
A Practical Issue Concerning Very Large Data Bases: 
The Need for Query Governors 

Gerald Cohen, President 
Information Builders, Inc. 

1250 Broadway 
New York, NY 10001 USA 

SUMMARY: The popularity of 
client/server technology coupled with the 
concept of the ‘Information Warehouse’ as a 
ten tral place where end users come to access 
large organization data bases has some 
problems that have not received much study. 
One of these problems is the danger of 
incxpericnced users formulating ‘run away’ 
queries which consume excessive computer 
resources while impacting all other users. 
The construction of query governors to 
prevent this is a major practical problem, as 
well as theoretical problem. 

The Problem 
The concept of the information warehouse 

as a place to keep the information assets of an 
organization implies by the word ‘warehouse’ that it 
is also the place for distribution of these assets. But 
access to these assets cannot be distributed without 
some controls. 

One of the least analyzed areas of very large 
data base problems is the problem of unlimited user 
access. With the prevalence of work stations and 
connectivity software and networks the desk top 
worker is now the ‘empowered’ worker. Ad hoc 
query is the watchword for these users. We at 
Information Builders sell precisely the software, 
sometimes called ‘middleware’, to connect these 
end users with the largest databases. Our 
EDA/SQL (Enterprise Data Access/SQL) product 
allows all of the work station software products 

Permission to copy without fee all or part of this material is 
granted provided that the copies are not made or distributed for 
direct commercial advantage, the VLDB copyright notice and title 
of the publication and its date appear, and notice is given that 
copying is by permlssion of the Very Large Data Base 
Endowment. To copy otherwise, or to republish, requires a fee 
and/or special permission from the Endowment. 

Proceedings of the 19th VLDB Conference 
Dublin, Ireland, 1993 

which use SQL to access all of the relational and 
non-relational data bases on large IBM, VAX and 
Unix computers. About 200 software products now 
have the linkage to EDA/SQL. For example, you 
can sit behind a PC running Microsoft Windows 
Excel spreadsheet and request data from VSAM files 
on an IBM mainframe computer. 

The danger of submitting a ‘ill-structured’ 
query which runs away with the host computer is 
real. It soon became apparent to us that while the 
desire to distribute data was genuine most 
organizations had never considered the effects of 
uncontrolled end user access. If we were to 
continue to sell our product we had to help them 
govern the query process so as to prevent ‘run 
away’ queries which ate up machine resources and 
froze out other users. Hence, we developed our 
SmartMode query governor. 

Expert System Approach 
In the mid eighties we entered the Expert 

Systems business with a product named Leve15. It 
achieved modest success and has suffered like all 
artificial intelligence products by lack of market 
interest. However, complex problems require the 
deep functionality software offered by expert 
systems, so we were positioned to tackle query 
governing. The engineering side of the problem 
requires that the SQL query be intercepted, parsed, 
and passed to a governor for acceptance or rejection. 
The governor is itself a database, but of rules about 
the resources used by the elements of queries. 

There are three ways to collect these rules. 
The first is to construct them from the knowledge of 
experienced users of the particular data base. This 
is a traditional expert system methodology, and 
may be appropriate for specific data bases in some 
environments. It won’t work in a mass market 
because the human resources are not trained or 
available. The second approach is to use induction 
technology. This requires that we use an ‘engine’ 
which watches the traffic of queries and collects the 
costs and ‘learns’ what elements or lack of them are 

705 



costly. Two technologies are available for this; 
neural networks, and rules induction. We chose the 
later technique, but believe the former should be 
investigated. This paper discusses some of the 
aspects of query governing with an induced rule 
based knowledge engine. 

Governing Engine 
A rule based language takes the form of 

true or false antecedent conditions for each 
conclusions. The rules can be programmed to 
operate in a backwards or forwards chain. In 
backwards chaining the PRL engine attempts to find 
those true conditions which give rise to conclusions 
which themselves are needed as antecedents in 
other rules. The end condition being the final 
conclusion or goal of the process. In a data base 
query situation a rule might be . . . 

IF sort by field IS detailed AND selection IS 
NOT aggregate AND no index IS TRUE 
THEN costly. 

Another rule to find the values of the 
antecedents in the first rule might be . . . 

IF field type IS numerical OR field name IS 
customer name THEN detailed 

Notice that the first rule says that if we sort 
a query by a field with many different values it is an 
indicator of larger cost. Obviously sorting by a field 
like MONTH would result in a maximum of 12 lines 
of output. But sorting on a field like CUSTOMER 
NAME depends on the data itself. We could have 
100 customers or millions of them in a mail order 
application. Induction is the process of finding out 
information like this from the data itself. 

There are three phases to the induction 
process. The first is the collection phase. In this 
phase every query component is logged as an 
element of a data record, along with the resulting 
cost (in appropriate units, i.e., cpu seconds, excp’s, 
etc.). In the second phase this collected file is 
submitted to the induction algorithm. We use the 
ID3 algorithml, which is based on an information 
entropy measurement. The resulting rules are then 
compiled in the Level5 production rule compiler, 
and the knowledge base established. 

System Maintenance and Operation 

1 Quinlan J.R. A Case Study in D. Michie 
Expert Systms. Edinburg University Press. 1979. 

Periodically the collector file as it gathers 
more experience rebuilds the knowledge base. This 
is the basis for the claim that the system gets 
‘smarter’ the longer it is used. It would seem that 
the ‘outlier’ queries would be the most important, 
and that only after one tumcd up could others h> 
identified. This is partly true, but not as important 
as it seems, as the normal flow of qucrics with their 
statistical distribution of costs rapidly sets up the 
parameters needed for effective governing. ‘I’hc 
reason for this, is that the governor is not trying to 
predict the cost of a query, but rather whether the 
query is above a threshold. Upon system 
installation, a calendar is established with the 
acceptable costs on each shift each day of the week, 
for either batch or online operation. This results in 
about six cost regions. Grouping the samples in this 
way gives a larger number of observations to each 
region. The coarser grid is satisfactory because WC 
are only interested in identifying a costly query and 
not estimating its exact cost. 

Future Investigations 
The ID3 algorithm is capable of assigning a 

degree of confidence to a result. This occurs when 
seemingly similar samples result in different costs. 
The frequency of one result over another is the basis 
for the confidence factor. Today we discard any 
rule whose result is below a set of confidence limit. 
Another study area is the use of separate knowledge 
bases for each factor in the cost equation. That is, 
one set of rules for l/O usage, and another for CPU 
usage, with separate thresholds for each, or a 
combined one. A third area is how to most quickly 
prime the knowledge base. Could artificial queries 
be constructed? Should the collector phase while 
still operating during the governing phase only 
store the queries whose estimates were wrong? 

706 


