and challenging in applications involving large 
rulebases. We have identified communication cost as 
the primary consideration in allocation of rules. The 
optimal allocation is shown to be an NP-complete 
problem and solving it for a large rulebase is imprac- 
tical. 

We have proposed a heuristic algorithm for allocat- 
ing the rules of a rulebase over a set of sites with- 
out replication. We represent the rulebase as a depen- 
dency graph with relations as leaf nodes and rules as 
non-leaf nodes, and edges representing usage of rules 
and database relations. Nodes are associated with 
either relation sizes or result sizes. Our rule alloca- 
tion method converts a dependency graph into another 
graph of edge weights and then allocates the nodes 
(rules) on the basis of largest connection weight be- 
tween them. The complexity of the heuristic algorithm 
is O(n(n + rr~)~), w h ere n is the number of rules and 
m is the number of sites. We also proposed a method 
for replicated allocation based on the heuristic of all 
beneficial sites. 

We have analyzed the performance and effectiveness 
of the heuristic algorithm for a set of rulebases, char- 
acterized in terms of number of nodes, sites and edges. 
We found that in most of the cases, allocations pro- 
duced by it had total communication costs well within 
20% of the optimal. 

For performance analysis, we have attempted a 
characterization of large rulebases. Our characteriza- 
tions are based on the premises that real-world rule- 
bases will be more ‘broad’ than ‘deep’. We have de- 
fined these characterizations with respect to the hi- 
erarchical structure of a rulebase. We then studied 
performance of the algorithm for rulebase hierarchies 
of varying heights. 

For the variety of situations considered, our heuris- 
tic algorithm gives results that are reasonably close to 
optimal. The divergence of the heuristic from the op 
timal solution will be larger as height of RB increases. 
It is difficult to give a bound on divergence from the 
optimal, as well as convince ourselves by a formal ar- 
gument that we will not be uselessly off from the opti- 
mum solution. Even for the experimental purpose, we 
have been unable to consider RB of more than (only) 
104 rules due to prohibitive time taken by the optimal 
algorithm. It appears reasonable to expect satisfac- 
tory results for large RBs (expected to be more ‘broad’ 
than ‘deep’). Another observation we wish to make in 
this connection is about critical dependence of results 

(optimal or not) on quantification of work load. There 
is bound to be some approximations in estimates of 
frequencies, expected result sizes, etc. In this ‘fluid’ 
situation, it seems better to be satisfied with a ‘rea- 
sonably good’ solution. 

The future work includes the characterization of the 
real-world rulebases in greater depth. We are investi- 
gating more algorithms to reduce the overall commu- 
nication cost even further for nonreplicated allocation. 
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