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Abstract 

We address the problem of finding parallel plans 
for SQL queries using the two-phase approach of 
join ordering followed by parallelization. We fo- 
cus on the parallelization phase and develop al- 
gorithms for exploiting pipelined parallelism. We 
formulate parallelization as scheduling a weighted 
operator tree to minimize response time. Our 
model of response time captures the fundamental 
tradeoff between parallel execution and its com- 
munication overhead. We assess the quality of an 
optimization algorithm by its performance ratio 
which is the ratio of the response time of the gen- 
erated schedule to that of the optimal. We develop 
fast algorithms that produce near-optimal sched- 
ules - the performance ratio is extremely close to 
1 on the average and has a worst case bound of 
about 2 for many cases. 

1 Introduction 

We address the problem of parallel query optimization, 
which is to find optimal parallel plans for executing 
SQL queries. Following Hong and Stonebraker [HS91], 
we break the optimization problem into two phases: 
join ordering followed by parallelization. We focus on 
the parallelization phase and develop optimization al- 
gorithms for exploiting pipelined parallelism. 

Our model of parallel execution captures a fun- 
damental tradeoff - parallelism has a price [Gra88, 
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PMC+SO]. Two communicating operators may either 
incur the communication overhead and run on distinct 
processors, or share a processor and save the commu- 
nication overhead. 

We model parallelization as scheduling an operator 
tree [GHK92, Hon92b, SchSO] on a parallel machine. 
We represent the resource requirements of operators 
and communication as node and edge weights respec- 
tively. Our optimization objective is to find a schedule 
(i.e. a parallel plan) with minimal response time. 

This paper concentrates on algorithms for exploiting 
pipelined parallelism. In general, pipelining is a use- 
ful supplement to partitioned parallelism [DG92] but is 
sometimes the only way of speeding up a query. Con- 
sider decision support queries that join a large num- 
ber (say 10) of relations and apply external functions, 
grouping and aggregation. Selection predicates may lo- 
calize access to single partitions of each relation. If 
each reduced relation is small, partitioned parallelism 
ceases to be a viable option and pipelined parallelism is 
the only source of speedup. Algorithms for managing 
pipelined parallelism are thus an essential component 
of an optimizer. 

To the best of our knowledge, scheduling theory 
does not provide algorithms that handle communica- 
tion costs. Scheduling pipelines constitutes a non- 
trivial generalization of the classical problem of multi- 
processor scheduling [GLLK79]. Prior work in parallel 
query optimization [Hon92a, SE93, LCRY93, LST91, 
SYT93, SYG92, TWPY92, WFA92] ignored the com- 
munication overhead of exploiting parallelism. This 
was sometimes justified by restricting to situations 
where communication overhead is low: shared-memory 
architectures with omission of pipelined parallelism. 

Brute force algorithms are impractical for scheduling 
pipelines due to the extremely large search space. A 
query that joins 10 relations leads to an operator tree 
with about 20 nodes. The number of ways of scheduling 
20 operators on 20 processors exceeds 5 x 1013. 

Algorithms that simply ignore communication over- 
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head are unlikely to yield good results. We show that 
one such naive algorithm produces plans with twice the 
optimal response time on average, and is arbitrarily far 
from optimal in the worst case. 

We will measure the quality of optimization algo- 
rithms by their performance ratio [GJ79] which is the 
ratio of the response time of the generated schedule to 
that of the optimal. Our goal is to develop algorithms 
that are near-optimal in the sense that the average per- 
formance ratio should be close to 1 and the worst per- 
formance ratio should be a small constant. 

We develop two algorithms called Hybrid and 
GreedyPairing. We experimentally show that both al- 
gorithms, on the average, find near-optimal plans for 
small operator trees. Experiments with larger operator 
trees proved impossible for the very reason that it re- 
quired the practically infeasible task of computing the 
optimal schedule. 

Thus, one motivation for our worst-case analytical 
results was the need to provide performance guarantees 
independent of the size of the operator tree or the num- 
ber of processors. Another motivation was to provide 
guarantees that do not depend on the choice of the ex- 
perimental benchmark and are valid across all database 
applications. Finally, worst-case bounds on the perfor- 
mance ratio apply to each schedule and thus guarantee 
that the scheduling algorithm will never produce a bad 
plan. 

We show, for p processors, the performance ratio of 
Hybrid is no worse than 2 - l/p for operator trees which 
are paths and no worse than 2 + l/p for stars. We also 
show the performance ratio of GreedyPairing to be no 
worse than 2 - & when communication costs are zero. 

Hybrid outperforms GreedyPairing almost uniformly 
but the difference is significant only when operator trees 
are large and communication costs are low. On the 
other hand, GreedyPairing is a simple algorithm which 
can be extended naturally to take data-placement con- 
straints into account. 

Section 2 develops a cost model for response time 
and provides a formal statement of the optimization 
problem. Section 3 summarizes our approach and dis- 
cusses why a natural algorithm called Naive LPT does 
not perform well. 

Section 4 develops the GreedyChase algorithm to 
identify parallelism that is simply not worth exploit- 
ing irrespective of the number of processors. Use of 
GreedyChase as a pre-processing step leads to improved 
schedules. The Modified LPT algorithm is developed 
and shown to be near-optimal for star-shaped operator 
trees. 

Section 5 focuses on the restricted class of connecied 
schedules. We show the optimal connected schedule to 
be a near-optimal schedule for path-shaped operator 
trees. We develop a fast polynomial algorithm called 

Figure 1: Two-phase Parallel Query Optimization 
BalancedCuts to find the optimal connected schedule. 

Section 6 develops algorithms for the general prqb- 
lem. The Hybrid algorithm is devised by combining the 
best features of connected schedules and the modified 
LPT algorithm. Finally, the GreedyPairing algorithm 
is developed and experimentally compared with Hybrid. 
Section 7 summarizes our contributions and provides 
directions for future work. 

2 A Model for the Problem 

Figure 1 shows a two-phase approach for compiling an 
SQL query into a parallel plan. The first phase is sim- 
ilar to conventional query optimization, and produces 
an annotated join tree that fixes aspects such as the or- 
der of the joins, join methods and access methods. The 
second phase is a parallelization phase that converts a 
join tree into a parallel plan. 

We define a parallel plan to be a schedule consisting 
of two components: (1) an operator tree that identifies 
the atomic units of execution (operators) and the tim- 
ing constraints between them; and, (2) an allocation of 
machine resources to operators. 

We consider parallelization itself to consist of two 
steps. The first step translates an annotated join tree 
to an operator tree. The second step is a scheduling 
step that allocates resources to operators. 

Section 2.1 refines prior notions of operator 
trees [GHK92, Hon92b, SchSO] by reducing timing con- 
straints between operators to parallel and precedence 
constraints. Section 2.2 shows how resource require- 
ments of nodes and edges may be derived from conven- 
tional cost models. Section 2.3 describes a cost model 
for response time. Finally, Section 2.4 provides a for- 
mal statement of the optimization problem addressed 
in this paper. A full description of the cost model and 
its justification can be found in [Has94a, Has94b]. 

2.1 Operator Trees 

An operator tree is created as a “macro-expansion” of 
an annotated join tree (Figure 2). Nodes of an operator 
tree represent operators. Edges represent the flow of 
data as well as timing constraints between operators. 

An operator is an atomic piece of code that takes 
zero or more input sets and produces a single out- 
put set. Operators are formed by appropriate factor- 
ing of the code that implements the relational opera- 
tions specified in an annotated join tree. A criteria in 
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Figure 2: Macro-expansion of a Join Tree to a Weighted Operator Tree 
designing operators is to reduce inter-operator timing 
constraints to simple forms, i.e. parallel and precedence 
constraints. 

It is often possible to run a consumer operator in 
parallel with an operator that produces its input. This 
is termed pipelined parallelism. In order to identify 
such opportunities for speedup, we classify the in- 
puts/output of operators into two idealized categories: 
l blocking: the set of tuples is produced/consumed as 
a whole set. A blocking output produces the entire 
output set at the instant the operator terminates. An 
operator with a blocking input requires the entire input 
set before it can start. 
l pipelining: the set is produced/consumed “tuple at 
a time” and the tuples are uniformly spread over over 
the entire execution time of the operator. 

Opportunities for pipelined parallelism exist only 
along edges that connect a pipelining output to a 
pipelining input. 

Definition 2.1 If an edge connects a pipelining output 
to a pipelining input, it is a pipelining edge; otherwise 
it, is a blocking edge. 0 

In Figure 2 blocking edges are shown as thick edges. 
Pipelined execution is typically implemented us- 

ing a flow control mechanism (such as a table 
queue [PMC+SO]) to ensure that a fixed amount of 
memory suffices for the pipeline. This constrains 
all operators in a pipeline to run concurrently - the 
pipeline executes at the pace of the slowest operator. 
Thus, pipelining edges represent parallel constraints, 
and blocking edges represent precedence constraints. 

Definition 2.2 Given an edge from operator i to j, a 
parallel constraint requires i and j to start at the same 
time and terminate at the same time. A precedence 
constraint requires j to start after i. terminates. 0 

Note that a pipelining constraint is symmetric in i 
and j. The direction of the edge indicates the direc- 
tion in which tuples flow but is immaterial for timing 
constraints. 

The code for join and access methods is ex- 
pected to be broken down into operators such that 
inputs/outputs are easily classifiable as blocking or 
pipelinable. For example a simple hash join may be 
broken into build and probe operators. The build 
operator produces a “whole set,” i.e., the hash table 

while probe produces output “tuple at a time.” If the 
inputs/output are not easily classifiable, the operator 
should be further broken down. As an example con- 
sider the merge-sort algorithm that consists of repeat- 
edly forming larger runs followed by a merge of the 
final set of runs. The output is neither produced at 
the instant the operator terminates nor is it spread out 
over the entire execution time of the operator. This 
situation is handled by breaking the algorithm into two 
operators: form-runs that produces a blocking out- 
put, i.e. the final runs, and merge-runs that takes a 
blocking input and produces a pipelining output. 

2.2 Resource Requirements as Weights 

The weight ti of node i is the time to run the operator in 
isolation assuming all communication to be local. The 
dominant overhead of using distinct processors for two 
communicating operators is the additional instructions 
that must be executed for communicating data [Gra88, 
PMC+90]. The weight cij of an edge between nodes i 
and j is the additional execution time incurred by both 
operators if they are assigned distinct processors. 

Conventional models (such as System R [SAC+79]) 
use statistical models to estimate the sizes of the in- 
termediate results. These sizes are then used to de- 
termine the CPU, IO and communication requirements 
of relational operations such as joins. Since relational 
operations are broken down into operators, the same 
formulas are easily extended for operators. 

Given the CPU, IO and communication require- 
ments of an operator, its execution time may be es- 
timated by a formula that combines the individual re- 
source requirements using functions such as weighted 
sum and max. The exact formula depends on the hard- 
ware and software architecture of the system in consid- 
eration. The nature of the formula is not important in 
solving the parallelization problem, it suffices that such 
formulas exist. 

2.3 Response Time of a Schedule 

In the rest of this paper, we shall restrict ourselves to 
operator trees with only pipelining edges and these edges 
will be considered undirected since the direction is im- 
material for the timing constraints. For example, if the 
indexes (hash tables) pre-exist, the operator tree of Fig- 
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ure 2 would have no blocking edges and would reduce 
to the one shown in Figure 3(a). 

A schedule (i.e. parallel -plan) allocates operators to 
processors. Since we assume processors to be identical, 
a schedule may be regarded as a partition of the set of 
operators. 

Definition 2.3 Given p processors and an operator 
tree T = (V,E), a schedule is a partition of V, the 
set of nodes, into p sets Fl, . . . , FP. Cl 

Suppose F is the set of operators allocated to some 
processor. The cost of executing F is the cost of execut- 
ing all nodes in F plus the overhead for communicating 
with nodes on other processors. It is thus the sum of 
the weights of all nodes in F and the weights of all 
edges that connect a node within F to a node outside. 
For convenience, we define cij = 0 if there is no edge 
fr0m.i to j. 

Definition 2.4 If F is a set of operators, cost(F) = 
Cl 

Definition 2.5 If F is the set of operators allocated 
to processor p, loud(p) = cost(F). 0 

Since our goal is to minimize the response time R. 
of a parallel plan, we now derive a formula for R 
given an operator tree T = (V, E) and a schedule 
S= Fl,...,F,. 

The pipelining constraint forces all operators in a 
pipeline to start simultaneously (time 0) and terminate 
simultaneously at time R. Fast operators are forced to 
“stretch” over a longer time period by the slow oper- 
ators. Suppose operator i is allocated to processor pi 
and uses fraction fi of the processor. The pipelining 
constraint is then: 

fi = A [ti + C Cij] for all operators i E V (1) 
j @pi 

The utilization of a processor is simply the sum of 
utilizations of the operators executing on it. Since at 
least one processor must be saturated (otherwise the 
pipeline would speed up): 

=G- R = l~lyP cost using equation (1) 
-- 

Definition 2.6 The response time rt(S) of schedule 
S= Fl, . . . , FP is maxi<r+, cost(Fr). 0 -- 

Example 2.1 Figure 3(a) shows a schedule for a 
pipelined operator tree. Notice that the join tree of 
Figure 2 would expand to exactly this tree if indexes 
pm-exist. Edges are shown as undirected since the di- 
rection is immaterial for the purposes of scheduling. 
The schedule is shown by encircling the set of operators 
assigned to the same processor. The cost of each set is 

underlined. For example {probe} costs 8 by adding up 
its node weight (7) and the weight of the edge (1) con- 
necting it to its child. Figure 3(b) shows a Gantt chart 
of the execution specified by the schedule. The frac- 
tion of the processor used by each operator in shown in 
parenthesis. I 

2.4 Formal Problem Statement 

The pipelined operator tree scheduling problem may 
now be stated as follows. 

Input: Operator Tree T = (V, E) with positive real 
weights ti for each node i E V and cij for 
each edge (i, j) E E; number of processors p 

Output: A schedule S with minimal response time 
i.e., a partition of V into Fl , . . . , FP that 
minimizes mml<f<p ZiGi’, iti + ~j@F’, cij]. -- 

This problem is intractable since the special case in 
which all edge weights are zero is the NP-complete 
problem of multiprocessor scheduling [GJ79, GLLK79]. 

Since the number of ways of partitioning n elements 
into k disjoint non-empty sets is given by { i } , which 
denotes Stirling numbers of the second kind [Knu73], 
we have 

Lemma 2.1 The number of distinct schedules for a 
tree with n nodes on p processors is Cllklp { ;} 

This number of schedules is about 1.2 x lo5 for n = 
p = 10, 1.4 x 10’ for n = p = 15, and 5.0 x 1013 for 
n 6 p = 20. 

3 Overview of Our Approach 

Scheduling pipelined operator trees is an intractable 
problem and the space of schedules is super- 
exponentially large. Thus any algorithm that finds 
the optimal is likely to be too expensive to be us- 
able. Our approach is to develop approximation algo- 
rithms [GJ79, Mot92], i.e., fast heuristics that produce 
near-optimal schedules. 

We first discuss our methodology for evaluating al- 
gorithms. We then show why a naive algorithm does 
not perform well. Finally, we provide a road map to 
algorithms in the rest of the paper. 

The proofs of lemmas and theorems are omitted due 
to space constraints. The interested reader is referred 
to the full version of this paper [HM94]. 

3.1 Methodology 

We will evaluate algorithms based on their performance 
ratio which is defined as the the ratio of the response 
time of the generated schedule to that of the optimal. 

Our goal is to devise algorithms that satisfy two cri- 
teria. Firstly, the average performance ratio should be 
close to 1. Secondly, the worst possible performance ra- 
tio should be bounded. In other words, the performance 
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Figure 3: A parallel plan and its execution 
ratio should not keep increasing with the problem size 
(number of processors or size of the operator tree). 

We provide analytical proofs for worst-cases of per- 
formance ratios. Results on the average-case of perfor- 
mance ratios are based on experiments. 

All experiments were done by random sampling 
from spaces specified by four parameters: shape, size, 
edgeRange and nodeRange. Three kinds of shapes could 
be specified: trees, paths and stars. The size specified 
the number of nodes in the tree to be generated. The 
edgeRange and nodeRange specified the range of inte- 
gers from which node and edge weights could be drawn. 
Definition 3.1 A star is a tree in which one node, 
called the center, is directly connected to all other nodes 
called leaves. 0 

3.2 The Naive LPT Algorithm 

The LPT algorithm is one ‘of the best algorithms for 
scheduling independent jobs with a known running time 
on a multiprocessor. It assigns the job with the largest 
running time to the least loaded processor, repeating 
this step until all jobs are assigned. For p processors, 
LPT has a worst case performance ratio of $ - &, i.e., 
an LPTschedule differs from the optimal by 33% in the 
worst case [Gra69]. 

LPT is a natural candidate since our problem re- 
duces to multiprocessor scheduling when all communi- 
cation costs are zero. One way of applying LPT to our 
problem is to simply use the cost of each node (i.e. the 
node weight plus weights of all incident edges) as its 
running time. 

This naive algorithm performs poorly since it is un- 
aware of the tradeoff between parallelism and commu- 
nication cost. Consider two operators each of weight t 
connected by an edge of weight c. To obtain a schedule 
for 2 processors, Naive LPT will consider the cost of 
each operator to be t + c and place them on separate 
processors resulting in a schedule with a response time 
of t + c. LPT can never come up with the schedule 
that saves communication cost by placing both oper- 
ators on a single processor, thus achieving a response 
time of 2t. Since cheap operators and expensive com- 
munication can make the ratio &&s arbitrarily large: 

Lemma 3.1 The worst case performance ratio of 
Naive LPT is unbounded. 

The average case performance of Naive LPT is also 
poor. On the average, generated schedules had twice 
the optimal response time (see Figure 6 and experi- 
ments described in Section 6.3.1). 

3.3 A Road Map to Subsequent Algorithms 

Section 4 develops the GreedyChase algorithm to iden- 
tify parallelism that is simply not worth exploiting. 
This leads to the modified LPT algorithm which con- 
sists of running GreedyChase followed by LPT. We show 
that this algorithm produces near-optimal schedules for 
star-shaped operator trees but not for paths. 

Section 5 develops a fast algorithm called Balanced- 
Cuts to find the optimal “connected” schedule. Fur- 
ther, we show that the optimal connected schedule is a 
near-optimal schedule for path-shaped operator trees. 

Section 6 develops the Hybrid algorithm by com- 
bining modified LPT and BalancedCuts. Another al- 
gorithm called GreedyPairing is separately developed. 
Both algorithms use GreedyChase as a pm-processing 
step. 

4 Identifying Worthless Parallelism 

In this section we develop an understanding of the 
tradeoff between parallelism and communication cost. 
We develop the GreedyChase algorithm that “chases 
down” and removes parallelism that is “worthless” ir- 
respective of the number of processors. 

The reason that maximal use of parallelism does not 
necessarily yield minimal response time is .that adding 
more operators to a processor can in fact reduce its load. 
This non-monotonicity arises when savings in commu- 
nication cost offset the additional cost of the added 
operators. In Figure 3, the set {MERGE} has a cost 
of 9 seconds. When SCAN(E) is added to the set, the 
cost reduces to 8 since 4 seconds of communication are 
saved while only 3 seconds of computation are added. 

In Section 4.1, we identify a class of trees that we 
call monotone. Such trees have no worthless paral- 
lelism in the sense that maximal use of parallelism is in 
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fact optimal. In Section 4.2, we characterize worthless 
edges whose communication overhead is relatively high 
enough to exceed any benefits from parallelism. 

In Section 4.3, we show that repeatedly “collapsing” 
worthless edges results in a monotone tree. This pro- 
vides us with fast and simple GreedyChase algorithm 
that removes all and only worthless parallelism. Fi- 
nally, we use GreedyChase as a pm-processing step to 
design the modified LPT algorithm which is shown to 
do well on star shaped operator trees. 

4.1 Monotone Trees 

Definition 4.1 An operator tree is monotone iff any 
connected set of nodes, X, has a lower cost than any 
connected superset, Y, i.e., if X C Y then cost(X) < 
cost(Y). 0 

Monotonicity guarantees that adding more opera- 
tors to a processor will always increase processor load. 
Thus maximal use of parallelism is indeed optimal. The 
following lemma shows that a monotone tree does not 
have any parallelism which if exploited would result in 
increasing response time. 

Lemma 4.1 If there are at least as many processors 
as the number of operators then a schedule that allo- 
cates each operator to a distinct processor is an optimal 
schedule for a monotone operator tree. 

Thus monotone trees only have beneficial parallelism 
and the challenge (dealt with in subsequent sections) is 
to pick what parallelism to exploit when the number of 
processors is not sufficient to exploit all parallelism. 

We now define the operation of collapsing two nodes. 
It is simply a way of constraining two nodes to be as- 
signed to the same processor. We shall use collapsing 
as a basic operation in converting an arbitrary tree into 
a monotone tree. 

Definition 4.2 Collapse(il , iz) collapses nodes ir and 
i2 in tree T. T is modified by replacing ir and iz by a 
single new node i. The weight of the new node is the 
sum of the weights of the two deleted nodes, i.e. ti = 
ti, + ti,. If there is an edge between the nodes, it is 
deleted. All other edges that were connected to either 
ir or i2 are instead connected to i. Cl 

Lemma 4.2 If a schedule places both of nodes il and 
i2 on processor k, the load on all processors is invariant 
when ii and i2 are collapsed, and the new node is placed 
on processor k. 

Note that collapsing two nodes in a tree could create 
cycles in the resulting graph, and therefore the new 
graph need not be a tree. Moreover, the two nodes may 
have edges to the same vertex, leading to the creation 
of multiple edges between a pair of nodes. The multiple 
edges can be removed by replacing them with a single 
edge whose weight is the sum of their weights. 

In this section, we will only need to collapse adjacent 
pairs of nodes (which amounts to collapsing edges) and 
therefore the result is always a tree. 

Lemma 4.3 Given an operator tree T, and adjacent 
nodes il, i2 E V, the output of Collapse(il, i2) will 
also be an operator tree T’ but with one fewer node. 

Definition 4.3 Collapsing an edge (ii, i2) is defined as 
collapsing its end-points ii and i2. 0 

4.2 Worthless Edges 

High edge costs can offset the advantage of parallel ex- 
ecution. In Figure 3, the cost incurred by MERGE in 
communicating with a remotely running SCAN(E) ex- 
ceeds the cost of SCAN(E) itself. It is thus always better 
for the processor executing MERGE to simply execute 
SCAN(E) locally rather than communicate with it. We 
now generalize this observation. 

Definition 4.4 The (ordered) pair of nodes < i, j >> 
is said to be a worthless pair iff the cost cij of the edge 
connecting them is no smaller than the sum of tj and 
the costs of the remaining edges incident with node j, 
i.e.cij L tj+CkE(V-(i)) 3 c.) or equivalently cost ({ i}) 1 
cost({i,j}). cl 

Definition 4.5 An edge (i, j) is said to be worthless 
iff either < i, j > or << j, i > is a worthless pair. q 

The following theorem shows that our definition of 
worthless indeed captures edges whose high communi- 
cations costs offset the advantages of parallel execution. 

Theorem 4.1 Given p processors and an operator tree 
T with worthless edge (i, j), there exists an optimal 
schedule of T for p processors in which nodes i and 
j are assigned to the same processor. 

4.3 The Greedy Chase Algorithm 

We now establish an important connection between 
worthless edges and monotone trees. The following the- 
orem allows us to transform any tree into a monotone 
tree simply by collapsing all worthless edges. 

Theorem 4.2 A tree is monotone if it has no worth- 
less edges. 

More importantly, we can schedule the monotone 
tree rather than the original tree. This follows since 
collapsing worthless edges does not sacrifice optimality 
(Theorem 4.1) and the schedule for the original tree 
can be recovered from the schedule for the transformed 
tree (Lemma 4.2). 
Algorithm 4.1 The GreedyChase Algorithm 

Input: An operator tree 
Output: A monotone operator tree 
1. while there exists some worthless edge (i, j) 
2. Collapse(ij) 
3. end while 
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Since each collapse reduces the number of nodes, 
GreedyChase must terminate. The check for the ex- 
istence of a worthless edge is the crucial determinant of 
the running time. When a worthless edge is collapsed, 
adjacent edges may turn worthless and thus need to 
be rechecked. The algorithm may therefore be impk 
mented to run in time O(nd), where n is the number of 
nodes and d is the maximum degree of any node. Ex- 
perimentally, the running time of our implementation 
of GreedyChase was virtually linear in n. 

4.4 The Modified LPT Algorithm 

The modified LPT algorithm simply preprocesses away 
worthless parallelism by running GreedyChase before 
running LPT. As shown by the following example this 
results in a significant improvement. 

Example 4.1 Figure 4(A) shows how GreedyChase 
collapses worthless edges (worthless edges are hatched). 
Note that edges that are not worthless may turn worth- 
less as a result of other collapses. 

If we have two processors, modified LPT will produce 
the schedule (B) with a response time of 11. Naive LPT 
on the other hand could produce the schedule (c) which 
has a response time of 25. I 

Modified LPT performs well on operator trees that 
are star-shaped. All edges in such a tree have low cdm- 
munication costs since the weight of an edge cannot 
exceed the weight of the leaf without making the edge 
worthless. In fact, we can show the following theorem. 

Theorem 4.3 The worst-case performance ratio of the 
modified LPT algorithm is less than 2+ l/p for stars. 

The algorithm is still oblivious to the tradeoff be- 
tween parallelism and communication. Edges in a 
monotone path can have high weights and the algo- 
rithm is unaware of the savings that can accrue when 
two nodes connected by an edge with a large weight are 
assigned the same processor. In fact, we can show: 

Lemma 4.4 The worst-case performance ratio of the 
modified LPT algorithm is unbounded for paths. 

5 Connected Schedules 

In this section, we develop the BalancedCuts algorithm 
for finding the optimal connected schedule. A connected 
schedule requires the nodes assigned to any processor 
to be a connected set. This restriction is equivalent to 
only considering schedules that incur communication 
cost on p - 1 edges (the minimal possible number) when 
using p processors. 

This problem is of interest since it offers a way of 
finding near-optimal general schedules. Section 5.4 will 
show that the optimal connected schedule is a near- 
optimal general schedule when the operator tree is a 
path. We shall use this fact in the design of the Hybrid 
algorithm in Section 6.1. 

In Section 5.1, we show that finding an optimal con- 
nected schedule can be reduced to deciding which edges 
of the tree should be “cut” and which should be col- 
lapsed. In Section 5.2, we develop the BalancedCuts 
algorithm for finding connected schedules when all com- 
munication costs are zero. In Section 5.3 we show how 
the GreedyChase algorithm helps in generalizing Bal- 
ancedcuts to account for communication costs. 

5.1 Cutting and Collapsing Edges 

A connected schedule for p processors divides the .op- 
erator tree into k 5 p fragments (i.e. connected compo- 
nents). We define a notion of cutting edges under which 
a connected schedule with k fragments is obtained by 
cutting k - 1 edges and collapsing the remaining edges. 

Definition 5.1 Cut(i, j) modifies a tree by deleting 
edge (i, j) and adding its weight to that of the nodes i 
and j, i.e. tpew = tfld + cij and tj”“” = tjld + cij. 0 

The following lemma follows directly from this defi- 
nition. 

Lemma 5.1 If a schedule places nodes i and j on dis- 
tinct processors, the load on all processors is invariant 
when the edge (i, j) is cut. 

The above lemma along with Lemma 4.2 establishes 
that we can view a connected schedule as cutting inter- 
fragment edges and collapsing intra-fragment edges. 
Figure 5 illustrates the translation between a connected 
schedule consisting of 3 fragments and a graph with 3 
nodes and no edges. This suggests that one way of 
finding a connected schedule is examine all O(2”) com- 
binations of cutting/collapsing edges. The next section 
shows how we can do better. 

5.2 Connected Schedules when Communica- 
tion is Free 

We now develop an algorithm for finding the optimal 
connected schedule for trees in which all edge weights 
are zero. The algorithm is generalized to handle edge 
weights in the next section. 

We will develop the algorithm in two steps. First, 
given a bound B and number of processors p, we de- 
velop an efficient way of finding a connected schedule 
with a response time of at most B, if such a sched- 
ule exists. Second, we show that starting with B set 
to a lower bound on the response time, we can use a 
small number of upward revisions to get to the optimal 
connected schedule. 

5.2.1 Bounded Connected Schedules 

Definition 5.2 A schedule is (B,p)-bounded iff it is a 
connected schedule that uses at most p processors and 
has a response time of at most B. Cl 
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Figure 4: (A) Trace of GreedyChase (worthless edges hatched) (B) modified LPT schedule (C) naive LPT schedule 
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Figure 5: Connected Schedule as Cutting and Collapsing Edges 
We first consider the simple case of a leaf node r with 

parent m to see how the decision to cut or collapse an 
edge can be made. Suppose t, + t, > B. Clearly, 
the edge (m, r) should be cut since otherwise we shall 
exceed the bound. Now suppose instead t, + t, 5 B. 
We claim that the edge (m, r) can be collapsed. Since r 
is connected only to m, if the connecting edge were cut, 
r would get a processor, say p,, to itself. Putting m on 
p, reduces the total work for other processors without 
causing the bound to be exceeded on pr, and thus can 
never hurt. This basic idea will be generalized to derive 
an efficient algorithm. The algorithm bears a similarity 
to that of Hadlock [Had741 for a related but different 
problem. 
Definition 5.3 A node is a mother node iff all adjacent 
nodes with at most one exception are leaves. The leaf 
nodes are termed the children of the mother node. 0 

The following lemmas narrow the set of schedules 
we need to examine. We assume m is a mother node 
with children ri, . . . , rd in the order of non-decreasing 
weight, i.e. t,, 5 t,, 5 . . . 5 t,,. 

Lemma 5.2 If a (B, p)-bounded schedule places m and 
rj in the same fragment and ri in a diflerent fragment 
where i < j (i.e. t,i 5 trj), then a schedule in which rj 
and ri exchange places is also (B,p)-bounded. 

Repeated application of Lemma 5.2 results in: 
Lemma 5.3 If there exists a (B,p)-bounded schedule, 
then there exists a (B, p)-bounded schedule such that (1) 
if (m, rj) is collapsed then so is (m, rj-1) (2) if (m, rj) 
is cut then SO is (m,rj+l) 

Let 1 be the largest number of children that can be 
collapsed with m without exceeding bound B, that is, 
the maximum I such that t, + cl<i<l tri 5 B -- 

Theorem 5.1 If there exists a (B,p)-bounded sched- 
ule, then there exists a (B,p)-bounded schedule such 
that (1) (m, rj) is collapsed for 1 5 j 5 1 (2) (m, rj) is 
cut for 1 < j 5 a 

Theorem 5.1 gives us a way of finding a (B, p)- 
bounded schedule or showing that no such schedule ex- 
ists. We can simply pick a mother node and traverse the 
children in the order of non-increasing weights. We col- 
lapse children into the mother node as long the weight 
of the mother stays below B and then cut off the rest. 
We repeat the process until no more mother nodes are 
left. If the resulting number of fragments is no more 
than p, we have found a (B,p)-bounded schedule, oth- 
erwise no such schedule is possible. 

Algorithm 5.1 The BpSchedde Algorithm 

Input: Operator tree T with zero edge wts, bound B 
Output: Partition of T into fragments Fl, . . . , Fk 

s.t. cost(Fi) 2 B for i = 1,. . .,h 
1. while there exists a mother node m 
2. Let m have children ri, . . . , rd s.t. t,, 5 . . . 5 t,, 
3. Let I 5 d be the max I s.t. t, + C1<i<r tri 5 B -- 
4. forj=ltoZdo 
5. coZZapse(m, rj) 
6. forj=Z+ltoddo 
7. cut(m, rj) 

8. end while 
9. return resulting fragments ii, . . . , Fk 

5.2.2 The BalancedCuts Algorithm 

We will find the optimal connected schedule by setting 
B to a lower bound on the response time and repeat- 
edly revising B by as large an increment as possible 
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while making sure that we do not overshoot the opti- 
mal value. For each such value of B we run BpSchedule 
and check whether the number of fragments is at most 
P. 

A lower bound on response time can be derived by 
observing that some processor must execute at least the 
average weight and every node needs to be executed by 
some processor. 

Lemma 5.4 The maximum of [Ci,v h/P1 and 
rnaxiev ti is a lower bound on the response time of any 
schedule (not just connected schedules). 

We can use an unsuccessful run of BpSchedule to 
derive an improved lower bound. For each fragment 
Fi produced by BpSchedule, let Bi be the cost of the 
fragment plus the weight of the next node that was not 
included in the fragment (i.e. the value tl+l when a cut 
is made in line 7 of BpSchedule). The following lemma 
is based on the intuition that at least one fragment 
needs to grow for the number of fragments to reduce. 

Lemma 5.5 Let B’ be the smallest of the Bi. Then, 
B’ is a lower bound on the optimal response time. 

Using the lower bound given by Lemma 5.4 and the 
revision procedure given by Lemma 5.5, we devise the 
algorithm shown below. 
Algorithm 5.2 The BalancedCuts Algorithm 

Input: Operator tree T with zero edge weights, 
number of processors p 

Output: Optimal connected schedule 
1. B = mm ([Ci,v h/P] , maxicv ti) 
2. repeat forever 
3. FI,... , Fk = BpSchedule(T, B) 
4. ifk Spreturn Fl,...,Fk 
5. Let Bi = cost(Fi) + wt of next node not in Fi 
6. B=miQBi 
7. end repeat 

BalancedCuts may be shown to terminate in at most 
n -p+ 1 iterations and have a running time of O(n(n - 

P)). 

5.3 BalancedCuts with Communication Costs 

Generalizing BalancedCuts to take care of communica- 
tion requires two changes. Firstly, the input tree must 
be pm-processed by running GreedyChase. Secondly, 
BpSchedule must consider the children of a mother node 
in the order of non-decreasing ti - cim. Both changes 
are required to make BpSchedule work correctly. 

BpSchedule assumes that adding more nodes to a 
fragment can only increase its cost. The monotone trees 
produced by GreedyChase guarantee exactly this prop- 
erty. Since the schedule for the original tree can be re- 
covered from the schedule for the “pm-processed” tree 
(see Section 4.3), it suffices to schedule the monotone 
tree. 

BpSchedule greedily “grows” fragments by collapsing 
children with their mother node as long as the fragment 
cost remains bounded. The children were ordered by 
non-decreasing weights, and the weight of each child 
was a measure of how much the weight of the fragment 
would increase by collapsing the child into the mother 
node. With non-zero edge weights, the mother node 
must pay the cost of communicating with the child 
when it is a different fragment. Thus collapsing the 
child i with the mother m increases the cost of the 
fragment by ti - cim. Simply ordering the children of 
the mother node in the order of non-decreasing ti - cim 
suffices to generalize Lemmas 5.2 and 5.3 and Theo- 
rem 5.1. 

5.4 Approximation using Connected Schedules 

The optimal connected schedule is a good approxima- 
tion for paths but not for stars. 

Theorem 5.2 The worst-case performance ratio in us- 
ing the optimal connected schedule is at most 2 - l/p 
for paths. 

Connected schedules are not a good approximation 
for stars since all fragments except the one containing 
the center are forced to consist of a single node. 

Lemma 5.6 The worst-case performance ratio in us- 
ing the optimal connected schedule is unbounded for 
stars. 

6 Near-Optimal Scheduling 

This section develops two near-optimal algorithms for 
scheduling pipelined operator trees and compares them 
experimentally. 

We have the interesting situation in which the mod- 
ified LPT algorithm works well for stars but not for 
paths, while connected schedules are a good approxi- 
mation for paths but not for stars. This naturally mo- 
tivates the combination of the two algorithms into a Hy- 
brid algorithm (Section 6.1). In Section 6.2, we discuss 
the GreedyPairing algorithm which has the advantage 
of being extremely simple. Finally, we experimentally 
compare GreedyPairing, Hybrid and Naive LPT. 

6.1 A Hybrid Algorithm 

BalancedCuts performs poorly on stars since the con- 
straint of connected schedules is at odds with load bal- 
ancing. While the algorithm is cognizant of communi- 
cation costs, it is poor at achieving balanced loads. On 
the other hand, LPT is very good at balancing loads 
but unaware of communication costs. 

One way of combining the two algorithms is to use 
BalancedCuts to cut the tree into many fragments and 
then schedule the fragments using LPT. LPT can be 
expected to “cleanup” cases such as stars on which con- 
nected schedules are a bad approximation. 
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Algorithm 6.1 The Hybrid Algorithm 

Input: Operator tree T, number of processors p 
Output: A schedule 
1. T’ = GreedyChase 
2. for i = p to n do 
3. f’l,F2,. . . , Fi = BalancedCuts(T’, i) 
4. schedule = LPT({FI,F~,~~-,F~},P) 
5. end for 
6. return best of schedules found in steps 2 to 5 

Note that Hybrid has a performance ratio no worse 
than that obtained by using BpSchedule or by modified 
LPT. This is because the case i = p will provide an 
optimal connected schedule, while the case i = n will 
behave as the modified LPT algorithm. Thus the per- 
formance ratio is no worse than 2 - l/p for paths and 
no worse than 2 + l/p for stars. 

6.2 The Greedy Pairing Algorithm 

We now describe an algorithm which is based on greed- 
ily collapsing that pair of nodes which leads to the least 
increase in response time. 

GreedyPairing starts by first pm-processing the op- 
erator tree into a monotone tree by running Greedy- 
Chase. Then it chooses the pair of nodes, i and j , such 
that cost({i, j}) is the minimum possible and collapses 
them. Ties are broken by favoring the pair which offers 
the greatest reduction in communication. This process 
is continued until the number of nodes is reduced to 
p, and then each node is assigned a distinct processor. 
Note that collapsing two (non-adjacent) nodes in a tree 
will not necessarily maintain the property of being a 
tree. 

We believe that this algorithm has a worst-case per- 
formance ratio close to 2. At this point, we can prove 
this result only in the case of zero edge weights. 

Theorem 6.1 The GreedyPairing algorithm has a 
worst-case performance ratio of .2 - 2/(p + 1) when all 
edge weights are zero. 

6.3 Experimental Comparison 

In Section 6.3.1 we compare the average performance 
ratios of GreedyPairing, Hybrid and Naive LPT. This 
experiment was practical only for small operator trees 
since it required computing the optimal schedule. In 
Section 6.3.2, we compare GreedyPairing and Hybrid 
with each other rather than with the optimal. This 
made it possible to experiment with large numbers of 
processors and large operator trees 

6.3.1 Comparison with Optimal 

We measured the performance ratios of GreedyPairing, 
Hybrid and Naive LPTfor trees with up to 12 nodes on 
up to 12 processors. We ran 1000 trials for each com- 
bination of number of nodes and number of processors 

Average 
Performance Ratio 

2.51 

t 
2 4 6 8 10 12 

#Operators 

Figure 6: Average Performance Ratios of Naive (bold 
dashed), GreedyPairing (dashed) and Hybrid (solid) 

and measured the average and maximum performance 
ratios. 

Figure 7 shows the average performance ratios for 
two processors with edgeRange and nodeRange both set 
to 1 . . . 10. Naive LPT clearly performs poorly and we 
shall not discuss it further in the rest of this section. 
Both GreedyPairing and Hybrid have average perfor- 
mance ratios extremely close to 1. The averages in- 
crease (though gradually) with the size of the operator 
tree. Hybrid performs slightly better than GreedyPair- 
ing. 

Varying the shape, edgeRange and nodeRange pa- 
rameters had no significant effect. Larger numbers of 
processors resulted in better ratios for GreedyPairing 
and Hybrid. 

Over all our experiments, the maximum performance 
ratio for GreedyPairing was observed to be 1.45 for a 
tree with 9 operators scheduled on 2 processors. For 
Hybrid, it was 1.36 for a tree with 9 operators scheduled 
on 3 processors. 

6.3.2 Hybrid versus GreedyPairing 

We directly compared Hybrid and GreedyPairing since 
computing the optimal schedule turned out to be prac- 
tically impossible for large operator tree. 

Letting g be the response time of the Greedy- 
Pairing schedule and h that of Hybrid, we measured 
g/min(g,h) and h/min(g,h). Each measurement was 
made over 1000 samples and had a relative error of less 
than 5% with a confidence of more than 95%. 

We found the average value of h/min(g, h) to be 
exactly 1 over a large range of experiments. Devia- 
tions were rare, and, if present, were very small (eg: 
1.000021). In other words Hybrid outperforms Greedy- 
Pairing almost uniformly. 

However, g/min(g, h) was also found to be extremely 
small, except when edge weights were relatively small 
compared to node weights. Figure 7 plots g/h for 2, 
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Figure 7: Average Ratio g/h of GreedyPairing to Hy- 
brid for 2 processors (solid), 10 processors (dashed) and 
20 processors (dotted) 
10 and 20 processors when edgeRange was 1.. .10 and 
nodeRange was 11.. . 100. 

The explanation for behavior is that the problem es- 
sentially reduces to multiprocessor scheduling (i.e. zero 
edge weights) when edge weights are relatively small. 
Hybrid in that case reduces to the LPT algorithm with 
a worst case performance ratio of 4 - r& or about 1.33 
while GreedyPairing has a worst case performance ratio 
of 2 - & or about 2. 

7 Conclusion 

We have developed algorithms for exploiting the 
parallelism-communication tradeoff in pipelined paral- 
lelism. Our algorithms are efficient and produce near- 
optimal schedules - the performance ratio is extremely 
close to 1 on the average and has a worst case bound 
of about 2 for many cases. 

We focused on a subproblem of the parallelization 
problem that needs to be solved by a real optimizer. 
This subproblem is exactly the problem that needs to 
be solved for some queries and is thus of practical 
value. Our work also constitutes a non-trivial gen- 
eralization of the classical problem of multi-processor 
scheduling [GLLK79]. 

Our model of parallelization as scheduling a 
weighted operator tree is general enough to be applica- 
ble to SQL queries that contain operations other than 
joins, such as aggregation or foreign functions. Fur- 
ther, our work is likely to be applicable to any hard- 
ware/software architecture where there is a tradeoff be; 
tween parallelism and its communication overhead. 

We showed that a naive use of the classical LPT 
algorithm results in an unbounded performance ratio. 
We developed a O(nd) GreedyChase algorithm for pre 
processing away worthless parallelism from an operator 
tree. This lead to the Modified LPTalgorithm that runs 
GreedyChase followed by LPT. The performance ratio 
of Modified LPT was found to have a worst-case bound 

of 2 + l/p for operator trees which are stars. However, 
the ratio was found to be unbounded for paths. 

We then investigated the use of the optimal con- 
nected schedule as an approximation. We devised a 
o(n(n --PI) lg th a ori m called BalancedCuts to find the 
optimal connected schedule. The performance ratio in 
using the optimal connected schedule was found to have 
a worst-case bound of 2 - l/p for paths. The ratio was 
found to be unbounded for stars. 

The GreedyPairing and Hybrid algorithms are both 
O(n3) algorithms for the general problem. Both have 
average performance ratios extremely close to 1. The 
performance ratio of Hybrid is no worse than 2 - l/p 
for paths and no worse than 2 + l/p for stars. The 
performance ratio of GreedyPairing is no worse than 
2-2/(p+l) h w en communication costs are zero. 

Hybrid was found to be almost uniformly superior 
to GreedyPairing but the differences were significant 
only for large operator trees with low communication 
costs. GreedyPairing offers the advantage of being a 
simple algorithm which can naturally be extended to 
take data-placement constraints into account. 

The general problem of parallel query optimization 
remains open [DG92, Va193] and our work suggests sev- 
eral directions for further work. 

In shared-nothing systems, the leaf operators of an 
operator tree are constrained to execute where the data 
is placed. While GreedyPairing can naturally take such 
constraints into account, we have not yet investigated 
its performance under this constraint. 

Blocking edges in operator trees place precedence 
constraints between operators and partitioned paral- 
lelism allows several processors to compute a single op- 
erator. Prior work has addressed these problems only 
for situations where communications costs can be ig- 
nored. 

Finally, it is challenging to devise richer models of 
the parallelization problem. We modeled the cost of 
an operator as an integer. Such costs are obtained 
by combining the time spent on different classes of re 
sources using functions such as weighted sum and max. 
A more general model would represent cost as a multi- 
dimensional vector with a dimension per resource class. 
As a first step, Hong and Stonebraker [Hon92a] de- 
vised a scheduling algorithm for two operators (one 
IO-bound and one CPU-bound) with no timing con- 
straints between them under the assumption that per- 
fect speedup is obtainable by partitioned parallelism. 
Multi-dimensional scheduling algorithms that minimize 
response time for multiple classes of resources, each 
with an independent resource limit, are an open prob- 
lem. 
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