
Local Disk Caching for Client-Server Database Systems*

Michael J. Franklint Michael J. Carey Miron Livny

Computer Sciences Department
University of Wisconsin - Madison

{ mjf,carey,miron} @cs.wisc.edu

Abstract
Client disks ure a valuable resource that ure not adequately ex-
ploited by current client-server ciatabase systems. In this papeG
we propose the use of client disks for caching database pages
in an extended cache architecture. We describe four algorithms
.fi)r managing disk caches and investigate the tradeoffs inherent
in keeping a large volume of disk-cached data consistent using
u detailed simulation model. The study shows that significant
performance gains can be obtained through client disk caching;
particulurly if the client disk caches ure kept consistent. We also
address two extensions to the algorithms that arise due to the
pc,tiormance characteristics of large disk caches: I) methods to
reduce the work performed by the server to ensure transaction
durability, and 2) techniques for bringing a large disk-resident
cache up-to-date after an extended off-line period.

1 Introduction
Object-Oriented Database Management Systems (OODBMS)
itre typically constructed using client-server software architec-
tures. Examples include products such as 02 [Deux91], Ob-
jcctivity [Ohje91]. ObjcctStore ILamb911, Ontos [OntoYZ], and
Vcrsant [Vers91]. as well as research systems such as ORION
[Kim901 and EXODUS [Fran92c]. A primary motivation for
the USC of client-server architectures is the desire to exploit the
plcntifui and relatively inexpensive resources provided by cur-
rent workstation technology. Moving functionality to the clients
provitlcs both performance and scalability benefits. Performance
is improved, for cxumplc, by reducing interaction with servers
and by ilvoiding the costs of obtaining data from remote sites.
Scalability can be improved through the offloading of shared
rcsourccs such a9 server machines and the network, which arc
potential bottlenecks.

Most current OODBMS exploit client processor resources
through the use of a data-shipping architecture. In data-shipping

‘This work wns purtirlly supported by DARPA under contract DAABO7-92-
C-QSOS, hy the National Science Foundation under grant 1131-8657323. and by
D research grant from IBM.

‘Current Address: Dept. of Computer Sciancc. University of Maryland,
Colicge I’nrk. MD 20742.

Permission to copy without fee all or part (#this material isgrantedpro-
titled that the c$ies ure not made or distributedfor direct commercial
t~dmm~e, the VLDLI copyright notice and the title of the publication
and its tkrrr appear: and notice is given that copying is by permission
O(the Very IArgcl Data Uase Endowment. To copy otherwise, or to re-
prthlish. requires a for untUor special permission from the Endowment.

Proceedings of the 19th VLDB Canference
Dublin, Ireland, 1993

systems, clients send requests for specific data items to the server,
which obtains the items and sends them back to the client. This
approach enables much of the work of data manipulation to be
performed at clients. Existing systems exploit client memory
resources through the use of intra- and inter-transaction caching.
In contrast, existing OODBMS provide only limited support for
exploiting client disk resources. This omission is potentially
costly, as client disks represent a valuable addition to the stor-
age hierarchy of a client-server OODBMS due to their capacity
and non-volatility. Inter-transaction memory caching and other
client memory management techniques have been shown to pro-
vide substantial performance benefits for client-server database
systems [Wilk90, Care91, Wang91, Fran92a. Fran92bl. In this
paper, we investigate the extension of client-server caching to
the use of client disks. We focus on data-shipping systems in
which pages serve as the unit of interaction between clients and
servers. Such systems are referred to as page servers [DeWi90].

1.1 Alternatives for Integrating Client Disks
There are several ways in which existing OODBMS typically
allow client disks to be used. The first, and most common, is
to use local disks to make each client a server for part of the
database. The data to be placed on client disks is determined
statically by partitioning the database among the clients. Clients
are given ownership of the data pages for which they act as
server, meaning that they are responsible for maintaining the
consistency of the data, and must always be capable of providing
its most recent committed value. Another way that existing
systems allow the use of client disks is indirectly, through virtual
memory swapping. Most OODBMS keep their client caches in
virtual memory. If the cache is larger than the allocated physical
memory, the operating system will swap parts of it to disk.
The Versant system provides an additional way of using client
disks, called the “Personal Database” [Vers91]. Users can check
objects out from the shared database and place them in a personal
database, which can reside on the client disk. Objects that are
checked out cannot be accessed by other clients.

The first approach, making clients act as servers, has im-
plications for data availability; as the crash of a client causes
the data owned by that client to become unavailable. Allowing
clients to own data is problematic due to inherent asymmetries
in workstation-server environments. For example, clients are
typically managed by users and placed in individual offices (or
briefcases), while in contrast, servers are managed by an opera-
tions staff and kept in protected machine rooms. Also, it is more
cost effective to place duplexed log disk storage or non-volatile
memory at server machines than to place such functionality at
each client machine. Consequently, we expect servers to be in-

641

herently more reliable and available than clients. These concerns
limit the applicability of client ownership policies to data that is
private and/or of limited value, or to systems in which substantial
expense is incurred to make clients more reliable. The problems
of the second approach, using operating system virtual memory
for buffer management, are well known (e.g., [Stongl , Trai82]),
and stem from (among other things) the operating system’s lack
of knowledge about database access patterns and differences in
disk management policies. Relying on the operating system to
manage the client disk places an important performance issue
beyond the control of the database system. Furthermore, virtual
memory swapping makes only transient use of client disks, and
thus, the disks can cache data pages only while a caching process
is active at a client.

In this paper, we study a different approach, namely, we
extend our previous work on memory caching [Carc91, Fran92a,
Fran92b] to take advantage of client disks. Caching enables the
use of client disks without incurring the problems associated with
giving ownership of data to clients. We refer to this approach
as the extended cache architecture. The USC of client disks as
an extended cache provides a qualitative change in the utility
of caching at client workstations compared to memory-based
caching strategies. The lower cost per byte of disk storage
increases the amount of data that can be cached at a client,
possibly enabling the caching of the entire portion of the database
that is of interest at that site. This has the potential to affect the
basic trade-offs in cache management (as compared to mcmory-
only caching), and may change the role of the server from that
of a data provider to that of an arbiter of data conflicts and a
guarantor of transaction semantics.

In terms of related work, we are aware of only one other
study of client disk caching for DBMSs [DeIi92]. This work in-
vestigates a system in which relational query results arc cached
on client disks but all updates are performed at the scrvcr. Prior
to executing a query, a client sends a message to the server rc-
questing any updates that have been applied to tuplcs cached at
the client. In response, the clients are sent logs containing rele-
vant updates, which are then applied to the cached query results.
As will be seen in Section 2, the extended cache architecture
we study is quite different; it allows updates to be performed
at clients, and uses the disk as a page cache that is largely an
extension of the LRU-managed memory cache. Also related is
work on distributed file systems. Unlike existing DBMSs, some
distributed file systems do use client disks for caching (e.g., An-
drew [Howa88] and its follow-on project CODA [KisBl]). Dis-
tributed file systems, however, differ from client-server DBMS
in significant ways, including: 1) they supportcachingat acoarse
(e.g.. file) granularity, rather than at a page or object granularity.
2) they do not support serializable transactions on the cached
files, and 3) they are typically designed under the assumption
that sharing is an infrequent occurrence.

1.2 Extended Cache Design Issues
In this paper we address three specific issues in the design of
an extended cache. First, we develop algorithms for accessing
and ensuring the consistency of data kept in client disk caches,
and we study their performance. As will be shown in the study,
the success of disk-caching in oflloading the server for certain
workloads can result in the server disk writes becoming the next

bottleneck. Thcrcfore, the second issue WC study is how (1) rc-
duce the demands on the server disks that result from transaction
updates. Thirdly, we discuss several techniques for managing
the transition of client disk caches from an off-lint state to an
on-line state. These techniques build on the methods that arc
developed in the first part of the paper for ensuring the con-
sistency of disk-cached data. The remainder of the paper is
structured as follows: Section 2 addresses the problem of disk
cache management and outlines a group of prospcctivc algo-
rithms. Section 3 briefly describes our client-server simulation
model and workloads. Section 4 presents a performance c’om-
parison of the algorithms. Section 5 discusses cxtcnsioos 01
the algorithms. Finally, Section 6 prcscnts our conclusions and
plans for future work.

2 Extended Cache Implementation
In this section WC propose algorithms for managing and utilizing
client disks in the cxtendcd cache architccturc. Before dcscrih-
ing these algorithms, however, we lirst elaborate on our model 01’
how the client disk is employed by the database system, and wc
describe the algorithm WC have chosen for maintaining ~~lerno~:y
cache consistency. This algorithm serves as a Ibundation for all
of our cxtcnded cache managcmcnt algorithms.

2.1 Disk Cache Management Pragmatics
We assume that each client ha.. a lixed amount of disk space that
is allocated for USC as a cache for database pages; this arca is
managed by the database system. WC refer to this space as the
disk cuche. and likcwisc, WC refer to the area ol’ main memory
that is used to cache database pages as the memory cuchc. WC
also assume that each page is lagged with a version numhcr
that uniquely idcntifics the state of the page with rcspcct lo
the updates applied to it. Such version numhcrs arc lypically
maintained by DBMS systems to support rccovcry (c.g.. Log
Sequcncc Numbers (LSNs)) [Gray93].

The memory cache is managed through the USC of a di\liI
structure containing an entry for each resident page and a list
of available memory cache slots. The LRU chain is thrcadctl
through this structure. The disk cache is managed 5~s a FIFO
queue based on when pages arc added to the disk cache (rather
than LRU). To implement the disk cache efliciently, a struclurc
analogous to that used to manage the memory cache must also
be maintained in memory. This structure contains an cnlry l’or
every page resident in the disk cache and a list of availahlc disk
cache slots. At a minimum, the entry for each page contains the
position of the page in the disk cache page queue, its location on
disk, and its version number (LSN).

Pages flow between the memory and disk caches of a client as
shown in Figure I. A new page is first brought into the memory
cache as the result of a cache miss. Pages can he faulted in from
the server or from the local disk’. To bring a new page into Ihc
memory cache, a cache slot must hc made availahlc for the page
(unless a free slot already exists). To open a memory cache slol,
the least recently used page in the memory cache is chosen for
replacement. When a page is replaced from the memory cache
it is demoted to the local disk cache.
-

1 Pages copied t’ronl the locnl disk also remain in the disk cache ill their currt’ul
position in the disk cache page queue.

642

Clwnl Wvrk8falion

Figure I : Client Page Flow

There are three cases to consider when demoting a page from
chc memory cache co the disk cache. The first two cases arise
if a copy of the demoted page is already resident in the disk
cache. If the copy in the memory cache has not been updated,
then its disk-resident copy is simply made the most recently
added page in the disk cache by adjusting the disk cache control
information (which is memory-resident). Thus, for the first case,
no disk access is required. The second case arises when an out-
of-date copy of the demoted page is present in the disk cache.
In this case, the disk cache copy of the page is overwritten and
it becomes the most recently added page in the disk cache. The
third case arises when no copy of the demoted page exists in
the disk cache. In this cast a slot in the disk cache must be
made available for the demoted page. The process of opening a
disk slot is analogous to the replacement process in the memory
cache. If no slot is available, then the least recently added page
is removed from the disk cache. The fate of the page chosen for
replacement depends on the status of its contents. If the page
contains updates that are not reflected in any other copies of the
page (e.g.. at the server), then a copy of the page is sent to the
scrvcr. Othcrwisc, the chosen page is simply overwritten.

2.2 A Memory Cache Management Algorithm
Reset1 on the results of our carlicr investigations of memory
cache management algorithms we have adopted the Callback-
Read (CD-R) algorithm to serve as the basis for our ongoing
work. As is shown in [Fran92a], CB-K provides good perfor-
mance and is robust with respect to many system and workload
parameters. Callback-Read is derived from techniques that were
originally used to maintain cache consistency in distributed file
systems such as Andrew [Howa and Sprite [Nels88]; how-
ever, these algorithms did not support serializable transactions.
Transactional callback locking algorithms were later employed
in the ObjcctStorc OODBMS [Lamb9 I] and have been studied
in [WangYl] and later in [Fran92a].

Under CB-R, all pages in a client’s memory cache are guar-
anteed to be valid. CR-R grants clients authority to read objects
in their memory caches, but they must obtain permission from
the server to write objects . If a client wishes to read a page
that is in its memory cache, it simply acquires a local (to the
client) read lock on the page. To write a page, however, the
client must first send a request for a write lock to the server.
If the page on which the write lock is requested is cached at
other sites, the server “calls back” the conflicting permissions

by sending requests to the sites which have the page cached.
The Server tracks the contents of the memory caches at each
site, so clients must inform the server when they drop a page
from their memory cache. To save messages, this information
is piggybacked on other messages sent from the clients to the
server, rather than sent immediately. As a result, the server may
temporarily believe that page copies are present in caches where
they are no longer resident.

At a client, a callback request is treated as a request for an
exclusive lock on the specified page. If the request can not be
granted immediately (due to a lock conflict), the client responds
to the server saying that the page is currently in use. When the
callback request is eventually granted at the client, the page is
removed from the client’s memory cache (i.e., it is invalidated)
and an acknowledgement message is sent to the server. When all
callbacks have been acknowledged, the server grants a write lock
on the page to the requesting client. Any subsequent requests
by other clients to obtain a copy of the page will be blocked
at the server until the write lock is released. At the end of the
transaction, the client sends copies of the updated pages to the
server and releases its write locks, retaining copies of the pages
in its memory cache.

2.3 Extended Cache Management Algorithms
We now develop algorithms that build upon the CB-R mem-
ory cache management algorithm to support the use of client
disks in the extended cache architecture. Two important aspects
of such algorithms are hierarchy search order and consisrency
maintenance. The hierarchy search order dictates the process
through which a particular data item is found in the storage hi-
erarchy. Consistency maintenance ensures that the caching of
data in the storage hierarchy does not cause a violation of trans-
action execution serializability. These two dimensions define
a design space for cache management algorithms incorporating
client disks. We first address each dimension separately, and
then describe algorithms that integrate them.

2.3.1 Hierarchy Search Order
The goal of the hierarchy search order is to allow transactions to
obtain the lowest cost copy of a page among the copies present in
the system. In this study, there are four potential locations from
which a client can obtain a page copy: I) local client memory,
2) locul client disk, 3) server memory, and 4) server disk 2. The
cost of obtaining a page from a location in the storage hierarchy
is dependent on several factors:

The path length of accessing the location (e.g., the cost of
sending and receiving messages, the cost of performing
disk I/O, etc.)

Contention for those shared resources required to access
the location (e.g., the network, server or client disk, server
or client CPU, etc.)

The probability of finding the page at the location (e.g.,
server or client buffer hit rate).

2As described in [Fran92b], clients can also be allowed to obtain pages from
other clients. The additional resources represented by remote clients can be fit
into the framework used in this paper; however, for simplicity this issue is not
addressed in this study.

643

cosl

i--

___--- Client Memory Client Memory w
lConbulM+
1 PagsI&aSage+
Networkauaming+

t

1.. [&~&~I

S~W~~CPV cydes + Sewer mry Client Dlsk
Sewer CPU Chmaing

1 VS. 1
Clleni Dlsk

I
L Server emory

@isu~& A” , ” ..l 1 Hi&v&v “II”]

Figure 2: Two Possible Hierarchies

It is important to note that while the path length is relatively
fixed for a given configuration, the other two components arc
dependent on dynamic aspects of the workload such as applica-
tion mix and intensity. Therefore, in general it is not possible to
determine a fixed cost hierarchy for the DBMS to traverse.

Figure 2 shows two possible cost hierarchies for a client-
server DBMS if the issue of consistency is ignored (i.e., assum-
ing all copies are valid). In hierarchy “A”, the server’s memory
is assumed to be. cheaper to access than the client’s local disk
cache, while in hierarchy “B”, these two levels are inverted. As
the client population changes, this inversion can (and doe%, as
will be shown in Section 4) take place. In a system with few
clients, there will be low contention for the server and network
resources, so the tradeoff will be between the cost of a random
disk I/O and the cost of a round-trip RPC to the server. With cur-
rent technology, the access to the server memory will likely be
less expensive than the disk I/O. However, as clients are added,
contention for the network and the server will increase. Eventu-
ally, the cost of a local disk I/O will fail below the expected cost
of a remote memory access.

Despite the dynamic nature of the hierarchy costs, there are
some relationships that remain fixed for a given configuration.
For example, the local client memory is always the least ex-
pensive level, and it is always checked first to determine if the
page is already available to the transaction. Likewise, the server
memory is always cheaper to access than the server disk. In
addition, if the server disks and client disks have the same per-
formance characteristics, then the server disk is always the most
expensive location.

2.3.2 Consistency Maintenance
Consistency maintenance ensures that transactions execute in a
serializable manner despite the presence of replicated copies of
data pages. Two basic mechanisms for performing consistency
maintenance are detection and avoidance. Detection schemes
allow stale copies of data to remain in the system: the validity of
a page copy must be confirmed before that copy can be accessed
by a transaction, and thus, attempted access to invalid pages
is detected and disallowed. Detection-based schemes are often
referred to as check-on-access algorithms [Dan921.

In contrast, avoidance-based schemes ensure that all acces-
sible copies of a data page are valid so that access to invalid
data is avoided. This can be done by invalidating other repli-
cas of an updated item (as is done by CB-R for memory cache
contents). or bypropugaring the new data value to the other repli-
cas. Our previous studies of memory-based caching showed that
invalidation performs better than propagation under many work-

loads. Propagation preserves replication, thereby increasing the
cost of updates. In contrast. invalidation destroys replication
of read-write shared data so that subsequent updates incur less
consistency overhead. In this study we consider relatively large
disk caches and large client populations, which would cxaccr-
bate the problems of propagation. Furthermore, propagation IO

a page copy in the disk cache would rcquirc disk l/O, whereas
invalidation can be performed by simply modifying mcmory-
resident structures. For these reasons, WC restrict our study of
avoidance-ha& mechanisms for disk cache consistency main-
tenance to algorithms that use invalidation.

2.3.3 integrated Algorithms
Efficient cache managemenl algorithms must address the intcr-
action of hierarchy starch order and consistency maintcnancc
considerations. For example, if the server must be contacted to
determine the validity of a page copy, then the cost of accessing
the server memory is reduced because the required consistency
checking message can also serve as an implicit request for the
page. As described in the previous two sections, WC consider two
options for each of the dimensions in our design space. The four
resulting algorithms are shown in Figure 3. For the hierarchy

Disk Cache Pages
Gurmnteed Consistent?

Figure 3: Simplified Algorithm Design Space

search order dimension, we investigate the tradeoffs bctwccn
algorithms that differ in whether they favor accessing the local
disk cache (called LD algorithms) or the server memory (called
SM algorithms). In terms of consistency maintenance, all 01
the algorithms that we develop use CB-R (which is avoidancc-
based) to manage the client memory caches, ensuring that the
memory cache contents are always valid. This is hecausc our
previous studies showed that avoidance generally performs bcl-
ter than detection for memory caches. For disk caches, howcvcr.
we re-examine the tradeoffs between avoidance and detection.
This re-examination is undertaken because disk caches arc much
larger than memory caches and typically hold colder data. rc-
sulting in different tradeoffs than for memory caches.

The two avoidance-based algorithms that WC study are called
Local Disk/Avoid (LWA) and Server Memory/Avoid (SM/A).
Both of these algorithms extend the CB-R algorithm to ensure
that all pages resident in the disk caches (in addition to rhosc in
the memory caches) are valid. Consequcnrly, clients can read
pages from their local disk cache without contacting the server.
Likewise, clients must invalidate page topics from both their
memory and disk caches in order to service a callback rcqucsl.
These algorithms extend CB-R to the disk cache contents, so
the server must track the contents of both the memory and disk
caches at the clients. Clients inform the server when lhcy no

longer have a copy of a page in either cache, rather than when the
page is rcmovcd from the memory cache as in standard CB-R.

Using l.D/A, clients rcqucst a page from the server only if
that page is absent from both local caches. In contrast, SM/A
assumes that the server memory is cheaper to access than the
local disk; therefore, when an SM/A client fails to find a page in
its memory cache, it sends a request for the page to the server.
In the request, it includes an indication of whether or not it has a
copy of the page in its local disk cache. If the page is resident in
the server’s memory, the server will send a copy of the page to
the client. If the page is not in the server’s memory, but a copy
is resident in the client’s disk cache, then the server simply tells
the client to read the page from its local disk cache. LD/A and
SM/A access the server’s disk only as a last resort.

In contrast, the detection-based algorithms, Local
I>isk/Dctect (LD/D) and Server Memory/Detect @M/D), allow
pages in the disk caches to be out-of-date Therefore, clients
must contact the server to determine the validity of page copies
in their local disk cache. The client is allowed to fault a disk-
cached page into its memory cache only if the server replies
that the disk-cached page copy is valid”. For these algorithms,
rhc server tracks only the contents of the memory caches at the
clients. As with standard CB-R, clients inform the server when
they drop a page from their memory cache. even if the a copy
of the page resides in the client disk cache. As a result, a page
in the client disk cache at a site is invalidated by the callback
mechanism only if a copy of the page also resides in the memory
cache at that site.

When LD/D incurs a buffer miss in aclient memory cache, it
checks the disk cache information to see if the disk cache holds a
copy of the desired page If so, it obtains the version number of
the disk-resident copy (from the in-memory disk cache control
tahlc) and sends it to the server. The server checks to see if
the client’s copy is valid and if so, informs the client that it can
access the cached page copy. If the client does not have a valid
copy of the page, then the server obtains one (either from its
memory or from its disk) and returns it to the client. SM/D
works similarly, but takes advantage of its communication with
the server to access the server memory first. When the server
receives a validity check request for a page that is resident in
the scrvcr memory cache it returns the page regardless of the
status of the client’s disk-resident copy. Therefore, the SM/D
algorithm uses a larger return message to avoid performing a
disk read at the client. As with the avoidance-based algorithms,
the server’s disk is the last place accessed.

2.4 Algorithm Tradeoffs
In this section we brielly summarize the performance-related
tradeoffs among the cache management algorithms. The most
intricate tradeoffs that arise in this study are those between us-
ing detection or avoidance to maintain disk cache consistency.
These tradeoffs arc similar to those that arise in memory-only
caching. but they differ qualitatively due to the higher capacity of
disk caches and the potential shifting of bottlenecks when client
disks are employed. There are three main tradeoffs to consider:
I) message requirements, 2) server memory requirements, and

JRecnll that once B page is plnced in the memory cache. it is guamnteed to
hc valid for the duration of its residency.

3) effective disk cache size. In terms of messages, avoidance is
most efficient when read-write data sharing is rare; consistency
is maintained virtually for free in the absence of read-write shar-
ing hut requires communication when sharing arises. In contrast,
detection incurs a constant overhead regardless of the amount
of contention. This overhead is higher than that of avoidance
under light read-write sharing, but can be lower than for avoid-
ance when the sharing level is increased. The second tradeoff
is the size of the page copy information that the server must
maintain under each scheme. This information is kept memory
resident, so it consumes space that could otherwise be used to
buffer pages. For avoidance, the server maintains a record of
each page copy residing in a client disk cache, while for detec-
tion, the server needs only to keep a list of LSNs for pages that
may be in one or more disk caches.

The third tradeoff relates to a metric we call the efictive disk
cache size. It has been observed that for memory caches, the
amount of useful (valid) data that can be kept in client caches is
lower for detection than for avoidance [Da&O, Care911. This is
because detection allows pages to remain in the cache after they
become out-ofdate. Such pages are invalid, so they provide
no benefit, but take up cache slots that could be used to store
valid pages. Avoidance on the other hand, uses invalidation to
remove out-of-date pages, thus opening more cache slots for
valid pages. As a result, in the presence of read-write sharing
we should expect that the detection based algorithms (LD/D and
SM/D) will have a smaller effective disk cache size than the
avoidance-based ones (LD/A and %4/A).

There are several other tradeoffs that affect the relative per-
formance of the algorithms. A small tradeoff arises when choos-
ing between using client disks for caching or not. Client mem-
ory space is required to store the information used to manage
the local disk cache and this information reduces the size of
the client memory cache. There are also the obvious tradeoffs
between the hierarchy search orders. The SM algorithms both
attempt to avoid accessing local disks. SM/D does this by us-
ing a larger response message to a validity check request when
the requested page is in the server memory, while SIvi/A uses a
separate round-trip communication with the server to obtain the
page. In contrast, the LD algorithms will use a local disk first,
even if there is low contention for shared resources. In particu-
lar, LD/D will ignore the presence of a page copy in the server’s
memory even though it has to contact the server to check the
validity of the copy of the page in its disk cache.

3 A Client-Server Caching Model
3.1 The System Model
In order to study the performance of the disk cache management
algorithms, we have extended an existing page server DBMS
simulation model to include client disk caches. In this section,
we briefly describe the model; a more detailed description of
the basic model can be found in [Care91]. The mode1 was
constructed using the DeNet discrete event simulation language
[Livn88]. It consists of components that model a server ma-
chine and a varying number of client workstations that are con-
nected over a simple network. Each client site consists of a
Cache Manager that manages the contents of memory and disk
caches using an LRU page replacement policy, a Concurrency

645

I Parameter I Setting I I Parameter I settian -. . ..4 ..-_- . - -
Instruction rate of client CPU 15 MIPS Size of a page 4,096 bytes
Instruction rate of server CPU 30 MIPS Size of database in pages 2500 (10 MBytes)
Per-client memory size 3% of DB size Number of client workstations I to50
Per-client disk cache size 50% of DB size Fixed no. of instructions per message 20,000 instructions
Number of disks per client I disk Addl. instructions per msg. size 10,000 instJ4Kb page
Server memory size 30% of DB size Size in bytes of a control message 256 bytes
Number of disks at server 3 disks No. of instructions per lock/unlock pair 300 instructions
Minimum disk access time 10 milliseconds No. of inst. to register/unregister a copy 300 instructions
Maximum disk access time 30 milliseconds CPU Overhead for performing disk I/O 5000 instructions
Network bandwidth 8,or 80 Mbits per set --

Table I : System and Overhead Parameters

’ “L”‘3RM-WH 1 HOTCOLD 1 PRIVATE]
Mean number of pages accessed per transaction ! 20 pages 1 Mpages 1 16pages 1

1 Page bounds of hot range I 1 to 1250 1 pto/++% 1 plop+24 1

Page bounds of cold range

Probability of accessing a page in the hot range

p= 5qn-I)+I /‘” 2%I)+1
1251 to2500 rest of DB 12s I to 2soo

0.5 0.8 0.5
I Prohabilitv that a hot ranee access is a write -~ ~~.z- ~~- ~~ ~---

Probability that a cold range access is a write
I

0.1
I 0.0 0.1

D.onn 3n*nnn Mean no. of CPU instructions per page on read (doubled on write) 1 3t..- -- I _ - . . - - __,_
Mean think time between client transactions I 0 I 0 I 0 I

Table 2: Workload Parameter Meanings and Settings for Client n

Control Manager that provides locking and consistency man-
agement support, a Resource Manuger that models CPU and
disk service and provides access to the network, and a Client
Manager that coordinates the execution of transactions at the
client. Each client also has a module called the Transaction
Source which submits transactions to the client according to the
workload model described in the following section. Transac-
tions are represented as page reference strings and are submitted
to the client one-at-a-time; upon completion of a transaction, the
source waits for a specified think time and then submits a new
transaction. When a transaction aborts, it is resubmitted with
the same page reference string. The number of client machines
is a parameter to the model. The server is modeled similarly to
the clients, but with the following differences: the Concurrency
Control Manager has the ability to store information about the
location of page copies in the system and also manages locks,
there is a Server Manager component that coordinates the op-
eration of the server (analogous to the client’s Client Manager),
and there is noTransaction Source module (smee ah transactions
originate at client workstations).

is employed for user requests. At the server, each disk has a
FIFO queue of requests: the disk used to service a particular
request is chosen uniformly from among all lhe server’s disks.
In the current study, each client has at most one disk. Par disks
at the server and at the clients, the disk access time is drawn
from a uniform distribution hetween a specified minimum itrrcl
maximum. In order to make client disk caching cost-effective,
writes to the client disks must be done asynchronously; rhus,
two memory pages are reserved for USC as I/O write buffers at
each client. Likewise, at the server, one memory page per active
client is reserved for use as an l/O write buffer.

Table 1 describes the parameters that are used to specify the
resources and overheads of the system and shows the settings
used in this study. We use a relatively smaI1 database in order
to make the detailed modelfing of the cache behavior of a large
distributed system feasible in terms of simulation time. The
memory and disk sizes of the server and clients are specified
as a percentage of the database size, and it is these ratios that
are the impartant factor here, not the absolute database size.
The simulated CPUs of the system are managed using a two-
level priority scheme. System CPU requests, such as those
for message and disk handling, are given priority over user
(transaction} requests. System requests are handled using a
FIFO queueing discipline, while a processor-sharing discipline

Due to the large disk cache siycs that we use in this study,
we preload each client disk in order to reduce the impact of it
long warm-up phase on lhe statistics produced by a simulation
run. The initial pages placed on a ctient’s disk are chosen ran-
domly from among the pages that may be accessed at that client
according to the workload specification (see Section 3.2). The
warm-up phase also affects the amount of memory that needs to
be reserved for disk management information at clients. AI the
start of the simulation we initially reserve the maximum amount
required based on the disk cache size (assuming 20 hytes ol
descriptive data per disk page) and then reduce the allocation
(if necessary) after running the simulation for a brief period.
After the I/O write buffers and the disk information pages arc
subtracted, the remainder of the client’s memory is avaikthlc for
USC as a memory cache. As stated in Section 2.4, the server also
uses memory for the structures that it uses to track page copy
locations. The amount of memory reserved for this structure is
changed dynamic&y during the simulation run, based on the
number of outstanding page copies that the server must track.

Finally. we use a very simple network model for the simu-
lator; the network is modeled as a FIFO server with a specilictl
handwidth. We did not model the details of the operation of it

646

specific type ofnelwork (e.g.. Ethcrnct, token ring, etc.). Rather,
Ihe approach WC IlH)k wils 10 scparalc the CPU costs of messages
from the on-the-wire costs, ilnd 10 allow the on-1he-wire costs to
hc adjustctl using Ihc bandwidth paramcrer. In this s1udy, WC use
Iwo network bandwidths that correspond roughly to current Eth-
crnc1 (rcfcrrcd 10 iIs the sl~~w network in the following sections)
IIII~ FDDI (rcfcrrcd to as the Jiwt network) speeds. The band-
width values used (8 Mbi1s/sec and 80 Mbit&cc respectively)
represcnl slightly discounted values of the stated bandwidths of
those networks. The CPU cost of managing the protocol for a
send or a receive is modeled as a fixed number of instructions
per message plus a charge per byte.

3.2 Workloads
We USC tl~e simulation model to study the performance of the
disk cache managcmcnl algori1hms under a ~~aricty of system
couliguriltions and wc)rklo;lds. The relative hen&s of a parlic-
ulilr algorithm can vary dcpcnding on 111llr1y workload factors
such as IECCSS Iocalily, update intcnsi1y. amount of read shar-
ing and read-write sharing among clients, etc. Our simulation
model provides a simple bur llexible mechanism for describing
a variety of workloads. The access pat1ern for each client can
bc spccifed separately using the parameters shown in Table 2.
Transactions are rcpresentcd as a string of page access requests
in which some accesses arc for reads and others are for writes.
Two ranges of dalabasc pages can bc specified: a hot range and
iI cold range. The probability of an access to a page in the hot
range is specified; the remainder of the accesses are directed to
cold range pages. For both ranges, the probability that an access
10 a page in the range will be a write access (in addition to a
read access) is specified. The parameters also allow the specifi-
cation of an average number of instructions to be performed at
the clicn1 for each page access, once the proper lock has been
obtained. This number is doubled for write accesses.

WC present results for three workloads in this paper. The
charucleris1ics of thcsc workloads arc summarized in Table 2.
UNIFOKM-WH is a low-localily workload in which haif of the
tlalabasc is r&-write shared while the other half is shared in
a read-only manner. Low per-client locality and the presence
of read-write sharing both negatively impact the performance
of caching at clients. The HOTCOLD workload has a high de-
grec of 1ocaIity per client and a moderate amount of read-write
sharing among clients. The high locality and read-write sharing
of this workload provide a test of efficiency of the consistency
maintenance mechanisms used by the algorithms. Finally, the
PRIVATE workload has high per-client locality and no read-
wrilc sharing. WC expect this type of access to be typical in
applications such as large CAD systems or software develop-
ment environments in which users access and modify their own
portion of a design while reading from a library of shared com-
poncnts. The PRIVATE workload represents a very favorable
environment for client caching.

4 Performance of the Extended Cache
WC ran simulation experiments using all four algorithms de-
scribed in Section 2.33. To simplify the presentation we some-
times focus on 1hc results for the Local Disk/Avoid (LD/A)
and Scrvcr Memory/Detect (SM/D) algorithms, as these two al-
gorithms are often suflicient to show the 1radeoffs among the

different approaches to consistency maintenance and hierarchy
starch order. In addition to the disk caching algorithms, we also
show results for the Callback-Read (CB-K) algorithm, which
dots not utilize the client disk caches. CB-R is used as a base-
line to help gauge the magnitude of the performance gain (or in
a few cases, loss) resulting from the use of client disk caches.

4.1 Experiment 1: UNIFORM-WH Workload
We now turn to our first set of results, which were obtained

using the UNIFORM-WI3 workload. In this workload (as shown
in Table 2) all clients uniformly choose pages to access from the
entire database. The pages in the first half of the database are
accessed with a 10% write probability, while the pages in the
other half are accessed read only. Figure 4 shows the distribution
of page accesses among the four levels of the storage hierarchy
for the LD/A and SM/D algorithms. Several trends can be
seen in the figure. First, LD/A and SM/D obtain a similar
(small) pcrccntage of their pages from the client memory caches.
Because the algorithms all use CB-R to manage memory caches
and search the memory cache before looking elsewhere, they
have similar memory cache hit rates in this experiment and in
the ones that follow. Second, as would be expected, SM/D
obtains more pages from the server memory and fewer pages
from the local disk cache than LD/A throughout the range of
client populations. Therefore, LD/A does more total (server
and client) disk reads to get its pages than SM/D. Third, with
one client, LD/A does not access any pages from the server
memory, but then reaches a fairly stable level of access. As seen
in previous studies [Da&O, Care91, Fran92a], the initial low
server memory hit rate is due to correlation between the contents
of the client’s caches and the server memory-with few clients,
the server memory largely contains copies of the pages that are
in client memories, so the server memory is less effective for
serving client misses than would otherwise be expected given its
size. This correlation is damped out as more clients are added to
the system. Fourth, and most importantly for this experiment,
both algorithms initially obtain a similar number of pages from
the scrvcrdisk, but (1s clicnls arc added SM/D obtains more pages
from the server disk than LD/A. This is due to the differences in
effective disk cache size discussed in Section 2.4.

The performance impact of these page distributions can be
seen in Figure 5, which shows the throughput results for this
workload when run with the fast network, and in Figure 6,
which shows the corresponding transaction response times up to
20 clients4. First, comparing the performance of CB-R to that
of the disk caching algorithms shows the magnitude of the per-
formance gains obtained by introducing client disk caches. As
would be expected, CB-R is hurt by its relatively high server disk
demands as clients are added5. For the disk caching algorithms,
the performance results show how the dominant algorithm char-
acteristic changes as the number of clients in the system varies.
In general, at 20 clients and beyond, the avoidance-based al-
gorithms (LD/A and SM/A) perform similarly, and they are
significantly better than the detection-based SM/D and LD/D.
However, with small client populations the dominant character-
istic is the hierarchy search order, with the server memory al-

4Note that we use a closed system model, so throughput and response time
are equivalent metrics.

5 With one client, CB-R actually has a slight performance advantage because
its client memory cache does not have to store,disk cache information.

647

I 1Client Memory ‘;?, Client Disk - 1(Sorvor Memory n Sawor Disk

I4 Clients

Figure 4: Page Access Distribution
(UNIFORM-WH Workload)

0 10 20 40 .so
e Clbtlb

Fi ure 5. Throu rh
(UNI&RM-\iVH, Fas k

ut
ctwork)

clbnb
Figure 6: Transaction Res nse Time

(UNIFORM-WH, Fast etwork) P

II C&lb # Ctknb
Figure 7: Server Disk I/O per Trans

(UNIFORM-WH, Fast Network)
Fi

$UNIFORM-&, Fast Network)
ure 8: Mcssa es Sent per Trims

gorithms (SM/D and SM/A) having slightly better performance
than LD/A and LD/D.

The impact of the search order can be seen most clearly in
Figure 6. In the range of 1 to 5 clients the Server Memory al-
gorithms perform best. In this region, the server memory is less
costly to access than a local disk cache because with small client
populations, the (fast) network and the server are lightly loaded,
and the fast network involves low on-the-wire costs for sending
pages from the server to clients. The relative costs of accessing
the server memory and accessing the local disk can be seen by
comparing the performance of the two avoidance-based algo-
rithms (LD/A and ,%4/A). The two algorithms perform the same
amount of work to maintain the consistency of the disk caches
and obtain the same number of pages from the client memory
caches and the server disk. They differ only in the proportion
of pages that they obtain from the local disk caches versus the
server memory. With the fast network (Figures 5 and 6), the
server memory is slightly less expensive up to 10 clients, be-
yond which the local disk caches are cheaper to access. When
the slow network is used, (not shown)‘the network eventually
becomes a bottleneck for the SM algorithms due to the volume
of pages being sent from the server to the clients and thus, the
server memory is even more expensive to access.

At 20 clients and beyond, the performance of the algo-
rithms is dictated by the disk cache cdnsistency approach - the

avoidance-based algorithms dominate the detection-hascd ones.
The reason for this can be seen in the number of server disk
I/OS the algorithms perform per transaction (Figure 7). In this
experiment, the server disk becomes the dominant resource, as
all of the algorithms approach a disk bottleneck. As can be seen
in the figure, the detection-based SM/D and LD/D algorithms
lead to over 20% more disk I/OS than the avoidance-based a-
gorithms beyond 20 clients. These additional ~/OS are reads (iis
disk writes account for less than one l/O per transaction for all ol
the algorithms here). The extra server disk reads occur because
the effective size of the client disk caches is substantially lower
for the detection-based algorithms than for the avoidance-ha4
ones. The reason that the effective disk cache size diffcrenccs
are so significant here is due to the uniform access pattern. With
a uniform workload, all cache slols are equully valuable - lhcrc
is no “working set” that can be kept cache-resident. Also, lbc
uniformity of the workload results in a high degree of read-write
sharing, so disk caches managed by the two detection-based
algorithms will contain a large number of invalid pages.

Finally, it is important to note the message behavior of lhc
algorithms. Figure 8 shows the number of messages sent per
committed transaction. The message counts of the detcction-
based algorithms (‘and CB-R) remain fairly constant as clients
are added. They each need to send a round trip mcssagc for
each page accessed by a transaction. Some of these messages

648

arc short control nlcss;lgcs. while others (especially for CB-R)
urc large mcssagcs containing page values. In contrast. LD/A
initially requires fewer messages, as it contacts the server only
for pages that are absent from both of the local caches on a
client. However, LD/A also requires invalidation messages to
be sent to remote sites when a page is updated. The number
of invalidation messages that must be sent increases with the
number of clients in the system for this workload. The increase
in invalidations also results in an increase in the number of pages
that LD/A must request from the server. Finally, SM/A incurs
the combined message costs of contacting the sewer on each
page access and of invalidating remote pages; thus, it has the
highest message costs among the algorithms studied.

4.2 Experiment 2: HOTCOLD Workload
The next workload that we investigate is the HOTCOLD work-
load, in which (as shown in Table 2) each client has a distinct
%)-page read/write “hot range” of the database that it prefers,
and the hot range of each client is accessed by all other clients as
part of their cold range. This workload exhibits a high degree of
locality, but also has a significant amount of read-write sharing
a~ the client population is increased. As shown in Figure 9, the
high locality of this workload allows the majority of pages to
be obtained from each client’s memory cache. The figure also
shows that LD/A and SM/D obtain a similar, but small, percent-
age of their pages from the server disk. The differences between
the two algorithms are evident in the way that they split the re-
maining accesses. With one client, LD/A obtains the remainder
of its pages from client disk caches. As clients are added, the
proporlion of pages that LD/A obtains from the server memory
increases somewhat. As discussed below, this occurs because
adding clients increases read-write data sharing for this work-
load. and the effectiveness of the client disk caches decreases in
the presence of such data sharing. SM/D shows different trends,
with the portion of its pages coming from the server memory
decreasing as clients are added. This decrease occurs because,
in this lype of workload, the server memory can hold fewer of
the active hot set pages as the client population increases. Note
that at a population of fifty clients, both algorithms have very
similar page access distributions.

These distributions show the effects of the high level of
read-write sharing in this workload, which increases as clients
are added to the system, Regardless of the algorithm used, the
update of a page at one site causes all copies of the page at
other sites to become unusable. Thus, as the client population
increases for this workload, the utility of the clients’ disk caches
decreases. For example, at 50 clients the LD/A algorithm has
on average, over 1000 disk cache slots (out of 1250) empty as
iI result of invalidations - a disk cache larger than 250 pages
will simply not be used by the avoidance-based algorithms in
this experiment.

Turning to the throughput results for the fast network (shown
in Figure 10) it can be seen that the advantages of using disk
caches are lower in this experiment than in the previous one,
particularly with large client populations. As in the UNIFORM-
WH experiments, the Local Disk algorithms have the lowest
performance for small client populations. At 20 clients, all four
of the disk caching algorithms have roughly the same through-
put, which is about 50% higher than that of CB-R. Beyond this

[) Clbnt Memory C%)Ctbnt Dbk 1(Senmr Memory n Saver Dbk

I00 LWASMID LWASUID I.WASWD LWASMiD

I Ib 3il 5b
Clients

Figure 9: Page Access Distribution
(HOTCOLD Workload)

point, however, the disk caching algorithms separate into two
classes - and the detection-based algorithms out-perform the
avoidance-based ones. This is the opposite of the ordering that
was seen in the UNIFORM-WI-I case, and occurs despite the
fact that at 20 clients and beyond, all four of the algorithms
perform a similar amount of server disk I/O (Figure 1 1)6. The
reason for this behavior is due to the extra work that LD/A and
SMIA perform for invalidations. As shown in Figure 12, the
avoidance-based algorithms send significantly more messages
per transaction than the other algorithms. These additional mes-
sages are largely due to the invalidation of remote disk cache
pages, the impact of which can be seen, for example, in the
difference between the SM/A and SM/D lines in Figure 12. The
additional invalidation activity results in increased transaction
path length. Consequently, while the detection-based algorithms
both eventually become server disk-bound, the avoidance-based
algorithms never reach the disk bottleneck and their performance
falls off at a faster rate. The results for the Slow network (not
shown) are similar to these, although the Server Memory al-
gorithms perform below the level of the Local Disk algorithms
(but still above CB-R) in the range of 10 to 30 clients, due to the
network cost of sending pages from the server to clients.

This experiment demonstrates the effect of a high degree of
read-write sharing on the performance of the disk cache manage-
ment algorithms and on the usefulness of client disk caching in
general. This is demonstrated by the fact that the throughput for
all four disk caching algorithms has a downward slope beyond
10 clients. As the level of read-write sharing is increased the
disk caches become less effective. If the sharing level were high
enough, then the client disk caches could actually harm perfor-
mance - because they would not contribute any useful pages
yet they require maintenance overhead. Therefore, it is clear that
client disk caching will be most appropriate for environments in
which there is a substantial amount of data that is not subject to
a high degree of read-write sharing.

4.3 Experiment 3: PRIVATE Workload
We expect that many application environments for OODBMS
will have a substantial amount of data that is private or has low
data contention. In this section, we investigate the performance
of the alternative disk caching algorithms using the PRIVATE

ONote thaw. unlike the previous case, server disk writes arc an important
component of the overall server l/O here.

649

+ SMIA
* LDID
0 SMID
-*. CB-R

o-
0 IO 20 30 40 .w

a Clicnk

(H&COLD, Fast Network)
Fi me IO: Throughput

u Client Memory ,,,,“Clisnt Disk q Sefvsr Msmory n Ssrver Disk

0 SMIA
x LDID
0 SMID

Figure 1 I : Server Disk I/O per Trans
(HOTCOLD, Fast Network)

LDIASMD LD/ASM/D LDIASMID LD/ASM/D

Figure 13: Page Access Distribution Fi ure 14: Throu
(PRIVATE Workload) (Pl&ATE, Fast

hput
NC work) B

workload, which is intended to model a CAD or software engi-
neering environment in which each client works on a separate
part of the database while reading from a shared library. In this
workload (as shown in Table 2), each client has exclusive read-
write access to a 25page region of the database, and all clients
share the other half of the database in a read-only fashion: thus,
none of the database is read-write shared.

As can be seen in Figure 13, this workload presents an cx-
cellent environment for client disk caching. The most notable
aspect of this graph is that (after system start-up) no server disk
reads are required. Moreover, LD/A accesses all of its pages
locally at the clients. As would be expected, SM/D behaves dif-
ferently. It has an initial decrease in its locally-accessed portion;
but, beyond 10 clients the locally-accessed portion increases -
at 50 clients over 90% of the SM/D page acces.ses are satislied
locally. This is due to server-client memory correlation effects
as discussed for the UNIFORM-WH workload in Section 4.1.
As clients are added to the system, the correlation dissipates and
the server memory hit rate improves. Due to the skewed ac-
cess pattern of the PRIVATE workload, however, when enough
clients are added that their hot ranges no longer fit in the server
memory, the hit rate at the server once again decreases.

fcctivcncss of the local disk caches, as described above, and
because of LDlA’s use of avoidance-based consistency man-
agement. In this workload, there is no read-write sharing, so no
invalidation requests are required. Consequently, the avoidancc-
based algorithms get consistency virtually for free, while the
detection-based algorithms must still check with the server on
every initial access. As a result, LD/A sends only 6.5 mcssagcs
per committed transaction, while the other algorithms send over
23 messages per transaction. The combination of local access
and cheap consistency maintenance allows LD/A to scale al-
most linearly up to 40 clients here, while the other disk caching
algorithms all bottleneck at 20 clients. Also, note that for this
workload, CB-R flattens out at only 5 clients, at a throughput
level that is less than 40% of the peak LD/D, SM/A. and SM/D
throughput and less than 15% of the peak throughput of LLIIA.

The PRIVATE workload throughput results (Figure 14) show
that the LD/A algorithm has substantial performance benefits
over the other algorithms in this case. This is due to the ef-

In this experiment, all of the disk caching algorithms cxccpt
for LDIA become bottlenecked at the server CPU due IO mcs-
sages, while LDIA is ultimately bottlcnecked at the server disk.
Recall that in this experiment. LD/A does not perform any reads
from the server disk; the disk bottlcncck is caused by write I/OS.
The server write I/OS occur because pages thal are dirtied hy
transactions are copied back to the server at commit time. ‘I’hcsc
pages must eventually be written to the server disk when they
arc aged out of the server’s memory. When the slow network is
used (not shown), the copying of dirty pages back to the scrvcr
also hurts the scalability ofLD/A. In this cast, however, the dirty

acamla
Figure 12: Messa es r Transaction

(HOTCOLD,~as~etwork)

a CHml#

650

pages cause the network (rather than the server disk) to become
the hottlcncck. In Section 5.1 we study ways to reduce this cost.

4.4 Result Summury
In (his section WC rcvicw the main results ol’ the prcccding per-
formance sludy. First, it should be noted that in all but a few
cases, client disk caching provided performance benefits over
the memory-only caching CB-R algorithm. The three work-
loads used in the study brought out different tradeoffs among
the algorithms for managing client disks. In the workloads
with read-write shnring (UNIFORM-WH and HOTCOLD), we
saw that with small client populations, the dominant algorithm
characteristic was the hierarchy search order, with the server
memory lirst algorithms having a slight advantage over the lo-
cal disk first algorithms. With larger populations, however,
the disk cache consistency maintenance approach was dominant
lijr these workloads. For UNIFORM-WH, the avoidance-based
algorithms performed best hccausc they resulted in a larger ef-
fcctivc disk cache size. With the fast network, there was little
difference between the two avoidance-based algorithms (LD/A
and SM/A), but when the slower network was used, LD/A out-
performed SM/A because the local disk caches were less ex-
pcnsivc to access than the server memory. For the HOTCOLD
workload. the high level of read-write sharing in the presence
trf large client populations reduced the usefulness of the client
disk caches, and it caused the avoidance-based algorithms to
perform slightly worse than the detcclion-based ones because of
higher rnessage requirements. The PRIVATE workload, which
has high per-client locality and no read-write sharing was seen to
hc an excellent workload for client disk caching. For this work-
load, the LD/A algorithm performed far better than the others
when 20 or more clients were present in the system. This is
bccause its bias towards using the local disk first allowed it to
scale and its use of avoidance for disk cache consistency mainte-
nance allowed it to ensure consistency virtually for free (due to
the ahsencc of read-write sharing). In fact, LDlA scaled nearly
linearly with the number of clients until the server disk became
a bottleneck due to writes.

5 Algorithm Extensions
In this section, we address two additional performance enhance-
ments for client disk caching: I) reducing the overhead caused
hy copying updated pages to the server at commit-time, and 2)
ways to reduce the cxpensc of maintaining large caches that arc
not currently in use.

5.1 Reducing Server Overhead
As stated in Section I. I, the server is the natural location at which
IO guarantee transaction semantics. The policy of copying dirty
pages to the server at commit time simplifies the implementation
of the server’s ownership responsibilities. For example, it allows
the server IO easily produce the most recent committed copy of a
page when it is requested by a client. However, the results of the
previous experiments (particularly for the PRIVATE workload)
show that for certain workloads this simplicity comes at a cost
in performance and scalability. In this section, we examine
the complexity and the potential performance gains that result
from relaxing the commit-time page send policy. While we
are unaware of any work in that has addressed this issue for
client-server DBMS, it should be noted that similar issues can

arise when transferring pages among the processing nodes of
shared-disk transaction processing systems [Mohagl, Dan92].

In the following discussion, we assume a system that uses a
write-ahcad-logging (WAL) protocol [Gray931 between clients
and the server. Therefore the server is always guaranteed to have
all of the log records required to reconstruct the most recently
committed state of all database pages. A description of the.
implementation of such a protocol (i.e., ARIES [Moha92j) for a
client-server DBMS can be found in [Fran92c].

5.1.1 Consequences of Retaining Dirty Pages
Relaxing the commit-time page send policy piaces certain con-
straints on the operation of clients. If clients are allowed to com-
mit transactions without copying updated pages to the server,
then a client may have the only copy of the most recent commit-
ted value of a page. Clients Can not freely dispose of such pages.
In contrast, under the commit-time page send policy clients are
free to retain or drop updated pages after a transaction commits.
Furthermore, allowing a client to overwrite the only valid copy
of a page complicates the implementation of transaction abort;
either clients will have to perform undo (which implies that they
need sophisticated log management), or affected pages will have
IO he sent to the server to be undone.

Relaxing the policy also has implications for the operation
of the server. The server must keep track of which client (if any)
has the current copy of each page, and to satisfy a request for
a page the server may have to obtain the most recent copy of a
page from a client. This facility can be added to our existing
algorithms by using the Callback-Write (CB-W) algorithm as
a basis rather than Callback-Read. As described in [Fran92a],
CB-W is a callback locking algorithm that allows clients to retain
write (as well as read) permission on pages across transaction
boundaries. When the server receives a request for a page that
is cached with write permission at a client, the server sends a
request to the client, asking it to downgrade its cached write
permission to read permission. If the commit-time page send
policy is enforced, the client needs only to acknowledge the
downgrade to the server, the server can then send its own copy
of the page to the requester. If the policy is relaxed, CB-W
must be changed so that in response to a downgrade request,
a client will send a copy of the page to the server along with
the acknowledgement. When the server receives the new page
copy it installs it in its memory cache and sends a copy to the
requester.

This scheme works, of course, only if clients are always
available to respond to downgrade requests from the server.
Under the commit-time page send policy, the server has the op-
tion of unilaterally deciding that a client’s cache contents are
invalid and deciding to abort outstanding transactions from a
non-responsive client. Without the commit-time page send pol-
icy, however, this could result in the loss of committed updates.
In a system that uses write-ahead-logging this problem can be
solved by taking advantage of the server’s log. To do so, how-
ever, requires an efficient way of performing redo on individual
pages while normal processing is underway. One possible im-
plementation would be to link all of the log records pertaining
to a particular page backwards through the log, and to have the
server keep track of the most recent log record for each outstand-
ing page. If a page is needed from an unresponsive client, the

651

4VCIkUl.S
Fi ure 15: Throu
(P&ATE, Fast Ne K

hput
work)

XClIUtS

(H&COLD. Fast Network)
Fi ure 16: Throughput

server can then perform redo processing on its copy of the page
by scanning backwards through the linked list of log records for
the page to find the first missing update. It can then process those
records in the forward direction, redoing the missed updates.

A related problem has to do with log space management. The
log is typically implemented as a circular queue in which new
records are appended to the tail and records are removed from the
head when they are no longer needed for recovery. A log record
can be removed from the head of the log if the transaction that
wrote the record completed (committed or aborted) and the copy
of the corresponding page in stable storage is correct with respect
to the logged update and the outcome of the transaction’. When
executing transactions, there is a minimum amount of free log
space that is required in case recovery needs to be performed. If
the required free space is not available, then transactions must be
aborted. If clients are allowed to retain dirty pages indefinitely,
then the server may be unable to garbage collect its log, resulting
in transaction aborts. Therefore, dirty pages must still be copied
back to the server periodically. This can be done by having
clients send back updated copies of pages that exceed a certain
age threshold, or by having the server send requests for copies
of pages that will soon impact its ability to garbage collect the
log. Regardless of which method is employed, as a last resort
the server can always apply selective redo to particular pages in
order to free up log space.

5.1.2 Potential Performance Gains
It should be clear that substantial complexity must be incurred in
order to relax the commit-time page send policy. In this section
we examine the performance improvements that could result
from relaxing this policy. We extended the Local Disk/Avoid
algorithm to allow pages updated by transactions to remain dirty
at clients. We consider two extensions: W/A-KeepMem, which
allows updated pages to remain dirty in a client’s memory cache,
but sends copies to the server when the page is demoted to its
disk cache, and W/A-KeepDisk, which allows dirty pages to
reside in the disk cache as well as in memory. In both extended
algorithms, a copy of a page is sent to the server in response to
a downgrade request for the page, after which the client’s copy
of the page is no longer considered dirty.

‘For a committed trnnsaction the stobte copy of the pnge must reflect the
logged update. For an rborfed one, the stable copy must nof reflect the logged
IlpdiUe

-a LDIA-KeepDisk
a. LWA-KeepMem

aclh(r

(UNIl%RM-WH, Fastsetwork)
Fi ure 17: Throu hput

Figures 15 17 show the throughput of the original and ex-
tended LDIA algorithms for the three workloads studied in See-
tion 4. In these experiments we did not model the periodic
copying of dirty pages to the server for log space reclamation,
and we did not,attempt to study the impact of client failures
on the performance of the scrvcr. As a result, the performance
gains shown in the figures arc upper bounds for what could bc
expected (this is particularly true for the LD/A-KeepDisk algo-
rithm). The throughput results for the PRIVATE workload show
that, as expected, relaxing the commit-time page send policy
can avoid the performance bottleneck that LD/A hits beyorrd
40 clients. LD/A-KeepMem performs about 33% fewer disk
writes with 50 clients than does the original LD/A algorithm.
The LD/A-KeepDisk algorithm performs no disk writes in this
experiment, and thus, it scales linearly within the range of client
populations studied here. Unfortunately, the- results for LD/A-
KeepDisk are unrealistic, because as mentioned above, pages
do eventually have to be sent back to the server to allow log
space to be reclaimed (and to minimize the performance impact
of a client failure). However, a reasonable implementation of
LD/A-KeepDisk should perform fewer server disk writes than
LD/A-KeepMem does here, and thus, could still approach linear
scale-up within this range of client populations.

The throughput results for the HOTCOLD workload (Fip-
ure 16) also show a performance gain from relaxing the commit-
time page send policy. LD/A-KeepMem and LD/A-KcepDisk
each benefit from a reduction in both server disk writes and
server disk reads in this case. The reduction in server disk
reads is due to an increase in the server memory hit rate. As
it turns out, the commit-time page send policy hurts the server
memory hit rate because the server memory becomes filled with
copies of dirty pages that are also cached at clients (this phc-
nomenon was also observed in [FransZb]). In this experiment,
LD/A-KeepDisk reaches a bottleneck at the server CPU due to
messages sent for invalidations, and thus, its performance falls
steeply beyond 20 clients. LD/A-KeepMem has similar message
requirements, but it also has somewhat higher server disk J/O
requirements, and thus it performs at a lower level lhan LD/A-
KeepMem. Similar effects on server disk reads and writes also
occur for the UNIFORM-WI+ workload (Figure 17). In this
case, however, there is a smaller performance bcncfit to relax-
ing the policy. In this workload, the probability of amortizing
writes due to relaxing the policy is low. This is due IO the lack

652

of per-client locality, which makes it likely that a page will be
accessed at another client or dropped from memory (in the case
of the KeepMem algorithm) before it is rewritten at a client, As
a result, the LD/A-KeepMem and LD/A-KeepDisk algorithms
do not provide a reduction in disk writes for this workload; the
gains are the result of a slight reduction in server disk reads.

5.2 On-line vs. Off-line Caches
Up to now, we have focused on systems in which all of the clients
actively use the database. In an actual environment, however,
WC would expect clients to go through periods of activity and
inactivity with rcspcct to the database. In other words, clients
may be “on-line” or “off-lint”. One aspect of client disk caching
that we have not yet addressed is how to treat the data cached
at a client when the client is off-line. If the cache contents are
retained across an off-line period, then when aclient comes back
on-line, the cache will already be in a “warm” state. The reten-
tion of client cache contents across off-line periods is particularly
important for disk caches, as large disk cache contents would be
very expensive to re-establish from scratch when reactivating the
databaqc system. Also, due to the low cost and non-volatility of
disk storage, it is inexpensive and simple to allow the disk cache
contents to persist through an off-line period. One problem that
must be addressed, however, is to ensure that upon re-activation
the client will not access cached data that has gone stale dur-
ing the off-line period. If a detection-based approach to cache
consistency maintcnancc is used, then the retained cache can be
used as is. But, as shown in the performance results of Section 4,
avoidance-based protocols are the recommended approach, and
under such protocols, steps must be taken to ensure the validity
of the cache contents after an off-line period.

The simplest approach is to have each client field invali-
dation requests, even during “off-line” periods. This solution
requires, of course, that clients stay connected to the server.
‘l’hc cost of this approach is that a client process with access
to the cache management data structures must be active during
“off-line” periods, and invalidation messages for the pages in
the inactive caches will still have to be sent by the server and
processed by the off-lint clients. Such overhead is likely to
be acceptable in many environments. If, however, disconnec-
tion is likely during the off-line period, or if database system
overhead during off-line periods is undesirable, then there are
several ways to extend the consistency maintenance techniques
of Section 2.3.2 to allow cache consistency to be re-established
when a client re-activates its local database system.

When a client wishes to go off-line with respect to the
database, it must first return any dirty page copies to the server,
save its disk cache control information on disk, and then inform
the server that it is going off-line. An incremental approach to
rc-establishing cache consistency can be easily implemented by
combining detection and avoidance techniques. As part of the
process of going off-line, a client marks all of its disk cache
pages as “unprotected”. When a client is on-line, it must treat
any unprotected cached page as if a detection-based consistency
maintenance algorithm was being used, checking validity of the
page with the server. Once the validity of a page is established,
the page is marked as “protected” and thereafter, can be accessed
using the normal avoidance-based protocol.

An alternative approach to re-establishing cache consistency

is to have the server keep track of updates to the pages that are
resident in off-line caches. When an off-line client wishes to
come back on-line, it sends a message to the server, and the
server responds with information that allows the client to re-
establish the validity of its cache contents. This information
can be: 1) a list indicating the pages to invalidate, 2) actual log
records for the updates that were applied to the off-line pages
by other clients, or 3) copies of t@e pages that changed during
the off-line period. The tradeoffs between option 1 and the
others are similar to those that arise when deciding between
invalidation or propagation of updates for on-line caches (as
discussed in Section 2.3.2). Therefore, we expect that sending a
list of invalidations will typically have the best performance.

The incremental approach has the advantage that clients can
begin processing immediately after coming on-line; however, it
has the disadvantage of having to contact the server for validity
checks (assuming the use of the LD/A algorithm, for example),
so performance may be reduced during the initial period after
coming back on-line. In contrast, the all-at-once approach has
the advantage that the disk caches are quickly cleared of invalid
data, resulting in a larger effective disk cache. Also, less com-
munication with the server is required to re-establish to cache
consistency than with the incremental approach. The disadvan-
tages of the all-at-once approach are that the server needs to
perform bookkeeping for off-line clients, and that there will be
a delay between the time that a client comes back on-line and
the time that it can begin processing database transactions.

Several projects have performed work on deferred consis-
tency maintenance that is related to the work here. The ADMSf
system [Rous86] uses an incremental method to update query
results that are cached at clients. Updates are performed at
clients prior to executing a query at a client. As discussed in
Section 1.1, the performance of a similar scheme is studied in
[Deli92]. Techniques to reduce update overhead for caches in
information retrieval systems are addressed in [Alon90]. These
techniques are based on quasi-copies; i.e., copies whose val-
ues are allowed to diverge from the value of the primary copy.
Finally, distributed file systems that support disconnected opcr-
ation, such as CODA [Kist91] and Ficus [Guy91], must address
issues of validating local caches after a disconnected period.
Such systems do not support transaction semantics, however,
and require user-interaction to resolve some classes of conflicts.

6 Conclusions and Future Work
In this paper we have demonstrated that client disks can provide
substantial performance benefits when employed in an extended
cache architecture. We described and studied four alternative
algorithms. The performance study showed that for small client
populations, the server memory was typically less expensive to
access than the local client disk caches, but that this order in-
verted as clients were added to the system. In terms of disk
cache consistency maintenance, algorithms that avoid access to
stale data through the use of invalidations were found, in most
cases, to perform better than algorithms that detect access to
stale pages. This was due primarily to a larger effective disk
cache size for avoidance-based algorithms. As expected, how-
ever, under high levels of read-write sharing, the larger number
of messages due to consistency maintenance caused the perfor-
mance of the avoidance-based algorithms to suffer somewhat.

653

However, in the cases where avoidance was seen to perform
worse than detection, the relative advantage of disk caching in
general was low for all of the algorithms. We expect that disk
caching will have the greatest benefits in configurations with
large client populations and low levels of read-write sharing.
For such envrionments, Local Disk/Avoid (LD/A) appears to be
the most promising of the four algorithms. Dynamic extensions
of LD/A can be developed to better handle cases with small
client populations.

The effectiveness of client disk caching in reducing the de-
mand for server disk reads resulted in an increase in the relative
impact of server disk writes on performance. To address this, we
investigated ways of relaxing the policy of sending copies of up-
dated pages to the server at commit-time. Although relaxing the
policy has serious complexity implications for database system
implementation, it appears that many of the problems can be
solved by extending standard write-ahcad-logging techniques.
Using simple extensions of the LD/A algorithm, we found that
the potential performance and scalability benefits of allowing
updated pages to remain dirty in client memory caches and/or
disk caches can be quite high. Another issue raised by the large
capacity of client disk caches is the importance of preserving the
cache contents across periods of database system inactivity. We
described several approaches that allow clients to re-establish
the validity of their cache contenls after an “off-line” period.

The use of client disk caches is related to our earlier work
on global memory management [Fran92bl, as both techniques
utilize client resources to offload the server disk. Client disk
caching is likely to be easier to add to an existing system bc-
cause the disk is treated as an extension of the memory cache,
while global memory management requires new communication
paths. Also, client disk caching is likely to be more effective
than global memory in situations where clients access primarily
private data. In contrast, global memory may be more useful for
situations in which much data is shared among the clients-par-
ticularly if clients often read data that is written by other clients.
The two techniques are complementary and could be integrated
in a single system. To do so, however, several interesting perfor-
mance issues will need to be addressed. For example, it is not
obvious where to place the various remote client resources in
the hierarchy search order. This is one avenue for future work.

For longer-term future work, we plan to investigate the op-
portunities raised by the non-volatility of client disks. In par-
ticular, we plan to investigate disconnected operation, as the
off-line/on-line issues raised in Section 5.2 will be of prime im-
portance in an environment where clients can disconnect from
the rest of the database system. We also plan to study the imple-
mentation of logging and crash recovery algorithms that enable
the relaxation of the commit-time page send policy.

References
[AIon!N] R. Alonso, D. Barbara, H. Garcia-Molina, “Data Caching
Issues in an Information Retrieval System”, ACM TODS, 15(3), 1990.

[Care911 M. Carey, M. Franklin, M. Livny, and E. Shekita. “Data
Caching Tradeoffs in Client-Server DBMS Architectures”, Proc. ACM
SlGUOD Conf.. Denver, June. 199 I.

[Dan901 A. Dan, D. Dias, P. Yu. ‘7%~ Effect of Skewed Data Access
on Buffer Hits and Data Contention in a Data Sharing Environment”,
Proc. 16th VLDf? Con&, Brishilnc, Australia, Aug., 1990.

[Dan921 A. Dan, P. Yu, “Performance Analysis of Coherency Control
Policies through Lock Retention”,
Diego, June, 1992.

Proc. ACM SIGMOD t-o& San

[Deli921 A. Delis, N. Rouss~poulos, “Performance and Scalability 01
Client-Server Database Architectures”, Ptw. l8rh Vl..Dll C,mf:, Van-
couver, Canada, Aug., 1992.

[Deux91] 0. Dcux c’f cd.. “The 02 System”,
ACM, 34(lO), OCI., 1991.

Comtnr,nit~rriions of rhr

[DeWi D. Dewitt. l? Futtcrsack. D. Maicr. II Vclcz, “A Study
of Three Alternative Workstation-Server Architectures for Ohjcct-
Oriented Database Systems”, Pruc. l6rh VLDE ConJ. Brishanc. &IS-
tralia, Aug., 1990.

[Fran92aJ M. Franklin. M. Carey, “Client-Server Caching Revisilcd”.
Pnx. of the lnt’l Workshop on Distributed Objwt Mgmt.. Edmonton,
Canada, Aug., 1992.

[Fran92b] M. Franklin, M. Carey, and M. Livny. “Global Memory
Management in Client-Server DBMS Architectures”, PIX. 18th VLDU
Confi, Vancouver, B.C., Canada, Aug., 1992.

[Fran92c] M. Franklin, M. Zwilling, C. Tan. M. Carey, and D. DeWill,
“Crash Recovery in Client-Server EXODUS”, Prw. ACM SlGMOl)
ConJ, San Diego, June, 1992.

[Gray931 J. Gray, A. Reuter, Transaction Processing: Cortcepr.~ untl
Techniques, Morgan Kaufmann, San Mateo, CA, 1993.

[Guy911 R. Guy, “Ficus: A Very Large Scale Reliable Distrihutctl Filr
System”, Ph.D. Dissertation, UCL4 TR CSD-910018. June. 1991.

[Howa J. Howard, et al, “Scale and Performance in a Distribulctl
File System”, ACM TOC’S. 6(l), Feb., 1988.

[Kim901 W. Kim, er al.. “The Architccturc of the ORION NCXI-
Generation Database System,” IEEE TKDE. 2(I), Mar., I990.

[Kist911 J. Kistler, M. Satyanarayanan, “Disconncctcd Operation in thr
Coda File System”, Proc. 13th SOSP Conf., OCI., I99 I.

[Lamb911 C. Lamb, G. Landis, J. Orenstein. and D. Wcinrcb, “Thr
ObjectStore Database System”, CACM. 34(10), Oct., 1991.

[Livnl] M. Livny, IkNrt Usrr f Guide, Version I .O, Camp. Sci. Dcpc..
Univ. of Wisconsin-Madison, 1988.

[Moba91] C. Mohan, 1. Narang, “Recovery and Coherency-Control
Protocols for Fast Intersystem Page Transfer and Fine-Granularity
Locking in a Shared DisksTransaction Environmenl”, Proc. 17th VLDl8
Con,, Barcelona, Sept., 199 I.

[Moha92] C. Mohan, rtal., “ARIES: A Transaction Method Supporting
Fine-Granularity Locking and Partial Rollbacks Using Write-Ahead
Logging”, ACM TODS, 17(l). Mar., 1992.

[Nels88] M. Nelson, B. Welch, J. Ousterhout, “Caching in the Sprite
Network File System”, ACM TOCS 6(l), Feb., 1988.

[Objdl] Objectivity Inc., Objectivity/DR Documentorion V 1. I99 I.

[Onto921 ONTOS Inc., ONTOS DB 2.2 Referewr Manual. 1992.

[StonSl] M. Stonebraker. “Operating System Support for Datntxlsc
Management”, CACM. 24(7), 1981.

[Rous86] N. Roussopoulos, H. Kang, “Principles andTechniques in the
Design of ADMS+-“, 1EEE Computer, Dec., 1986.

l%d82] 1. Traiger, “Virtual Memory Management for Database Sys-
tems”, Operating Systems Review, 16(4). Oct.. 1982.

[Vers91] Versant Object Technology, VERSANT Systcwt Re~ercww
Manual, Release 1.6. Menlo Park, CA, I99 I.

[Wang911 Y. Wang and L. Rowe, “Cache Consistency and Concurrency
Control in a Client/Server DBMS Architecture”, Proc. ACM SlGMOD
Confi, Denver, June. 1991.

[Wilk90] W. Wilkinson, and M. Neimat. “Maintaining Consistency of
Client Cached Data”, Proc. 16th VLDII Conf., Brishane, Aug., 1990.

654

