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Alxjtract 

'l'hl~ cl~.~I~Lrat,iv(~tlc,ss of relational query Iilll~U~@?S is 

vl*ry ;tttr:tctivc, for dcvt?loping applications. However, 
IIIA~I~ al~l)licatioiir; also i~ctl to invoke externill func- 
(.ions or to access data that is not stored in the 
cl;~t.;rh;rsc*. It is IIOI. hard to express ref(xreuces 1.0 such 
IibrcGgn functions in the query language. However, the 
isslm ol’ wsl.-Iswxl optimization of relational queries 
in 1.11~ pr~~s~~ncc of such foreign functions has not pre- 
viously Iwm addressed satisfactorily. In this paper, 
WV cl~sc*rihe a comprehensive approach to this problem. 
Our kcly observation is that the optimization must take 
into acrount semantic information about, foreign func- 
l.icms. ‘I’hcreforc, we provide a simple declarative rule 
IiUl~ll;lKP 1.0 (*xpw such semantics. We present. algo- 
rit.huls uccessary for applying the rules aud for gen- 
(*r:ll.iiifi thr spii~(* of equivalent queries. ‘I’hcb cquiv- 
:Otw1. clti~*ric~,s provitl(* tIi(* 0ptiiilizc.r with ati oriri&d 
c*sc~rlll.im SlliWl'. Wt. sliow how WC can modify thcl trn- 
tliLiclllid join reor(l(>ring algorithnl based on dynamic 
I~rc~griurltlliug t,o c,btairi i&I1 optimal plan from the exe- 
cution space. We provide necessary extensions to the 
cost inodc~l that are needed in the presence of foreign 
fiiiictioiis. 
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1 Introduction 

Hclational database systems provide the ability to con- 
veniently query the data stored in their data.bases. 
However, in many applications, there is a need to in- 
tegrate data and operations that are external to the 
database (let us refer to them as foreign f~nclzons). 
For example, it will be convenient to invoke IJNIX li- 
brary functions as part of a relational query. Moreover, 
for many problem domains, highly tuned applications 
cbxist. The ability to exploit such existing applications 
ih important since redevelopment can be prohibitively 
expensive. Furthermore, for many applications, only 
part of the data that is needed may be stored in the 
database and much of the data may reside externally. 
Access to such external data is provided by a set of 
interface routines. For example, many specialized Geo- 
graphic Information Systems (GIS) are available today 
that provide the ability to store and access geographic 
clal~. On the other hand, information on attriblltes 
(c.g., population of a city) is usually stored in a re- 
lational database. Thus, for (:I!3 as well as for other 
applications, the ability to invoke foreign functions in 
a relational query is very useful. 

The ability to answer relational queries efficiently re- 
lies on the ability of the optimizer to choose from the 
repertory of evaluation ,options. Therefore, when we 
add the ability to invoke foreign functions, we also must 
provide necessary extensions to the optimizer to ensure 
&icicnt execution of queries. In this paper, we will ad- 
dress the optimization and related issues for relational 
queries that invoke foreign functions. There are other 
dimensions to the problem of supporting foreign func- 
tions (e.g., format conversion, complex objects), that 
we do not address in this paper. 

1.1 Motivating Application 

To illustrate the key challenges to optimization intro- 
duced by foreign functions, we briefly describe an appli- 
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cation that allows IIS to access information about busi- 

nesses and their locatious in the Hay Area. This appli- 

cation has been built, in the Papyrus project, [t !HK+UI] 

at HP Laboratories. The details of t,his aliplicabion al)- 

pear in [KNPs’L]. 

The applicat,ion is built, on top of ETA K’ MspEnginc- 

and a relational storage manager. The MapEnginr is a 

geographic data manage? that provides the ability to 

store and query maps. 

The relational store is used to maintain attribute in- 

formation about businesses. In particular 1 the, rrlation 

Husir~ess contains information about the type of husi- 

nesses, their telephone numbers as well as adtlrcssc~s. 

The MapEngine is used to store the locations of tflca 

busiuess establishments in the Hay Area. ‘i‘h~ func- 

tioii Mar) retrieves a11 point,2 in thr map tllitt corrfx- 

SpOlitl t&J I)llSinf?SS f%kh~iShlllfilitS. ~ilIlihW~y, it fllli~~~i~il 

Mnp-Restaurnnl is used to access points in the imp 

that correspond to all restaurants iii the Hay Arra. 

The boolean function Inside is used to test whethrr 

a given point is within a given rectangular window. 

The MapEngine also provides an additional function 

Mapclip that, given a window, returns all points, cor- 

responding to business establishments in the map that 

are in that window. 

For our application, we need to support queries that 

span the relational system as well as the MapEngine. 

An example of such a query is to be able to rct,ric*vta 

names of restaurants that are located within a certain 

window in the map. In order to be able to answer 

such queries, each tuple of Business has an attribute 

which acts as an index for accessing information in the. 

MapEngine. Similarly, each record in the MapEuginc 

points to the tuple in the table BII.&IFS.S whr~r~* ~IIC 

attribute information about the correspoutling I)usiuoss 

establishment is maintained. 

1.2 Challenges for Optimization 

The above application brings about two fundamental 

requirements on optimization, as discussed betow. 

First, the semantic information associated with 

foreign functions needs to be captured and exploitt4 

for optimization. This is illustrated hy the following 

example. Additional examples of semantic informatiou 

that is useful, in the context of our application, appear 

in Section 8. In that section, we will show how such SC- 

1 ETAK IIIC. designs vehicle navigation systenls and prodrmw 
digital map databases. 

*For our application, we also integrated another spatial data 
nunager. For brevity, we will not distinguish hetwreu t,he I,WCI 
spatial data managers. 

3 WC will represent a point or a window as a single argument; 
akhough a variety of representations is possible. 

tirantic iufnrmatic~ii can 1)~ rc~prc.st~iit4 iu a. (lOCl;lr;~I.IV~~ 

fashion. 

Nrxt, WC‘ observe that the tlt~cislon (,I) tiic)(lily ;i ~IVC~I 

query using s6:niautic information nitty iwfd tf) I,f, f-fd- 

I~asc?tl. III other words, wht+hcr fq,l)licn,teiolt (>f t.Iw 8,. 

Inantic. knowlcdgt* rr4Ilcrs c.c)sb of (4u;ltioll ~1~~1~~~11~1~ 

on kliv wsl pariwwt~f~rs and tlttin hlii~tl applic:~ti011 01 

semantic: inforniatiun may sacriticcs t~pl,imnlity, i1s 1.h(* 

following rxamplr iflustratt23. Thercforc~, WC it~usl. It;rv4. 

<an algorithm for cost--basc>d cy)l.intizi~l,iou in th(* pr’3 

cnct’ of sciiiantic iiiformation. 

Example 1.2: Ilet us consith*r the query I.(# littcl all 

restaurnuts in the downtown Palo AIt,). This (111,‘ry 

can bc answerc~tl by selecting all rc~stauraut,h I’rt a11 

the tabt~ f~usii6c~s.c and thc!n invokiug the func.l.itril 

Mnprlip. Alternatively, WC catI iuvoke thy fuurbiotl 

Mnp-Rc.slau~*a?at ant1 tlmi st!lsrl. the> rcsl.aur;uil.s ii) 

downtown Palo Alto by invoking f7rsicfr. ‘I%c*sc, I.w~) 

queries are equivalent, but the optimal ~I;uI for fmc (11 

the queries may be better, even by a.11 or&r of tit;hKlii. 

tutle, compared to thcb optimal plau for thy ot.hc>r qtbt*ryS 

tlepc~tiding ou whct,hcr t,hc indexiug caff~ct Of restrict. 

ing Iocatious t,o downtown l’alo Alto is itic)rc‘ vII’~YI 1\3* 

f(han incirkxing b:wc~l ott rc>strictiug the* businc~ssc~:; 1.0 I,(, 

r&:mr:ulI,s. I 

Thus, iu the pr*:scitcf’ of foreign fitii~tions, t.hr*rc. i~f;fy 

bc rrrult,iplt~ ways to answer the same query im(I suc.11 

seularitic iiifur~nirt,ion is c>xtrt:mcly V~ll~li~l~l~~ for flilf~ry 

opt~itnixation and IIIIIS~ bcl capturc4. llow(:vtar, thf~ al’- 

plication of such sc>liiaittic iiiformatioii for qiipry 011I i 

tI1izi~tiOIt n&s to be cod-lmwtl. 

1.3 Ovr?rview of our Approd~ 

In this paper, wp present an approach to optiiliix;rl.i~~i~ 

in the presc’nce of foreign functions that takrs iuto il(‘- 

count the observatinns matte above. WC allow th(. s(’ 

mantic information to 1)~ spcdied in a tffc/nwdivf~ way 

(using asimplr extension t,o SQL) by using rcawritr rules 

with clean semantics. The rewrite rules art? used to gun- 

rratr alternative cquivalt~nt qut‘rif3. An optiiuirl plaih 

is picked by our optitniac>r in a COY~-I~~~~V~I fashicbu that. 

considrrs all such querit!s. 
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‘1’11~ kcty P~CIIIIYI~. of onr approach is 1.b~ IISP of a 

tll*cI;iral.iv(* langiiag~ for rewrite rules. Wc will com- 
l1l~‘ll~. Oil 1.h prfJS illId CfJllS of Such all al~prOWh iI %?c- 

I.icln 8. Although our apl)rfJiWh requirf?s f‘nhanccment~s 
1.0 I.lic~ caxisting relational optiiiiixers, it, does not. rquirr 
211 arc~hit.c~cl.ural r(&sign. 

2 Queries, Foreign Functions 

Wt. will c.clllsill(.r c*o7rjun~lr,t~ ~71~7~~s for 1.1~ I)nrpos(‘ 

IJ’ this papr. ( Lnjunctivc~ cluaric~s correspond t,o thr 
s11l~sc4. of SQL which has lhe following form. Observe 
1.11a1. l.h(* th(* WHERE clnusr is a conjunction of rondilions. 

SELECT columnlist FROM Tablelist 
WHERE condl AND . . . AND condk 

\vI' CJlWCTVC' t.h;lt. f'vf'ry Cf~Il~~llIlct~ivf' clllery iS a flX.bklled 

s~~l~~~~l~-l~roj~~~l~-joir~ (SI’J) clii(‘ry. ‘I’his suI~sc4 of SQL is 
with%ly usc4. 

A r(*ft,r(qict\ to ii forcigu function rliay occur iLS a con- 
tlil.ion, or as ;1 lfill)lt‘, or as il funclinn in a SQI, quf’ry. 

EXlllIq)h! 2.1: Id IIS CfJIiSifkr a Shghtdy IIlOf~ifif?d vf‘r- 

silli of l.be qin’ry tllal w;~s informally stat4 iu 1CxnIIk 

l)lfa I. I. 1,c.t us ~.WIIII(~ that WC have a tahh? BUSINESS 
1.l1aI. has live ;ll,tribllIt?s: NAME, TYPE, EARNING, SIZE 
x11(1 ETAKID. ‘!‘h IIKL~) (III Map1Snginc is rnothah,tl as a 
I;~r~*ign ls;lI~It~ HAP consisting of atl.ributes ETAKID and 

LOCATION. ‘1’1~~ attributr ETAKID in both I.hc tahh?s 
rcbli>rs t,o 1,l1c k(>y in the May Engine. lintcall from Ex- 
;LIII~I~V I. 1 th;ll. 11~sidc acts as a condition t,hal checks 
wh&c~r a p”iub is within a wiudow. Therefore, il 
cm Iw rc:prcasculcd as a coudition in the WHERE clause 
of thr clucry. Finally, we havo a foreigu function 
EXPECTED-REVENUE which lakes thr size of a r&au- 
rant, as an input argurueut and estimates the average 
c~xpccl.cd earning of a restaurant. The following query 

finds idI restauranbs l.hal art‘ in 111t~ inap in l,llf> WilIfIfJw 

u wliosc* earnings arc’ hel,f.er Ihan rxpectc~tl 

SELECT BUSINESS.NAME, MAP.LOCATION 
FROM BUSINESS, MAP 
WHERE BUSINESS.TYPE = ‘Restaurant’ 
AND BUSINESS.ETAKID = WAP.ETAKID 
AND INSIDE(u, &lAP.LOCATION) 
AND BUSINESS.EARNING > 

EXPECTED-REVENUE(BUSINESS.SIZE) 

For notational convenience, we will represent, con- 
junctive queries as domain calculus expressions as 1s 
done in nonr(xcursive Datalog [Ull88]. In domain- 
calculus, a conjunctive query is represented as a set 
of ronjuncts (also ca&d liberals). Thus, ieferences tcJ 

c+her table, function or condition in the SQL state- 
rnenl will appear as a conjunct. The mapping to such 
a tlolllairl-calcllllls representation is straight-forward. 

Exanlpla 2.2: The domain-calculus representation for 
Ihe query in Example 2.1 is: 

Q7ccry(tmme, locnlion) : - 

I~r~.si~~~.ss(~~n~r~r:, Restaurant, earn, size, eid), 

Mny(cid, lorntio7i), fnside(w, localion), 

~xphw(size, ezp), eurfi > exp 

The constants in the query are in typewriter fonts. I 

In our notation, there are no explicit, equality clauses. 
Instead, the qualities are implicitly represented as 
(qualily of variables in the expression. Like SQL, a 
query evaluates to a bag of tvples 4. As illustrated 
iu Example 2.2, a reference to foreign function in the 
domain-calculus representation appears a.3 a conjunct. 
‘l’herefore, we say that foreign functions are modeled 
as foreign lables (We will use the terms foreign func- 
tions and foreign tables interchangeably). Despite the 
fact that representations of a foreign table and a stored 
t+&l(> appear syntactically similar, the distinction be- 
IwecBn l,be two will need to be drawn for query evalua- 

tion as wf!II a8 for query optimization. 

A foreign function rnay have Safety conslrainls. 
Safety constraints are needed to ensure that during in- 
vocation, lhe foreign function is passed values to its 
“input” arguments. For example, before the conjunct 
Inside in Example 2.1 is evaluated, both its arguments 
need to be bound. Such safety constraints need to be 
specified when the foreign function is registered with 
t,hr database. 

‘Note that the above is uulike the approach typically used 
in deductive databases, where a set seulautics is associated with 
suds a notation. 
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3 Rewrite Rules 

The objective of the rezurile rules is to capture seman- 
tic information associated with foreign tables and their 
relationship to database tables. This information will 
be utilized to derive queries that are semantically equia- 
alent to the given query. Subsequently, a cost-based 
optimizer constructs an optimal plan for a query from 
the execution space of equivalent queries. 

The language for expressing rewrite rules is clrclar- 
ative and requires simple syntactic extensions to SQL. 
Roughly speaking, a rewrite rule has t‘he format: 

REWRITE QUERY1 AS QUERY2 

where QUERY1 and QUERY2 are relational queries such 
that the result relations have the same arity. Since in 
this paper, we are considering only conjunctivr queries, 
we will adopt the following notation for rewrite rules. 

WC Y) - % 2) 

The expressions 15(x,y) and R(x,z) are conjunctive 
expressions and will be called the left-hand side and 
the right-hand side of the rule respectively. We note 
that x, y and z are ordered sets of variables. Any 
variable that occurs in either side of the rewrite rule is 
called an universal variable (e.g., any variable in x). 

3.1 Semantics 

Our intent is to use rewrite rules to dcrtvci semantically 
equivalent queries. There are two aspects of semantics 
associated with a rewrite rule. 

First, a rewrite rule L(x, y) + R(x, z) asserts that 
over any database, the queries &I and Qr, aq defined 
b&w, resutt in the same bag (Jf tAples. Ii1 other words, 
Ql and Qr are equivalent (denoted Qi z Qr). 

QI(x) : - W,Y) 

&r(x) : - R(x,z) 

Observe that only the universal variables occur as pro- 
jection variables of Qr and Ql. 

Next,, a rewrite rule also specifies a rule for deri~n- 
lion of a new query. It says that an occurrence 6 of 
L(x, y) in a query may be replaced by the subaxpres- 
sion R(x, z) after appropriate renaming to derive a new 
query. The arrow in the rewrite rule is used to indicate 
that only an occurrence of the left-hand side of the rule 
should be substituted by the corresponding occurrence 

“We say that two queries are equivaleut if they result in the 
YLIIIC bag of tuples over auy database. 

s ldeuticd lo an expressiou upto renaming of variables or sub- 
stitutiug a constant for a variable. 

, 

of the right-hand side (and not vices-vrrsa) IA) gcbtlc*rat,ca 
equivalent queries. By the notation Q S, Q’- WC tl~- 
note that Q’ is derived from Q using the rcwritcb ruha 
1’ 

The semantics of the rewrite rule, as disrussc,d R~OVV. 
imposes directionality. Thc~rc~forc, 1.0 cxprcss 1.11;1.1 C+ 
tOher left.-hand or right-hand side of tJlc\ rlilc can I)+* SI~J~ 
stituted hy the other to derive a IIVW query, WC II~VY~ 
t,wo rcwrit,e rules. For brevity, we will cxprcss t.M. Iy ;I 
bidirectzonnl r?rlr using the uotation 1,(x? y) c-) h’(x, z). 

Example 3.1 : (:onsitier ~,hr. rcawrit.c* ruhb ill F:S;IIII 
pie I. I. We will represent l.hat, rcxwrit.c riilc iL'i 

Note that, the safely ronstraintS rc*quirc:s t,hc M. :trKII 
ment of Mapdip to IN Iw1111tl. In this rxilllll~lt*, 1.111* 
variables rid, lot and u7irrtfou~ are all iiiiivcrsa.l varl- 
ables. The scxmantics imply rhab, ovc’r any tlaI,al)ast’, 
qiitGs 01 ant1 Qr miisb rcsull. ill saiiw hg of I.iil~l~~.~. 

Qr( t-id, lot, widow) : - M npdip( hi, ioc, wintlot~~) 

We also observe thal t#hc left,-hand side of the rc*wriI.t* 
rule has an occurrence in the query Q, givru IWIOW. 
Thus, using the above rewrite rult* (say r), WC tltarivt. 
the query Q’, i.e, Q jr Q’. 

Q’(~MHuc, lot) : - 

Rusiness(name, Restaurant, cam, cd), 

Mapclip(eid, lot, w), Intcrscrt(ui, ~3, W) 

I 

Exa~~ple 3.2: The following rule is usc~d infornlally 
in Example 1 A!. It says t,hat in ortlcr to oht.ain 10r;r 
Cons of r&anrant+ wt* can ritht.r t*akr a join I~c*t.w~~cw 
H~Iw~~c~R and M np or can invoke M c~pArstn~~c~~r/ : 

Husinrss(tlnntrl, Restaurant, eurn, size, citf), 

Mnp(~id, lot) ++ Mnp_fCestntr7~alct(ciit, h) 

In this example, citf and lot are tmivc~rsal vari:JA~s. I 
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Exnn~plc! 8.3: The following rule for MapEngine says 
that instc*;rcl of checking whether a point belongs to 
CWII of tlw two given windows, we can check whether 
the point belongs to the intersection of windows. 

Iihsidv( w 1, poiiht), insidr(w2, point) 

-+ /lnsidc,(lrt,poillt), Intprsf:ct( w I, ~112, w) 

llsillg this rule, thr problem of finding all businesses 
iti Illultil)ltb windows can be reduced to the problem of 
liuding all businesses in the intersection of the windows. 
I 

Exru~q~Ls 3.4: Assume there is an index OII Map for 
il. givcil Rid. We can refer to the access function for 
the intloxed scan by Mnpwithid(t+d, tot). III order to 
tbnsurc that the optimizer takes the indexed scan as a 
possibility, we specify the following rewrite rule: 

Map(sid, lot) t+ Mnpwithid(eid,loc) 

‘1‘11~ sati>ty constraint 011 Mnpwithid requires eid to be 
Ilolllld. I 

3.2 Sounci Application of a Rewrite Rde 

Lc>t 11s aw~~tnr that Q +-, Q’. Since our objective is 
to use thca rewrite rules for query optimization, we are 
intc!rcsted in Q’ only if it is equivalent to Q. The fol- 
lowing example shows that not all derived queries are 
ut~cc~ssarily c~quivalent to the given query. 

Exnmplc! 3.5: We observe that the query Q has an 
occurrcnc(b of the left-hand side of the rewrite rule in 
l+:xilIll]‘lc 3.2. 

Q(h) : - 

IJu.sirl~ss(biznar,le, Restaurant, earn, sire, eid), 

Mrry(eid, lot), Owner(biznnme, bob) 

Ilowcv(!r, replacing the occurrence with the right-hand 
sitlc: of the rewrite rule results in query Q’, which is not 
semantically equivalent to Q. 

Q’(loc) : - 

Mtrp,Rastaurant(eirl, lot), Owner(biznmre, bob) 

111 thr above example, the crux of the problem is 
that t,hc* ac~mantics of rewrite rules guarantees that the 
I~4Lhautl mrd right-hand sides of the rewrite rules are 
c*quivalcnt over universal variables only. Thus, in order 
to ensure that the queries that we derive are semanti- 
rally equivalent, WP must ensure that only appropriate 

occurrences of the left-hand side of the rewrite rule in 
the query are replaced. It turns oilt, for a rewrite rule 
L(x,y) -+ R(x.z) to have an appropriate occurrence 
in a query Q, the latter must have the form: 

Q(u) : -,C(v,w),G(t) 

where the set of variables w is disjoint from the set 
11 as well a9 the set t. Note that G(t) represents thca 
conjunction of the rest of the literals in the query and 
t represents the set of all variables that occur in G. If 
the query has the above form, then we can derive an 
equivalent query Q’. 

Q’(u) : -R(v,s),G(t) 

The following definition of sound occurrence captures 
appropriate occurrences. The definition is simplified 
for presentation and asFumes that there are no inequal- 
ity conditions in the query. A complete description ap- 
pears in [CS93]. 

Definition 3.6: Let I---) T be a rewrite rule. An occur- 
rence 1’ of 1 in Q is a sound occurrence if the variable 
renaming is such that (a) only variables in 1 that are 
mapped to constants in 1’ are universal variables (b) 
The literals in 1’ share with the rest of the literais in Q 
only those variables that correspond to universal vari- 
ables of 1. I 

Example 3.7: It can be seen that the occurrence in 
Example 3.5 is not a sound occurrence. We observe 
that the variable bizname is shared with the literal 
Owner which is not in the occurrence of the rule. How- 
ever, birnarne is not a renaming of a universal vari- 
able. Let us now consider a variant of the query in 
Example 3.5 where the literal Owner is replaced by 
Historic(loc) in Q. In this case, there is a sound oc- 
currence. I 

Using the definition of sound occurrence, we now 
present an algorithm for deriving a semantically equiv- 
alent query using rewrite rules. A sound application of 
a rewrite rule consists of two steps: 

1. Identify a subexpression such that there is a sound 
occurrence of the left-hand side of the rule in the 
query. 

2. Substitute the subexpression with the right-hand 
side of the rule (after renaming). 

The following theorem, shown in [CS93], is a key prop- 
erty of sound application. 

Lemma 3.8: Let Q =+, Q’. Then, Q’ E Q ?gr Q’ is 
obtained by a sound application of T to Q. 
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We outline an algorithm rewrite(r,Q) to geurrate 
all equivalent queries obtained by sound applirations 
of the rewrite rule T to a given query. First, we etlu- 
merate all possible occurrences of the left-hand side of 
the rewrite rule to the query. Next, for eac.h occur- 
rence, we test whether the occurrence is sound. If SO, 
we generate the corresponding equivalent qurry (SVP 
Figure 1). 

In the worst case, rezurite(r, Q) is exponential in the 
size of the query. However, for queries with no repeatc?d 
table names, there is a unique sound applicatiou of a 
rule and the algorithm for sound application t.akw tifrlc* 
linear in the combined size of the query and the rrwri(,c> 
rule. Moreover, the size of the query is typically li~rlil.c~tl 
t,o a few literals. In practice, our algorithm for tmwnrr- 

ating sound applications performs satisfactorily. 

4 Optimization with Rewrite Rules 

‘I’he traditional optimization problem is to choose an 
optimal plan for a query. However, sound applications 
of rewrite rules generate alternatives to a query that are 
semantically equivalent. Therefore, the optimization 
problem becomes that of picking the cheapest, mwog 
the optimal plans of the set of equivalent, queries in a 
cost-based fashion. Thus, our optimization algorithm 
consists of the following two steps. 

1. Generate the set of equivalent queries. 

2. Choose the cheapest among the optimal plans for 
each query obtained from Step 1. 

The Step 2 of the algorithm is accomplished by an 
algorithm which extends the System R style of join 
enumeration using a dynamic programming approach. 
This algorithm will be described in Section 5. We now 
describe Step 1 below. 

4.1 Generating Equivalent Queries 

The set of equivalent queries that are obtained from a 
given query by sound applications of rewrite rules will 
be referred to as the closure of the query, defined below. 
We will present an algorithm to compute the closure. 

Definition 4.k The closure of a query Q with respect 
to a set R of rewrite rules is the set of queries: 

closure( R, Q) = (Q’lQ do Q’}M 

The symbol Q =$;R Q’ is used to denote the fact that 
Q’ has been obtained from Q by a finite sequence of 
sound applications of the set R of rewrite rules. 

Q’(h) : - M flP( f id, lot), 

Finally, au application of the rc,writcs rulra ill I~:X:IIII 
plr 3.1 rc3lllbs iii :L quf!ry Q”, 

Q”( lor) : .- Mtrpclip( f!id, 1 or, ?I)), /rr/f~1*sfv*l(wl, w2, If’) 

III this c:xarffple, wt. have c,bst~rvc*tl ;I wtpwcf~ (I(’ rlila. 
applicatiofls. 4 

‘I’ht~ algoribhfu to cornputt* the &surf> is givc*ll III l:i~ 

lire I. 
The algorithm grstl-closure is itt*rativr*. I )iiririk 

each itt~raliofi, dcrivecl qucrit-s that wt!rt’ ml. 0Ib 

trifled I)f:fow, wt. iW the StwlS 1.0 gtw~~ral.~~ :I.tltli 

tional qu(aric?s in the current, iteratiotl. TO gt*1lf*r;tl.c* 
quf’rIes, thca algorithm rept‘at”lly Invoktbs t.ht, ~;IIICI,L,II 

rcu~&r. ‘I’hc: cotrl,rol-strurrlIre of this algorithttl is sill1 
ilar to .sCG-naiac algorilhfn that is ~iscxl ii1 tlvtlllc*l.ivv 
databasc~s [Han%]. 

Assuming tlfat each query ha.* ;t IM~IIIICM hg,t~h, 1 III, 
corrip1cxity of gfwxloswf~ is polyitol~rial irl 1.h siw III 
II ilfld closUrc( II!, Q). It1 or&r t.0 wwss l,lit* wltwltl. 

rules cficirntly, we maintain thp rifles iff a rlflt*-I.a111t~ 
whit-h is indexed on the conjunrts that. appt’;tr OII (.I~P 
Ieft-hand side of the rule. A tlei.nilccl discussion of iltl. 
plemr~ntatiofl is beyond the scope of this papf’r. 

Obscrvcl that the termination of ycvrAr~~w~ dtqw~~tls 
on whether the closurca of thtr qucary with rt*spcsc(. tt~ :I 
sc%l 0T rcwritc riihas is {initc> or riot. Fnr l.ht* ;ipl~liCa- 
tions that WC have? considered, WC ~OIIFI~ that UIts VII) 
sure of a qifery is l.ypiralty liiffitd to a ft:w qut*ritas 
only. ‘I’hcrt~fort~, neither tt~rrtrination nor tht> size* of LIIC% 
closure post-(1 any problems. Norr&&ss, wt. II:LW- ill- 
gorithms that test sufii&nt conditions for finitt.utbss (II’ 
closure [( XG]. These algorilhrrls takt> I,ilnc> lint:ar ill 
the sizc.of the set of rules and the query. III t’;w th, 
closffrc is ffot provably fiffih, or if wc th-sirts 1.0 rc3trit.I. 
the set of equivalent queries that arc ganrrahl, WV cm 
do partial enumeration of closure. 
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Function wwrit6-(r. Q) 
hgiu 

or = Q 
for every sound UCCllrrrllCe A’ 

Of r in & do 
Qr = Qr U {AQ) 

where AQ is the derived query 
due to occurrence A 

endfor 
return 

end 

Figurt> I : Algorit,hrll t,o (:ompule (Iosure 

I’nrtial Emmwration of Closure: For sclect,ivc 
c~iiurirc*rittion of closure, we can use a bufigcl t,o spec- 
ify :uI upper bound 011 tOhe maximulti tilu(b sptlnt, on 
c,rillrlIt.rill,ic~ll. Aiiot.ht!r nlt,ernabive is to bound th sina 

4 tf ariy tiucbry f,liat. is used as a sect1 t,o gcnrrabr ol.her 
qiwrit’s. Wt> can also niodify tht~ rewrite, rules I.0 achieve 
I)arl,ial enurlrcration. Thicr is illustrated by the follow- 
ing cbxartlplc. 

rewrite rule where SpecinlMapclip occurs in the left- 
hand side. Thus, the closure is finite. After the 
closure is generated, we substitute the expression for 
.SprcinlMnpclip(eid, lot, window). In effect, we have 
avoided generating the entire closure. i 

Exw~uplc! 4.4: The following rewribc> rldc rxprt‘sscs t,hc> 
kllc~wl~*dgc* t,hXt iLlI rcstauranl~s in t,hc riiap art‘ in a win- 
III~W w. ‘I’herefort~, if we arc asked to find restaurants 
I.h;rl. art’ in iklly window, wt* can in1.trrsec.l t,li(> givctn win- 
alow WiLli W I&)rc~ WC‘ St\illTh. 

In t,his example, we have shown how we can treat a 
subexpression as a single literal and thereby restrict the 
euulncratSion of closure. The choice of the subexpres- 
sion det~crmines the subset of closure that is selected 
for euumeration. It can be shown that by using this 
sl.raI.(sgy, nliy set of rewrite rules can be rewritten to 
f’lisure t,hat t,hc effective closure is finite. 

/~u.si7~~s.s(trcc7nc, Restaurant, f-fim, sizf,, eid), 

Mcipclip(c~2,1oc, wiirdow) - 

I~usinesx(iuanie, Restaurant, mm, size, cid), 

Mcipclip(eid, lor, small-win), 

lirlfr.srcl(~oii~tlow, w, srnnll-wiir) 

llllilgille a qut’ry which consists of thfa ronjuncts in thcx 
I& h;tllll Sith! (Jf tht! rewrite ride. It iS F!ZiSy t0 See thaw 

r.lr(b c’loxurc! fijr this query is infinite. 
Ilowcbvc*r, we can represent the rule in Example 4.4 

as rollows. 

I~fisiirf~s.s(tltitrrf~, Restaurant, etcrii, sitct, eirl), 

Mapclip( tid, lot, window) -) 

Iftrsiiwss( iw~uv, Restaurant, CUI~I, sizr~, G(i), 

Specicll M apclip( rid, lot, window) 

Pruuiug the set of Equivalent Queries: The set, 
of rquivalent queries that are generated by gen-closure 
are considered by the cost-based optimizer to pick t,he 
optimal plan. Since optimization of queries is expen- 
sive, it is appropriate that we eliminate queries that 
are not promising, i.e., not likely to yield an optimal 
plan. It. is possible to designate certain rewrite rules as 
always-hproving. Thus, if r is always-improving and 
if Q 3, Q’, then we do.not optimize Q since it is as- 
sumed that Q’ will always result in a better optimal 
plan. For example, the rewrite rule in Example 3.3 
may be marked as always-improving. An interesting 
approach will be to use crude cost measures to approx- 
irrrabe t,he cost of query evaluation to weed out queries 
that, are not promising. 

5 Choosing an Optimal Plan 

Our modiliad rewrite rub contains a new table narl~ie The presence of rewrite rules and foreign tables intro- 
.Vl)c,~inlMtry~lip. Ilnlikn the original rule, the new duces new dimensions to the traditional optimization 
rul(a <illI not be used repeatedly since there is no problern. First, the presence of foreign tables requires 
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introduction of new join methods as well as cost mod- 
els t,hat are appropriate for foreign tables. Second, the 
traditional join enumeration phase must ensure l,lrat, 
only those reordering of the joins are considered which 

satisfy the safety constraints. In other words, we nerd 
to ensure that the bindings that are passed to the for- 
eign functions satisfy the safety constraints. FinaNy, 
our task is to choose an oplirnnl plan when there are 
multiple queries which are equivalent. 

In this section, we address t)he last of the above three 
t,wists to the traditional optimization problem. We will 
address the issue of extensions to the cost modei in Ser- 
tion 7. For this section, we will assume that the cost 
mod,el can assign a real number to any given plau ill th 
execution space (defined below) and satisfies the ptincz- 
yle ef optir~~lity [GHK92, (:LR90], which is implicit in 
relational optimizers that use dynamic programming. 
We will omit any discussion on the problem of ansur- 
ing safety since this is a rather well-studied problem 
(See [UlE.3]). 

The optimization problem is to choose a plan of 
least cost from the execution space. The execution 
of a query can be represented syntactically as anno- 

lakd join trees [GHK92] where the the internal node 
is a join operation and each leaf node is a database 
table7. Thus, the ecectllion space consists of the space 
of all join trees* for each equivalent query obtainrtl 
from Step 1 of optimization (Section 4). 

Since the execution space is the union of the exc- 
cution spaces of the equivalent queries, we can obtain 
the following simple extension to the optimization al- 
gorithm: 

1. 

2. 

Qptimiee each query using the traditional algo- 
rithm and obtain the best plan for the query. 

Choose the cheapest among the best, plans ob- 
tained in Step 1. 

For Step 1, we can use any traditional relational opti- 
mizer [SAC+79]. The space requirement for this algo- 
rithm is the maximum space required for optimization 
of any of the equivalent queries. However, the slgo- 
rithm has a poor time complexity since it fails to take 
advantage of the common subexpressious among equiv- 
alent queries to reduce the optimization time. 

5.1 Algorithm that Reuses Optimal Plans 

Our algorithm uses dynamic programming and extends 
the well-known join enumeration algorithm in System 



I’rtM:f!tlllrc! 0pttJln11(C)) : 

if r,a:isl~opli7f1c61(0) them raburn; 
IAd. I) = (4,). . , (I,,); 
IA’t* Si = Q - {t/i}; 
li)r C'ilClI i do 

O~l~t’l~Il(S;)~ 
1: = Plan for Q from ,S’i and qi 

edfor; 
(h-~ose best among Pj 
and add to plan table. 

t!Utl 

Figurcb ‘L: Join Enumeration AIgorit.hnt 

Op/p1u~1 where t.hl: query IliW at ri~onb two lititrals (I.e., 
in sin&* join). ‘1’11~~ abovr castes as well as thtn generation 
0I’ I\ frW111 a\; JUld qi (SW Figure), are hantllfYl by a lo- 

~f6/ opltttker whirh is invoked hy t,his join-cnurneration 
alg,,ril,lltri. ‘fhr local optimizer usi\s information about 
th cost-modeI. As in traditional optimizers, our op- 
l.ilrlixt:r treats the built-in boolean conditions (snrgable 
~~~~tlirolr.9) specially. 

Excunylt~ 5.2: (:onsider Example 5.1. I,rt us assume 
that, t.11~ query Q is represented by the string (1234). 
Ilowevcr, once the rewrite rule is applied, a new literal 
hltrp-/C~,slatlmnl(cid, lot) is created and the reprasen- 
~.:l.t.ion for Q’ will he (145). The optimization of the 
(Iu,‘ry Q will create the optimal plan for (14) which is 
thorn stored in the> plan table. Dnring the optimization 
(,I’ I.~IC qut~y Q’, first, the plan table is consulted to see 
wht~l.her a plan for (145) already exists. Sinctk it does 
IIOI. c*xist, wt. tnusb construct the optimal plans for each 
sul)qucxry. 111 partirnlar, baforc? constructing thi? opti- 
III~LI I)I~II for (l/1), t.ht: plan taljle is ct~nsull.i~c~ and the* 
c*xisl.ing optiiii,aI plain for (14) is reused for opGniiza- 
l.ic,n. 1 

‘1‘1~ algorithm Optplan has the desirable feature that 
for ~60 shared subquery, the optimal plan is redcrived. 
Moreover, only plans for shared subqueries are retained 
in the plan table. 

It. is possible that for a given foreign table, there may 
1,~ clili’erc~nt iarl’lelllc~ntatiolIs which differ OH the safety 
constrainLs. The join enumeration method invokes the 
ittll,lt’lllc’tltal,ion whose safety constraints are satisfied. 

Wr nute that when there is a budget OII optimiza- 
t.ic,n time, our st.ratogy of optimizing one qut’ry at a 

time is convenient hccauscx it is possible to terrnina1.c~ 
the optimization once the optimal plan for one of the 
equivalent queries has been constructed. 

Since potentially we are optimizing many queries, wc 
we a branch and bound strategy along with the top- 
down algorithm. Thus, if a partial plan is found to 
have> ctxceeded the cost of the optimal plan that has 
been found so far, then that partial plan need IIO~ IN\ 
completed since it is guaranteed to be suboptimal. 

We are exploring the opportunities for heuristics in 
guiding the search. For example, heuristics may be 
used to determine the order in which queries are opti- 
mized. 

Bottom-up Algorithms: It is also possible to use 
hottom-up variants of our algorithms. There can be at 
ll!astS two possible variants in a bottom-up approach. 
Chic possibility is to optimize all the equivalent queries 
together. Thus, optimal plans for all subqueries of size 
n are constructed before any optimal plan for any sub- 
query of size (n + 1) is constructed. This approach has 
the advantage that it requires less space than the top- 
down approach (by reusing the space). On the other 
hand, since the subqueries for all equivalent queries 
are constructed together, the time for the completion 
of the optimal plan for the first query is longer than 
that for the top-down. approach. Another variant of 
the bottom-up algorithm is where optimization is done 
one query at a time but the optimal plans of shared sub- 
queries are saved. While this rectifies the shortcoming 
of the previous approach, it suffers from the problem of 
not being able to share the plan for the maximal shared 
suhquery. 

Inexpmsive Tables: In a traditional relational op- 
timizer, the selection conditions are not reordered dur- 
iug .joio-enumeration. Rather, the selection conditions 
are evaluated as early as possible. Since the cost of 
reordering joins is exponential in the number of literals 
being reordered, this helped save optimization time. 

The invocations of some foreign tables may also 
bc inexpensive. For example, the foreign table 
Inside(w, lot) checks whether a point lot is inside the 
window w. An invocation of Inside is inexpensive and 
Inside may be considered like a selection condition in 
a relational query. Thus, we allow foreign tables to be 
designated as inezpensiie tables. In a query, the literals 
that correspond to inexpensive tables are not reordered 
but arc evaluated as early as possible in the join-order 
without violating the safety constraints. 

We call the rest of the literals as reorder-able, which 
are then considered for join enumeration. Thus, given 
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Plan Table Optimizr Each C$lf.ry 

Figure 3: Ovcrvic>w Of Optirt&tion 

a query, the optimizer needs to identify reordrrab4c lit,- 
erais and place the inexpensive tables for evaluation as 
early as possible in the join order. Thus, the presence 
of inexpensive tables in a query introduces t,he st,ep to 
generate rrordvuhle units [CS93]. 

Affiliated Tables: In addition to being inr~xpc~u- 
sive to evaluate, the selection conditions in relational 
queries play an additional role. Their presence influ- 
ences the cost of scan. Thus, in System R [SAC!‘791 
architecture, selection conditions are pushed down to 
the RSS layer. In general, the cost of evaluation of A. 
foreign table may be influenced by the presence of a sclt 
of other foreign tables. While rewrite rules rnay be used 
to capture such dependencies among foreign tables, wc 
provide another alternative in our optimizer. 

At the time of reg&erin.g a foreign table one could 
specify a set of @&ted t,e&le.s. Each affiliated table 
must be a condition, i.e., all its arguments need to bc 
bound (e.g, It&&). The cost of invoking a foreign t,a- 
ble is inflsuenced by the presence of &&ted tables in 
the query. During the join enumeration, tk optimizer 
considers the foreign tibibte: and its affiliated tables to- 
gether. The cost mode4 provides the join euumcrntor 
the cost of invoking the foreign table in thr Iaresc’nct* of 
affiliated tables. The details of affiliated tables appear 
in [CS93]. 

ExarupIe 5.3: Let us consider a hidden ia~plemeuta- 
lion for Map&p that takes an arbitrarily set of win- 
dows and returns all points that are in each of the 
windows. We designate such an implementation as 
.MnpclipService(eid,l~, W) where W is a se!t of win- 
dows. Thus, the cost ofevaluatiQg Mapclip depends OR 
the presence of Inside in the query. The&ore, we des- 
ignate Inside as an afIXated table for Map&p. Then, 
given the Fery Q, the query optimizer considers it as a 
single islwcation of MqcSip with two affiliated tables. 

Q(eid) : - Mapclip(cid, foe, WI), Insidc(loc, WZ), 

Imide(loc, w3) 

6 Query Processing for Foreign Fuuc- 
tions 

‘I%: ol).jf~cf~ive of this srction is to introdurc~ t.h(* clli(‘ry 
processing techniques for foreign functions that our OIJ- 
timizer considers. ‘i’his discus&a is r&avant. for tllta 
cost model, prtwcuted in the next s&ion. WV CO~NI~N 
the join c+eration and ttiak(. the> sirrrplifyiug ilssut~:~l~- 
lion that. thc~ foreign table occurs as the right, c:llild III’ ;I. 
join node in a left-tleep tree. Therefort>, in a I~+.-(l~~~~p 
join t,rre, t,he table with which the foreign ta,bk~ joills 
is referred to as lhe /cfl tab/c. 

l Sinrple Int~ocalion: For eac41 tuplr in the IrfI. table, 
an invocation is made. 

4 Croup hoc&m: In this scheme, for Cdl dis121lc.l 
V&CS of the bound argullients from 1.111~ It4 l.;Ll~l6~, 
a singlr invocation is madc. 



‘l‘ib~ group iuvc~cation tc~chniqut~ adds lhr overhrad of 
i~l~~iitifyiug l.h(b SC+ of tlistiricl values for thus I,c)und ar- 
gllll~wts. lI~)w(\v(~r, it has the idvniit,agr of fewer invo- 
c.aticblls. whic*h is illll)ort;tnt for fi,reigu t.al)l~s for which 
I’iu.ll illvor;lt.ioll is expensive Morcovrr, if thlb left, ta- 
l)l(* is :drc~;rcly sortccl on the> bound argullicnts prior to 
joiu, th(~n group invocatioa is superior. The srctiou 
IIII cosl. IIKJ&~ would capturca the tradeoff in thr two 
itlblJroarhr.s. 

Since an iuvocat,iou generates a set of tuples, the step 
of tr,sidUul join is similar to a traditional join and any 
jOin iiic~lhocl iiiay bc used. The srlf&on conditions 
Llid. irpply to oiu’ or morfa frr~ (output) argliinrnts of 
l.i14* li)rcsigii tablet, are c*valuaterl during this phase. ‘I’he 
siiiil)l(*st clioic(* for t,lie residual join is nested loop where 
1.h. l.uplrs gc*rlcral.trtl for c>;ich iuvocation arr lrcatrd as 
l.lio inatcliiug luplrs of thr inner table. This rf:sidual 
jOill Ul~‘thll~ call bt? c(JtTd~i~bYi with tht’ tW0 h?chli~~UeS 

for invucirl.iori. 
‘I’lrc~ coiiibination of simple invoca.tion and tlic~ choice 

of IIVS~~C~~ loop joiu technique results in a join algorithm 
which is similar to the traditional nested loop join. We 
calI this join technique loreign nested loop jam (FN L). 
‘I%(% couil)ination of group invocation and the nested 
Ionp join results in an algorithrn very similar to the sort 
Illcrgch join and wt* refer to it as /omign sort-nrrrge join 
( ISM). AII outline of the FSM algorithm is pr~~sentt~d in 
I:igure 4. The FSM algorithm is the algorithm of choice 
WIICW the invocation of foreign tables is expensive. 

III ordcsr to rcxtlucr the nurnber of invocations, caching 
1.h rtw1lt.S 1Jf irlVOca~ioll Wm sUgg&A?d h h&greS id 

SIIC~I illI altc~rnativ(* C;LII 1)~ uwcd with our approach as 
wc.ll, ‘I’hc~ c.t.)rrc.ctuc‘ss of caching (or grnup invocation) 
~l~~p~~u~ls OII tht> assumption thab foreign tables arc in- 
v;1riiuIl. during query processing. Such an nssiiiilptioii 
is 1101. always tmir (tb,g., if the foreigu table is a random 
iiuriil)c~r gc*nc~ral.or). 

7 Extensions to the Cost Model 

‘l’hr cost model must be able to compute the cost of 
iuly given plan. For traditional relational optimizers, 
;I tltWril)kcJr for a k!+bk? indlides &at&id information 
:Ll)out the* table such aa the number of unique values 
in cbirc.ll nrgumeut position (i.e., in each column) and 
th(+ c~xpcctc’d number of tuplas in the table. The cost 
IINNI~ uses thr descriptors to compute the cost of an 
opt,ration (c.g, a join). The cost model also produces a 
IWW &scriptor which contains the statistical informa- 
tion of the intermediate table which is obtained after 
l.hr joiu. 

Our approach to the cost model is to preserve the 
rclatioual descriptor for the datab;tlile tables and inter- 

Function FSM(Left, FTablc) 
(L& is left table, FTable is a Foreign Table) 

t+xl 
.Join = Q 
7’07up-Loft = GROIJF’BY(Left, Bound) 
where sorting and Grouping is by 
the bound arguments of FTable 
for every group Li of Tsnzp-Lef t do 

F7; = Invoke(FTable, Bvali) 
where Bvali are the values in group L, 

for bound arguments of Bound 
Join = Bag-llnion( Join, Mwgr( L,, F71)) 

endfor 
return( Join) 

em1 

Figure 4: Foreign Sort Merge Join Algorithm 

mcdiatSe tables. However, two extensions are needed 
First, WP need to provide a descriptor for foreign ta- 
bles. Next, we have to explain, how such a descriptor 
can be combined with a relational descriptor. 

7.1 Descriptor for Foreign Tables 

For each foreign table, the following information can 
be registered. A full description of the registration lan- 
guage appears in [(X93]. This cost model is an exten- 
sion of the model proposed in [CXK89]. 

Snfrly ~~onstraint.s: This information is not di- 
rcctly used by the cost rrrodel, but) is used by the 
optimizer to determine permissible join-orders. 

CORK: The cost of invoking the foreign table once. 

Fnnout: The number of “output tuples” expected 
for each invocation. 

For each attribute: 

- Domain Sire: We need to provide the size of 
the representation of each domain element. 
We also need to specify the cardinality of the 
domain. A permissible assignment to cardi- 
nality is infinite. 

- Unique Value Factor: The expected number 
of unique values the attribute has for each in- 
vocation. If this parameter is not explicitly 
provided, the fanout is used to approximate 
this factor. If all the domains are finite, uni- 
form distribution assumption is used to com- 
pute this factor. 

539 



Observe that the parameters in the descriptcrr need not 
necessarily be constants, but can depend as well on 
any constants that appear in the query during compi- 
lation [CS93]. 

Example 7.1: A possible descriptor for the foreign ta- 
ble Intersecf(winduw1, window2, window3) corrltl IF 
characterized by a cost of .012ms, afanout, of I, unique 
value factor of I. The size of each domain element is 
that corresponding to a real and the dotnain has car- 
dinality infihte. The fanout is 1 since intersection 
of two windows result in one window. The safety con- 
straint on the function is that the first two argument, 
positions must be bound before it is invoked. I 

7.2 Computing the Descriptor 

In this section, we address the extensions that are 
needed to compute a descriptor. For simplicity, we only 
consider the scenario where the foreign table occurs as 
a right leaf node of left deep join trees. We can as- 
sume the existence .of a descriptor for the I@ table 
with which the foreign table joins. In our optimizer, 
one can register a customized fun~fion to compute the 
descriptor for the table resulting after the join. Such 
a function can take as its argument the descriptor for 
the left table. In the rest of this section, we provide a. 
default) way to compute the descriptor for tlrr intrrlllca- 
diate table. 

We introduce the It$ unipveneaa Jacfor as a cost pa- 
rameter. The left uniqueness factor estimates the ex- 
pected number of distinct invocations of the foreign 
table for a given descriptor for the left table. We have 
considered several ways to approximate: the left unique- 
ness factor. In this paper, we present the simplest ap- 
proximation. 

Fot the foreign table, some argument positions may 
be required to be bound. Therefore, there exists a cor- 
responding set of attributes A in the left table which 
provide the values for the bound arguments of the for- 
eign table. Let P be the product of the expected num- 
ber of unique values for the set of attributes A in the 
left table. We ,use the descriptor of the left tabtr to 
compute P. Let N be the number of tuples in the 
left table. We observe that the number of distinct in- 
vocations can exceed neither P nor N. Therefore, we 
can use mitt( P, N) to estimate the left uniqueness fac- 
tor. Our formula provides tm upper bound of the left 
uniquenee factot. 

Exmnplu 7.2: Consider the following query which 
provides the location of the terminals fot the bus 
routes. Aaurne that the descriptor for Terntinal has 

IOU tuplrs and the number of expected ttttiqtrv valms 
in the second argument is 10. 

g?6rry(rfnrfr, lot) : - 

Therefore, I’ = IO and N = 100. l~m-~~, ttw Iv~I. 
uniqueness factor is 10. I 

In the following discussion, we ~rtttrtte that thctrc, arc‘ 
no selcrtion conditions other than equality bctwt*c*n 1.11~ 
left table and the bound arguments of the foreign tabt~~. 
The effect of selection conditions on free argurnc3nt.s a.* 
well as the rfFect of projection on foreign tabtt*w ott I.III. 
descriptor are taken into account. by treating tht* rt*suII. 

of the join of left, table with thts foreign tabIt. a* ill\ 
intermediate table (like any interior node of I,IIV jolll 
tree). Therefore, we provide the cost formul;Ls I;)r t.11~ 
invocat,ion phase only. 

l 

8 

Number of 7lrples: The castimatad number of t.u- 
pies after the join is N’ = F * N, whctrc* I;’ is t.ht> 
fanout of the foreign table aud N is the numl)rr of 
tuples in the left table. 

Ntrrtrher of Unigrre Values: The cxtimntt~tl nul1ll)(*r 
of unique value corresponding to the ith ;rrglt 

n-lent of the foreign table is givrn by: I/VI;; * I// 
whc-rr lJ Vl$ is thr unique value factor for LII~* it.11 
attributtr. The pararnctcr (11 is thr left uniqut*n(5s 
factor. 

C’O.S~: WC will provide the cost of forrigu n(*st.c~cl 
loop and foreign sort-merge join. Wt! assulnc‘ that, 
N is the number of trrples in the left. tabtc, c ’ is 
the cost of invoking the foreign table and II I is ~IIV 
uniqueness factor. The following costs are for IJIP 

invocation phase only. 

- Foreign Nrsied Loop: (,’ * N. 

- Foreign Sort-Merge: C:rwt,,,~( N) + II I * ( T 

A Critique of Declarative Rewrih 
Rules 

The declarative nature of our rewrite riilrs provi6tf3 
c~asr of specification of semantic knowledge. For cxiutil- 
pie, in the MapEngine application, the semantic know1 
edge was captured using a few rewribc rules illlCl l.lic 
optimization algorithm ensured that the rules wcrc vx- 

ploited to produce an optimal plan. Nonctl&ss, l.tw 
trade-ofV b4.wem such a &ctarativr limppa.g~~ rwl >I 
procedural taaguag(b is that br4wcBPn tticb ea.s~‘ (if sl)cGli- 
cation-with the need for expressivity and possibly 4. 
4Pnc.y concerns. For example, ‘19 discussed in Sccl,ion f,, 



f4llilialrd IflbL*N (iuHtc:iUI of rf:write rulcun) in o&r to 
c*xprr!sn 111~ knowlc4gn that a s(*t of conditions ~11w1 to 
I)(* “I~lisl~ril-tlowll”. In contrast to our aI~I)roach, Star- 
burrit [I’HI192] uses a procedural language to express 
the semantir knowledge. While making specification of 
semantic knowledge harder, such an approach enables 
rewrite rules to express any desirable transformation 
and Iravtbs the design of search algorithms open-ended. 
WC should note that the ability to invoke and optimize 
fort$n functions is a limited form of extensibility. In 
contrast, the Starburst architecture has far more am- 
bil.ious goal of providing extensibility. 

I) Related Work 

Many c>xtensible systems have been proposed [C!H90] 
with varyiug degrees of support for extensibility in 
1.11~ optimizer [HG92, GD87, Loh88, PHH92, SJ(:PYO]. 
‘I’tic query rewrite optimization [PH 11921 in Starburst 
in lllost directly related to our approach. As discussed 
in the preceding section, the query rewrite optimiza- 
tion in Starburst relies on a procedural lauguage. The 
rule programmer is responsible for ensuring termina- 
tion and search algorithms. A key reason for such a 
tl4gn decision is to reserve the ability to express rules 
of arbitrary complexity. For example, the rewrite rule 
Iauguagr in Starburst is used not only to express se- 
mantic knowledge, but also to express the rules for 
qiu’ry transformation used in optimization (e.g., flat- 
I.ening a query). la contrast, we focused on only ex- 
tending the optirnizc*r to handle queries with foreign 
functions. Our narrow focus enabled us to use a rewrite 
Iangu;lge that is declarative. The termination and the 
aclarch algorithm to generate equivalent queries are part 
of tl~e optimizer and need not be specifictl by the rule 
programmrr. Furthermore, in Starburst, an applica- 
ti0ll of a rewrite rule is used as a heuristic. In contrast, 
wc iisr rewrite: rules to generate alternatives for the op- 
tiurizer, from which the latter chooses an opli~rd plan 
iu a cost-baaed fashion. 

‘I’he idea of using semantic knowledge to transform a 
quf’ry into one which yields a cheaper optimal plan has 
hw examined in the context of semantic query opti- 
Iniaation (See [CCMSO]). 1Jnlike our approach, they 
IIS~’ a couventional query optimizer to optimize equiv- 
;dcut qur4rs nud thus do not4 share optimization of 
c01111n011 wilbcxprf~s~iotis. Furthermore, our algorithm 
for Kencrating cquivalanl queries is ba8ed on conjunc- 
tivc query equivalence, instead of resolution based tech- 
piques [(!(:M90] and preserves the duplicate semantics 
of SQL. 

Query optimization in the presence of foreign func- 

tion wm examined in [( X:KHS. HS93]. Neither of these 
approaclic~s provides any opportunity to use scrriantic 
knowl4ge. The contribution of [(:GK89] is to present 
;I cost model for optimization in the presence offoreign 
fuuctions such that a traditional dynamic programming 
algorithm can be used. We have further extended their 
c&t model. Recently, [HS93] presents an optimization 
algorithm for a restricted class of foreign functions. In 
his work, foreign functions are restricted to be condi- 
tions (boolean predicates). Thus, he does not consider 
the foreign functions that generate data tuples (e.g., 
M apclip). 

Aref and Samet [AS911 present a variety of strategies 
for choosing a plan in scenarios where retrieval requires 
accessing a relational database as well as a spatial data 
repository. IJsing rewrite rules, we can express the dif- 
ferent alternatives that they consider. 

10 Conclusion 

The ability to invoke foreign functions in a relational 
query is important for many applications since it pro- 
vides them the opportunity to exploit existing code and 
data that is external to the database. Such integration 
raises several issues. In particular, it provides us with 
new challenges in optimization. 

In this paper, we have described a comprehensive ap- 
proach for optimization in the presence of foreign func- 
tions. An optimizer, based on our approach, has been 
implemented at HP Laboratories. We provide a declar- 
ative rewrite rule system which can be used to express 
srtnantics of foreign functions. The rewrite rules are 
specified using simple extensions to SQL. The rewrite 
rules are used to present the optimizer with a set of 
equivalent queries. We have provided an algorithm to 
enumerate the equivalent queries. Our optimization al- 
gorithm is able to guarantee optimality of the plan over 
the enriched space of optimization. We have developed 
an extension to the traditional dynamic programming 
algorithm that exploits commonality among the equiv- 
alent queries. Our framework includes extensions to 
the cost model and query processing techniques that 
are necessary for foreign functions. For efficiency in 
optimization, we provide the ability to specify that cer- 
tain tables are inexpensive or afilialed. Finally, we can 
use our framework to optimize relational queries where 
the database stores materialized views [(X93]. lntu- 
itively, materialized views provide the optimizer with 
semantically equivalent queries to choose from. 
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