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Abstract 
In this peper, we explore an approach of interle&ing 
a bushy execution tree with hash filters to improve the 
execution of multi-join queries. The effect of hash filters 
is evaluated first. Then, an efficient scheme to determine 
nn effective sequence of hnsh filters for a bushy execution 
tree is developed, where hash filters are built and applied 
based on the join sequence specified in the bushy tree so 
that not only is the reduction effect optimised but also the 
cost associated is minimised. Various schemes using hash 
filters are implemented and evaluated via simulation. It is 
experimentally shown that the application of hash filters is 
in general a very powerful means to improve the execution 
of multi-join queries, and the improvement becomes more 
prominent M the number of relations in a query increases. 

I Introduction 

111 relational database systems, joins are the most ex- 
pensive operations to execute. Applications involving 
dccisiou support and complex objects usually have to 
specify their desired results in terms of complex multi- 
join queries, and some queries may take hours to’com- 
plete, thus degrading the system performance. Appar- 
ently, such problems could be aggravated by the in- 
creases in database size and query complexity nowa- 
days [la] (281. A s a result, it has become imperative 
to develop solutions for efficient execution of multi-join 
queries for future database management [3] [8] [M] [19]. 

A query plan is usually compiled into a tree of op- 
erators, called a join sequence tree, where a leaf node 
represents an input relation and an internal node rep 
-. 
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resents the resulting relation from joining the two re- 
lations associated’ with its two child nodes. There are 
three categories of query trees: left-deep trees, right- 
deep trees, and bushy trees, where left-deep and right- 
deep trees are also called linear execution trees, or se- 
quential join sequences. A significant amount of re- 
search efforts has been elaborated upon developing join 
sequences to improve the query execution time. The 
work reported in [22] was among the first to explore 
sequential join sequences, and sparked off many subse- 
quent studies. Several schemes have been proposed to 
develop sequential join sequences. A heuristic scheme 
to optimire multi-join queries with an enlarged search 
space was proposed in [14]. The benefit of using such 
techniques as simulated annealing and iterative im- 
provement to tackle large search space for query opti- 
misation was studied in [23] and [24]. In [ll], a collec- 
tion of good sequential plans was first obtained based 
on the buffer space, and parallelization of this collec- 
tion of plans was then explored. 

The bushy tree join sequences, on the other hand, 
did not attract as much attention as sequential ones in 
the last decade since it was generally deemed sufficient, 
by many researchers, to explore only sequential join se- 
quences for desired performance. This can be in part 
explained by the reasons that in the past the power/size 
of a multiprocessor system was limited, and that the 
query structure used to be too simple to require fur- 
ther parallelizing as a bushy tree. It is noted, however, 
that these two limiting factors have been phased out 
by the rapid increase in the capacity of multiproces- 
sors and the trend for queries to become more com- 
plicated nowadays [28], thereby justifying the neces- 
sity of exploiting bushy trees. Consequently, it has re- 
cently attracted an increasing amount of attention to 
explore the use of bushy trees for parallel query pro- 
cessing. A combination of analytical and experimen- 
tal results was given in [13] to shed some light on the 
complexity of choosing left-deep and bushy trees. An 
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integrated approach dealing with both intra-operator 
and inter-operator parallelism was presented in [17], 
where a greedy scheme taking various join methods 
and their corresponding costs into consideration was 
proposed. As an extension to [ll], an algorithm han- 
dling processor scheduling in a bushy tree was proposed 
in [lo], where the inter-operator parallelism is achieved 
by properly selecting IO-bound and CPU-bound task 
mix to be executed concurrently. For efficient solutions, 
only schemes that execute at most two tasks at a time 
were explored in [lo]. A two-step approach to deal 
with join sequence scheduling and processor allocation 
for parallel query processing using sort-merge joins was 
devised in [S]. Pipelining hash joins in a bushy tree and 
processor allocation within each pipeline were stud- 
ied in [4] and [15], respectively. In addition, various 
query plans in processing multi-join queries in a shared- 
nothing architecture were investigated in [20]. 

While most prior work on inter-operator parallelism 
focused on the execution tree generation to minimize 
the query execution cost, there is relatively little result 
reported on exploiting the structure of a query tree to 
further reduce each individual join cost. It has been 
shown that the cost of executing a join operation can 
mainly be expressed in terms of the cardinalities of re- 
lations involved. In view of this, one would naturally 
like to remove unnecessary tuples and reduce the cardi- 
nalities of relations involved before a join to minimize 
the join cost. As semijoin has traditionally been relied 
upon to reduce the amount of inter-site data trans- 
mission required for distributed query processing [2] 
[5), the technique of hash filtering can be applied in 
a parallel database environment to reduce the relation 
cardinalities. Note, however, that prior work on hash 
filters (or called bit-vector filters) only considered their 
use on the joining attribute due mainly to the focus 
on linear execution trees [l] [7] [25]‘, thus not fully 
taking advantage of the opportunity for utilizing mul- 
tiple hash filters to reduce a single relation. As can be 
seen later, such an opportunity is made available by the 
execution of a bushy tree, and can lead to a very signif- 
icant reduction effect on relation cardinalities, thereby 
greatly improving the execution of multi-join queries. 
Consequently, we explore in this paper the approach 
of interleaving a bushy execution tree with hash fil- 
ters (HP’s) to minimize the query execution time. It is 
worth mentioning that the algorithm we propose aims 
at improving the execution of a bushy tree, thus pro- 
viding a solution to an increasingly important problem. 

1 Note that in dealing with a linear execution tree, one usually 
haa only two joking relation8 rcJdhg in xnemory at a time, thus 
limiting the applicability of hash flltm to the joining attribute. 
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Figure 1: An example of the use of hash filters. 

Due to the complexity of a bushy tree, hash filters built 
and applied in different execution stages can have very 
different costs and reduction effects. How to timely and 
appropriately build hash filters so as to minimize their 
cost as well as optimize their effect is a very important 
issue, and hence taken as the objective of this study. 

A hash filter built by relation & on its attribute A, 
denoted by IIFR,(A), is an array of bits which are ini- 
tialized to 0’s. Let &(A) be the set of distinct values 
of attribute A in &, and h be the corresponding hash 
function employed. The h-th bit of HFR,(A) is set to 
one if there exists an a E &(A) such that h(a) 11: k. 
Similar to the effect of semijoins, it can be seen that 
before joining Z& and Rj on their common attribute 
A, probing the tuples of Rj against HFR,(A) and rc- 
moving non-matching tupies will reduce the number of 
tuples of Rj to participate in the join. The join cost is 
thus reduced. An illustrative example of the use of hash 
filters can be found in Figure 1, where an HFR,(B) is 
built by RI and applied to Ra, with the corresponding 
hash function h(bi)= i mod 5. It can be verified that 
after the application of HFR,(B), Ra is reduced to the 
one given in Figure lb, thus reducing the join cost of 
Rr W R2. Note that the effect of hash filters is more 
complicated than that of semijoins, since hash collision 
can occur for different attribute values (such as bl and 
bs in Figure la) when a hash filter is built. In this pa- 
per, we shall evaluate the effect of hash filters first, and 
then develop an efficient scheme to interleave a bushy 

506 



execution tree with hash filters to minimize the query 
rxccution cont. An mentioned earlier, hash filters built 
in different execution stages of a bushy tree can have 
different costs and reduction effects. In view of this, the 
proposed scheme will assign a join sequence number to 
each join operation in the bushy tree when the tree is 
being built at the compile timel. The join sequence 
numbers specify the order of the joins to be carried 
out. Then, based on the join sequence in the bushy 
tree, hash filters are built and applied, cost-effectively, 
so that not only is the reduction effect optimized but 
also the cost associated is minimized. Several illus- 
trative examples will be given. Extensive performance 
studies are conducted to evaluate various schemes using 
hash filters via simulation. It is experimentally shown 
that the application of hash filters is in general a very 
powerful means to improve the execution of multi-join 
queries, and the improvement becomes more prominent 
as the number of relations in a query increases. 

The rest of this paper is organized as follows. 
Preliminaries arc given in Section 2. The effect of hash 
tilters and the proposed scheme are presented in Section 
3. Performance studies on various schemes using hash 
filters are conducted in Section 4 via simulation. This 
paper concludes with Section 5. 

2 Preliminaries 

We assume that a query is of the form of conjunctions of 
equi-join predicates. A join query graph can be denoted 
by a graph 0 = (V, E), where V is the set of vertices 
and E is the set of edges. Each vertex in a join query 
graph represents a relation. Two vertices are connected 
by an edge if there exists a join predicate on some at- 
tribute of the two corresponding relations. We use I&] 
to denote the cardinality of a relation Ri and IAl to 
denote the cardinality of the domain of an attribute A. 
As in most prior work on the execution of database op 
erations, we assume that the execution time incurred is 
the primary cost measure for the processing of database 
operations. Also, we focus on the execution of complex 
queries, i.e., queries involving many relations. Notice 
that euch complex queries can become frequent in real 
applications due to the use of views [28]. The archi- 
tecture assumed in the performance study in Section 4 
is a multiprocessor system with distributed memories 
and shared disks. Barring any tuple placement skew, 
the scheme developed in this paper ir applicable to the 
shared-nothing architecture where each disk is accessi- 
-_-- 

‘Various heurirticr, much ee thorn in [6] and [lfl, C(UI be 
applied to build a buehy execution tree. Note that asigning 
requence numbon to joinn while building a buehy tree involves 
little overhead. 

ble only by a single node. To facilitate our presentation 
and performance evaluation, the join method on which 
we shall demonstrate the application of hash filters is 
the sort-merge join that most existing database man- 
agement softwares rely upon. Note that the concept of 
interleaving a bushy execution tree with hash filters is 
also applicable to improving the query execution time 
when other join methods, such as hash joins and nest- 
loop joins, are employed, and by no means confined to 
the use of sort-merge joins. 

Both CPU and I/O costs of executing a query are 
considered. CPU cost is determined by the pathlength, 
i.e., the total number of tuples processed multiplied by 
the number of CPU instructions required for process- 
ing each tuple. A parameter on CPU speed (i.e., MIPS) 
is used to compute the CPU processing time from the 
number of CPU instructions incurred. I/O cost for pro- 
cessing a query is determined by disk service time per 
page multiplied by the total number of page I/O%. By 
doing such, we can appropriately vary the CPU speed 
to take into consideration both CPU bound and I/O 
bound query processing, and study the impact of uti- 
lizing hash filters in both cases. A detailed performance 
model on the cost of sort-merge joins and system pa- 
rameters used is given in Section 4. 

In addition, we assume for simplicity that the 
values of attributes are uniformly distributed over 
all tuples in a relation and that the values of one 
attribute are independent of those in another. Thus, 
the cardinalities of resulting relations of joins can be 
estimated according to the formula used in prior work 
[4]. In the presence of data skew [26], we only have to 
modify the corresponding formula accordingly [S]. 

3 Using Hash Filters for a Bushy Tree 
In this section, we shall first evaluate the effect of hash 
filters and then propose a scheme to derive hash filters 
for a bushy execution tree. 

3.1 The Effect of Hash Filters 

Let HFR,(A)+Rj denote the application of a hash fil- 
ter generated by & on attributed A to Rj. Note that 
the reduction of Rj by HFR,(A)+Rj is proportional 
to the reduction of Rj(A). The estimation on the size 
of the relation reduced is thus similar to estimating 
the reduction of projection on the corresponding at- 
tribute. Let B,A be the reduction ratio by the ap- 
plication of HFR,(A), and the cardindity of Rj after 
HFR,(A)dRj cm be estimated as h,AIRjla Clearly, 
the determination of &,A depends on the size of a hash 
filter since, as shown in Figure 1, different attribute 
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values may be hashed into a same hash entry. To for- 
mally derive &,A, consider the ball drawing problem 
described below first. 

Proposition 1: Suppose k balls are drawn ae- 
quentially and independently from m different balls. 
Then, the expected number of different balls selected 
is m(1 - (1 - k)“). 

It can be observed that hashing k = jRi(A)I different 
values into a hash filter of m bits is similar to the ex- 
periment of drawing k balls from m different balls with 
replacement. The following proposition thus follows. 

Proposition 2: The reduction ratio by the applica- 
tion of HFR,(A), &,A, can be formulated as 

/%,A = 
i 

1 - (1 - A)lR*(A)I, for m < [Al, 
R. A 
Y-P for m > IAl, (1) 

A ’ 

where Ri(A) is the set of distinct values of attribute A 
in a, and m is the number of hash entries in a hash 
filter. 

Suppose Rj has two attributes A and B. The 
problem of estimating the cardinality of Rj projected 
on the non-filtered attribute B after HFR,(A)*Rj is 
very complicated, and needs to resort to the following 
combinatorial problem to resolve: “There are n balls 
with T different colors. Each ball has one color and 
the T colors are uniformly distributed over the n balls. 
Find the expected number of colors if h balls are 
randomly selected from the n balls.” Denote the 
expected number of colors of the h selected balls as 
g(r, n, h). Then, as pointed out in [27], g(r, n, h) can 
be formulated as follows, 

h “o-i+1 
g(r,n,h) = dl-n( ~-i+l )I* (2) 

i=l 

As shown in [2], Eq.(l) can be approximated as 
below, 

forr< 5, 
for h < i, 
otherwise. 

(3) 

We then obtain the reduction effect of a hash fil- 
ter on a non-filtered attribute by assigning IRjl = n, 
1% (WI = r and IRj IP~,A = h. It can be seen that 
when (Rj(B)( = r is much less than (Rjlpi,A = h, the 
cardinality of Rj (B) remains approximately the same 
after HFR,(A)+Rj. Thus, we azsume in this paper 
the number of distinct values of a non-filtered attribute 

A 
(4 

A (b) 

Figure 2: An example for the effect of hash filters. 

remains the same after a hash filter application to eim- 
plify our discussion. 

As mentioned earlier, in a bushy tree execution, hash 
filters built in different execution stages can have very 
different reduction effects. To further investigate the 
effect of hash filters in a bushy tree, denote the set of 
relations within the subtree under & as S(h). It can 
be seen that the size of an intermediate relation Ri will 
not be affected by the applications of hash Alters be- 
tween relations in S(a). Consider the bushy tree in 
Figure 2a for example, Denote the resulting relation 
by Ri W Rj m R’myi,j) for convenience. R’1 in Fig- 
ure 2a represents the resulting relation of join J#l. It 
can be verified that the application of HFR,(A)--+ RI 
will reduce the size of RI, and then that of R’l. On 
the other hand, the application of HFR,(B)-+R~ only 
reduces RI, but not R’I since the effect of HFR~(B) is 
offset by the join RI W Rs. This phenomenon can be 
stated by the proposition below. 

Proposition 3: Suppose R,,, is an intermediate re- 
lation in a bushy tree. The size of R, will be re- 
duced by HFR,(A)-+& if and only if Rd E S(R,) 
and & 4 S(L). 

Note that after a join, non-matched tuples are fil- 
tered out, meaning that IR’i(A)I 5 I&(A)1 where 
R’i = Ri W Rj. Thus, despite that the cardinality 
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of a resulting relation may be larger than those of its 
operands, the cardinality of distinct values of a certain 
attribute is always decreasing along the execution of a 
join sequence. This is the very reason that we shall gen- 
erate hash filters based on the join sequence numbers 
to optimise their reduction effects in the algorithm to 
be described. For example, it can be seen that the re- 
dnction effect of HFRtI (A)--rRa is more powerful than 
that of HFR,(A) R -+ 3 in Figure 2b. More formally, we 
have the following proposition for hash filters. 

proposition 4: &,A < Pj,A if Rj E S(a). 

3.2 Interleaving a Bushy Tree with HF’s 
In light of the results on the effect of hash filters in 
Section 3.1, we shall develop a scheme that irpplies 
hash liltcrs to improving the execution of a bushy 
tree. The proposed scheme will interleave a given 
bushy tree with appropriate hash filters so that not 
only is the reduction effect optimiaed but also the cost 
is minimized. As pointed out earlier, the sort-merge 
join method is employed in our discussion on the use 
of hash filters. Let #JR, be the sequence number of 
the join which relation & is involved in. Joins with 
smaller sequence numbers execute first. & in #JR, can 
be either a base relation or an intermediate relation3. 
As can be seen from algorithm H below, the sequence 
number is used to determine the order of hash filters 
applied. Specifically, if #JR~ < #JR, and & and 
Rj have a common attribute A. Then Rj will build 
HFlt,(A) to apply to &. However, & does not build 
hash filter for Rj. Rather, in light of Proposition 4, the 
application of such a hash filter to Rj will be deferred 
until the execution reaches the ancestor of &, say &, 
such that #JR, > #JR,. The reduction effect by the 
hash filter on attribute A to Rj can thus be optimised. 

Algorithm H: Interleaving a bushy tree with hash filters. 
Step 1: A join sequence heuristic is applied to determine 

a bushy execution tree T. 
Step 2: for each leaf node & in T 

begin 
s 4; Oil = 
for each join attribute A of & 
Let Rj be the joining relation with & 
on attribute A. 
begin 

if (#JR, 1 #JR~) then Sot*= Sott U A; 
end 
if (Sot* # 4) 

_ __--- 
s In the cue of dealing with a rsgmantedright-deep tree, which 

is (I bushy tree with right-deop rubtreee [4], one CM use segment 
rcquence nunabors, inotebd of join roquonco numbom, to properly 
insert hash Altorr into tho buehy tree among different l egmento. 

Step 3: 

Step 4: 

Step 5: 

begin 
Scan &, and V A E &tl, build HFR,(A) 
by Ri; 
Send RFR,(A) to Rj, where Rj is the 
joining relation with & on attribute A. 

end 
end 
for each leaf node & in T 
begin 

if & receives all HF’s for its join attributes 
then 
begin 

& applies HF’s to filter out non-matching 
tuples. 
& starts/resumes its sorting phase. 

end 
end 
for each join J in T 
begin 

if both relations & and Rj under J have 
completed their sorting phases then 
begin 

Perform the join J; 
(When generating the resulting relation R,,) 
Generate HFR,(A) for attribute A if 3 a 
base relation Ry joining with R, on A 
such that #JR, 1 #JR,; 
Send HFR,(A) t6 its recipient; 
Update the execution tree T accordingly 
by removing & and Rj. 
(R, becomes a leaf node.) 

end 
end 
if ITI= then return results 
else got0 Step 3. 

The operations of algorithm H can be described as 
follows. In Step 1, a bushy tree is built first. Then, 
relations involved in later joins will build hash filters 
for those involved in earlier joins in Step 2. Let Sott be 
the set of attributes to build HF’s. The first conditional 
statement in Step 2 to set up Sot* assures that only 
necessary hash filters will be generated and applied to 
other relations. Also, it can be seen that a relation will 
be scanned at most once to build HF’s for attributes 
in Sot,. Every relation, after receiving and utilising 
all its filters, starts its sorting phase in Step 3. The 
merge phase of a join begins when all of its operands 
are available in Step 4. It can be observed that building 
HF’s can be carried out when output tuples are being 
generated, thus avoiding another relation scan. The 
procedure repeats until all joins are completed as stated 
in Step 5. 
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Figure 3: Application of hash filters for joins J#l and 
J#2. 

Figure 4: Application of hash filters for J#3 and J#4. 

3.3 Examples and Variations 

Consider the bushy tree in Figure 3 for example. Since 
Re D4 R7 ie the first join to perform, we have H&(F) 
--+ fi7, Hh(G) + Rr and H FR,(G) + & before 
the execution of Rg W R7. Then, prior to the second 
join RI W Rs, four haah filters, HFR,(E) 3 Ra, 
HFR,(A) -+ RI, HFR,(D) + Rs and HFR,(D) --$ 
Rq are applied. The bushy tree after the first two 
joins ia shown in Figure 4. We ,in turn have the 
hash filters HFJ~,(B) -+ Re and HFR#,(F) -+ R~J 
applied as shown in Figure 4 before the join R& W Rs. 
Similarly, following the operations in algorithm H, the 
applications of hash filters are illustrated in Figures 4 
and 5. It can be seen that to have a better reduction 
effect according to Proposition 4, HF~,(A)+RI and 
HFRI,(E)-+& are built after the join RI W Rs, 
instead of being built by & and Ra, respectively, in 
the bushy tree in Figure 3. 

Rb 
Figure 5: Application of hash filters for J#5, J#G and 
J#7. 

Clearly, there art many variationa of algorithnl tf 
above. To provide more insights into the approach of 
hash filters, extensive simulation will be conducted in 
Section 4 to evaluate various schemes uaiug ha9h fil- 
ters. For notational readability, algorithm H will be 
denoted by CA in what follows, where CA stands for 
its nature of “check and apply.” Instead of interleaving 
the joins in a bushy tree with haah filters, hash filters 
can be built directly from base relations and applied 
as a preprocessing of a bushy tree. Such an approach 
will be referred to aa scheme SM, where SM stands 
for Qmple.” Also, hash filters can be regenerated 
from intermediate relations, and repeatedly applied to 
achieve better reduction effect at the cost of tmploy- 
ing more hash filtera. This alternative ie denoted by 
RG, standing for “regeneration.” The conventional ap- 
proach without using hash filters, denoted by NF (i.e., 
“no heeh filters”), will also be implemented for a com- 
parison purpose. 

Note that the first step of the sorting phase can be 
performed while a hash filter is being built to minimize 
both CPU and I/O coats. In addition, in the case that 
indices are available for certain attributes, we can scan 
the corresponding indicts instead of the whole relation 
in Step 2 to reduce the cost. Optimization on these 
issues ia system dependent, and can in fact further 
increase the performance improvement achievable by 
using hash filters. 

4 Performance Study 

We first describe the performance model used to 
evaluate the benefit of different haah filter generation 
and application schemes in Section 4.1. Parameters 
used in simulation art given in Section 4.2. Simulation 
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results arc then presented and analyzed in Section 4.3. 

4.1 Model Overview 

The performance model consists of three major com- 
ponents: Query Manager, Optimizer, and Executor. 
Query Manager is responsible for generating query re- 
quests as follows. The number of relations in a query is 
determined by an input parameter, sn. Relation cardi- 
nalities and join attribute cardinalities are determined 
by a set of parameters: &or& carv, fd(R), f&d, allu, 
and id(A). R 1 t e a ion cardinalities in a query are com- 
puted from a distribution function, fd( R), with a mean, 
R card, and a deviation, CUTV. Cardinalities of join at- 
tributes are determined similarly by Acord, attv, and 
f,(A). There is a predetermined probability, p, that 
au edge (i.e., a join operation) exists between any two 
relations in a given query graph. The larger p is, the 
larger the number of joins in a query will be. Note 
that some queries so generated may have disconnected 
query graphs. Without loss of generality, only queries 
with connected query graphs were used in our study, 
and those with disconnected graphs were discarded. 

Optimizer takes a query request from Query Man- 
ager and produces a query plan in the form of a bushy 
tree. Join sequence numbers are assigned to internal 
no&s of the bushy tree to represent the order of join 
opthrations determined by Optimizer. The bushy tree 
query plan is determined by the minimum cosl heuris- 
tic described in [6] that tries to perform the join with 
the minimal cost first. 

Executor traverses the query plan tree and carries 
out join operations sequentially according to join se- 
quence numbers determined by Optimizer. As men- 
tioned earlier, the sort-merge join method is used. De- 
pending upon the schemes simulated, hash filters ofjoin 
attributes are generated at different stages of query ex- 
ecution. Note that unlike those hash filters in SM and 
CA that can only be applied to base relations, those in 
RG can even be applied to intermediate relations. 

Our model computes both CPU and I/O costs of 
executing a query. CPU cost for sorting and merging 
is determined by the total number of tuples processed 
multiplied by the number of CPU instructions per tu- 
pie. We assume that the costs of sorting and merg- 
ing for each tuple are the same, and both are equal 
to Ztuplr. Using sort-merge joins, it takes O(NlogN) 
steps to sort a relation with N tuplea, and taker from 
O(N1 f A$?) to O(N1 x A$) steps to merge two sorted 
relations of size N1 and Ng. Under the assump 
tion that attribute values are uniformly distributed 

over the attribute domain, the CPU cost of joining 
two relations in our model can be approximated as 
I tlrple x ( NI log Nl + NZ log i% + N1 + Nz). The CPU 
processing time is obtained by dividing the total num- 
ber of CPU instructions per query by the CPU speed, 
cpu,peed. By dealing with the pathlength per tu- 
pie and the CPU speed, we can vary the CPU speed 
to make a query execution either CPU bound or I/O 
bound, and study the impact of using hash filters in 
both cases. 

I/O cost for processing a query is determined by 
. . disk service time per page, tpio, multiplied by the to- 

tal number of page reads and writes. To sort a re- 
lation of P pages, log, P + 1 iterations of disk I/O 
are required, where m is the number of main memory 
buffer pages available for sorting. Each iteration reads 
P pages into memory for sorting and writes P sorted 
pages to disk. To merge two sorted relations of PI and 
Pz pages, PI + Pa pages are read into memory. The 
number of pages written to disk after a join operation 
is determined by the size of the resulting relation, P,.. 
Thus, the total number of I/O’s required to join two 
relations of size PI and Pa is 2 x (Pl(lo& 9 + 1) + 
S(lo&, 4 + 1)) + PT. 

CPU cost for generating and applying HF’s is 
determined by two parameters, Iho8h and IpVobr. Ihosh 
is the number of CPU instructions required to generate 
hash value and set the corresponding bit in the hash 
filter for each tuple. &r&c is the number of instructions 
needed to check whether an attribute value of a tuple 
has a match in the filter, and if that bit is set, 
add the tuple to a temporary relation to be joined 
later. The CPU cost of generating HF for a join 
attribute is computed by multiplying Iha8h by the 
relation cardinality. Note that HF generation phase 
can be combined with the first step of the sorting 
phase of a join, thus avoiding I/O overhead for HF 
generation. CPU cost for applying an HF is equal 
to &,bc multiplied by the relation cardinality. Also, 
in our simulation model, hash filters are implemented 
as bit-vectors and can in general fit in memory, thus 
minimizing extra I/O’s required for maintaining them. 

4.2 Parameter Setting 

To simplify our simulation study, we assume that 
join operations in a bushy tree are executed sequen- 
tially, thus not resorting to inter-operator parallelism 
to demonstrate the power of hash filters. The impact 
of combining the use of hash filters and parallel query 
execution is slated for future study. We select queries 
of four size-s, i.e., queries with 4, 8, 12, and 16 relations. 
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The average CPU, I/O, and total costs for this exper- 
iment are shown in Figures 6, 7, and 8, respectively. 
In these figures and all following figures except Pig- 
ure 12, the ordinate is the execution time in seconds 
while the abscissa denotes the number of relations in a 
query. Figures 6 and 7 show that with 10 MIPS CPU, 
these queries using the sort-merge join method are I/O 
bound. The 15 ms page I/O time setting assumes RC- 
quential I/O without prefetching or disk buffering (t.g., 
reading one track at a time). Note that this experiment 
could become CPU bound if disk buffering or a larger 
page size was used. 

Table 1: Parameters used in simulation. 

This set of selections covers a wide spectrum of query 
sizes ranging from a simple three way join to a more 
than twenty way join. For each query size, 500 query 
graphs were generated, and as mentioned in Section 
4.1, only queries with connected query graphs are used 
in our study. 

To conduct the simulation, [7], [12], and [21] were 
referenced to determine the values of simulation pa- 
rameters. Table 1 summarizes the parameter settings 
used in simulation. The number of CPU instructions 
per tuple read was set to 300 while those for HF gen- 
eration and application are set to 100 and 200, respec- 
tively. The buffer was assumed to have 2K pages, and 
each page was assumed to contain 40 tuples. Disk str- 
vice time per page was assumed to be 15 milliseconds 
while the CPU speed was set to either 2 MiPS or 10 
MIPS. 

4.3 Simulation Results 

In the simulation program, which was coded in C, the 
action for each individual relation to go through join 
operations, as well as generate and apply hash filters, 
was simulated. For each query in the simulation, four 
schemes, i.e., NF (no filter), SM (simple), CA (check 
and apply) and RG (regenerate HF), were applied to 
execute the query, and the execution time for each 
scheme was obtained. 

Experiment 1: 10 MIPS CPU with attv= 1OOK 
and carv= 1OOK 

In the first experiment, the CPU speed was set to 
10 MIPS while both attu and c~ru were set to 100K. 

Using the sort-merge join method, the I/O cost of 
sorting a relation of P pages is of the order tyio x 
P x log,,, P, while the CPU cost is of the order 
ttuplr X &,.d X log &,d, where ltupla is the sorting time 
per tuple (X It,&/CP[Jl,& and Rccrrd is equal to 
p x prize. Given the parameter settings in Table I, the 
I/O cost for sorting two 1M tuple relations is approxi- 
mately equal to 1,000 seconds while the corresponding 
CPU cost is approximately 1,200 seconds. I/O cost for 
merging two sorted relations is about 750 seconds, plus 
the I/O cost of writing the resulting relation to disk, 
whereas the CPU cost associated is about 60 seconds. 
This accounts for the reason that Experiment 1 is I/O 
bound. 

Figures 6 and 7 also show that using hash filters 
results in a slight performance improvement in terms 
of both CPU and I/O costs required when sn is small 
(an < 8). The improvement increases significantly 
as the number of relations increases. It can be sec:n 
from Figure 8 that CA performs the best among all 
schemes evaluated while NF is outperformed by all 
other schemes. As described in Section 3, CA is devised 
with the goal of optimizing the reduction effect of 
HF’s as well as minimizing the cost associated. The 
results from this experiment confirm our analysis in 
Section 3. Note that SM performs better than RG 
when sn 5 12, while the latter performs better when 
an = 16. This can be explained as follows. First, the 
additional filtering (size reduction) effect by applying 
a hash filter generated by an intermediate relation (say 
&) to relation Rj under RG is usually not significant if 
a hash filter on the same attribute has been generated 
by a offspring of & and applied to Rj, or a offspring 
of Rj, before. Second, RG consumes extra systern 
resources to regenerate HF’s after every join operation, 
except the last one. When un is small, the cost of 
generating additional HF’s is larger than the benefit 
of additional sise reduction. When an increasen, the 
depth of the query execution tree increases, which in 
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Tho nutrkw of relations 

Figure 6: The CPU cost for each scheme when Figure 8: The total cost for each scheme 
MIPS-10. MIPS=lO. 

i 

,... 

Figure 7: The IO cost for each scheme. 

turn causes more join operations to benefit from the 
effect of additional filtering. As a result, the benefit 
provided by additional filtering in RG outweighs the 
cost of additional HF generations when an is large. 

The minimum, maximum, and standard deviation 
of query execution time for the four schemes when 
sn= 12 are shown in Table 2. The standard deviation 
of the query execution time is about 7.9% of ‘mean 
for NF, whereas those are 18.9%, 26.2%, and 25% of 
mean for SM, CA, and RG, respectively. Note that the 
minimum cod heuristic used by our model to determine 
the bushy execution tree does not consider the effect of 
hash filters. Thus, the benefits of using haah filters 
in ditferent bushy trees vary. This is the very reason 
that SM, CA, and RG produce larger relative standard 
deviations than NF. 

The number of hash filters applied in each scheme 
is shown in Table 3. SM and CA apply the same 
number of hash filters for each query, since in both 
schemes, HF’e are applied to base relations only. In 

. 12 

The number of relations 

when 

Table 2: Statistics for the cost of each scheme when 
the query size is 12 and MIPS=lO. 

RG, in addition to I-IF’s applied to base relations, a 
hash filter for the next join attribute is regenerated 
from the resulting relation after every join. RG 
therefore generates and applies the most hash filters. 
However, our simulation results show that RG performs 
worse than both CA and SM when sn is small (sn 5 
12). As previously explained, this is due to the fact 
that the effect of hash filters diminishes as they are 
repeatedly applied, and is thus not worthwhile the cost 
of generating additional hash filters. This indeed agrees 
with the estimation in Eq.(3), which states that the 
number of distinct values of a non-filtered attribute 
only slightly decreases after the application of a hash 
filter. When an iz large (sn > 12), RG performs better 
than SM, but still worse than CA. 

Table 3: The average number of hash filters applied in 
each scheme. 
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The number 01 retatlons 

Figure 9: The IO cost for each scheme. 

As pointed out earlier, the above experiment can be- 
come CPU bound if the disk access time is reduced. 
To provide more insights into this phenomenon, an ex- 
periment is conducted, where the page size is increased 
to 480 tuples, approximately equal to the track size of 
a typical workstation disk nowadays. Disk access time 
per page thus increases to 30 ms accordingly while all 
other parameters remain unchanged. The average I/O 
costs for the four schemes in this experiment are shown 
in Figure 9. Note that since CPU speed remains as 10 
MIPS, CPU costs for the four schemes are the same as 
those in Figure 6. From Figures 7 and 9, it can be seen 
that I/O costs for the four schemes in this experiment 
are significantly reduced as compared to those required 
in the prior experiment. Consequently, this experiment 
is CPU bound as evidenced by the results in Figures 6 
and 9. 

Experiment 2: 2 MIPS CPU with attv= lOOK, 
and carv= 1OOK 

In Experiment 2, the CPU speed was changed to 2 
MIPS while all other parameters remained the same 
as in Experiment 1. The average CPU cost for this 
experiment is shown in Figure 10. Since changing the 
CPU speed does not affect I/O costs, I/O costs for the 
four schemes in this experiment are the same as those 
in Experiment 1, as shown in Figure 7. It can be seen 
from Figures 7 and 10 that queries in Experiment 2 are 
CPU bound under NF. Figures 6 and 10 show that the 
three HF based schemes lead to larger reductions on 
CPU cost when queries are CPU bound, but their rela- 
tive improvement over NF is approximately the same in 
both experiments. Figure 11 shows the average query 
execution times (i.e, CPU cost + I/O cost) for the four 
schemes. It can be observed that relative performance 

MIPS.2 
CPU eat 

1 0 12 

The number of relatlons 

Figure 10: The CPU cost for each scheme when 
MIPS=P. 

among these schemes is very similar to that in E:xpcr- 

iment 1. CA continues to outperform the other three 
schemes while NF still performs the worst. The three 
schemes utilizing hash filters reduce the query execu- 
tion time of NF by more than 50%, when sn > 12. 

The improvement of CA over NF for both Experi- 
ments 1 and 2 is shown in Figure 12, where the ordi- 
nate is the ratio of execution time of CA to NF, and 
the abscissa denotes the number of relations in a query. 
It can be seen from Figure 12 that the improvement in- 
creases as an increases. When an = 4, the execution 
of CA is about 84% of that of NF with 10 MIPS CPU, 
and this ratio becomes 76% with 2 MIPS CPU. When 
sn = 16, such a ratio decreases to about 39% with 10 
MIPS CPU, and to 28% with 2 MIPS CPU. Figure 
12 also shows that CA generates a larger cost reduc- 
tion when queries are CPU bound. Note that with a 
slower CPU, the absolute CPU cost reduction achieved 
by CA is larger. Since the I/O cost is not affected by 
the change in CPU speed, the ratio of cost reduction by 
CA becomes larger when CPU is slower. Experiments 
1 and 2 demonstrate that hash filter is a very powerful 
means to reduce the query execution time, especially 
for complex queries, in both CPU and I/O bound cases. 

The minimum, m+imum, and standard deviation of 
query execution time for each scheme with sn=12 are 
shown in Table 4, where CA again has the smallest 
maximum and minimum execution times, but the 
second largest standard deviation, agreeing with our 
observation in Experiment 1. 

5 Conclusions 

In this paper, we explored an approach of interleaving 
a bushy execution tree with hash filters to improve the 
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Figure 11: The total cost for each scheme when 
MIPS=2. 
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The number of reldona 

Figure 12: Execution cost ratio of CA to NF. 

ljz- standard dev maximum minimum 
NF 15632 293295 184366 
SM 20028 180580 67206 

-CA 21485 165182 41077 
RG 27389 206659 SO?07 

Table 4: Statistics for the cost of each scheme when 
sn=12 and MIPS=2. 
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execution of multi-join queries. An efficient scheme 
to determine an effective sequence of hash filters for a 
bushy execution tree has been developed, where the 
hash filters are built and applied based on the join 
sequence specified in the bushy tree so that not only 
is the reduction effect optimized but also the cost 
azzociated ia minimized. Various schemes using hash 
filters were implemented and evaluated via simulation. 
By varying the CPU speed, both CPU and I/O bound 
jobs were investigated. Extensive simulation results 
were obtained to provide insights into the use of hash 
filters. It is experimentally shown that the application 
of hash filtera is in general a very powerful means to 
improve the execution of multi-join queries, and the 
improvement becomes more prominent as the number 
of relations in a query increases. 
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