
Combining Theory and Practice in Integrity Control: 
A Declarative Approach to the Specification 

of a Transaction Modification Subsystem 

Paul W.P.J. Grefen 
Computer Science Department 

University of Twente 
grefen&s.utwente.nl 

Abstract 1 Introduct ion 

Integrity control is generally considered an important 
topic in the field of database system research. In the 
database literature, many proposals for integrity control 
mechanisms can be found. A large group of proposals 
has a formal character, and does not cover complete algo- 
rithms that can be used in a real-world database system 
with multi-update transactions. Another group of pro- 
posals is system-oriented and often lacks a complete for- 
mal background on transactions and integrity control; al- 
gorithms are usually described in system terms. This pa- 
per combines the essentials of both groups: it presents a 
declarative specification of a transaction-based integrity 
control technique that has a solid formal basis and can 
easily be applied in real-world database systems. The 
technique, called trcnsoction modification, features sim- 
ple semantics, full transaction support, and extensibility 
to parallel data processing. These claims are supported 
by a prototype implementation of a transaction modifi- 
cation subsystem in the high-performance PRISMA/DB 
database system. This paper shows that it is well possi- 
ble for an integrity control technique to combine a formal 
approach with complete functionality and high perfor- 
mance. 

Integrity control is generally considered an important 
topic in the field of database systems research and prac- 
tice. Many proposals for integrity control mechanisms 
can be found in database literature [lo]. Often, a pro- 
posal can be classified in one of two groups described 
below. One group of proposals has a forma1 character, 
and does not cover complete algorithms that can be used 
in a real-world database system context with arbitrary 
multi-update transactions. The work presented in [2] is 
an example: it only deals with single-tuple insert and 
delete operations. The algorithms presented in [14] only 
handle single tuple operations and transactions in which 
the order of operations is immaterial. Another group of 
proposals is system-oriented and often lacks a complete 
formal background on transactions and integrity con- 
trol; algorithms are usually described in system terms. 
A well-known example is the work on query modifica- 
tion described in [19]: this work is closely connected 
to the QUEL language and does not take transactions 
into account. The work in [17] informally describes in- 
tegrity control algorithms in the context of the SABR.E 
systems. In active database systems like POSTGRES 
[20], integrity control algorithms rely on the complex se- 
mantics of the underlying production rule system. 

Petmission to copy without fee all or part of this moteriol is 

gmnted provided that the copier on not mode or distributed 
for direct commercial advantage, the VLDB coputight notice 
and the title of the publication and its dote appear, and no- 
tice ti given that copying is by pcmatision of the Very Large 
Data Bose Endowment. To copy otherwise, or to republish, 
nquinr o fee and/or special permimion from the Endowment. 

Proceedingr of the 19th VLDB Conference, 
Dublin, Ireland, 1993. 

This paper proposes a technique for integrity control 
with a clear formal basis that can easily be applied in 
real-world database systems. The technique is called 
transaction modification, and, as suggested by its name, 
is based on the transaction concept [6]. Transaction 
modification modifies an arbitrary transaction that may 
violate the integrity of a database, such that the execu- 
tion of the modified transaction is guaranteed to be cor- 
rect. As shown in the sequel of this paper, the algorithms 
for this technique can be specified in a clear declarative 

581 



fashion, providing a solid basis for the implementa~~ion 
of the technique. This claim is supported by a prototype 
implementation of a transaction modification subsystem 
in the parallel main-memory PRISMA/DB system [l]. 
The implementation further demonstrates the usability 
of the technique in distributed and high-performance en- 
vironments [7, 91. 

The structure of this paper is as follows. Section 2 
discusses a number of basic database concepts necessary 
for the sequel of the paper. Section 3 defines the no- 
tion of integrity constraints and its relation to databases 
and transactions executed against databases. The speci- 
fication of integrity constraints is discussed in Section 4. 
Section 5 describes the transaction modification tech- 
nique for integrity control on a declarative level. Opera- 
tional aspects of the technique are discussed in Section 6. 
The paper ends with a number of conclusions and a few 
remarks on the performance of the prototype implemen- 
tation. 

2 Basic concepts 

schema 2) is an ordered pair of databasr stxt~ (I)‘1 ! I)“) 
of schema 2), with tl, t2 E N and tl < t2. The values i1 
and t2 are called the logical times of the database stat,es. 

IJsually, a database transition describes two successive 
states of the database, so t2 = tl + 1 in the detinition 
above. This type of transition is called a single-step h-w- 
sition. The term transition is used for single-step tran- 
sitions in this paper. 

2.2 Transactions 

Operations executed against a database are grouped 
into transactions to form database programs with ccr- 
tain characteristics. The transaction concept as delinctl 
below plays a central role in the sequel of this papc~. 
Transactions are based on extended relational all:~+r;l 
programs as defined below. 

Definition 2.4. An extended relational algebra program 
P is a sequence of extended relational algebra state- 
ments: 

This section discusses the basic concepts in the field of P=al;az;...;a, 
relational databases supplying the formal background for 
the sequel of the paper. First, the database structures The extended relational algebra extends the standard 

are defined. Next, operations on the databases in the relational algebra (see e.g. [13]) with statements tl1a.t 

form of transactions are discussed. The transaction con- enable the operational specification of actions againsl. a 

cept plays a central role in the description of database database [8]. Extended relational algebra statements in- 

integrity and integrity control in the sections that follow. elude assignments, insert, delete, and update statemrnts. 
The symbol PC denotes the empty program. 

2.1 Databases Definition 2.6. A transaction T consists of an extended 

The relational database structures consist of relation relational algebra program al ; . . . ; a, enclosed in Imna- 

schemas and instances, and database schemas and in- action brackets, to be executed against a database I): 

stances. Database transitions are also discussed here, 
because they are an important ingredient in the sequel 
of the paper. 

Definition 2.1. A Telation schema ‘R consists of a re- 
lation name and a list of attributes (Al,. . . , A,). Each 
attribute Ai is defined on a domain dom(Ai). The type 
of R is defined as dom(7Z) = dom(A1) x -. . x dom(A,). 
A relation or relation state R of relation schema K! con- 
sists of the name of 72 and a set df elements (tuples) in 
dam(R). 

The parentheses denote the transaction brackets, respec- 
tively begin and end. During the execution of the ac- 
tions G, the database is in a number of intermediate 
states. These states are not normal database states it? 
they may contain temporary relations (intermediate re- 
sults). If the logical time of D is t, then the state after 
the execution of action a; is denoted as L)‘.‘. The end 
bracket takes care of the transition from D1.” to a normal 
database state: if the transaction can commit, temporary 
relations are removed from D’.* and the result, denoted 
as [D”*“J, is installed as D*+l; if the transaction must 
abort, Dt is installed as Dt+‘. The states D’*’ , . . . , IF” 
have no semantics beyond the execution of T. The prc- 
transaction state Dt and post-transaction state D’+’ are 
visible to other transactions as well. 

Definition 2.2. A database schema I) is a set of re- 
lation schemas {al, * . - , I&,}. A database or database 
state D of database schema 23 is a set of relation in- 
stances {RI, - - - , &}. The set of all possible database 
instances of schema 2) is called the database universe. 

Definition 2.3. A database transition of database Informally, a transaction is a unit of work executed 

582 



agAin& a database state. Speaking more formally, a 
tranfiacbion ‘I’ can be seen as an operator that trans- 
forms a database state 1) into another state T(D) [6], 
iI.1lC.t can thus be associated with a single-step transition 
of a datab,ase: 

I) 5 l’(D) 

According to the basic transaction model, the execution 
of a transaction T must satisfy the properties of atomic- 
ity, serializability, durability, and correctness. Only the 
atomicity and correctness properties are of interest in 
this paper. The first is described below, the latter is 
discussed in the next section. 

The execution of T must always satisfy the atomicity 
property; this means that the effect of any execution 
of ‘f on the initial database state D must be such that 
either the effects of T are completed fully, or D remains 
unchanged. So, if T = (al, . . . , an), the following must 
hold: 

(‘f(U) = [D’.“]) v (T(D) = D) 

3 Integrity constraints 

This section presents a short treatment on the formal 
t)ackground of integrity constraints. Constraints are first 
discussed in the static context of databases, and there- 
after in the dynamic context of transactions. The speci- 
fication of constraints is discussed in Section 4. 

3.1 Databases and integrity constraints 

Helow, the concept of integrity constminl is defined. 
In this definition, constraints are divided into state 
con.stminls that describe properties of correct database 
Y~L~.Y, and i?mnaition constraints that describe proper- 
ties of correcl database Iranaitions. 

Deflnition 3.1. Let 2, be a database schema. A state 
constraint I” is a boolean function that is evaluated over 
a database state D from the database universe UD de- 
fined on 2): 

I * : IJ.D + boo1 

Definition 3.2. A correct databa.se state D E Uv sat- 
isfies each element of a set of state constraints Z” = 
{&*.I I;,} defined on ‘D. The set of correct database 
states with schema D and constraint set 1’ is denoted 
ax 

A state constraint describes the static properties of a 
database, i.e. the properties that a database should sat- 
isfy at one given moment. 

Definition 3.3. Let ‘D be a database schema. A Iran- 
sition conatmint It is a boolean function that is evalu- 
ated over a pair of database states or database transition 
(01, Dz) defined on D: 

I’ : U, x U, --$ boo1 

Definition 3.4. A correct database transition (01, Dz) 
defined on schema 2) satisfies each element of a set of 
transition constraints It = (14,. . . , IQ} defined on 2). 
The set of correct database transitions with schema V 
and constraint set p is denoted as: 

i=n 

(Q,Dz) E U, x U, A Ii”(Dl,D2) 
i=l 

A transition constraint describes the correct transitions 
of a database; as such, it describes dynamic properties 
of a database. Therefore, transition constraints are also 
referred to as dynamic constrairh. 

3.2 Transactions and integrity con- 
st raints 

The integrity of the database in terms of integrity con- 
straints as defined above has its effect on the set of trans- 
actions that are allowed to be executed and successfully 
commited against a database: the execution of a trans- 
action may not violate the integrity of a database. Note 
that the transaction model discussed above, in which 
intermediate database states have no semantics beyond 
the execution of a transaction, implies that integrity is 
only defined with respect to pre- and post-transaction 
database states, not to intermediate states. 

The fact that each database state has to satisfy all 
state constraints defined on the database means that 
the execution of a transaction T on a correct state D 
may never result in a database state that violates any 
constraint in I”; so the following should hold: 

(‘KI;(D)) + [KI;(T(D))) 
i=l i=l 

The fact that each database transition has to satisfy 
all transition constraints means that given a correct 
database state, the execution of a transaction T may 
never imply a transition that violates any constraint in 
Zt; so the following should always hold: 

(‘r I:(D)) + [x I,~(D, T(D))) 
i=l i=I 

583 



Given these obeservations, we can define the correctness 
of a transaction as follows. 

Definition 3.5. A transaction T is correct with respect 
to a correct database state D and a set of integrity con- 
straints Z if and only if a commited execution of T on 
D does not imply a database transition that violates 
any transition constraint in 1, and the post-transaction 
database state T(D) does not violate any state con- 
straint in Z. A transaction that does not comply with 
this requirement is called incorrect. 

4 Integrity specification 

In the previous section, the concept of integrity con- 
straints was introduced. This section discusses the spec- 
ification of integrity requirements, i.e. a formalism in 
which the integrity of a database can be expressed. To 
come to a flexible framework, it is important to distin- 
guish two forms of specification: 

Integrity Constraint As discussed before, an in- 
tegrity constraint specifies a condition that must 
be met by a database (transition), but includes no 
specification of how the integrity must be controlled. 
As such, it is a purely declarative specification of in- 
tegrity requirements on a database. 

Integrity Rule To come to a flexible basis for integrity 
control, a more operational form for integrity con- 
trol is required, giving information about how to 
enforce integrity. This form is called integrity rule. 

If integrity control is to be performed in a default way 
(e.g. all incorrect transactions are to be aborted), the 
specification of integrity constraints is sufficient and 
rules can be derived automatically. If more flexibility 
is required, rules have to be specified by the database 
designer. The database system can be of help, however, 
by generating parts of rules as shown in the sequel of 
this paper. 

4.1 Integrity constraints 

A language for the specification of integrity constraints 
is defined below. The language is called CL and con- 
sists of a set of symbols, terms, atomic formulas, and 
well-formed formulas. It is based on the tuple relational 
calculus [21]. 

Definition 4.1. The alphabet for the specification of 
integrity constraints consists of the following symbols: 

The set of value constants C = {ci,cz, . . .}, the set 
of tuple set constants M = {R, S,. . .}, and the set 
of tuple variables V = {cc, y, z,, , .}, 

The set of tuple function symbols FT 3: {.} of 
type V x C -+ C, the set of value function 
symbols FV = {+, -,*,/} of type C x C -+ 
C, the set of aggregate function symbols FA = 
{SUM, AVG, MZN, MAX} of type M x C -+ C, 
and the set of counting function symbols I;‘C = 
{CNT} of type M + C. 

The set of value predicate symbols: PV = { <, < 
, =, #, 2, >} of type C x C, the set of set predicate 
symbols PM = {E} of type V x M, and the set of 
tuple predicate symbols PT = {=} of type V x V. 

The sets of unary connectivea CU = (1) and bi- 
nary connectives CB = {V, A, =+}, the set of quanti- 
fiers Q = {3,V}, and the set of punctuation symbols 
zp = I(, )I. 

The tuple set constants from the set M correspond with 
the base and auxiliary relations of a database. The base 
relations are the permanent relations containing the data 
actually stored in the database. The auxiliary relations 
are calculated from the base relations automatically by 
the database management system for specific integrity 
control purposes. An important type of auxiliary reln- 
tion is the pre-transaction state of a relation, nece.ssary 
for the specification of transition constraints. 

Deflnition 4.2. The elements of the set of terms 7 are 
the following: 

l Value constants from the set C. 

l Attribute selections z.i, where t E V and i an inte- 
ger constant from C. 

l Arithmetic function applications tldtz, where t9 E 
FV, tl E 7, and t2 E 7. 

l Aggregate function applications I”(R,i), with I‘ E 
FA, R E M, and i an integer constant from C; 
counting function applications I’(R), with I’ E FC 
and R E M. 

Definition 4.3. The elements of the set of atomic jor- 
mulas A are the following: 

a Arithmetic comparisons TldT2, with 29 E PV, and 
Tl,Tz E 7. 

l Set membership expressions z E R, where x E V, 
and R E M. 

584 



l ‘I’uplc value comparisons 2 = y, where x E V and 
ye v. 

Definition 4.4. The elements of the set o.f well-formed 
formulas W are the following: 

l Atomic formulas A. 

l Negations ‘IV, with W E W; connections IV~SV~, 
with WI, Wz E W, and t9 E CB. 

l Quantificatious (&)W, with 29 E Q, z E V, and 
w E w. 

Some examples of constraint specifications in CL: are pre- 
sented below. 

Example 4.1. We take a simple beer database with 
two relations beer(name,lype, brewery, alcohol) and brew- 
ery(name,city,courdry) as an example; A domain con- 
straint II and a referential integrity constraint Z2 can be 
specified aa follows on this database: 

11 : (Vs)(z E beer =+ x.alcohol 2 0) 
12 : (Vz)(z E beer =S 

(3y)(y E brewery I\ x.brewery = y.nume)) 

4.2 Integrity rules 

As described above, an integrity rule is an operational 
form of an integrity constraint. For integrity control pur- 
poses, two types of information have to be added to an 
integrity constraint: information about when to enforce 
the constraint, and information about what to do when 
the constraint is violated by the database. The first type 
of information is provided by a trigger set, a set of update 
types that may violate the constraint. The second type 
of information is provided by the violation response ac- 
lion, an extended relational algebra program describing 
the actions to be performed upon constraint violation. 
Below, the formalism for specifying integrity rules is de- 
fined. 

Definition 4.5. The set of trigger specification8 on 
database schema V is defined as follows. Let U denote 
an elementary update type, such that U E {INS, DEL}, 
and let R denote a relation name in V. Then the set of 
trigger specifications on 2, consists of all possible com- 
binations U(R). 

In trigger specifications, an update operation on a re- 
lation is specified as a combination of a delete and an 
insert operation. Triggers are combined into trigger sels 
as described below: 

Definition 4.6. The set of trigger set apecificatione on 

database schema 2) is defined as follows. Let t be a trig- 
ger specification on schema 2, and a a trigger set spec- 
ification on V. Then the following lists are trigger set 
specifications: 

l The single element trigger set t. 

l The composed trigger set 8, t. 

Now the integrity rule specification language 7212 can be 
defined as follows: 

Definition 4.7. The set of integrity rule specifications 
in language 72C is defined as follows. Let ts be a trigger 
set specification, c an integrity constraint specification in 
CL, and p an extended relational algebra program. Then 
the following construct is an integrity rule specification: 

WHEN ta 
IF NOT c 
THEN p 

Example 4.2. The following integrity rules in RX are 
based on domain and referential integrity constraints Zl 
resp. I2 

RI : 

R2 : 

introduced before: 

WHEN INS(beer) 
IF NOT (Vx)(x E beer + x.alcohd 2 0) 
THEN abort 

WHEN INS( beer), DEL( brewery) 
IF NOT (Vx)(x E beer =+ (3~) 

(y E brewery A x.brewery = y.name)) 
THEN temp = 7rb,,,,,,beer - a,,,,brewery; 

inaWb=wev, ?mamc,nu~~,,demd 

As may be clear from the specification, rule RI specifies 
an aborting approach to constraint violation handling 
(incorrect transactions are aborted), whereas R2 speci- 
fies a compensating violation response action (incorrect 
updates are compensated by additional updates). 

5 Integrity control 

As stated in the introduction, the main topic of this 
paper is a declarative specification of an integrity con- 
trol technique that has a solid formal background and 
easy application in practice. The transaclion modifica- 
lion technique to be discussed in this section complies 
with both requirements. The technique is based on the 
formal concepts of the previous sections, and is specified 
in a clear top-down, declarative fashion. As suggested by 
its name, the technique is strongly transaction-oriented, 
providing the necessary functionality for practice. 

In this section, the basic transaction modification 
technique is discussed. To improve the applicability in 

585 



practice, a few additions can be made. These additions 
are treated in Section 6. 

5.1 Transaction modification 

Arbitrary transactions submitted to a database system 
by a user or application may violate the integrity of the 
database. The integrity control subsystem of a DBMS 
should maintain the integrity of the database, regard- 
less of the actions of these transactions. In the transac- 
tion modification approach to integrity control, a possi- 
ble violation of integrity is prevented by modifying each 
user transaction that contains updates, such that the 
modified transaction cannot violate the integrity of the 
database. 

A transaction is modified by extending it with addi- 
tional extended relational algebra statements that im- 
plement the integrity control task for that transaction. 
The initial user transaction may require the modifica- 
tion with additional statements. As these statements 
may contain updates and may thus violate the integrity 
of the database themselves, a next addition of statements 
may be necessary. Consequently, transaction modifica- 
tion is a recursive algorithm as shown below. 

Algorithm 5.1. Let T denote an arbitrary transaction 
and 3 a set of integrity rules defined on a database. 
Then the modified transaction of T with respect to J is 
defined by function ModT as follows: 

ModT(T, 3) = ModP(T1, J)f 

where 

ModP( P, J) = 
P if Trigp( P, 9) = PC 
P @ ModP( TrigP(P, ,7), 3) otherwise 

and 

%d’( P, 3) = Tr Op tRS( SelRS( P, 3)) 

The symbol 1 denotes the transaction debracketing oper- 
ator that converts a transaction into the relational alge- 
bra program by removing the transaction brackets. The 
program bracketing operator t performs the inverse func- 
tion: it adds transaction brackets to a relational algebra 
program. Finally, the progmm concatenation operator $ 
concatenates two algebra programs. 

In the above algorithm, function SelRS is used to se- 
lect the integrity rules to be used to modify the trans- 
action, and function TrOptRS for translating and opti- 
mizing integrity rules into efficient extended relational 
algebra programs that can be concatenated to the trans- 
action. 

Algorithm 5.2. The integrity rule selection is per- 
formed by function SelRS; this function selects a set of 
iutegrity rules from a set .7 based on the statements in 
extended relational algebra program I’: 

SelRS( I’, 3) = 
{.I E 3 1 triggers(J) rl GetTrigP(P) # 0) 

where 

Get TrigP( P) = 
0 if I’= P< 
Cc t TrigS(head( P)) u 

GetTrigP(tail(P)) otherwise 

and 

GetTrigS = 

i 

ww WI if S = insert(R, E) 
{(DEL, R)} if S = delete( R, K) 
{(INS, R), (DEL,R)} if S = update(R, f$,cr) 
0 otherwise 

In the definition of GetZhgS, E denotes an arbitrary 
extended relational algebra expression of the same type 
as R, and 0 denotes an arbitrary update function. 

5.2 Integrity Rule Optimization arid 
Translation 

To be able to perform transaction modification, integrity 
rules have to be translated into extended relational al- 
gebra. Before translation, rules are optimized. The op- 
timization and translation of a set of rules is controlled 
by the function TrOptRS. 

Algorithm 5.3. Given a set of integrity rules 3, func- 
tion TrOptRS preprocesses these rules to produce a sin- 
gle extended relational algebra program: 

TrOptRS(,7) = 

i 

PE ifJ-0 
TranaR( OptR( heud( 3))) 61 

TrOptRS(tail(S)) otherwise 

Functions OptR and TransR deal with the optimixa- 
tion respectively translation of individual integrity rules. 
These functiotts are discussed in more detail below. 

5.2.1 Integrity rule optimization 

This section discusses the optimization of integrity rules, 
i.e. the transformation of a rule J into a rule J’ that has 
the same semantics, but can be evaluated at a lower cost. 
Complete optimization of a rule consists of optimization 

586 



of the condition and the action of the rule. Here we fo- 
cus on optimization of the condition. Optimization of 
relatioi1;i.l algebra constructs is dealt with extensively in 
the field of query optimization (see e.g. [3]); techniques 
developed in this context can be used for the optimiza- 
tion of integrity rule actions. 

Algorithm 5.4. Restricting the optimization of in- 
tegrity rules to the optimization of the condition of the 
rule, the optimization function OptR can be defined as 
follows, where .I is an integrity rule: 

OptR(J) - 
(Iriggess(J), optqcondition(J)), action(J)) 

‘1’11~ fimctionality of function OplC can be chosen freely 
within the boundaries of the equivalence criterium. A 
complete specification of this function is not within the 
scope of this paper. Techniques to be used in OptC can 
be the following [8, lo]: the use of differential relations 
to avoid unnecessary data access [18, 5, 71, syntactical 
manipulation of constraint specifications [14, 111, and 
semantic manipulation of constraint specifications [16]. 

5.2.2 Integrity rule translation 

‘I’his section deals with the translation of integrity rules 
into extended relational algebra programs. In general, 
a program is derived from the condition and action of 
an integrity rule. We can distinguish between rules with 
an aborting violation response action and rules with a 
c.ollll)c:llsat,illg action. If the rule has an aborting char- 
&et, only the condition of the rule has to be translated 
1.0 extended relational algebra constructs. So, we have 
the following. 

Algorithm 6.6. Function TransR translates an in- 
tegrity rule J into an extended relational algebra pro- 
gram: 

ZkansCA(condition(J),action(J)) 
otherwise 

With respect to function DmsCA some remarks can be 
in;&!. In most practical cases, the specified violation re- 
sponse action exactly compensates all incorrect values in 
the database and has no other side effects. This implies 
that the program produced by function BensCA can be 
equal to the violation response action given as argument 
to the function. Other cases with side effects that do not 
depend on the rule condition require a deeper analysis of 
condition and action; this analysis is beyond the scope of 

this paper. Consequently, this section deals with func- 
tion TrunsC, i.e. the translation of conditions in the CL 
language into the extended relational algebra. 

The extended relational algebra introduced in Sec- 
tion 2 includes the constructs necessary for the construc- 
tion of compensating programs. For the construction of 
aborting programs, however, a new construct has to be 
added. This construct is described and defined below. 

Definition 5.1. Let E denote an arbitrary extended re- 
lational expression. Then the alarm statement damn(E) 
aborts the transaction it belongs to if E is non-empty; 
otherwise it has no effect: 

alarm(E) = aboTt if COUNT(E) > 0 
nothing otherwise 

Using the alarm statement, aborting constraint specifi- 
cations can be translated to the relational algebra. As 
translation of relational calculus to relational algebra is 
dealt with extensively elsewhere (see e.g. [21, 15]), a 
complete translation algorithm is not presented here. 

Constraints consisting of a quantified formula form an 
important class; for this class, function TransC can be 
defined as follows: 

Algorithm 5.6. Let c denote a constraint (well-formed 
formula) in the CL language, and assume that c has the 
form (ds)(c’(e)), with 6 E {V, 3). Then function TransC 
translates c into an aborting extended relational algebra 
construct: 

TTCHZSC(C) = 

i 

ahrm(cakToA~g({z 1 d(z)})) 
if c = (Vz)(c’(z)) 

UlUTm(a,tt,,=oCNT(CalcToAlg({z 1 c’(z)}))) 
if c = (%)(c’(z)) 

In the above algorithm, function CalcToAlg translates 
a relational tuple calculus expression in the equivalent 
relational algebra expression (see e.g. [21, 12, 151). 

The translation of a number of typical constructs in 
CC is shown in Table 1. In this table, c, cl, and cs denote 
conditions defined on a tuple in CL format. The corre- 
sponding conditions c’, ci, and ch in the extended rela- 
tional algebra are obtained by trivial syntactical modifi- 
cation. Further, AGGR denotes an arbitrary aggregate 
function from CL. 

5.3 Trigger set generation 

The selection of integrity rules in the transaction modifi- 
cation algorithm is based on the trigger sets of the rules. 
Although the trigger sets can be specified by the rule de- 
signer, it is more convenient and less error-prone if they 
are automatically generated by the database system. 

587 



;x)(z E R + c(z)) 1 alatm(a,,~ R) 

i 

(vzj@ E R + (3yj(y E s A z.i = Y.j)) alarm(lriR ‘TjS) 
(Vz)(z E R + (Vy)(y E S =+ z.i # yj)) alarm(RiR n XjS) 
(VZ,.Y)((Z E R A Y E s A CI(T Y)) * CZ(~, Y)> 
Wb E R A 44) 

alarm(aT4;(R W4 s)) 
L alarm(u,ttrr dt( CNT(fld R))) 

c(AGGR(R, i)) alarm(a,~ ( AGGR( R, i))) 
4 CNT(R)) alarm(a,,~ ( CNqR))) 

Table 1: Translation of typical constraint constructs 

The trigger set of an integrity rule can always be de- 
duced automatically from the condition of the rule. The 
algorithm is based on the syntax of the CC language used 
for the specification of the condition (see Definitions 4.1- 
4.4). 

Algorithm 5.7. A trigger set is generated from an in- 
tegrity rule condition in the form of a CL well-formed 
formula W by function GenTrigC as shown below. In 
this definition, the symbols V, and V, denote the set of 
universally respectively existentially quantified variables 
in a condition. 

GenDigC’(W) = GenTrigW(W, 8,8) 

GenTrigW(W, Vu, Ve) = 

( GenTrigW(W~, V, U {z), Ve) if W = (Vx)Wl 
GenTl-igW(W~, V,, V, u (3)) if W = (3s)W1 
Gen’.t%gW(W~, V,, VJ u 

GenTrigW(W, K, K) 
’ GenZtigN(W~,V,,,V,) u 

ifW=W,$Ws 

GenTrigWW2, V,, Vc) ifW=Wl*W2 
Gen 7’bigN( WI, V,, Ve) if W = -WI 

, GenMA(W, K, Vc) otherwise 

:en %gN( W, V,, Vc) = 

’ Gen.TrigN( WI, V,, V, U {a~}) if W = (Vz)Wr 
GenTrigN(Wl,V,, U (z},Ve) if W = (3z)Wl 

, GenWN(Wl, V,, VL) U 
GenTrigN(W2, V,, Vc) if W = W,#Wz 

GenTrigW(W1, V,, Ve) u 
GenTrigN(Wz, V,, Ve) ifW=Wr*Ws 

GenTrigW(W1, V,, V.) ifW=TWr 
, GenTrigA(W, Vu, Vc) otherwise 

GenTrigA(A, V,.,, Vc) = 

i 

GenTrig’ltTl) U 
Genl’#igT(Tz) if A = Tlt9T2 

ww RU if A = (cc E R) and z E V, 

WEJWU if A = (z E R) and z E V, 
0 otherwise 

GenTrigT(T) = 

i 

{(INS, R), (DEL,R)) if T = I’l(R,i) 
{(INS, R), (DEL, R)) if T = I’l(R) 
0 otherwise 

where 4E {A,V),fiE {<,I,=,#,>,>}, 
lYl E (SUM, AVG, MIN, MAX) 
I-2 E {CNT,MLT) 

The function above completes the declarative specificn- 
tion of the integrity control technique using the trans- 
action modification approach. Although the algorithms 
presented above can be used without modification, some 
improvements can be made that enhance their usability 
in real-world situations. These improvements are dis- 
cussed in Section 6. 

5.4 Example of transaction modification 

To conclude the discussion of the basic transaction mod- 
ification technique, a simple example is presented below. 

Example 5.1. Take the simple beer database and the 
example integrity rules RI and Rz described in Section 4. 
The trigger sets of these rules can be derived from the 
condition using the algorithm presented above. Now 
suppose that a user submits the following transaction 
adding a new tuple to the beer relation: 

begin 
insert( beer, (,, ezportgold”, ” stout”, ” guineken” (6)); 
end 

588 



Then the integrity control subsystem will modify this 
transaction to the following: 

begin 
insert(beer, (“esportgold”, “stout”, “guineken”, 6)); 
alarm(u,(.r,,h,rlo)beer); 
temp = Wewe,e+&Jeer - hlhewev; 
inser@reww, ?morne,null,nulltentp); 
end 

The second statement implements the integrity control 
for the domain constraint, and the last two statements 
the integrity control for the referential integrity con- 
straint. The modified transaction is now guaranteed to 
be correct and can be executed without any further pre- 
cautions. 

6 Operational aspects 

‘I’he sections above have discussed the concepts behind 
the transaction modification technique. Some opera- 
tional aspects require some more attention, however, to 
make the idess more usable in practice. The most im- 
portant aspects are discussed below. 

6.1 Infinite triggering suppression 

The fact that the transaction modification technique 
uses a static analysis to select the triggered integrity 
rules creates a relatively high risk of infinite triggering 
behaviour. The triggering behaviour of a set of integrity 
rules can be analyzed by means of a triggering graph as 
defined below. 

Definition 6.1. Let J denote a set of integrity rules. 
Then the triggering graph of ,7 is a directed graph 
G = (V,E). Th e set V denotes the vertices of G and 
corresponds with the set of integrity rules 3. The set E 
denotes the edges of G and is defined as follows: 

E = ((JlJ2) I Jl,J2 E VA 

GetTrigP(adion( J1 )) fl triggete( J2) # 0) 

Infinite rule triggering in a rule set J can only occur if 
the triggering graph of J contains one or more cycles. 
A simple way to remove cycles is to allow actions of in- 
tegrity rules to be declared a~ non-triggering extended 
relational algebra programs. 

Definition 6.2. A non- triggering rclolional algebra pm- 
gram P, will never trigger any rule. The trigger set 

derivation function GetWgP ss discussed before is re- 
placed by function Get TrigPX: 

GetTrigPX(P) = 

1 

0 if non-triggering(P) 
GetTrigP(P) otherwise 

Given these concepts, an integrity control subsystem can 
validate a set of integrity rules with respect to triggering 
behaviour by cpnstructing and analyzing the triggering 
graph. If cycles’iare detected, the system assists the user 
in removing th? cycles. This approach is comparable 
to that described in [4]. It does, however, place a heavy 
burden on the shoulders of the database designer, since 
the system cannot guarantee integrity completely auto- 
matically in this approach. 

The approach described above can be used to avoid 
‘unnecessaw’ infinite triggering behaviour. Of course it 
is possible to define a set of integrity rules that inherently 
implies an infinite triggering process. Clearly, such a set 
of rules has to be considered semantically incorrect. 

6.2 Static optimization and translation 

As specified by the definition of the transaction modifi- 
cation function ModT, integrity rules are optimized and 
translated each time a transaction is modified. Clearly, 
this is not necessary, as rules can be optimized and trans- 
lated once when they are specified. The translated form 
is then stored for use at constraint enforcement time. 
This also requires the trigger set of a rule to be stored 
with a translated rule. Therefore, the concept of in- 
tegrity program is defined below. 

Definition 6.3. An integrity progmm defined on a 
database schema 2) is a pair K = (t,p) with the fol- 
lowing components: 

l The trigger set t is a set of pairs (21,~) with u E 
{INS, DEL} and T a relation name in 2). 

l The triggered program p is an extended relational 
algebra program. 

If K = (t,p) denotes an integrity program, triggers(K) 
denotes the trigger set 1, and action(K) denotes the trig- 
gered program p. 

This definition of an integrity program can easily be ex- 
tended with a flag indicating whether the program is 
non-triggering as discussed above. 

An integrity program is derived from an integrity rule 
J using the rule optimization and translation algorithms 
presented in Section 5: 

589 



Algorithm 6.1. The integrity program generation func- 
tion GetIntP is defined as follows, where J is an integrity 
rule: 

GetZntP(J) = (triggers(J), TransR(OptK(.I))) 

Given the fact that integrity rules are translated at rule 
definition time and stored in a set of integrity pro- 
grams, the transaction modification algorithm has to 
be adapted. The changes to the algorithm are rather 
straightforward: 

Algorithm 6.2. Function TrigP from the transaction 
modification algorithm is redefined as follows. Here P is 
an extended relational algebra program and K a set of 
integrity programs. 

TrigP(P, K) = ConcatP(SelPS(P, XI)) 

where 

SelPS( P, K) = 
{K E K 1 triggers(K) fl GetTrigP(P) # 0) 

ConcatP(K) = 

{ 
PC if K: = () 
action(head(X)) $ ConcatP(tait(K)) otherwise 

As may be clear, in the above algorithm function Sclf’S 
is the substitute for function SelRS, and ConCnlP is 
the substitute for TrOptRS. Note that rule optimization 
and translation are not included in ConCatP, since these 
tasks are not performed at constraint enforcement time. 
Note further that the definition above interprets the set 
K: as a list; a set can be interpreted as a list by imposing 
an arbitrary order on the elements of the set. 

7 Conclusions 

This paper shows that it is possible to give a precise 
declarative specification of a complete integrity control 
subsystem. The specification is based on the the trans- 
action modification technique, which has two important 
characteristics. In the first place, transaction modifica- 
tion has a well-defined formal background as presented 
in the first sections of this paper. This provides a good 
basis for discussing the precise semantics of integrity con- 
trol, something that is lacking in many system-oriented 
proposals. In the second place, the specification can be 
directly used for the design and implementation of an in- 
tegrity control subsystem that can be used in real-world 
practice. In contrast to many theory-oriented proposals, 
the transaction modification approach deals with con- 
straint enforcement efficiency and multi-update transac- 

tions. The technique can easily be mapped to an ;\.I,- 
stract DBMS system architecture [S]. 

The transaction modification algorithms as prt:sc~nl.rtl 
in this paper can be easily extended in a number of (Ii- 
rections. An extension to a multi-set relational algebra 
is presented in [8]. As a multi-set algebra is clo~scly co11 
netted to SQL-like environments, this can be an impor- 
tant factor in the usability of the technique in practice. 
An extension to a parallel database system environment 
with fragmented relations is presented in [7, 81. ‘l’his 
extension clearly demonstrates, that transaction motliii- 
cation is well fit for high-performance database environ 
ments. Further, transaction modification can be used for 
purposes other than integrity control as well, like matc- 
rialized view maintenance [8]. 

The feasibility of the technique in practice is demote 
strated with a prototype transaction modification sub- 
system in the parallel main-memory PRISMA/l)B 
database system [I]. A performance evaluation on this 
system has shown the high performance that can be oh- 
tained by integrity control through transaction nlndili- 
cation. Details on the performance evaluation can he 
found in [8, 91. The performance of the protot,ypc sys- 
tem is merely illustrated here with the following. (:ivcBtl 
a test database with a key relation of 5000 tuples and a 
foreign key relation of 50000 tuplcs, checking a rcfercn- 
tial integrity constrain1 after the insrrlion of 5000 IICW 
tuples into the foreign key relation can be cor~l~~l~~l~t~l 
within 3 seconds on an b-node POOMA multiprocc‘ssor 
[22]. Checking a domain constraint in the same situation 
takes less than 1 second. One may conclude that thtl 
evaluation clearly demonstrates that ‘constraint enforce- 
ment costs do not have to be an obstacle for integrity 
control in practice. 

Acknowledgements 

Thanks go to Jennifer Widom from IBM Alnladen I~c- 
search Center at San Jose, USA, aud Peter Apers and 
Rolf de By from the University of Twente for their COIW 

ments and suggestions for improvement with respect to 
earlier versions of the work preacnted in this paper. Htw- 

nie Steenhagen from the University of Twente is thanked 
for her comments on the draft of this paper. 

References 

[l] P.M.G. Apers, C.A. v.d. Berg, J. Flokstra, 
P.W.P.J. Grefen, M.L. Kersten, A.N. Wilschut,; 
PRISMA/DB: A Parallel, Main-Memory Relationtrl 
DBMS; IEEE Transactions on Knowledge and I)aLa 
Engineering, Vol. 4, No. 6, 1992. 

590 



I? Bernstein, 1~. Hlaustein, E. Clarke; Fast Main- [15] 
tcn.nrr.ce of Semantic Integrity Assertions Udiny Re- 
dnrrdan~ Aggregate Data; Procs. 6th Int, Conference 
on Ver.y Large Data Hascs; Montreal, Canada, 1980. 

S. (:er-i, G. I’elagatti; Distributed Databases, Prin- 
ciples and Systems; McGraw-Hill, New York, USA, 
1984. 

S. Ceri, J. Widom; Deriving Production Rules for [17] E. Simon, P. Valduriez; Design and Implementation 
Constraint Maintenan,ce; Procs. 16th Int. Confer- of an Extendible Integrity Subsystem; Procs. 1984 
ence on Very Large Data Bases; Brisbane, Aus- ACM SIGMOD Int. Conference on the Management 
tralia, 1990. of Data; Boston, USA, 1984. 

(1. (;ardarin, P. Valduriez; Relational Databases and [la] E. Simon, P. Valduriez; Design and Analysis of a 
Knowledge Bases; Addison-Wesley, Reading, USA, Relational Integrity Subsystem; MCC Technical Re- 
1989. port DB-015-87; MCC, Austin, USA, 1987. 

J. Gray; The Transaction Concept: Virtues and [lg] 
Limitations; Procs. 7th Int. Conference on Very 
I,arge Data Bases; Cannes, France, 1981. 

l’.W.I’.J. Grefen, P.M.G. Apers; Parallel Handling 
of Integrity Conatminta on Jkagmented Relationa; 
Procs. lnt. Symposium on Databases in Parallel and 

PO1 
Distributed Systems; Dublin, Ireland, 1990. 

M. Stonebraker; Implementation of Integrity Con- 
straints and Views by Query Modification; Procs. 
1975 ACM SIGMOD Int. Conference on the Man- 
agement of Data; San Jose, USA, 1975. 

M. Stonebraker, G. Kemnitz; The POSTGRES 
Next-Generation Database Management System; 
Communications of the ACM, Vo1.34, No.10, 1991. 

P.W.P.J. Grefen; Integrity Control in Parallel 15111 
Database Syaterns; Ph.D. Thesis, University of 
‘I’wente, 1992. 

J.D. Ullman; Principles of Database Systems, Sec- 
ond Edition; Computer Science Press, Rockville, 
USA, 1982. 

P.W.P.J. Grefen, J. Flokstra, P.M.G. Apers; Per- 1221 
jormcrnce Evaluation of Constraint Enforcement in 
IL Parallel Main-Memory Database System; Procs. 
3rd Int. Conference on Database and Expert Sys- 
tem Applications; Valencia, Spain, 1992. 

M.C. Vlot; The POOMA Architecture; Procs. of the 
PRISMA Workshop on Parallel Database Systems; 
Noordwijk, The Netherlands, 1990. 

[IO] P.W.P.J. Grefen, P.M.G. Apers; Integrity Control in 
Relational Database Systems - An Overview; Jour- 
nal of Data and Knowledge Engineering, Vol.10, 
No.2, 1993; North Holland - Elsevier. 

[I I] A. Hsu, ‘I’. Imietinsky; Integrity Checking for Mul- 
tiple Updates; Proceedings of the 1985 ACM SIG- 
MOD International Conference on the Management 
of Data; Austin, IJSA, 1985. 

(12) A. Klug; Equivalence of Relational Algebra and Re- 
lctional Calculus Query Languages Having Aggre- 
gate Functions; Journal of the ACM, vol. 29, No. 3, 
1982. 

[13] H.Y. Korth, A. Silberschatz; Database System Con- 
cppta; McGraw-Hill, New York, USA, 1986. 

[ 141 J.M. Nicolas; Logic lor Improving Integrity Check- 
ing in Relational Data Baaea; Acta Informatica 18, 
1982. 

J. Paredaens, P. de Bra, M. Gyssens, D. van Gucht; 
The Structure of the Relational Database Model; 
Springer-Verlag, Berlin, Germany: 1989. 

X. Qian, G. Wiederhold; Knowledge-baaed Integrity 
Constraint Validation; Proceedings of the 12th In- 
ternational Conference on Very Large Data Bases; 
Kyoto, Japan, 1986. 

591 


