
Some Issues in Design of Distributed Deductive
Databases

Mukesh K. Mohania
Dept. of Computer Science and Engg.

Indian Institute of T&hnology,
Bombay 400 076, INDIA
mukeshOcse.iitb.ernet.in

Abstract

The design of a distributed deductive
database system differs from the design of con-
ventional non-distributed deductive database
systems in that it requires design of distribu-
tion of both the database and rulebase. In this
paper, we address the rule allocation problem.
We consider minimisation of data communic&
tion cost during rule execution as a primary
basis for rule allocation. The rule allocation
problem can be stated in terms of a directed
acyclic graph, where nodes represent rules or
relations, and edges represent either depen-
dencies between rules or usage of relations by
rules. The arcs are given weights represent-
ing volume of data that need to flow between
the connected nodes. We show that rule al-
location problem is NP-complete. Next, we
propose a heuristic for nonreplicated alloca-
tion based on successively combining adjacent
nodes for placement at same site which are
connected by highest weight edge, and study
its performance vib*vis the enumerative al-
gorithm for optimal allocation. Our result8
show that the heuristic produces acceptable
allocations. We also extend our heuristic for
partially replicated allocation.

Pelmiahm to wpu without jee all ot pall of this material ir
punted pfwided that tbs copier are not made or didributd for
direct commercial advantage, the VLDB copy+At notice and
tbc title of the pmbliwtimI and it8 d&8 a-r, 8nd notiw i8
IivcntAoiwWing~~~~8iorroftAc Ve+lLwyc DdaBcuc
Endowment. To copg othc&e, or to republish, rquimo o jce
and/or special penniation jkom the Endowment.

Proceedings of the 20th VLDB Conference
Santiago, Chile, 1984

N. L. Sarda
Dept. of Computer Science and Engg.

Indian Institute of Technology,
Bombay 400 076, INDIA

nlsOcse.iitb.ernet .in

1 Introduction

Distributed deductive database systems have been an
intensive field of research in the last few years. A Dis-
tributed Deductive Database System (DDedDBS) con-
sists of many autonomous deductive database systems
[CGT90] connected by a computer network to facili-
tate sharing of both databases and rulebases. Efforts
‘are being focused on defining an architecture for such
systems [CR91, HBH94, Li88, MS93cJ.

Distribution design is a phase in the development
of distributed applications concerned with the allow
tion of data as well as rules and operations to the
various processing sites according to the application’s
requirements. Distribution of data in a distributed
database system has already received considerable at-
tention [CP86], while partitioning and allocation of
rulebase in a DDedDBS has not yet been addressed
adequately. The problem of rule allocation is com-
plex and challenging when large number of rules and
sites are involved. Sellis [SRNOO] quotes Hayes-Roth
on expert systems reaching 100,000 rules by 1990 in
applications such as engineering processes and man-
ufacturing. Moss [Mos92] describes many individual
applications (such as Airport management, Boeing’s
Connector Assembly Specification Expert, Integrated
Circuits Layout, etc.) written in Prolog and using very
large number of rules. The rulebase will be much larger
when we wish to build an integrated set of applica
tions.

In this paper, we illustrate the problem of partition-
ing and allocation of rulebase to sites. The rule all*
cation problem is defined by us as a mapping problem
across a set of interconnected database systems so that
for all possible execution of rules at various sites, the
overall communication cost is minimised. A poorly
designed rule allocation can lead to less eflicient com-
putation and higher communication cost, whereas a

60

well-designed rule allocation can enhance the rulebase
availability, diminish the access time, and minimize
the communication cost. Thus, it is crucial to provide
DDedDBSe with a good means to achieve rule alloca-
tion.

Given (a) a set of sites (a site is a physical loca
tion of database system) with a possibly replicated
allocation of relations to them, (b) the Global Rule-
base (GRB) consisting of Datalog rules [CGTOO], and
(c) rule execution information pertaining to trans-
mission cost, the objective is to allocate the rules of
GRB across the set of sites in such a way that the
overall communication cost is minimised. Our ap
proach assumes that the problems of distribution of
data and rulebase can be treated separately. F’ur-
ther, we assume that the former has already been done
based on the dominant database queries (including up
dates) and that the latter needs to be done based on
database usage by rules and interrelationships between
the rules. This is obviously a simplifying assumption,
since the distribution of one affects the other. In dis-
tributed databases, data allocation takes into account
sites and frequencies of execution of read and update
types of transactions at operational level. Here, exs
cution of each transaction is independent of execution
of other transactions. The objective of data alloca-
tion problem is to minimise the overall communk
tion cost. This problem has been extensively studied
in [Ape88, CNW83, RW79]. The allocation of rules
to sites in distributed deductive databases is not only
baaed on usage of data stored at multiple sites and
frequencies of execution of rules, but also based on in-
terdependencies between rules. That is, allocation of
rules depends on allocation of their dependent rules.
The objective of rule allocation problem is also to min-
imise the overall communication cost.

Since a rule may refer to another rule or data stored
at another site, the individual DedDBS must cooper-
ate during the execution of that rule. This cooperation
consists of resolution of rules and/or database access
and transmitting data from one site to another. Min-
imising communication cost for data is one important
goal in allocation of rulebase.

We show that the rule allocation problem is NP-
complete [GJ79]. The NP-compleness is shown by
transforming mvltiZennind cut problem [DJP+SZ] into
a restriction of the rule allocation problem. This prob-
lem has also been formulated as a 9-l integer program-
ming with quadratic function in [MS93b]. Since the
time complexity of the optimal allocation of rules is
exponential, this situation just&s the use a of heuris-
tic algorithm which provides a suboptimal solution for
solving the rule allocation problem. We propose and
evaluate a heuristic algorithm for nonreplicated allo-
cation of rules, and compare the results of it with the

exhaustive enumeration algorithm that produces all+
cations of rules with minimal communication cost. We
also derive a heuristic for partial replication of rules
which starts off with a given nonreplicated allocation.

The results presented in this paper can be con-
trasted with those of [DJP+92, SV91] which solve
the so called partitioning problem for a graph. The
partitioning problem for more than two partitions
(say, k) has been used in a variety of applications
[Bre77, Rri84, San89], most having to do with the min-
imisation of communication costs in parallel comput-
ing systems. In the literature, two types of graph parti-
tioning problems are discussed, namely, k-cut problem
[SV91] and tm&ifennin~ cut problem [DJP+92]. In
[MS93a], we have shown that none of the solutions to
any of the variations of graph partitioning problems
are directly applicable to rule allocation problem and
also shown that the mu&ikrmkd cut problem is the
special case of rule allocation problem where each re-
lation node is initially assigned to precisely one site.
If rule allocation problem did not have replicated data
allocation, then the approximation algorithm of muC
titermind cut problem could have been used for rule
allocation. The detailed comparison is discussed in
[MS93a].

In section 2, some preliminaries are given. Section
3 defines rule allocation problem more precisely. Sec-
tion 4 contains the proof of NP-completeness of the
rule allocation problem. A heuristic algorithm for al-
location of rules to sites, which is based on the largest
connection weight between two nodes, is presented in
section 5. In section 6, we outline a heuristic procedure
for partially replicated allocation of a rulebaee. The
experimental reaultr for measuring effectiveness of our
algorithm in finding near-optimal solutions are given
in section 7. Finally, section 8 contains our conclusions
and future plans.

2 Preliminaries

2.1 Definitions

A Datalog rule hae the form
Po(Xo) : -J3(&),...,JqXn)

where Pi i a predicate name and Xi is a vector of
terma, each involving a variable or a constant. Rach
IFi ia called a literal. The left hand side of a rule
is the head of rule. It is a derived predicate. The right
hand side of the rule is the body. It contains either
derived predicates or base predicates or both. A base
predicate corresponds to a relation in the database. A
query is a rule without a head. A rule is recursive if
its head predicate appears in its body. A predicate P
directly depends on predicate Q, if Q appears in the

61

body of P. The transitive dependence is called indirect
dependence.

A cluster is a collection of rules. It represents a
partition of the global rulebase. As rules in a cluster
will have same site allocation, the clusters can also be
viewed as units for allocation.

2.2 Issues in Replication

Let us briefly characterise the application scenarios of
DDedDBMSs envisaged by us. A DDedDBMS may
serve a single large organisation, or multiple organi-
sations may wish to share their data and rulebases
for cooperative processing or profit. Assume a set of
sites in these cases, each with a database. Either these
database systems already exist as autonomous units or
the data has been distributed across sites to meet their
operational needs. A GRB is now given to be stored
appropriately at the sites for eiBcient querying by the
users. We are interested in applications where GRB
may contain thousands of rules to be shared by users
at tens of sites. The problem of replication of rules in
DDedDBMS has been discussed at length in [MS93b].
It can be approached in various ways an ~ummarised
below:

(i) No replication: GRB can be partitioned
into non-overlapping clusters, one for each site.
If properly designed, most rules might compile
and execute locally, without any communica-
tion overheads. For rules using RB from mul-
tiple sites, compilation can also exploit paral-
lelism (which in effect corresponds to the access
planning by Diitributed DBMS for distributed
execution of a query).

(ii) Full replication: Here, the GRB is stored
fully at all sites. The rule allocation problem
disappears in full replication, but can be justi-
fied only when GRB is fairly static and of mod-
erate sise. We note that partitioning of large
RB even in single systems has been suggested
for reducing search space and improving execu-
tion time [RB92] as well as for simplifying ad-
miniitration of BB [JF90]. Moreover, the GRB
may be less time varying than the database, but
it is not fully static, and we cannot ignore cost of
updates in fully replicated RB. (We note further
that full replication of even database catalogs is
not always advocated in distributed database
systems [CP86]). If GRB if fully replicated,
rule compilation is completely local; however,
the underlying distributed DBMS must perform
access planning for distributed execution of the
rule when it uses data from multiple sites.

(iii) Controlled (i.e., part-) ~gplication: Thin
approach falls in between the above two ap
proaches. The replication may be at rule or
cluster level.

3 The Rule Allocation Problem

We wish to allocate the rules of a rulebase to sites
based on their usage of data stored at multiple’sites
and on rule execution information pertaining to trans-
mission cost. A rule that uses data and/or rules from
only one site is best stored at that site. However, if
a rule uses databases or rulebases at multiple sites, it
must be stored at that site which minimises the com-
munication cost. To minimise communication cost we
need to consider some application specific data such as
frequencies of executions, expected volume of results,
etc. We propose the partitioning of a global rulebase
into as many clusters as there are sites. We restrict the
rules of a dependency cycle to be present at the same
site. To meet this objective, we normalise the rules of
GRB where a cycle is replaced by a single ‘compiled
recursive’ rule. If the rules of a cycle are mapped to
different sites, then participating sites have to com-
municate at every intermediate step of execution until
the termination point of execution is reached. Hence,
keeping the rules of a cycle in one site might reduce
the execution time as well as communication cost.

To achieve this, we replace all the rules of a cycle by
a single ‘compiled recursive’ rule. After allocation of
the rules, the compiled recursive rules can be replaced
back by the rules merged in their definitions.

Lemma 1 Assignment of rmmive ruler to tites is
not aflectcd if recw8ive predicate8 are removed j+om
ihe bodies of des.

Proof: If a recursive rule is executed, then it will
be called by itself at the same site and there will not
be any intersite communication cost due to recursive
predicate. Therefore, recursive predicates do not affect
the allocation of rules. I

Input and Output Data

The following matrices are related to rule execution
information pertaining to computation of trant3mimion
cost. They will be employed as input data in the rule
allocation problem. Let n be the number of r&r, m
be the number of sites and 1 be the total mrmber of
relations stored at various sites. Let a, i +z J be index
variables for rules, i for relations, and b, k & L’ for
sites.

Let P E (0, ljnxn be the rule-rule dependency ma-
trix where Big = 1 if rule i is directly dependent on rule

62

i’, and piit = 0 otherwise. Let Q E (0, l}nx’ be the
rule-relation dependency matrix where gij = 1 if rule i
is directly dependent on relation j, and qij = 0 other-
wise. Let A E (0, l}lXm be the relation-site allocation
matrix where ajk = 1 if relation j is present at site k,
and ojk = 0 otherwise. Each rule ri is associated with
a relative execution frequency fik, which gives how fre-
quently pi is executed at site k. The frequency matrix
F is defined as F = (fik ll~i~?l and l<_k<m).
We assume that frequencies are measured over a suit-
able time frame. A relation size matrix T is defined
a~ T = (tj 1 1 5 j < I), where tj is the size of re-
lation j. The result size cost matrix, 2 is defined as
2 = (q 1 1 5 i L n}, where zi is the average answer
size returned by execution of rule i.

Recall that the head of a rule may have many ar-
guments, and in a query, one or more of these may be
bound (i.e., instantiated), affecting size of result pro-
duced by its execution. We consider average result size
based on results produced by execution of same rule
with different instantiations and different frequencies.
(Note: we could have treated each instantiation as a
different rule.)

The matrices T and 2 will be used for computing
communication costs, which, we assume, is directly
proportional to the amount of data transferred from
one site to another (and not on how the sites are con-
nected by the topology).

It must be m-iterated here that the allocation rc
sults obtained would depend on how well we have char-
acterized the usage pattern of data and rules in the
application. This problem is faced in most problems
concerned with allocation such as data/file allocation,
load balancing, etc. We expect that the input param-
eters chosen by the designer are representative of ex-
pected usage.

We first consider nonreplicated allocation of rules
in this paper. That is, each rule should be assigned to
only one site. The problem of replicated allocation is
briefly discussed in section 6.

Note: Rules with same head predicates, or rules form-
ing a recursive cycle are merged or replaced as dis-
cussed above. The input data should be prepared so
as to take these into account.

there are 3 rules and 2 sites.

4 Complexity of the Rule Allo-
cation Problem

In this section, we show that the problem of rule al-
location in distributed deductive database systems is
NP-complete. In fact, our proof demonstrates that the
rule allocation problem is NP-complete even if we do
not allow replication of relations across the sites.

4.1 Rulebase as a Dependency Graph

A rulebase can be represented as a dependency graph
Gr = (V, E) with relations as leaf nodes and rules as
non-leaf nodes, and edges representing usage of rules
and relations. Nodes are assigned with either relation
sizes or result sizes. The dependency graph can be con-
sidered as a Directed Acyclic Graph (DAG), since it
does not contain any cycle (recall that recursive pred-
icates are removed since they do not affect the alloca-
tion). We define the depth of each node and the height
of dependency graph in the following definitions.

Definition 1 The depth for leaf nodes (i.e. relation
nodes) is 0. The depth d of a node is defined as
max(depth of descendents)+ 1.

Definition 2 The height h of the dependency graph
is defined as maximum depth of any node in the graph.

Example
The graph in figure 1 is the dependency graph of

our running example. Here, the relation nodes at leaf
level are shown by rectangles with the result of their

Let the matrices given below be the input values for a allocation and weights in curly and small parentheses
given rulebase. We will use this as a running example respectively. The rule nodes are represented by small
to illustrate rule allocation problem. In this example, circles along with their weights in parentheses.

63

Figure 1: A dependency graph Gr
4.2 Conversion to Dependency Graph

with Edge Weights

We reduce a dependency graph into another depen-
dency graph having weights associated with edges
rather than nodes. Thii graph is constructed in three
steps.

(4 Convert a dependency graph Gr having node
weights W(U) into another graph Gz having
edges weight w(e). The edge weight between
nodes i’ and i in graph Gs represents the total
volume of data flowing from node i’ to node i
for all executions of i and ancestors of i. The
procedure of calculating edge weight from i’ to
i, where node i’ could be either a rule or relation
node, is as follows:

find out the set I of all ancestor nodes of
node i in graph Gr; include i also in I,

for each ancestor node a E I, find out the
number of paths to reach to node i' from a
in the dependency graph. Here the number
of paths indicates that rule i’ will execute
as many time as the number of paths if
rule a is executed. This can be understood
from the following dependency graph.

5 s2 s3

Here, when rule rr executes, rule r4 will

execute two times, first as a dependent of
r2 and second of ~3. There are two paths
to reach to node r4 from rl. These are
shown by the arrows in the above depen-
dency graph.

w(i’,i) = CcrEI Cy=r P& .

fok ’ { 2;
if node i' is a rule node
if node i' is a relation node

where Pait gives the total number of paths
from a to 2. We calculate the weight of
all edges of graph Gr of figure 1, which are
shown in graph Ga of figure 2.

r,EO)

11) (1) (1) 12)
WQ (80) (10) (80)

(ii)

(4

04

(4

(iii)

Figure 2: The graph Gs

A rule stored at one site can be invoked from
another site. To include the weight due to this,
we do the following:

add a set of specified nodes Sr , . . -, Sk (equal
to the number of sites), where node sb corre-
sponds to site b

connect all non-specified nodes (rule nodes) of
graph Ga with each newly added specified node

calculate the weight of these newly edges as fol-
lows:
The weight of edge connecting rule node i to
newly added node Sk is:
w(i,k)=fik-2% (l<i<n, andl<k<m)
where w(i, k) shows communication cost of
sending results of rule i at site k, if it is ex-
ecuted at remote site.

The idea of adding a set of nodes equal to the
number of sites is to include the cost of com-
munication on account of execution of rules at
remote sites. Thus, this new graph, say Ga, con-
tains n + I + m nodes. We calculate the weight
of all new edges which are shown in graph Gs
of figure 3.

Reduce n+Z+m nodes of graph Gs into another
graph G having n + m nodes. We merge rela-

64

(11 111 (1) 121
uw (80) (10) 030)

Figure 3: The graph Gs

tion nodes with specified site nodes where they
are stored by a single node and connect edges to
latter node. Those edges which have same end-
points will be replaced by a single edge having
weight equal to the sum of weights of replaced
edges. If a relation node is stored at more than
one site, then this node will be considered at all
sites for replacement.

An edge-weight matrix W can be obtained from
graph G, which gives weights between nodes of
graph G. The graph G in figure 4 is the final
graph obtained at step (iii). In this graph, si
and sz are specified nodes, and rr, rz and rz
are nonspecified nodes.

Figure 4: The graph G

The edge-weight matrix W for graph G is

Definition 3
The multiterminal cut problem[DJP+92] can be de-
fined as follows:

Instance: Graph G = (V,E), a set S =
{h,"' , tzk} of k specified vertices, also called termi-
nals, {sr, - -. , ek) E V, and a positive weight for each
edge e E E.

Question : Find a minimum weight set of edges E’ s
E such that removal of E’ from E disconnects each
terminal hrn all the others.

Lemma 2 Mdtiterminal cut problem for ang fized
k 1 3 is NP-complete, even if all weights are equal
to 1.

Proof: When k=2 multiterminal cut problem re-
duces to the well known Afin-cut problem which can
be solved in polynomial time by standard network flow
techniques [PS82]. The proof of NP-completeness of
multiterminal cut problem for k >2 is by a transfor-
mation from the Simple Mazcut problem [GJ79] and
is given in [DJP+92]. I

4.3 Proof of NP-completeness

We are now ready to prove the NP-completeness of rule
allocation problem. The following theorem proves the
NP-completeness.

Theorem 1 For any fized A 2 3, Rule Allocation
Problem (RAP) is NP-complete.

Proof: It is easy to see that RAP E NP, since a non-
deterministic algorithm need only guess a set of edges
E’ and check in polynomial time that sum of weights
of the edges E’ from E that have one endpoint in one
cluster and one endpoint in another cluster is mini-
mized.

The NP-completeness of RAP is proven by restriction.
Each relation is restricted to be assigned to precisely
one site. Now the restricted RAP is defined as follows:

Instance : Graph G = (V, E), a set S = (~1, . . -, sk}
of k specified site vertices (81, - - -, Sk) E V, and a pos-
itive weight w(e) for each edge e E E.

65

Question : Find a partition of V into k disjoint clus-
ters VI,..., vk such that ~1 E VI, . . . , Sk E vk and sum
of the weights of the cutting edges across the clusters
is minimized.

It is easy to see that restricted RAP is in one-to-one
correspondence with the multiterminal cul problem
where site vertices correspond to terminals and rule
vertices correspond to non-terminals. We obtain a re-
stricted RAP identical to the mukiterminal cui prob-
lem which has been shown to be NP-complete. Since
a restriction on the general RAP is NP-complete, the
RAP itself is NP-complete. I

5 Algorithm for Nonreplicat ed
Allocation of Rules

We have shown in section 4 that the optimal rule allo-
cation problem is NP-complete. Since the time com-
plexity of the optimal allocation of rules is exponential,
this situation justifies the use of heuristic algorithm.
In this section, we propose a new heuristic method for
rule allocation based on largest connection weight be-
tween two nodes in a graph. Our heuristic algorithm
can be used for nonreplicated allocation of thousands
of rules to sites.

5.1 A Heuristic Method for Allocation

We propose a heuristic for solving the nonreplicated
rule allocation problem represented by an edge weight
graph. This heuristic is a based on assigning two
nodes of a graph to the same site if they are con-
nected by highest weight edge. If one of them is a
specified (i.e., site) node, then the other node will be
assigned to the same site of the specified node. Nodes
are clubbed (merged) in the descending order of their
connection weights. This continues until number of
nodes becomes equal to the number of specified ver-
tices (i.e. sites). The heuristic algorithm operates on
the edge-weight matrix W, defined in section 4, which
contains the weights of the connections between nodes
of a graph. Since the edge-weight matrix W is sym-
metric with respect to its diagonal, we consider the
upper diagonal matrix for computations. This reduces
the number of comparisons by half. The procedure of
clubbing nodes and their assignment to sites is shown
in figure 5. In this procedure, home is an output array
and home(i) gives the site of rule i.

The createallocation procedure gives us the al-
location of rules to sites. It does not give the overall
communication cost for executing rules over all sites at
specified frequencies, because relations may be repli-
cated at multiple sites which add more communication

global data:
input W: matrix;
Output home: array;

procedure createAlocation()
A=m+n;
ViE,9nerge(i) = i;
/* merge(i) is a set of rule nodes which can be

merged with i, initially assigned with i only. */
repeat

w(i, i’) = Muz(w(j, j’)l(j > m or j’ > m)
andl<j,j’<&};

/* find the two nodes i and i’ (at least one
should be a non-specified node) with the
largest connection weight between them
(ties are broken arbitrarily).*\/

for t = 1 to I

1

w(i, t) = o
{

w(i, t) + w(i’, t) if i’ # i
otherwise

/* combine rows i’ and i in matrix W */
If both i and i’ are nonspecified nodes,
then merge(i) = merge(i) + merge(i’);

/* merge i and i' and replace by i */
If i is specified node and i’ is nonspecified,
then Vcr~mssge(~~) h(a) = i;

/* gives home site i of rule a */

3
end for
V = V - (2);
delete w(i’, t), w(t, i’);

/* adjust W by dropping row and column */
i = A - 1;

until E = m
end-createallocation.

Figure 5:

cost. If the relations are not replicated, then the over-
all communication cost will be the sum of the weights
of the edges across the partitions. If relations are repli-
cated, we have to compute communication cost sepa-
rately.

This procedure can have n iterations and ((n +
m)(n + m - 1)/2) comparisons are required to find
the maximum value in W. Thus, the complexity of
this procedure is O(n(n + m)‘).

5.2 Cost Estimation

For a given allocation of rules (derived from cre-
ateallocation procedure), we calculate the overall
communication cost by the following equations. We
calculate the cost for a rule in a bottom-up fashion
with respect to the dependency graph.

Let rule i be allocated at site k. The cost of exe-

66

cuting rule i at site k once is Example

In figure 4, we first combine node rr and sr, because
they have the largest connection weight. These nodes
will be replaced by node sr. This implies that rr will
be allocated at site 1. Next node rs and ss will be com-
bined by node s2 as edge(rs, ~2) has maximum weight
of 170 and then, node rg will combine with node ~2.
Hence, rule rr is allocated to site 1, and rules t-2 and rg
are allocated to site 2. For this allocation, we calculate
the overall communication cost. The cost of executing
rule rr at site 1 once is

singZe(1, 1) = 0
and net communication cost for executing rule rr over
all sites at specified frequencies is

Vol(1, 1) = 1 * 0 + .5 * 50 = 25.
Likewise, singZe(2, 2) = lo+50 = 60, singZe(3, 2) =
10 + 60 = 70, Vd(2, 2) = 1 * 60 + .5 * 20 = 70, and
VaZ(3, 2) = 1 * 70 + .5 * 50 = 95. Therefore, the over-
all communication cost will be 190. In this example,
it is the same as the sum of the weights of the cutting
edges among specified vertices as shown above. Note
that relations are not replicated in this example.

&gle(i, k) = 2 @j ’ (1 - Oj&) . tj +

9%

= (1

:;I’+ single(i’, k’) if pig = 1, k # k’
single(i’, k’) if pi;’ = 1, k = k’ (1)

i'=l, i#i' 0 if pii’ # 1

Here, the first term gives communication cost of ac-
cessing relations and the second term gives cost of ob-
taining results of descendent rules which are stored at
some other site.

The rule i can also be executed from other sites.
So, the execution site of i should send results to other
sites. Hence, the net communication cost for executing
rule i over all sites at specified frequencies is

VoZ(i, k) = - single(i, k) +

fik’ . zi (2)

Here, the first term represents the cost of access-
ing relations and rules, and the second term repre-
sents the cost of sending results of executing rule i
when it is invoked from other sites. The algorithm
Rule-Allocation is described in figure 6. The com-
plexity of createdlocation procedure is O(n(n +
m)2). The complexity of calculating the overall com-
munication cost is O(n). Hence, the overall time
complexity of the heuristic algorithm will remain as
O(n(n + m)‘).
global data:

input P, Q, A, F, !I’, 2, W: matrices;
Output home: array; total-cost: real;

procedure Rule-Allocation();
create-allocation();
total-cost=0;
for d = 1 to h do

for each node i having distance d do
r

i
k = home(i);
compute singZe(i, k), VcrZ(i, k) as per
equations 1 and 2 respectively;
total-cost = total-cost + VoZ(i, k);

1
endfor

endfor
print home, total-cost;

end-RuleMIocation.

Figure 6: Algorithm for Rule Allocation

6 Partially Replicated Alloca-
tion of Rules

The introduction of replication may be at rule and/or
cluster level. The degree of replication is a design pa-
rameter. That is, the degree of replication becomes
a variable of the problem. In this section, we limit
our discussion to replication at rule level and present
a greedy heuristic method for introducing ‘additional
replication’ of rules. We start with a given nonrepli-
cated allocation and determine all beneficial sites for
replication of a rule. A beneficial site k’ is a site other
than home site (a site where the rule is allocated by
the nonreplicated allocation algorithm) where the cost
of allocating one copy of the rule and executing it at
this site for specified frequency f# is less than the
executing it at home site for the same frequency.

As we have discussed in section 2.2, the introduc-
tion of replication of rules in a distributed deductive
database may lead to important advantages both from
the viewpoint of performance and reliability of the sys-
tem. However, there is price to be paid since replica-
tion leads to an increase in the cost of rulebase man-
agement due to the need for maintaining the consis-
tency of redundant copies of the rules.

Keeping replicated rules at multiple sites results in
performance gains due to the fact that any copy of a
replicated rule can be used for an execution. A higher
level of knowledge availability can be achieved by stor-
ing multiple copies of rules. The improved reliability

67

is obviously due to the availability of several redun-
dant copies of the same information. We assume that
the DDedDBMS access planner which determines the
execution site of a rule selects the best site among the
sites where it is stored based on the minimization of
access and transmission cost.

Rulebase distribution should reflect the cost and
availability of storage at the different sites. There may
be some sites which may not support much storage.
However, we neglect this constraint in our algorithm.

A heuristic algorithm for progressively introducing
redundancy by replication of rules is discussed here.
It starts with a nonreplicated allocation., These allo-
cation will be referred as home sites of the rules. We
place a rule i at all sites B’ where the cost of execut-
ing rule i at site k’ with frequency &I and the cost of
updation of this rule is less than the cost of accessing
it for execution when stored elsewhere. The benefit of
placing rule i at site k’ is evaluated as follow:

benefit(i, k’) = singZe(i, k) . f;p + zi . f;hk’ -

single(i, k’) . f;kn - Cm (copies(i) + 1). f; (3)

where the constant C is a ratio of update cost to
retrieval cost, copies(i) gives total number of copies
of rule i, and fi is the update frequency of rule i.
Recall that single(i, k) is the cost of executing rule i
at site k once as discussed in section 5. If benefit(i, S’)
is positive, then we replicate rule i at site k’. The
algorithm PartialRuleAlocation is described in
figure 7. In this procedure, copies is an array such
that copies(i) gives total number of copies of rule i,
non-home is a set such that non-home(i) gives a set
of beneficial sites of rule i, and overall_cost gives the
overall comm. cost for partially replicated rules.

The complexity of this algorithm is O(mn), where
m is the number of sites and n is the number of rules.
This follows easily from the fact that we have choice
of m sites for each rule.

Example

In our running example, rule 1‘s will be replicated to
site 1 because

benefit(3,l) = 70*.5+50*.5-80*.5-2*2*1

= 60 - 44 = 16

is positive. Thus, site 1 will be the non-home site of
rule rs. Rules rl and rz will not be replicated to sites
2 and 1 respectively. Now the overallrost will be
overall-cost=total-cost-bnefit(3,2) = 190- 16 = 174.

7 Experiments

We have carried out a number of experiments to mea-
sure the performance of the proposed heuristic algo-

global data:
input P, Q, A, F, Z’, 2: matrices;

home:array; total-cost: real;
Output copies: array; non-home: set;

overall-cost: real;
procedure PartialRuleAllocation();

overall-cosktotal-cost;
for i = 1 to n do

(
copies(i) = 1
k = home(i)
nonh(i) = ()

/* initially, this set is empty; */
for k’ = 1 to m and k’ # k do

1
compute singZe(i, k) as per equation 1;
compute benefit(i, k’) as per equation 3;
if knefit(i, k’) > 0, then

f
non-home(i) = nun-home(i) + {k’);

copies(i) = copies(i) f 1;
overall-coskoverall~ost-&nefit(i, k’);

I
endif

1
endfor

I
endfor
print copies, nonJwme, overall~ost;

endJbrtialRule4llocation.

Figure 7: Algorithm for Partially Replicated Alloca-
tion of Rules

rithm for nonreplicated allocation of rules. The al-
gorithm has been designed for carrying out the allo-
cation efficiently in situations involving hundreds or
thousands of rules and tens of sites. The running time
of Exhaustive Enumeration (EE) algorithm in such sit-
uations is expected to be unacceptable even though it
produces an optimal allocation. This is due to the fact
that the number of permutations to be examined are
exponential in nature. The second objective in con-
ducting our experiments was to measure the quality
of the results given by our heuristic algorithm as com-
pared to the optimal algorithm. In this section, we
report our experimental results for these algorithms.
They were coded in C and executed on the ICL/ICIM
DRS 6000 machine (hazed on the RISC chip SPARC).

The performance of the various algorithms for a set
of randomly chosen RB hierarchies is given in tables
1 and 2. Table 1 compares communication costs for
the two algorithms, viz, optimal and heuristic. Each
row represents one experiment. In each example, we
decided on the number of rules and sites, but inter-
relationships between the rules as well as between rules

68

Table 1: Compariaon between communication costs

I Rules 1 Comm. cost of 1 Comm. cost of 1
and Sites I optimal Solution I heuristic Solution

12 rules, 2 sites I 66.52 66.52

Table 2: Comparison of execution times

Rules and Running time of Running time of
Sites EE algo. heuristic algo.

I 12 rules, 2 sites
~ 34 rules, 3 sites
i 20 rules, 4 site.8

40 rules, 5 sites
60 rules, 6 sites
100 rules, 7 sites
104 rules. 6 Rites

(milliseconds
26

0.9 x los
6.3 x lo1
2.7 x 10’
1.6 x lo6
9.5 x lo6
3.6 x 107

(milliseconds)
12
42
35
53
74
92
96

and relations were chosen randomly. We found that
going beyond the 104 rules and 8 sites case resulted in
very high execution time for the exhaustive enumera-
tion algorithm.

Effect of Height Figure 8: RB characterisation on height
A rulebase may be large horisontally or vertically with
reference to its hierarchical representation. That is,
the RB may be ‘broad’ or ‘deep’ (as shown in fig-
ure 8) or something in between. Intuitively, one feels
that real-world rulebases will have many more nodes at
lower levels (i.e., at lower distances d), and the heights
of RB hierarchies will be quite limited. We were in-
terested in observing the performance of our heuris-
tic algorithms for rulebases of different heights. It is
simple to show that for kl, the heuristic algorithm
gives the optimal result. The proposed heuristic algo-
rithm may deviate from optimum as height increases,
since it considers only the largest connection weight
edge. This is confirmed by our results in table 3, which
compares communication costs of allocations obtained
by our heuristic algorithm with optimal solution for a
rulebase for 20 rules, 3 sites and 42 edges, arranged
in hierarchies of heights 1 to 6. For lower heights, the
heuristic algorithm gives allocations whose communi-
cation costs are same as the optimal algorithm.

(a) ‘Broad’ RB

(b) ‘Deep’ RB

Table 3: Comparison of Costs for different h

Height (h) comm. cost of
optimal
solution
315.70
522.50
560.70
710.50
828.50
886.60

comm. cost of
proposed heuristic

solution
315.70
522.50
560.70
792.50
862.90
932.70

69

8 Conclusions

This paper has addressed the problem of allocat-
ing rules in a distributed deductive database system,
where rulebase (a collection of rules) and database are
shared across autonomous sites. The problem is rel-
evant and challenging in applications involving large
rulebases. We have identified communication cost as
the primary consideration in allocation of rules. The
optimal allocation is shown to be an NP-complete
problem and solving it for a large rulebase is imprac-
tical.

We have proposed a heuristic algorithm for allocat-
ing the rules of a rulebase over a set of sites with-
out replication. We represent the rulebase as a depen-
dency graph with relations as leaf nodes and rules as
non-leaf nodes, and edges representing usage of rules
and database relations. Nodes are associated with
either relation sizes or result sizes. Our rule alloca-
tion method converts a dependency graph into another
graph of edge weights and then allocates the nodes
(rules) on the basis of largest connection weight be-
tween them. The complexity of the heuristic algorithm
is O(n(n + rr~)~), w h ere n is the number of rules and
m is the number of sites. We also proposed a method
for replicated allocation based on the heuristic of all
beneficial sites.

We have analyzed the performance and effectiveness
of the heuristic algorithm for a set of rulebases, char-
acterized in terms of number of nodes, sites and edges.
We found that in most of the cases, allocations pro-
duced by it had total communication costs well within
20% of the optimal.

For performance analysis, we have attempted a
characterization of large rulebases. Our characteriza-
tions are based on the premises that real-world rule-
bases will be more ‘broad’ than ‘deep’. We have de-
fined these characterizations with respect to the hi-
erarchical structure of a rulebase. We then studied
performance of the algorithm for rulebase hierarchies
of varying heights.

For the variety of situations considered, our heuris-
tic algorithm gives results that are reasonably close to
optimal. The divergence of the heuristic from the op
timal solution will be larger as height of RB increases.
It is difficult to give a bound on divergence from the
optimal, as well as convince ourselves by a formal ar-
gument that we will not be uselessly off from the opti-
mum solution. Even for the experimental purpose, we
have been unable to consider RB of more than (only)
104 rules due to prohibitive time taken by the optimal
algorithm. It appears reasonable to expect satisfac-
tory results for large RBs (expected to be more ‘broad’
than ‘deep’). Another observation we wish to make in
this connection is about critical dependence of results

(optimal or not) on quantification of work load. There
is bound to be some approximations in estimates of
frequencies, expected result sizes, etc. In this ‘fluid’
situation, it seems better to be satisfied with a ‘rea-
sonably good’ solution.

The future work includes the characterization of the
real-world rulebases in greater depth. We are investi-
gating more algorithms to reduce the overall commu-
nication cost even further for nonreplicated allocation.

Acknowledgment

We are grateful to S. Seshadri and A. A. Diwan for
their helpful comments.

References

be881

[Bre77]

[CGTSO]

[CNW83]

[CP86]

[CR911

[DJP+92]

[GJ79]

[HBH94]

P.M.G. Apers. Data allocation in dis-
tributed database systems. ACM Zkamac-
tiona on Database System, 13(3):263-304,
1988.

M.A. Breuer. Min-cut placement. Journal
of Design Automation and Fault-tolerant
Computation, 1:343-362, 1977.

S. Ceri, G. Gottlob, and L. Tanca. Logic

Programming and Databases. Springer-
Verlag Berlin Heidelberg New York, 1990.

S. Ceri, S. B. Navathe, and G. Wieder-
hold. Distribution design of logical database
schemas. IEEE Dansaction on Software
Engineering, 9(4):487-503, 1983.

S. Ceri and G. Pelagatti. Distributed
Databases: Principles and Systems.
McGraw-Hill Book Co., 1986.

D.A. Carlson and S. Ram. An architec-
ture for distributed knowledge base sys-
tems. DATA BASE, 22(1):11-21, 1991.

E. Dahlhaus, D.S. Johnson, C.H. Papadim-
itriou, P.D. Seymour, and Yannakakis M.
The complexity of multiway cuts. In ACM
STOC, pages 241-251, 1992.

M.R. Garey and D.S Johnson. Computers
and Intractability: A Guide to the theory
of IVP-Completeness. W.H. Freeman and
Company NewYork, 1979.

Cao Hua, D.A. Bell, and M.E.C. Hull.
Architecture of a LAN-based parallel de-
ductive database system - PDDS. In

70

Proc. tih Int. Workshop on Ned Genera- [San891 L.A. San&is. Multiple-way network parti-
tion Database Systems, Hongkong, Febuary tioning. IEEE !lbansactions on Computers,
1994. 38(1):62-81, Jan. 1989.

[JF90] R.J.K. Jacob and J.N. Froscher. A software
engineering methodology for rule-based sys-
tems. IEEE Transactions on Knowledge
and Data Engineeting, 2(2):173-189, June
1990.

[Kri84] B. Krishnamurthy. An improved min-
cut algorithm for partitioning vlsi net-
works. IEEE l%amactions on Computers,
33(5):438-446, 1984.

[Li88] Y.P. Li. DKM: A distributed knowledge
representation framework. In Proc. Z’d Int.
Conf. on Ezpert Databme, pages 313-331,
1988.

[Mos92] Chris Moss. Commercial applications of
large Prolog knowledge bases. In LNCS,
Number 567, pages 32-40, 1992.

[MS93a] Mukesh K. Mohania and N.L. Sarda. Al-
location of rules in distributed deductive
databases: NP-completeness and a heuris-
tic approach. Technical Report T&131-93,
Dept. of Computer Science and Engg., IIT
Bombay, November 1993.

[MS93b] Mukesh K. Mohania and N.L. Sarda. Rule
allocation in distributed deductive database
systems. Technical Report TR-122-93,
Dept. of Computer Science and Engg., IIT
Bombay, October 1993.

[MS93c] Mukesh K. Mohania and N.L. Sarda. An
architecture for a distributed deductive
database system. In Proc. IEEE TEN-
CON’93, Volume 1, pages 196-200, Beijing,
China, 1993.

[PS82] C.H. Papadiitriou and K. Steiglits. Com-
binatorial Optimization: NeZworb and Ma-
troids. PrenticeHall Inc., Englewood Cliffs,
NJ, 1982.

[RB92] Tevi Ras and N.A. Botten. The knowl-
edge base partitioning problem: Mathemat-
ical formulation and heuristic clustering.
Journal of Data & Knowledge Engineering,
8(4):329-337, 1992.

[RW79] C.V. R amamoorthy and B.W. Wah. The
placement of relations in a distributed rela-
tional database. In Proc. lst Int. Conf. on
Distributed Computing Systems, 1979.

[SRNSO] Timos K. Sellis, N. Roussopoulos, and Ray-
mond T. Ng. Efficient compilation of large
rule bases using logical access paths. Tech-
nical Report UMIACS-TR-90-8, University
of Maryland, College Park, January 1990.

[SV91] H. Saran and V. V. Vazirani. Finding k-
cuts within twice the optimal. In Proc. of
the 3pd Annual Symp. on Foundations of
Computer Science, IEEE Computer Soci-
ety, pages 743-751, 1991.

71

