Reading a Set of Disk Pages*

Bernhard Seeger

Abstract

The problem studied in this paper is as follows. Consider
a file stored in contignous space on disk. Given a list of
pages to be retrieved from the file, what is the fastest way
of retrieving them? It is assumed that adjacent pages on
disk can be read with a single read request. The straight-
forward solution is to read the desired pages one by one.
However, if two or more pages are located close to each
other it may be faster to read them with a single read
request, possibly even reading some intervening “empty”
pages. It is shown that finding an optimal read sched-
ule is equivalent to finding the shortest path in a certain
graph. A very simple approximate algorithm is then intro-
duced and (experimentally) shown to produce schedules
that are close to optimal. The expected cost of schedules
produced by this algorithm is derived. [t is found that
significant speed-up can be achieved by the simple mech-
anism of using additional baffer space and issuing “large
reads” whenever it is advantageons to do so.

1 Imtroduction

Reading some subset of the pages of a file is a fre-
guent operation in database systemns. This oceurs,

*This work was supported by grants from Deutsche
Forschungsgemeinschaft, Germany, the Natural Science and
Engineering Research Council, Canada and the Information
Technology Research Centre, Canada.

Authors’ address: Bernhard Seeger, Institut fiir Informatik,
Universitat Miinchen, Leopoldstr. 11h, D-8000 Miinchen, Fed-
eral Republic of Germany; Per-Ake .Larson, Department of
Computer Science, University of Waterloo, Waterloo, Ontario,
Canada N2L 3G1; Ron McFadyen, Department of Computer
Science, University of Manitoba, Winnipeg, Manitoba, Canada

R3T 2N2.

Permission to copy withoul fer all or part of this malerial is
granted pronded that the copies are not made or distridbuled
for direct commercial advantage, the VLDB copyright notiec
and the title of the publication and ils date appear, and nolire
ts given thatl copying is by permission of the Very Large Dala
Base Endowment. To copy oltherwise, or Lo republish, requires
a fee and/or special permission from the Endowment.

Proceedings of the 19th VLDB C«)nference,
Dublin, Ireland, 1993.

Per-Ake Larson

592

Ron McFadyen

for example, when a secondary index is used for the
evaluation of a selection query. The simplest way of
performing this operation is to sean the index and,
for cach qualifying entry in the index, retrieve the
regrtired page from the file, This has the drawback
that the same page may be retrieved more than onee.
An improvement on this scheme is to first create a
list of which pages have to be retrieved, eliminate du-
plicates frotn this list, and then retrieve the required
pages one at a time. If two or more required pages
happen to be located close to each other, (for exam-
ple, on the same disk track), total retrieval tinme may
be reduced if all of them are read with a single read
request, instead of issuing wultiple requests, each one
reading a single page. This requires additional buffer
space, of course,

The problem studied in this paper is as follows.
Given a list of pages to be retrieved frony afile, what
is the fastest way of retricving them? 16 is assnned
that adjacent. pages on disk can be read with a single
read request (also called set-oriented 170 [WeiR!)]).
The cost of reading a page consists of two parts: po-
sittoning time and transfer time (time o transfer o
page from secondary storage to main memory). Typ
ically, (average) positioning time is much higher than
transfer time. The idea is to reduce the number of
read requests (positioning operations) by attempting
to read multiple target pages with one request. To
achieve this, we may even read some pages that are
not absolutely required if this reduces the overall re
trieval time, Assuming concurrent read requests, this
policy might however result. in a lower throughput
of the disk, i.e. the expected munber of satisfied re-
quests per second may decrease.

The rest of the paper is organized as follows. In see-
tion two, we define the problem more precisely and
introduce onr cost. model. i section three, we show
that finding an optimal read schedule is equivalent.
to finding the shortest path in a certain graph. In
section four, we present a very simple algorithm for
reading a set. of pages and (experimmentally) show that
its performance is close to optimal. In section five,

we analyze the expeeted cost of the read schedules
produced by this algorithim,. We begin with two spe-
cial cases and derive simple closed formulas for the
expected cost. These two cases provide upper and
fower bounds on the expected cost. We then ana-
lyze the general case and derive a recurrence relation
which can be used to numerically compute the ex-
peeted cost. Section six extends the model to vector
reads (scatter-reads). Section seven sununarizes the
results and concludes the paper.

We liave not found any papers dealing with the ex-
act problem studied here, However, several related
problems have been studied previously. Several au-
thors considered the problem of estimating the num-
ber of target pages given the number of records in
the response set. [Yao77) and [WWS 83] are the most
important references on this problem. Related prob-
lems are discussed in several other papers, such as
prefetching [Smi 78], batching of queries [Pal 85] and
buffering [Pal 88]. The work by Weikui [Weig9] and
Hutflesz et al. [HSW 88] is most closely related to
the work reported in this paper. In [WeiRY)] reading
cotuplex objects using “large” requests was experi-
mentally shown to pay ofl in comparison to the tradi-
tional approach. In order to support range queries of-
ficiently, a nudtidimensional access method that pre-
serves the ordering of data on disk was proposed in
[HHSW 8] (sce also further references in that paper).
Pages are stored close together on disk when their
data is close together in the data space (domain).
I'his property results in reducing the positioning op-
erations of a range query. However, only target pages
are read.

2 Problem Definition

Consider a file F consisting of a contiguous sequence
of pages numbered |,..., N. Pages are of fixed size
and cach page can store a maximumof ¢ records (page
capacity). A query seleets some subset of the records
stored in the file (the response set of the gquery). A
page containing at least one record in the response set.
i called a target page and the set of all target pages
is called the targel sel. A page containing no records
in the response set (and thus not in the target set) is
called an emply page. To compute the result of the
query, every target page must to be read. We assuine
that the complete target set is known before actual
retrieval of the pages begins. This situation occurs
relatively frequently in query processing. Retrieval
by means of an index is the most typical example
batt there are other situations where the target set is
known before retrieval begins.

The (elapsed) time for a read request consists of
positioning time and transfer time, The positioning
time is the time to move to the right position in the

593

P target file

N mumnber of pages in the file

¢ capacity of a page (in records)

() target set (pages to retrieve)

b number of target pages

M Imaximuin gap size

p number of buffer pages

P ratio of positioning time to transfer time

Table.1: List of symbols

file (seek time and rotational delay). The transfer
time is simply the time to transfer the requested pages
from secondary storage into main memory. We make
the simplifying assumption that the positioning time
is constant. We take the time required to transfer a
page as the cost unit and express the cost in terms of
page transfers. Let P> denote the ratio of positioning
time to transfer time. The cost of a read request
transferring f pages is then P + f (transfer units).

Whenever a sequence of pages is read into main
wernory, a sufficiently large buffer area must be avail-
able. We assume that buffer space for at most p
pages, p > 1, is available. The problem then is how
to minimize the overall cost of reading the required
pages into main memory. An obvious way of reducing
the cost is as follows: whenever there is a contiguous
sequence of target pages (at most p pages), read all of
them into main memory with a single request. If the
transfer time is significantly less than the position-
ing time, it may be worthwhile reading some empty
pages if this reduces the number of read requests. For
exatnple, consider a situation where a target page is
followed by an empty page which is followed by a tar-
get. page. Overall cost is (alinost always) reduced if all
three pages are read with a single request, instead of
reading the two target pages using separate requests.

In many operating systems, in particular several
variants of UNIX, there are two suitable operations
for iplementing read requests. An ordinary rcad
transfers a contigious sequence of pages from the disk
into a contigious area of main memory. A veclor read
can be used to transfer the pages into several non-
contiguous buffers. The-advantage of a vector read is
that all empty pages of a read request can be assigned
to the same position in the buffer. Thus, at most one
page of the buffer is used for collecting the empty
pages of a read request. We first analyze the case
of ordinary reads in sections 2-5. The case of vector
reads is analyzed in section 6.

Definition 2.1 Lel Q be a subset of the set F =
{1,...,N} (the file} and p, p > 1, an inleger (repre-
senting the buffer capacity). Let the tuple (s,t) denote

a read requesl reading L pages beginning from page s
Then a sequence & = ((s1,41)y ..., (Snuy tm)) 18 @ read

schedule for Q, if
[t; <p foreveryie {l....,m}

2. for every q € Q, there cxists a {uple (s;,8;) in o
such that s; < q < s; + 4

The read schedule 1s ordered | if
3. s; < si31 foreveryie {1,...,m— 1}

Example: Consider the file and target set illustrated
below. One indicates a target page and zero indicates
an empty page.

(1ol 1ToJoliftTof1ToJoJo] 1] ol 1]

Assuming a buffer with 4 pages, ((1,3), (6,2), (9.1),
(13,4)) is an example of an ordered read schedule.
This schedule is interpreted as follows: the first read
request reads pages 1,2 and 3, the second reads pages
6 and 7, and so on.

Definition 2.2 Let (/(8) denole lhe cost of a read
schedule & and A the set of all possible read schedules
for a given largel sel () and buffer size p. The sibset
reading problem is then lo find a read schedule 6,
such that

C(Bopt) = min C'(8) (1

seA

Up to section 6, we assume that the cost of a read
schedule 8 = ((s1,t1), .-+, (5m,tm)) is computed as

m

C@E) =Y (P+t)

i=1

(2)

This cost function is admittedly siinplistic, but bet-
ter than simply counting the number of pages read.
A more detailed cost model would have to consider
the geometry of the disk, the actual layout of the file
on the disk, the seek times and rotational delays in-
curred, and the time to process the records on a page.

3 Optimal Read Schedules

In this section, we show that an optimal read sched-
ule can be found by computing the shortest path in
an appropriately constructed graph. The graph is
acyclic with positive edge weights and any standard
shortest-path algorithms can be used. We first state
two lemmas which show that only a restricted class
of read schedules need he considered. Note, however,
that the leinrnas do not necessarily hold uuder a dif-
ferent cost model.

594

Lemma 3.1 Any optimal read schedule, b,
(51, 01), oo (5, i), has the Jollowing lLwo proper-
ltes:

Iosj 4+ 1 < spoor s+t < 85 for cvery i j €

{h,...om}, i #j

2 foreveryi€ {1,... ,m}, s5i €Q and s; +1;, — 1 €

Q

In other words, an optitnal read schedule st have
non-overlapping reads and every read request must
hegin and cud with a target page. Both propertics
are rather obvions so we will only outline the proof.
Proof: T'o prove that the first property must be sat-
isfied, assume that a schedule eontains two overlap-
ping reads: (s;,8;) and (s;,4;). I (54,45) i5 a subset
of (sj,4;) (or vice versa), the cost can be reduced
by eliminating (s;, ;) from the schedule. If the two
reads overlap, but neither is a subset of the other,
the transfer cost is reduced if the connnon pages arce
eliminated from one of the reads. N follows that a
read schediile containing overlapping reads cannot be
optimal. ,

If a read request (s;,8;) begins with an empty page,
we can reduce the transfer cost sitnply by changing it
to (s; + 1, 1; —). The same applies if a read request
ends with an empty page. 1t follows that an optimal
schiedule st sadisly property two, O

Lemma 3.2 Lel & be a read schedule salisfying the
properties of the previous lemma and &' be the equiv-
alent ordered schedule, that is, conlaining exactly the
same read requesls bul listed in ascending order on
the first component (s;). Then (!(8) = (/(8).

Proof: The prool follows itnmediately from the ob-
servalion that ('(#') is simply a reordering of the
terins in (/(6). O

An ordered schiedule satisfying the two properties of
Letuma 3.1 will be called a regular schedule. 'Uhe twao
lemras guarantee that we need only consider regular
schedules. To find an optimal schedule, we create a
schedule graph from which all regular read schedules
can be determined. The schedule graph is ercated as
follows:

1. There is one node for each member (page) of the
taget scl Q. The node corresponding to member
(page) ¢ is labeled 4. There is one (initial) node
labeled 0.

2. Let i denote a node and j the node with the next
higher node label. For every node i) there is an
edge

(#) from node 7 to node j. The weight of the

edge is PP+ 1.

file and target set

—
—
—~—
—
—
—

OfLFEH{OfTHOJOJOFI IO}

Target. set and corresponding schedule

Figure |:
graph

(b) frow node i to every node & such that & —
J o pj <k < N. The weight of the edge
is P4+ (k—J+1)

3. There are no other nodes and edges.

Let M denote the maximum node label oceurring
in the graph. Every path fromn node 0 to node M
represents a read schedule and each edge in the path
represents a read request. Consider an edge from a
node i to a node k. If there are no nodes hetween i
and k, that is, no nodes with labels in the range i+ 1
to k& — 1, then the edge represents the read request
(k, 1). Otherwise, the edge represent the read request
(J, (k—j+ 1)) where j denotes the node with the next
higher label after 4. In other words, each edge points
to the last page of a read request. The suwn of the
edge weights of a path is equal to the cost of the read
schedule,

An example target set and schedule graph are
shown in Fig. 1. The file consists of 16 pages and
there are 8 target pages. The buffer is assumed to
have a capacity of 4 pages (p = 4). If, for example, a
reaul request ends at page 3, there are three possibil-
ities for the next request. First, we can read page 6
ouly, requiring the transfer of one page. Second, we
can read pages 6 and 7, requiring the transfer of two
pages. Third, we can read pages 6,7,8 and 9, requir-
ing the transfer of four pages. Note that this request
reads page 8 although it is an empty page. The short-
est path for P = 2, and thus the optimal schedule, is
indicated by bold edges.

Theorem 3.3 - The shortest path from node 0 to node
M in the schedule graph defines an optimal read

“ schedule,

595

Proof: To prove tlie theorem, we must first prove
that (a) every path from node 0 to node M represents
a regular schedule and (b) every regular schedule is
represented in the graph. Part (a) follows directly
from the construction of the graph. Hence, we need
only show that every regular read schedule is repre-
sented by a path in the graph.

Assume that there exists a regular read schedule
which is not represented by any path in the graph.
Then the schedule must contain at least one read re-
quest for which there is no corresponding edge in the
graph. Assume that this read request begins with
page j and ends with page k&, k& > j. Because the
schedule is regular (property 2 of Lemma 3.1), pages
J and k must be target pages and consequently the
graph also contains a node j and a node k. Let ¢
denote the node immediately preceding node j. An
edge from node ¢ to node k& would represent the read
request and we ust show that such an edge exists.
There are two case to consider: j = k and j < k. For
the case j = k, the existence of the edge follows from
2(a) in the definition of the graph. For the case j < k,
we note that k — 7 < p-must be true. Otherwise the
schiedule would be invalid. From this observation and
point 2(b) of the definition of the graph, it follows
that there exists an edge from node 7 to node k. This
contradicts the assumption that the read request is
not represented in the graph.

The construction of the graph guarantees that
there is always an edge between two adjacent nodes.
Hence, at least one path from node 0 to node M al-
ways exists. It follows that the shortest path from
node 0 to node M defines an optimal read schedule.
]

Once the graph has been constructed, we can use
any shortest-path algorithm to find an optimal read
schedule. However, it is questionable whether it is
worthwhile in practice to compute an optimal sched-
ule. The model ignores many factors, for example,
queuing delays and time to process records. Hence,
a theoretically optimal schedule may not in prac-
tice be optimal. Furthermore, we cannot estimate
the performance of schedules produced by this algo-
rithm (without knowing the exact layout of the target
set), something which is needed for query optimiza-
tion purposes. In the next section, we present a sim-
ple algorithm which produces read schedules that are
very close to optirmal.

4 Simplified Algorithm

The basic idea of the algorithin is sunple: start read-
ing from the next target page. stop reading either at
the last target page that fits into the buffer area or
at the last target page before a long stretch of empty
pages. This algorithm is based on the observation
that it is often cheaper to read a few emnpty pages
than to skip them. A sequence of empty pages is
called a gap. Let m denote the maximuim sequence
of empty pages that will be read, that is, when a gap
of m+1 or more empty pages is encountered, the read
request ends with the last target page before the gap.

Algorithm ReadSubset(F: File; Q: TargetSet; B: Buffer;
p: BfrSize; m: GapSize);
BEGIN '
end = 0
REPEAT
start := NextTargetPage(F. Q, end);
prev ;= start;
LOOP
next := NextTargetPage(F, Q, prev);
IF (next > m + 1 + prev) OR (next > p + start)
OR (next > N) THEN
end := prev; EXIT
END:;
prev = next;
END;
ReadlntoBuffer(F, B, start, end);
Process records in B;
UNTIL (next > N);
END ReadSubset;

The function NeztTargetPage(F,(),j) is assued to
compute the position of the first target page after
page j. If none exists, it returns a value greater than
N. The procedure ReadintoBuffer(F, B, start, end)
reads pages start, start + 1, ..., end from file F into
buffer B. The first and the last page of a read request,
are always target pages. The algorithm adds pages
to the read request until one of three conditions is
satisfied: a gap of (m + 1) or more empty pages is
found, the next target page is past the end of the
buffer, or the end of the file has been reached.

This simple algorithm does not guarantee optimal
read schedules. We have performed extensive simn-
lation experiments which indicate that the schedules
produced are close to optimal. The results of one set
of experiments are listed in Table 2. The results
are for a file with 100,000 pages and a target set of
10,000 (randomly chosen) pages. The figures are av-
erages of 20 experiments. The table lists the cost. per
target page of schedules produced by ReadSubset, the
cost of optimal schedules per target page and the rel-
ative difference. The cost of schedules produced by
ReadSubset depends on the value of the maximmum gap
size (). For cach buffer size (p), the value of 1 was

596

p_ ReadSubsct Optimum Diff.(%)
2 10.079 10.079 0.0000
4 8.883 8.866 0.1948
6 8.206 8.1h3 0.60h27
8 7.818 7.715 1.3372
10 7.08D 7.4541 1.7hH2
12 7.415 7.293 1.6660
14 7.299 7.184 1.5967
16 7.209 7.105 1.46649
18 7.144 7.046 1.3847
20 7.090 7.004 1.2371
24 7.019 6.948 1.0190
28 6.971 6.914 .8242

Table 2: Cost. (per target page) of read schedules pro-
duced by ReadSubset compared with cost of optimal
schedules. (7 = 10,0 = 0.1, N = 100, 000)

chosen so as to produce the hest schedule (ininimal
cost). As shown in the table, the (best) read sched
ules produced by algorithin ReadSubsct were within
2% of the optitnmm, Stmilar results were obtained
from other experiments.

The behavior of the algorithm depends on the
buffer size (p) and maximum gap size (m). Five dif:
ferent. cases are discussed below. We illustrate the
discussion using the exatple file and target set shown
in Figure 4. The value of P is assumned to he 2,

l.p=1
Setting p = | produces schedules reading one
target page al a time, that is, the traditional
approach. The cost of the schedule produced for
the example file is 24 (8 2 4+ 8).

2.m=10, p=:

An unlimited amount of buffer space is assumed.
This parameter setting results in schedules where
each request reads a contiguous seguence (clus
ter) of target pages. 'The algorithin takes advan-
tage of whatever clustering there is in the file hut
never reads an empty page. The cost of the e
sulting schedule is 20 (6 % 2 4+ 8). This case was
analyzed in [McF 90].

J3.0<m < oo, p= o0

This version also assutues an unlinited amount
of buffer space. To reduce the nunber of posi-
tioning operations, (short) gaps of cimpty pages
are read instead of skipped. The value of e af
fects the cost of the read schedules produced.
Setting mn 2 produces a read schedule with
cost 17 (2% 24 13) for our example file.

4. m=no, L <p<o:
A buffer of limited size is used but there s no

- — H p—— m=2 p=T 3P+ 12
t 4 — M m=oo,p="7 3"+ 14
| 4 b 1 m=2 p=oc: 2I"+13
P b mm =0 6P 48
i H A H A r= 8P

) (3] 000 0 0 0 O D K D

Figure 2: Example file and read schedules for different,
parameler settings

restriction on the length of gaps. In other words,
arequest reads every page up to and including
the last target page covered by the buffer. For
p = 7, we obtain a schedule with cost 20 (3% 2+
14} for our example file,

b m<oao I<p< oo

This is the most general case: a buffer of litnited
size is available and the maximum gap size is
also limited. For p = 7 and m = 2, the resulting
schedule has a cost of 18 (3%2+ 12).

5 Analysis

Iu this section, we analyze the expected cost of read
schedules produced by algorithin ReadSubset, tirst for
two special cases and then the general case. The anal-
ysis is struetured in this way because (a) simple closed
formulas can be derived for the two special cases but
not for the general case and (b) the cost formulas for
the two special cases are upper and lower bounds for
the general case. The analysis is asymptotic, that is,
for N.b — oo and keeping «« = b/N constant. The
cost is expressed as the expected cost per target page.
Target pages are assuted to be randowly distributed
over the file, The probability of a page being a target
page s .

5.1 Unlimited Gaps, Limited Buffers
We hegin by constdering the case 1 = oo and p < no.
We firs. derive the expected number of read requests
and then the expected number of pages transferred
per request,

The expected number of largel pages transferred
by a read request is 1 4+ (p — Dev. The first page
is always a target page. Each one of the remaining
p — | pages covered by the buffer is a target page

597

with probability «. The number of read requests per
target page is then simply

1
1+ (p- .l)(v

A read request transfers some number of pages (tar-
get. pages and empty pages). The number of pages
transferred equals p minus the nunber of empty pages
located at the end of the buffer. The probability u;
that there are exactly 7 empty pages at the end of the
buffer is given by

" = { afl = a)

(1 - a)r—!
The expected number of emupty pages at the end of
the buffer is then .

fori<p-—1
fori=p-—1

p=1
F = Ziu,-
i=0
p=2
= (p=DU=al" +D a(l—a)i
i=]

(p-1)(1- (v)”—l +

(—1;22(1 — (=)l 2 (p—2a(l = a)P™?)

v

L - (1= ™)

41

The expected number of pages actually transferred
is p — F. Combining the expected nurnber of read
requests and the number of pages transferred, we ob-
tain the following formula for the expected cost per
target page:

P+p- -l%ﬂ(l — (1 =a)P™)
14+ (p— o

cost, p,o0) 1= 3)

In Figure 3 the expected cost is plotted as a func-
tion of the buffer size. The positioning cost and
transfer cost are also shown to illustrate the behav-
ior of the two components of the cost function. As
expecled, the positioning cost decreases (fewer re-
yuests) and the transfer cost increases (reading more
cmpty pages) with the buffer size. The cost func-
tion has a global minimum. In particular, very large
buffers result in a higher overall cost because the num-
her of elupty pages read increases.

In Figure 4, the expected cost is plotted for three
different buffer sizes (p = 1,5, 10). The figure clearly
shows the benefit of using a larger buffer. For o = 0.2,
increasing the buffer size from one page to 10 pages,
reduces the expected cost by 50%.

For the case illustrated in Figure 3, the expected
cost bas a mimimum. The optimal buffer size cannot
be derived analytically but can be computed numer-
ically quite easily. Table 3 shows the optimal buffer

12 T T T T | T T
Total cost ©—
10 Positioning cost —— -

Transfer cost =

Cost 6

0 5 10 15 20 25 30 35 40

Buffer size (pages)

Figure 3: cost(0.1,p, o) in page transfers as a func-
tion of buffer size (P = 10)

T T T T
14 | p=1 -©—
p=>5 —4—
p=10 S
12 | -]

Cost 10

0 0.04 0.08 0.12 0.16 0.2

Figure 4: cost(c, p, 00) in page transfers as a function
of o, (p=1,5,10, P = 10)

o« (in %) p* | Records in the response set (in %)

c="H c=10 =20 =40

1.0 121 0.2010 0.1005 0.0503 0.020H1
2.0 12| 0.4041 0.2020 0.1010 0.0505
4.0 12| 0.8164 0.4082 0.2041 0.102]
6.0 12] 1.2375 0.6188 0.3094 0.1547
8.0 13| 1.6676 0.8338 04169 0.2085
10,0 141 21072 1.0536 0.5268 0.26:34
120 15| 2.5567 1.2783 0.6392 0.3196
14.0 18 | 3.0165 1.5082 0.7541 0.3771
15.0 20| 3.2504 1.6252 0.8126 0.4063
16.0 25 | 3.4871 1.7436 O.B7IR 0.435H4

17.0 oo | 3.7266 1.8643 0.9316 0.4608

Table 3: Optimal buffer size (p*) as a function of o,
(P = 10)

size as a function of the fraction of target pages. We
have also listed, for a few different page capacitios,
the fraction of records in the response set that corre-
sponds to each fraction of target pages. These results
were obtained using Yao's formula [Yao77]. At first,
the optimal buffer size increases slowly with increas
ing . However, when « increases to 17%, the lowest
cost. occurs for p = oo, This siiuply means that for
large o the best policy is to read the whole file with
one read request. In practice, this translates to read
ing the file sequentially using (very) large bulfers,

The results are somewhat surprising if we consider
the fraction of records in the response set needed to
exceed this critical point. For examnple, when ¢ = 20,
our model indicates that the cheapest way to answer a
query s to scan the whole file even when the response
set. contains as little at 1% of the records.

5.2 Limited Gaps, Unlimited Buffer

Next we consider the case p= oo and 0 < m < oo, A
gap is a contiguous sequence of empty pages delimited
on the left, and the right by a target page. A cluster
is a contiguous sequence of pages with the following
properties:

e the first and the last page of the sequence are
target pages

e the sequence does not contain any single gap
longer than m

o the sequence is delimited on the left and the right
by gaps strictly longer than m

Because p = 00, each read request will read exactly
one cluster. 'To calculate the expected cost of a read
schedule, we calculate the expected number of clus-
ters and their expected length.

Consider an arbitrary page in the file. This page
hegins a cluster 10 il is a target page and to the left
of it is a gap longer than m. Hence, the probability
of a page beginning a chaster is

2 ol = Vo = ol = o)+

J>m

The expected length of a cluster, including the
gap separating it from the next clusters, is then
1/(ev(1 = o)™ F1). The next step is to compute the
expected length of the gap separating two cluster.
The probability of the gap being of length m+ 1 4,
J 20, is a(l =). The expected length of the gap
15 therefore

YomA 1+ el —aY =m+1/a

izv

The pages which are part of the gap will not he read.
The expected length of an m-cluster, counting only
the pages read, is therefore

1
re(] = r)m!

ty

~m-—-

The expected cost per page in the file is then

| |

(1= a)ym+l " t—v)

ol =)t 4
which can be siimplified to

aP(1 =) gl (1 =)™ (1 4 me)

Finally, by dividing by «, we obtain the expected cost
per target page

- ”)m-{-l + (4)
(1= (1 = o)™ (1 4 ma))

{‘nsl(u, o0, m)

Pl
1
(44

In Figure 5, the expected cost has been plotted as a
function of m. Positioning and transfer costs are also
plotted to show their contribution to the total cost.
The cost function has a minimum at about m =9 for
the case shown in the figure,

For the purpose of finding the minimum of the
function ecost{r, o0, m), (for a given value of «), we
can treat m as begin defined over the real numbers,
The value of m that minimizes the function, can then
he determined by taking the derivate of the function
with respect to m. If m* denotes the real value mini-
mizing the function, the optimal integer value is then
cither [m*] or [m*].

1 1
- —)— —_— -
mto= F a In(l-w«)
= P- l-———l-nr—()((v")
2 12 '

599

Total cost
Positioning cost —+—
Transfer cost £

]
7
6
Cost 5
4
3
2

.
.

0 1 1 i i L
] 5 10 15 20 25 30 35 40
Maximum gap size (m)
Figure 5: cost(0.1, 00, m} as a function of m, (F =

10)

Figure 6 shows the expect cost as a function of
v, for four different values of m. For P 10, the
integer minimum for m is either 9 or 10. The graph
corresponding to cost(c, 00, 20) is clearly above the
one for cost(«w,00,9).

5.3 Limited Gaps, Limited Buffer

In this section we analyze the general case of the algo-
rithin, that is, the case m < oo and p < oo. Consider
a read request filling some number of pages in the
huffer. Let Q(7,7), | <1i,j < p, denote the probabil-
ity that page j in the buffer receives the i-th target
page read by this request. Since page j in the buffer
can receive at most the j-th target page, it follows
(i, 7) = 0 for ¢ > j. Furthermore, the first page is
always a target page. Hence, for i = 1 we have

Q=1

Now consider the case i > 1 and j < i. Assume that
the (i — 1)-th target page is tu position j — k (k> 1,
1 < j—k < m+1). The conditional probability
that the next target page i3 in position j is then (1 —
«)*~la. Consequently, the probability that the i-
th target page is in position j can be computed by
sutniming over all possible positions for the (i — 1)-th
target page. The (i — 1)-th target page cannot be
to the left of page j — (m+ 1) and j — k > 0 must
always hold. It follows that for § > i Q(i, j) can be
computed by the recurrence relation

and” Q(L,7)=0 for 2<j<p

min(j—1,m+1)‘

2

k=1

Qi j) = Qii—1,j— k)a(l — a)f~!

Cost

s Fim=0 ©—

m=1 —+—
StFm=9 B8—
m = 20 -x- -
4 1 1 L L
0 0.04 .08 0.12 0.16 0.2

(L

Figure 6: cost(a, 00, m) as a function of «, (F = 10)

Note that the number of target pages per read request
is s

Let Qsiop(d), 1 < j < p denote the probability
that exactly j pages are transferred by a read request.
There are two cases to consider. If p —j > m, a
gap of length m + 1 (or more) follows page j. This
occurs with probability (1 — a)™t!. Otherwise, that
is p— 3 < m, p— jempty pages follow and the end
of the buffer is reached. This occurs with probability
(1 — a)P~7. Combining the two cases, we obtain

(1— a)r=i
(1 _ (')m+]

ifp—j<m
fp—j3j>m

Quunli) = {

The probability of a page being a target page is
independent of its position in the file. For j > I, the
probability Q(Z,7) is independent of the prohability
Qstop(j). Therefore, the probability that exactly ¢
target pages are contained in a huffer is given by

,)
Y QU 1) Qstap(3)
i=1

The expected number of target pages per read request
can then be computed as

,)
Etarget = E Q(i)j)Qstop(j)i
izl
and the expected number of pages transferred as

r
Etotat = Z Q(i)j)Qstop(j)j

iz

600

T T

Total cost
Positioning cost
Transfer cost

10

Cost 6

0 L 1 1 1 1 It i..
1h 20 30 3h
Buffer size (pages)

25

Figure 7: cost(0.1,p,m*) as a function of p, (P == 1)

Finally, the expected cost per target page is given by

()

1)
cost(a,pm) = ——— (P + Frorar)
farget

The expected cost is plotted in Figure 7. 'The posi
tioning and transfer costs are shown separately. Note
that the results are not for a fixed value of . For
cach buffer size p, the best. value of 1 was chosen.

It can be proved that the functions cost(eo, p,~)
and cost(ie,00,m) are indeed special cases of the
general function eost(ev, p,n) and that the two
simple functions are upper and lower bounds on
cost(ce,p,m). However, the proofs are complicated
and therefore not included here. The three funce
tions cost(ce, p, 00), cost(a, 00, m) and cosl(e, p,m)
are plotted in Fig. 8 The lowest curve plots the
function cost(cv, p,o0). The simpler closed formulas
arc fairly good approximations of the most general
case,

6 A cost model for vector reads

So far we have assumed that ordinary reads are used,
i.e. a contiguous area of the disk is copied into a con-
tiguous area of the buffer. Thus, the buffer might
contain a high fraction of empty pages. However,
many operating systems (in particnlar several vari-
ants of UNIX) offer another operation, called vector
read, for reading multiple pages with a single request.,
A vector read transfers a contignons sequence of pages
from secondary storage into a non-contiguous collee:
tion of buffer pages. In particular, asingle hafler page
may receive several pages. This property can be used
for assigning all empty pages of a read request to the

1 - 1 T T T T

cost(ow, 10, 40) —e—
cost{o, 10, o)) ~e—
cost(w, o0, 40) ——

e
i
1

Cost

1 L | I] L
0 0l 02 03 04 05 06
(44
Figure 8 Comparison of the cost functions

cost(w, p.m) for (m, p)
=10

(10, 00), (10,40), (o, 40),

same bulfer page. Then, at most one bulfer page is
sacrificed for receiving empty pages. In the follow-
ing, we address the problem of finding optinal read
schedules under the asswption that a read request, is
implemented as a vector read. First, we briefly intro-
duce the modified problem definition and a modified
algorithim,

Definition 6.1 Lel @ be a subsel of the set I
Lo o NV and p,p > L, an anteger. Let the tuple
{s,u,v) denole a read request reading w+ v pages be-
gqunting from page s where w and v denoles the num-
ber of cmply and targel pages, respeclively. Then a
SepuEnee & = (51,010, 01}, (St ty)) B @ V-

read schedule for Q. if
Lovi<p foreoeryi € (L, ...om) with u; #0
2oy <p foreveryie {1, . m) with w; =0

S Jor every ¢ € Q, there exists a luple (s;,u;, v;) in
o such that s; < q < s; + u; + v;
Instead of using cost forinula 2, we assmine that a cost

of i read sehedule is computed as

@)= (P4 i +0;).

iz

(6)

Stpilar to our previous cost model presented in sec-
tion 2, the solution of computing an optimal v-read
schedule can be reduced 1o solving a shortest-path
problens in an acyelie graph. The graph can he con-
structed inoa similar way to the graph described in

section 20 However, we are primarily interested in

601

a simple approximative algorithm which produces v-
read schedules close to the optimum and whose cost
can be easily computed.. In order to support vec-
Lor reads, algorithm ReadSubset requires only a few
modifications. The modified algorithim VReadSubset
follows.

Algorithm VReadSubset(F: File: Q: TargetSet;
B: Buffer:
p: BirSize; m: GapSize);

BEGIN
end = 0;
REPEAT

adr[1] := NextTargetPage(F, Q, end);
ones = 1; zeroflag := 0;
LOOP
adrfones+1] := NextTargetPage(F, Q, adrones]);
IF {adr[ones+1] > m + | + adr[ones]) OR
(ones > p - zero_flag) OR (adr[ones+1] > N)
THEN
end := adr[ones); EXIT
END;
IF adr{ones+1] > adr[ones] + 1 THEN
zeroflag = 1;
END;
ones = ones+1
END;
VRead(F, B, adr, ones);
Process records in B;
UNTIL (adr[ones+1] > N);
END VReadSubset;

The procedure VRead(F,B,adr,ones) reads pages
with addresses adre[l], adr[1]+1, .., adr(2] - 1, adr(2],
adr[2] + 1, .., adriones] from file F into the buffer B.
Note that the target pages adr[1], adr[2], .., adr[ones)
are assigned to the first ones pages in the buffer.
All ewspty pages are read into the p-th buffer page.
The algorithm adds pages to the read request until
one of three conditions is satisfied: a gap of (m + 1)
or more empty pages is found, the next target page
canses an overlow of the buffer, or the end of the
file has been reached. Let us mention that the algo-
rithmn VReadSubset indeed produces schedules which
are close to optimal.

Most interesting is the analysis of the algorithm
VReadSubsel and a comparison of VReadSubset with
ReadSubsel. Note that both algorithms produce the
same schedule if the buffer is unlimited. In the follow-
ing, we restrict our considerations to the rost general
case, Lo, we assutne limited gaps and limited buffer,
The following analysis is similar to the one presented
in section 5.3. Consider a read request that reads
pages labeled 1,2,3,. .. into the buffer with p pages.
Let R(i,5), 1 < @ < p, j > | denote the probability
that page j is a target page and is assigned to the
i-th butfer page. Note that R(i,j) = 0 for ¢ < j.

Since page | has to be always a target page, it will
be always the first page in the hufler. Hence for 7 = |
we obtain

R(1,1) =1 R(1,j)=0 for j =2

and

Furthermore, the p-th page of the bufler will be filled
with a target page. only if all of the other buffers are
tilled up with target pages and none of the pages read
from the file was an empty page. Therefore, for i = p
we have

fip,p) =1 Rip.j)=0 for j=1j#p

Now consider the case | < i < p and j > . Assumne
that the (2 —1)-th target page has the label j—k (K _
I 1 <j—k < m+1). The conditional prohability
that the next target page has the label jis then (1 -
W) "l Consequently, the probability that the i-th
target. page has label j can be computed by smnniug,
over all possible positions for the (7 — 1)-th target
page. The (i = 1)-th target page cannot be to the left
of page j — (m+ 1) and j — & > 0 must always hold.
1t follows that for j > i (2,) can be computed by
the recurrence relation

and

min(j—1,m+1)

)3

k=1

R(G.j) = R(i—1,j— k)o(l — a)f!

Let Roop(i), 1 <4 < p.j 2 i denote the proba-
bility that exactly j pages are transferred by a read
request and that 7 of the j pages are target pages.
There are four cases to consider. If i = p, the huffer
is completely filled and thus, no more pages can be
read. If 1 = p—1 and ¢ < j, p — | target pages
are transferred and at least one of the buffer pages
is reserved for the empty pages. Then, the baffer is
already full. If 7= j = p— 1, it is possible to read the
p-th page into the huffer. However, this page is not
read, if the p-th page is an empty page. This occurs
with probability {1 — «). Otherwise, that is ¢ < p—1,
a gap of length m + 1 (or more) follows after the j-

th page. This occurs with probability (1 — a)ymtl
C'ombining the four cases, we obtain
1 fi=p
U ifi=p—1,i<j
Rst(i J) = (1 —«) fi=j=p-1

(1 —)t otherwise

In analogy with section 5.3, the expected number of

target pages per read request can then be computed
as
’7
Vtarget = ZZ R(’a])R”vl’(l’])’
i=l j>i

and the expected nuniber of pages transferred as

)
Viotat = 3 3 1801, j) Ratop(i,)

izl j2i

602

1l ey T T j | R

veost(0.2,p, 1) ~e—
cost(0.2,p,9) »e—

Clost,

1015 20 26 30 10

Bafler size (pages)

Pigure 90 veost(0.2,p,9) and cast (0.2, p,9) as a func-
tion of p, (P’ = 10)

Finally, the expected cost per target page s given by

I .
B (P+ \/tutnl)

target

veost{or, p,m) = (1)

The expecied cost veost(0.2, p, 9) s plotted in Fig
ure 7. Additionally, the expected cost cost (0.2, p, 9) is
shown to be higher than veost(0.2,p,9), particularly
for a small number of buffers.

If pages are always trausferred exactly in the order
specified in the read request, a separate bulfer page
for eiaply pages is not needed. We can let the last
target. page overwrite the Tast huffer which was used
for collecting cmpty pages.

7 Discussion

ln this paper, we investigated how to rapidly read a
(known) set of pages from a file stored in a contiguous
arca on disk. The basic idea is to reduce the number
of read request (positioning aperations) by making,
use of additional buffer space and “large reads™ | that
is, read request transfereing multiple adjacent pages.
If it s advantageous to do so, a read request may
include some gaps. A gap is a contiguous sequence
of etupty pages, that is, pages not containing any re-
guired records,

We showed that an optimal read schedule can he
found by computing the shortest path in a certain
graph. Then a simplified algorithin was proposed
and it was found (experitnentally) that it produces
We derived three
cost. functions for the algorithn. For twospeeial eases
sttnple functions in closed form were found. For the

close-to-aptimal read sehedules,

most. general case, the cost funetion must he come
poted anmerically by a shnple recurrence relation.
Additionally, we presented an algorithi that exploits
veetor reads and analyzed it performance. A vector
read assigns cacl of the etnpty pages of a read request
1o the same position in the huffer.

The idea of using ’large reads’ is not new, of course.
The main contribution of this paper is in the anal-
ysis. Our analysis quautifies the benefits of “large
readds” but, unfortunately, under a somewhat sim-
plistic cost model. The iimprovement depends on the
minther of target pages, the size of the buffer, how
well the file is clustered on disk and the architecture
of the underlying disk. In order to make the analysis
tractable, we had to make several sinplifying assump-
Lions. Muost important for our analysis are the follow-
ing three assumptions: the file is stored contiguously
on seeondary storage, the target pages are uniformly
distributed in the file, and the cost of a positioning
operation is fixed.

The first. assumption can be relaxed. The fraction
a of Larget pages can also be used to model the sit-
uakion of nop-contiguous files as long as the target
pages are uniforinly distributed in an contiguous area
of the disk. The arca can be additionally populated
hy pages of other files and by “free” pages of the disk
manager. If we know the actual layout of the file on
disk, our scheduling algorithis can still be used. The
pages on disk can be brought into a linear order (e.g.
according to their cylinders, tracks, and positions on
tracks) and the algorithins for finding read schedules
can then be applied to this sequence.

The second assuruption (Larget pages are uniforinly
distributed) can be observed in many applications.
Such an access pattern is likely, for example, when
a secondary index is used for perforining a selection
query on a lile.

Our cost. model disregards the partitioning of disks
into eylinders and tracks and the existence of multi-
ple read/write heads. We simply charge a fixed cost
for cach position operation. Although the position
cost. varies greatly, this assumption is very common
in practice, e.g. 1/0-tiime of a query is usually mea-
sured in the nnmber of required disk accesses. It is
clearly a blatant simiplification. However, relaxing
this assumption makes the analysis inuch harder and
is left as an open problen.

The reader may have noticed our implicit assuinp-
tion that the order in which pages are read (and pro-
cessed) is unimportant. Changing this assumption
leads to an interesting (and open) problem. Even if
target pages have to be processed in a certain order,
we ay still read them in a different order provided
that enough buffer space is available to store a page
until it is processed. This provides some freedom that
can be exploited to find a better read schedule than
the one dictated by the processing order.

603

References

[HSW 88] Andreas Hutflesz, Hans-Werner Six, Peter
Widmayer: ’Globally order preserving mul-
tidimensional linear hashing’, Int. Conf. on
Data Engineering 1988, 572-579.

[McF 90] R. McFadyen: ’Sequential access in files used
for partial match retrieval’, Ph.D. thesis, Uni-

versity of Waterloo, 1990.
[Pal 85)

Prashant Palvia: ’Expressions for batched
searching of sequential and hierarchical files’,

ACM TODS, Vol. 10, No. 1, 1985, 97-106.

Prashant Palvia: *The effect of buffer size on
pages accessed in random files’, Information
Systems, Vol. 13, No. 2, 1988, 187-191.

A. J. Smith: ’Sequentiality and Prefetching
in Database Systems’, ACM TODS, Vol. 8,
No. 3, 1976, 223-247.

Kyu-Young Whang, Gio Wiederhold, Daniel
Sagalowicz: 'Fstimating block "accesses in
database organization: a closed noniterative
formula’, CACM, Vol. 26, No. 11, 1983, 940-
944.

[’al 8R]

[Smi 78]

[WWS &3]

[Weik9] (i. Weikum: 'Set oriented disk access to large
complex objects’, Proc. Int. Conf. on Data En-
gineering 1989, 426-433.

[Yao77] 8. B. Yao: ’Approximating block accesses in

database organizations’, CACM, Vol. 20, No.
4, 1977, 260-261.

