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Abstract 
If persistent programming languages am IO bc accepted they must 
provide many of the standard fentures of traditional database sys- 
tems. including resilience in the face of system failures in which 
the volatile database(in-memory database buffers) is lost. Ensuring 
the consistency of the database requires the generation of recovery 
infotmation sufficient to reston the database to a consistent state 
itftcr a crash. This paper examines a range of schemes for the 
efficient generation of recovery information in persistent program- 
ming languages, and evaluates their dative pctfommnce within an 
implementation of Persistent SmaUtalk. 

1 Introduction 
Persistent programming languages combine the features of 
database systems and programming languages to allow the 
seamless manipulation of data, without regard for its poten- 
tial lifetime, be it transient orpersistent [l]. Useful persistent 
programming languages must support resilience in the face 
of system failures, an important feature of any database sys- 
tem. A crash results in the loss of the volatile part of the 
database, including all updates to persistent data that have 
not yet been propagated to the stable database. Recover- 
ing from such a failure involves restoring the database to 
some consistent state from which processing can resume. 
This paper considers a number of schemes for cbeckpoint- 
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based generation of recovery information within a persistent 
programming language. A checkpoint specifies a consis- 
tent state of the database; after a crash the restored database 
state will be that defined by the most recent checkpoint in- 
vocation. Resilience requires the implementation of several 
mechanisms: detection of updates, logging of updates to 
stable storage (i.e., disk), and merging of the log with the 
stable database upon recovery. We focus on the first two 
mechanisms here, and their realisation within a persistent 
programming language. 

Traditional database systems generate detailed update in- 
formation for each operation that mod&s the database. A 
log record may be written immediately to disk, or left for 
asynchronous output at some point later in the execution. 
Generating detailed update information for each mutation 
of the database is acceptable when the update consists of 
a high-overhead database operation, invoked through a call 
to the database subsystem. However, programs written in a 
persistent programming language perform frequent updates 
directly in memory, and often to the same locations. Thus, 
it seems preferable to hold off the generation of detailed 
update information until a checkpoint (or transaction com- 
mit), at which time log records can be generated and written 
as a batch. At one extreme the system might assume that 
all memory-resident data is subject to m&cation, requiring 
that the entire volatile database be written at checkpoint time. 
Given an application that mod&s only a small fraction of 
the database this scheme will be hopelessly inefficient. A 
better option is to have the language’s run-time system keep 
track of updates as they occur, so that only the modified part 
of the volatile database needs to be logged upon checkpoint. 
This minimises the volume of the log, and allows repeated 
updates to the same location to be subsumed, thus minimis- 
ing checkpoint latency. Nevertheless, questions remain as 
to the mechanism by which updates are tracked, and the 
granularity of the recorded updates. 

Two basic alternatives present themselves: updates can 
be recorded on the basis of either logical’ units (objects in 

‘We mean logical with rcspc~t to the logical granules of data in the 
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Figure 1: System architecture 

this case since we consider an object-oriented paradigm) or 
physical units (such as virtual memory pages or some other 
unit of the virtual memory space). Naturally, the choice of 
implementation will influence both the CPU time consumed 
by a persistent program in the recording of updates, and the 
checkpoint latency in generating and writing log records. 

In this paper we compare various schemes for efficiently 
generating recovery information in persistent programming 
languages. The next section describes our architecture and 
its rationale. We then discuss related work, drawing together 
influences from the fields of database systems and persistent 
programming languages. Succeeding sections present the 
competing implementations, the benchmarks used for their 
comparison, the experimental setup and methodology, re- 
sults, and conclusions. 

The paper’s principal contributions include the explo- 
ration of several alternative mechanisms for the detection 
and logging of updates in persistent programming languages 
and a comprehensive comparison of their performance, in ad- 
dition to performance results concerning a prototype persis- 
tent programming language, using established benchmarks 
recognised by the database community. 

2 System architecture and rationale 
Our architecture (see Figure 1) is designed to allow the lan- 
guage implementation maximum control over all objects be- 
ing manipulated by a program, without having to go through 
a restrictive interface to the underlying storage manager. We 
use the Mneme persistent object store [12] to manage the 
storage and retrieval of objects from disk Mneme groups 
persistent objects into segments for transfer to and from sec- 
ondary storage, buffering the segments in main memory on 
the client machine as necessary. Objects are copied from the 
client buffer pool into the virtual memory address space of 
the program. This copying includes any translation needed 
to convert the objects into a form accqtable to the program. 

database. not logical in the sense of operation logging. 

In particular, since Mneme uses object identifirs to refer IO 
objects while the program uses virtual memory pointers, ob- 
ject references are converted to direct memory pointers for 
manipulation by the program. ‘Ihis conversion of identifiers 
to pointers is known as swizling [ 131. For the purposes of 
this study objects are copied one at a time from the buHer 
pool, as opposed to all the objects of a segment being copied 
at once. Regardless of the comparative desirability of these 
alternatives, our goal was to keep this aspect of the imple- 
mentation fixed, while varying the mechanisms for detecting 
and logging updates. 

Similarly, we chose to tix on just one implementation of 
the objectfaulting mechanism used by the language imple- 
mentation to detect references to objects not resident in the 
program’s address space. The particular mechanism used 
here is not relevant to this study, since it is kept constant, 
while the recovery support schemes are varied. A compar- 
ison of alternative schemes for object faulting within this 
basic architecture appears elsewhere [9]. 

2.1 Persistent Smalltalk 
Our implementation of Smalltalk is based on the definition 
of Goldberg and Robson [5]. The implementation consists of 
two components: the virtual machine d the virtual image. 
The virtual machine implements a bytecode instruction set 
to which Smalltalk source code is compiled, as well as other 
primitive functionality, While we have retained the standard 
bytecode instruction set, our implementation of the vinual 
machine differs somewhat from that described in IS]. lhe 
virtual image is derived from an early commercial version 
of Smalltalk with minor modifications. It implements (in 
Smalltalk) all the functionality of a Smalltalk development 
environment, including editors, browsers, the bytecode com- 
piler, class libraries, etc., all of which are first-class objects 
in the 5 alltalk sense. Booting a Smalltalk environment in- 
volves loading the virtual image into memory for execution 
by the virtual machine. 

In a persistent implementation of Smalltalk the virtual 
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imap resides in the database, and the Smalltalk environment 
is booted by loading a subset of the objects in lhe image 
sulhcient to resume execution by the virtual machine. The 
virtual machine is carefully augmented for persistence to 
make persistent objects resident as they am needed by the 
executing image. 

2.2 Checkpoints 
Our notion of recovery is dictated by certain assumptions 
about the behaviour of persistent programs. We assume 
that a program will invoke a checkpoint operation at cer- 
tain points throughout its execution to make permanent all 
modifications it has made to persistent objects. In the event 
of a system crash the database recovery mechanism must 
restore the state of the database to that of the most recent 
checkpoint. Moreover, we assume that checkpoint latencies 
should be minimised so as to have the smallest possible im- 
pact on the running time of the program. This last point 
is important in interactive environments where checkpoints 
may noticeably delay response times. 

A checkpoint operation consists of copying and unswiz- 
zling modified and newly-created objects (or mod&d sub- 
ranges of objects) back to the client bufferpool, and generat- 
ing log mcords describing the range and values of the mod- 
ified regions of the object. Log records are generated only 
if there ate differences between the object and its original 
in the client buffer pool. Persistence in our system is based 
on reuchabilig, so the unswizxling operation may encounter 
pointers to objects newly created since the last &e&point. 
These objects are assigned a persistent identifier and unswiz- 
zled in turn, perhaps dragging further newly-created objects 
into the database, and a log record describing the new object 
is generated. 

The precise format of the log records is not relevant to this 
study, since we are interested only in the mechanisms used 
to detect and log updates. However, we note that each log 
record is tagged by the persistent identifier of the modified 
object and encodes a range of modified bytes. Recovery 
involves applying the log records to the objects to which they 
pertain, in the order in which they occur in the log. Although 
alternative log-record formats might yield a slightly more 
compact log, or allow more efficient recovery, our log is 
minimal in the sense that it tecords just enough information 
to reconstruct each modified object, 

To integrate buffer management with the recovery model, 
we guarantee that a modified segment is flushed to the 
database only after the log records associated with those 
modifications have been written. Outside of that constraint, 
the buffer manager is free to use any appropriate buffer re- 
placement policy. Management of swizzled objects in the 
virtual memory address space of the program is described 
in [I)]. ‘Ibat scheme is compatible with the recovery model, 

since modified objects that have been selected for rcplace- 
ment will be unswizxled and logged in a checkpoint fashion. 

The recovery model is indifferent to concurrency, which 
can be introduced to the architecture in two ways. First, 
separate applications can share the same database, arbitrated 
by a server. Locking is managed by the server and the 
application’s view of recovery is unchanged, modulo some 
additional information required in a log entry to identify its 
owner. Second, a single application may be multi-threaded. 
Additional locks must be managed within the application if 
data is shared among threads. Again, the recovery model 
remains essentially unchanged, modulo some additional log 
entry information to identify the owner of the entry. 

The recovery model and support for concurrency provide 
the foundation for any transaction model. The incorporation 
of transaction models in persistent programming languages 
remains an open topic of research. We are not directly con- 
cerned with that issue here, and merely remark that our re- 
covery model could easily be integrated into any transaction 
model based on the database cache [4]. 

3 Related work 

This work is loosely related to the performance study by 
White and DeWitt [22] which compares the overall per- 
formance of various object faulting and pointer swizzling 
schemes for persistent programming languages. The sys- 
tems considered in that study include version 1.2 of Ob- 
jectstore [ 11,151, a commercially available object-oriented 
DBMS, and a number of software architectures based on the 
EXODUS Storage Manager (RSM) [2, 161. 

Several of the architectures based on ESM require object 
updates to be carried out via a call interface, which modifies 
the object in the client buffer pool and generates a log record 
based on the changes. To avoid this call overhead White 
and DeWitt introduced a new architecture which they call 
object caching, and which bears a close resemblance to our 
own architecture. Objects are retrieved into the client buffer 
pool using the RSM interface, and then copied into the vir- 
tual memory of the application The original in the buffer 
pool is unpinned, and a descriptor for the copied object is 
entered into a hash table based on the object’s identifer. This 
descriptor contains a pointer to the object in memory along 
with a pair of values indicating the range of modified bytes in 
the object. Updates are applied directly to the object copies 
in virtual memory and noted by adjusting the byte range. 
At transaction commit, the hash table of cached objects is 
tamed. For each modified object, ESM is called to pin and 
update the object in the buffer pool and a log record is gener- 
ated based on the range of mod&d bytes. Two versions of 
this caching scheme were explored. ‘Ihe first copies objects 
one at a time from the buffer pool into virtual memory as 
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they ate accessed by the application. The second copies all 
of the objects on a given page of the buffer pool when the 
first object on the page is accessed. 

White and DeWitt’s object caching scheme performs some 
pointer swizzling, with references to objects that are resident 
in the cache being converted to direct memory pointers. 
Whenever a location containing an unswizzled reference to a 
persistent object is discovered, usually as a result of loading 
the reference to perform some operation on it, the object 
cache hash table is examined to see if it contains a pointer 
for the target object, in which case the location is updated 
with the pointer. 

ObjectStore takes a dramatically different approach from 
the previously described architectures. Objects are faulted 
and pointers are swizzled using a page mapping scheme sim- 
ilar to virtual memory. Recovery information is generated 
by logging entire dirty pages. We do not have exact details 
of the proprietary mechanisms for object faulting and swiz- 
zling, but the approach is similar to that used in the Texas 
system, described in more detail below. 

Our architecture is similar to the object caching scheme of 
White and Dewitt, but the thrust of our study is significantly 
different. While their results do suggest that the method 
used to generate recovery information can have a significant 
impact on the performance of the system, their focus is on 
the overall performance of different architectures for fault- 
ing and swizzling. In contrast, we have chosen to keep the 
architecture constant, while varying the mechanisms used to 
generate log information. This allows us to study the effects 
of alternative log-generation schemes in isolation, without 
concern for the effects of other variations in the architecture. 
Nevertheless, White and DeWrtt’s results do indicate that 
maintaining finer-grained update information is most bene- 
ficial when transactions are short and there is poor update 
locality. We explore this issue directly here, addressing the 
specific question of which method of generating recovery 
information is best, and what factors determine a method’s 
effectiveness, all in the context of persistent programming 
languages. 

The Texas system [ 18,231 uses a page mapping scheme 
similar to ObjectStore to fault objects and swizzle pointers. 
When a persistent object is to be assigned a virtual address, 
a page of virtual memory is reserved (and access protected) 
for the page in the persistent store that contains the object. 
The offset of the object in the persistent page is known, al- 
lowing the virtual address of the object in the resewed virtual 
memory page to be calculated. When the page is actually 
referenced a virtual memory page trap occurs, and is handled 
by Texas, which reads in the persistent page from the store 
and maps it into the reserved virtual page. All pointers in that 
page am then swizzled by reserving virtual memory pages 
for the objects to which they refer (assuming the referenced 
pages are not already mapped into virtual memory). The per- 

sistent references can then be replaced with virtual memory 
addresses, the page just faulted is unprotected, and execu- 
tion resumes. As execution proceeds, pages are reserved in 
a “wave-front” just ahead of the most recently faulted and 
swizzled pages, guaranteeing that the application will only 
ever see virtual memory addresses. 

Texas tracks updates to persistent objects by write protcct- 
ing virtual memory pages that may be updated. On the first 
write to a protected page an access violation occurs, which 
is handled by unprotecting the page and making a copy of it 
in a clean version bt&er. At transaction commit, a modi tied 
page will have a clean copy in the clean version buffer, which 
is compared with the modified page to generate a log entry. 

The general approach to logging and recovery used by all 
these systems was originally devised by Elhardt and Bayer 
for lhe database cache (41. The database cache was dc- 
signed for fast transaction commit and rapid recovery after a 
crash. Modifications am always applied to copies of origiual 
database pages in main memory (the cut%c) so that trans- 
action abort merely requires deletion of the copies. Trans- 
actions commit by flushing dirty copies to the safe: a log 
of updated pages on stable storage. Once a dirty copy has 
been flushed to the safe, it becomes a changed original. Dirty 
copies are never flushed to the permanent database. Thus the 
permanent database contains only the effects of committed 
transactions. Similarly, the buffer manager may only select 
unpinned originals for replacement in the cache, flushing any 
changed originals to the database as necessary. Recovery in- 
volves reconstructing the cache from the safe. To keep the 
safe to a manageable sira, it is periodically cleaned by re- 
moving log entries that are no longer necessary for recovery. 

Blhardt and Bayer require locking and logging at the gran- 
ularity of a page. Moss et al. [ 141 extend the database cache 
algorithms to allow locking and logging at a finer granular- 
ity. The goal of their extension is to increase concurrency 
and, ultimately, performance. For future work, they pro- 
pose an investigation of the effects of different lock and log 
granulatities on system performance, which we partially ad- 
dress here. Our system is not an exact implementation of 
the database cache, but we use a similar buffer management 
protocol and our checkpoints have semantics similar to the 
database cache transaction commit. Here WC go beyond :I 
comparison of logging granularities and investigate different 
methods for noting modilications. 

The database cache, and in fact all of the logging schemes 
described here, are versions of the u*rire uhead 108 from 
traditional database systems [6, 21, 71. However, they are 
distinguished by the fact that they are intended for non- 
traditional database applications, in which the characteristics 
of data access and manipulation are quite different from 
traditional (e.g., relational) database systems, requiring new 
mechanisms and semantics for transactions, logging, and 
ltWWely. 

432 



Motivating this study is a concern that the aforemen- 
tioned schemes for detection of updates and generation of log 
records will prove to be overly expensive, unduly affecting 
the performan@ of persistent programming languages that 
use them. We are interested in quantifjring the overheads of 
more lightweight mechanisms, inspired by our experience as 
programming language implementors in facing similarprob- 
lems of update detection in other domains such as garbage 
collection [ 1 O]. 

4 Noting updates 

The lightweight mechanisms used for detecting updates in 
this study are drawn from solutions to the wrife burrierprob- 
lern in garbage collection: the act of storing a pointer in an 
object is noted in order to minim& the number of pointer 
locations that must be examined during any given garbage 
collection [ 101. Similarly, efficient checkpointing requires 
keeping track of all updates to objects, to minimise the num- 
ber of locations that must be unswizzled and logged. Recall 
that a log record is generated only if there are differences 
between the new version of an object and the original in the 
client buffer pool. We have implemented several versions 
of the three most common write barrier approaches. Note 
that since the log consists of difference information obtained 
by comparing old and new versions of objects, all schemes 
end up generating exactly the same log information. The 
schemes vary mostly in the granularity of the update infor- 
mation they record, and hence in the amount of unswizzling 
and comparison required to generate the log. 

4.1 Object-based schemes 

The first two schemes each record updates at the logical 
level of objects. One approach is to mark updated objects by 
setting a bit in the header of the object when it is modified. 
Upon checkpoint all cached objects must be scanned to 6nd 
objects that are marked as updated. A marked object must 
be unswizzled and compared to its original in the buffer 
pool to determine any differences that must be logged. The 
drawback of this approach is additional checkpoint overhead 
required to scan the cached objects to find those that have 
been marked. 

To avoid scanning, the second scheme uses a remembered 
SEI [20] to record persistent objects that have been modified. 
A checkpoint need only process the entries in the remem- 
bered set to locate the objects that must be unswizzled and 
possibly logged. The remembered set is implemented as a 
dynamic hash table. 

In order that the remembered set does not become too large 
we record only updates to persistent objects, as opposed to 
newly-created transient objects-Smal1tal.k is a prodigious 
allocator, so the vast majority of updates are to transient 

objects. This requires a check to see that the updated object 
is located in the separately managed persistent &a of the 
volatile heap, determined by taking the high bits of an address 
and indexing a table containing such information. If the 
updated object is persistent then a subroutine is invoked to 
hash the object’s pointer into the remembered set. On the 
MIPS R2000 this involves twelve inline instructions at every 
update. 

Remembered sets have the advantage of conciseness and 
accuracy, achieved at the cost of filtering and hashing to keep 
the sets small-repeated updates to the same object result in 
just one entry in the remembered set. 

4.2 Card-based schemes 
For small objects the object-based schemes are ideal. How- 
ever, updates to large objects may suffer from poor local- 
ity with respect to the object size, resulting in unnecessary 
unswizzling and comparison upon checkpoint. These check- 
point overheads are bounded solely by the size of the object. 
For this reason, we also consider schemes that record updates 
based on fixed-size units of the virtual memory space. They 
divide the memory into aligned logical regions of size 2k 
bytes-the address of the lirst byte in the region will have k 
low bits zero. These regions are called cards, after [ 19,241. 
Each card has a corresponding entry in a card table indicat- 
ing whether the card contains updated locations. Mapping 
an address to an entry in this table is simple: one shifts the 
address right by k and uses the result as an index into the 
table. Whenever an object is modified, the corresponding 
card is dirtied. 

A variant of this scheme uses the page protection mech- 
anism of the operating system to detect stores into clean 
cards. A card in this scheme corresponds to a page of virtual 
memory. All clean pages are protected from writes. When 
a write occurs to a protected page, the trap handler dirties 
the corresponding entry in the card table and unprotects the 
page. Subsequent writes to the now dirty page incur no extra 
overhead.2 

One of the most attractive features of card marking is 
the simplicity of the write barrier. For this feason we have 
chosen to implement the card table as a byte array rather than 
a bit map.3 By interpreting zero bytes as dirty entries and 
non-zero bytes as clean, a store can be recorded using just 
a shift, index, and byte store of zero. On the MIPS R2OOO 
this comes to just four instructions: a load to get the base 
of the card table, a shift to determine the index, an add to 
determine the byte entry’s address, and a byte store of zem4 

zAn operating system could more efficiently supply the information 
needed in the page protection scheme if it offered appropriate calls to obtain 
the page dirty bits maintained by most memory managementhardware [ 17J. 

J We lirst heard of this idea from Paul Wilson. 
‘Note that on the MIPS Ruxx) a byte store is impkmcnted in hardware 

as a read-modify-write instruction, possibly requiring more than one cycle 
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At checkpoint time the dirty cards containing persistent 
objects are scanned, to perform unswizzling and determine 
any differences that must be logged. Unswizding requires 
locating all pointers within the card. Moreover, the log 
records must be generated with respect to the modified ob- 
jects in the card, recording the object identifier and contigu- 
ous ranges of modified bytes. For these reasons we must 
be able to locate the object headers within a card. These 
encode the formats of the objects and contain their persistent 
identifiers. To support object header location, we maintain a 
table of card offsets parallel to the dirty card table, indicating 
the location of the lust (highest address) object header within 
each card. 

Dirty cards are marked clean after they have been scanned. 
We reduce overheads by scanning all contiguous dirty cards 
as a batch, running from the first to the last. The size of the 
cards is an important factor inlluencing checkpoint costs. 
since large cards mean fewer cards and smaller tables. How- 
ever, larger cards imply unnecessary checkpoint overhead 
to perform unswizzling and comparison of objects that are 
unmodified but just happen to lie in a dirty card. 

5 Experiments 
We draw on the benchmarks used by White and DeWitt 
[22] for comparison of the update schemes, who in turn 
based their benchmarks on those of the object operations 
benchmark, 001 [3]. 

5.1 The benchmark database 
We use the 001 benchmark database, consisting of a col- 
lection of 20,O part objects, indexed by part numbers in 
the range 1 through 20,000 with exactly three connections 
from each part to other parts. The connections are randomly 
selected to produce some locality of reference: 90% of the 
connections are to the “closest” 1% of parts, with the remain- 
der being made, to any randomly selected part. Closeness is 
defined as parts with the numerically closest part numbers. 
The part database and the benchmarks are implemented en- 
tirely in Smalltalk, including the B-tree used to index the 
parts. 

The Mneme database, including the Smalltalk image as 
well as the parts data, consumes 362 physical segments, for 
a total size of 7.6M bytes. Each segment is at least 16K bytes 
in size, although some may be larger since Smalltalk objects 
larger than 16K bytes are allocated in their own private seg- 
ment. Newly created objects are clustered into segments 
only as they are encountered when unswizzling, using an 
essentially breadth-tit traversal similar to that of copying 
- 
for execution. It may be preferabk to code the read-modify-write byte store 
operation explicitly, especially on more recent machines. 

garbage collectors. The part objects are 68 bytes in size 
(including the object header). The three outgoing connec- 
tions are stored directly in the part objects. The string fields 
associated with each part and connection are represented by 
references to separate Smalltalk objects of 24 bytes each. 
Similarly, a part’s incoming connections are represented as a 
separate object containing the parts that .are the source of the 
connections. The B-tree index for the 20.0(K) parts consumes 
a total of 168,832 bytes. 

5.2 Benchmarks 
We performed both the lookup and traversal Portions of lhc 
001 benchmark, as well as adopting the update variatl of 
the traversal measure used by White and DcWttt: 

Lookup fetches 1 .OOo randomly chosen parts from the 
database. A null procedure is invoked for each part. 
taking a% its arguments the X, .v, and r!pe fields of the 
part. This benchmark is read-only with no checkpoints. 

Traversal finds all parts connected to a randomly cho- 
sen part, or to a part connected to it, and so on, up to 
seven hops (for a total of 3,280 parts. with possible du- 
plicates). Similarly to the lookup, a null procedure is 
invoked for each part, taking as its arguments the X. ,v, 
and type fields of the part. This benchmark is read-only 
with no checkpoints. 

Update operates in the same way as the trut~crscrl mca- 
sure, but in addition to the null procedure call it per- 
forms a simple update to each part object encountered. 
with some fixed probability. The update consists of in- 
crementing the x and y 4-byte integer fields of the part. 
A checkpoint operation is performed at the end of the 
traversal IO complete the transaction and commit lhc 
changes to disk. 

001 calls for each measure to be run ten times. the first 
when the system is cold, with none of the database cached 
(apart from any schema or system information necessary to 
initialise the system). Each successive iteration fetches a 
different set of random parts. Before the first run of each 
series of benchmark iterations a “chill” program is executed 
on the client to sequentially read a 32M byte file from the 
server. This ensures that the operating system file buffers 
of both client and server have been flushed of all database 
segments, so that the first iteration is truly cold. In addition 
to the ten cold-warm iterations, we measured the time to run 
ten hot iterations of the traversal and update benchmarks, by 
beginning each hot iteration at the same initial part used in 
the last of the warm iterations. These hot runs are guaran- 
teed to traverse only resident objects, and so will be free of 
auy overheads due to swizzling and retrieval of non-resident 
objects. To gel a sense of the CPU overheads for noting 
updates in long-running transactions we also measured the 
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time to run repeated hot iterations as a single transaction, 
varying the number of iterations per checkpoint. 

5.3 Experimental setup 

The client machine on which the benchmarks were run 
was a DECStation 3 100 (MIPS R2OOOA CPU” clocked at 
I6.67MHz) running ULTRIXG 4.1.7 The system has 24M 
bytes of main memory, 10% of which is used for operat- 
ing system disk buffers. The log file is written locally to 
a relatively empty RZS6 drive (66SM bytes SCSI, 24.3ms 
average access time, 16ms average seek time, 64K-byte data 
buffer), using ordinary buffered file l/O (as opposed to the 
raw disk device). The Smalltalk interpreter is coded in C 
and compiled with the GNU C compiler (gee) version 2.3.3 
81 optimisation level 2. The benchmarks were run with the 
system in single user mode and the process’s address space 
was locked in main memory to prevent paging. All check- 
points included a call IO f sync to force the log data to the 
local disk before completing. 

The database is accessed remotely via NFS. The server is 
a SPARCstatiot# 2 running SunOS” 4.1.2, with 32M bytes 
of main memory, and the database resides on a 1.3G byte 
external SCSI disk. The client and server were connected 
via a private ethernet. 

We measured elapsed time on the client machine using 
a custom timer boardr” having a resolution of 10 11s. The 
fine-grained accuracy of this timer allowed us to measure the 
elapsed time of each phase of execution separately: running 
time, unswizzhng of modified persistent objects, allocation 
and unswizzhng of newly created persistent objects, writing 
the log records to disk (including the fsync), and other 
checkpoint overheads. 

Our experiments included runs for the object marking, re- 
membered set, page protection (the page size is 4096 bytes) 
and card schemes, with card sizes of 16,64,256,1024 and 
4096 bytes. For the update benchmarks we ran the exper- 
iments with update probabilities of 0.00, 0.05, 0.10, 0.15, 
0.20. 0.50, and 1.00. The experiments were repeated sev- 
eral times for each configuration, and the results averaged 
(variance of the individualresults from the mean was not sig- 
nificant). Each run is presented with the exact same database 
(no updates are ever propagated to the permanent database). 
Note also that the nth iteration within any given benchmark 

b MIPS and RXMl are tademorkr of MIPS Computer Systems. 
‘DECstation and UIXRIX are. registered trademarks of Digital Equip- 

mcnl Corporation. 
‘The operating system had some official patches ins~~~lled that hx bugs 

in the mprotoct ayskm cd. 
‘SPARCstation is a trademark of SPARC International, liccwd exclu- 

bively to Sun Micronystcma. 
“SunOS ir a trademark of Sun Microsystems. 

*“We thank Digital Equipment Corporation’s Western Research Labora- 
r~ry, and Jeff Mogul in particular, for giving III the high resolution timing 
board and the rofhvare necessary (0 support it 
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Figure 2: lookup: 10 iterations (1 cold, 9 warm) 

run will always access the same parts as the nth iteration 
within any other benchmark run, since the script that controls 
the benchmark runs presents the same sequence of random 
part identifiers to each run. 

6 Results 

We now report the results for each of the benchmarks. All 
times are reported in seconds, and exclude all initialisation 
time (i.e., all Smalltalk initiahsation prior to beginning the 
benchmark). In each figure, the card schemes are identified 
with the card size in bytes, the page protection scheme is 
referred to as pages, the object marking scheme as objects, 
and the remembered set scheme as remsets. 

6.1 Lookup 

The behaviour of the lookup benchmark for the ten iterations 
(cold through watm) is illustrated in Figure 2, which gives 
the elapsed time for each iteration of the benchmark. We see 
the warming effect of the cache as the iterations proceed. As 
expected from a benchmark that performs no update there is 
little to distinguish the software update detection schemes. 
However, the page protection scheme incurs substantial ex- 
tra overhead, caused by the need to protect and unprotect 
the pages in which newly faulted objects are cached. Recall 
that clean pages are write protect& Before a newly faulted 
object can be copied and swizzled into a clean page, the 
page must be unprotected. After swizzling has occurred, the 
page must be reprotected. We expect that schemes that per- 
form page-at-a-time caching will lessen, but not eliminate, 
the impact of this page protection management overhead 
by performing more copying and swizzling work per object 
fault. 
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6.2 llaversal 

The results for the ten cold through warm iterations of the 
traversal benchmark are illustrated in Figure 3. The read- 
only traversal behaves similarly to the lookup, with the 
warming of the cache evident as the iterations proceed Once 
again, the overheads for management of page protections are 
apparent. 

the true differences among the schemes, becoming mom pro- 
nounced as the update probability increases. Object marking 
and remembered sets are best overall, with remembered sets 
slightly better than object marking at the lower update prob- 
abilities. At the higher update probabilities object marking 
and remembered sets exhibit similar performance. The card 
schemes come close to the object-based schemes only at 
low update probabilities. The page protection approach is 
markedly worse than all other schemes across the whole 
range of update probabilities. 6.3 Update 

The update benchmark includes a checkpoint operation, so 
the results are naturally more interesting. Figure 4 presents 
the elapsed time for the first (cold) iteration at each of the up- 
date probabilities. There is little relative variation amongst 
the schemes since the cold times are dominated by I/O and 
swizzling costs. Nevertheless, the page protection approach 
is somewhat more expensive due to the overheads of page 
protection management. 

Elapsed times for the tenth (warmest) iteration at each up- 
date probability are given in Figure 5. Here we begin to see 
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6.4 Hot update 
The ten hot transactions traverse exactly the same parts as the 
last of the ten cold-warm iterations, by beginning each hot 
iteration at the same part. Thus, the hot iterations include no 
object faults or swizzling. Figure 6 summarises the average 
elapsed time for the ten hot iterations at each of the update 
probabilities. The results are similar to those for the warm 
transaction, except that with all objects needed by the traver- 
sal having already been cached, no fetching and swizzling 
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of objects occurs. Thus, the page protection scheme is no The results show that the major differences among the 
longer penalised for having to manipulate page protections schemes occur in the running and old components. Vari- 
during swizzling, and therefore achieves performance closer ation among the schemes in the ncnning component is not 
fo that of the page-sized card scheme. The remaining differ- all that great, with the differences being due not only to the 
ence between these two schemes is explained by the need to intrinsic run-time overheads of the schemes associated with 
manipulate the protection of dirty pages at checkpoint time. noting updates, but also to subtle underlying effects such 

For a better understanding of the behaviour of the hot NIU as variations in hardware cache behaviour. This is the only 
Figures 7-10 show the breakdown of the average elapsed possible explanation for variation among the card schemes, 
times at several update probabilities (P) for each phase of since the code for all the card schemes is exactly the same, 
execution: barring the shift values. 

0 running: time spent in the interpreter executing the 
program, as opposed to unswizzling old and new objects 
to generate differences and writing those differences to 
the log (note that running includes the cost of noting 
modifications as they occur); 

l old: time 10 unswizzle old modilied objects and gener- 
ate log entries for them; 

l MW: time to unswizzle new objects and generate log 
entries for them; 

l HT&T: time to flush the log entries to disk; and 

l orher: time for any remaining bookkeeping activities, 
such as modifying page protections. 

The old component reflects the amount of scanning re- 
quired to determine the differences between a cached object 
and its original in the client buffer pool, and has the most 
influence on total elapsed time, particularly at larger update 
probabilities. For the card-based schemes there is an evident 
tradeoff between the size of the card table and the card size. 
At the smaller update probabilities the cost of scanning the 
card table has more influence; schemes with small cards but 
a larger card table fare worse than larger cards. At higher 
update probabilities there are more dirty cards to process, 
so unswizzling ovehads dominate those of scanning the 
card table, with larger cards requiring more unswizzling to 
generate differences than smaller cards. The tradeoff is most 
pronounced for the 16-byte cards, which are substantially 
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smaller than the average object size, so that unswixzling 
costs outweigh card table scanning costs only at the higher 
update probabilities. overall, remembed sets offer the 
most concise record of updates, allowing modified objects 
to be unswizzled without scanning. The scanning overhead 
is evident for the object marking scheme, especially at low 
update probabilities. 

6.5 Long-running transactions 

The final set of results concerns the experiments in which 
multiple hot update traversals are performed as a single trans- 
action. We measured the total elapsed time for 50,100,150, 
200,400,600,800 and 1000 iterations per &e&point, at 
update probabilities 0.00, 0.05, 0.20, 0.50, and 1.00. The 
point of this was to try to obtain some edmate of the rela- 
tive overheads inured by each scheme in noting updates in 
long-running transactions. 

Figure 11 plots the elapsed time for a tmnsaaion consist- 
ing of 50 iterations as update probability is varied. Similarly, 
Figure 12 shows the results for 200 iterations per check- 
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point. ‘l&se results illustrate how the relative importance 
of the per-traversal costs and per-checkpoint costs of each 
scheme varies with the length of the transaction. The longer 
the transaction the more important the cost of detecting and 
noting updates (cf. Figure 6). Most dramatically, the page 
protection scheme becomes more attractive as the length 
of the transaction increases. At 200 update traversals per 
tmnsauion the page protection scheme is best at all update 
probabilities. 

We have generalised these results by obtaining linear IV- 
gression fits for each scheme, for the model y = a + b-x. 
where y is the total elapsed time, and z the number of update 
traversals per transaction, As expected, since a hot traver- 
sal will have constant cost no matter how many times it is 
performed, the fits are excellent. The slope b is a measure 
of the per-traversal costs of each scheme, while the y-axis 
intercept a approximates the checkpoint overhead per trans- 
action. These measures are plotted in Figures 13 and 14. 

The page protection scheme offers the least overhead per 
traversal of all the schemes (Figure 13), since each transac- 
tion entails many repeated updates to the same locations, so 
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that only the first update lo a location causes a page trap. Re- 
mirinitrg updates proceed with no additional overhead. Nev- 
cnheless. the software-mediated update detection schemes 
show only marginally worse per-traversal overheads, within 
IS% of the performance of the page protection approach. 
For larger card sizes the difference is even smaller, with 
per-traversal overheads comparable to the page protection 
scheme at low update probabilities. Curiously, at low up- 
date probabilities the larger card (smaller card table) schemes 
show improved pexfomiance with incresing update proba- 
bility, even though higher update probabilities imply more 
updates, and hence more work. We are unable to provide an 
explanation for this within the current experimental setup, 
but can only point to underlying hardware cache effects or 
an artefact of the Smalltalk interpreter as potential causes. 
Further study, involving cache profiling and instrumenta- 
tion of the interpreter may yield a definitive explanation. 
Meanwhile, the similarity of Figures 6 and 14 illustrates the 
dominance of per-checkpoint costs for short transactions. 

6.6 The effect of compilation 

Although these results are for an interpreted implementation 
of Smalltalk, we see no reason why they will not carry over 
to a compiled setting. Since compilation can only speed the 
running-time component of execution, checkpoint overheads 
will become relatively more important. Moreover, compiler 
optimisations may merge or eliminate the noting of updates 
at certain *store sites. For example, control-flow information 
may reveal that multiple updates to the same location at sev- 
eral points along a given execution path can be noted just 
once, rather th,an at every update. Such optimisations will 
have the effect of reducing the per-update overheads of the 
software-based schemes, so that checkpoint overheads be- 
come the dominant factor influencing the choice of scheme. 

7 Conclusions 
We have described several schemes for the efficient gen- 
eration of recovery information in persistent programming 
languages, and performed a comprehensive performance 
evaluation of the alternatives, using recognised benchmarks. 
There are several conclusions we draw from the benchmark 
results. First, the ranking of the schemes is quite evident, 
with approaches that record updates at smaller granulari- 
tics having a significant advantage when the transactions ate 
short and the update locality poor, since they greatly reduce 
the overheads of unswizzling and generation of differences 
for the log, Best overall is the remembered set scheme, since 
it provides a very concise summary of just those objects that 
have been modified. 

For longer intervals between checkpoints, the run-time 
costs of update detection come into play, with the page pro- 

tection scheme having the advantage that detection overhead 
is paid for up front in the page protection violation trap on the 
first write to a clean page, and subsequent updates proceed 
without cost. At high update probabilities, the remembered 
set scheme loses its appeal due to the relatively expensive 
overhead to manage the remembered set. The overheads of 
the card and object marking schemes change very little as 
update probability varies, with any difference being due to 
hardware cache effects. Even so, the differences in run-time 
overheads of the schemes are slight when compared to those 
of checkpointing. 

The length of the interval between checkpoints is an im- 
portant factor because of this tension between the run-time 
and checkpointing overheads of the various schemes. Long 
intervals between checkpoints am likely to result in corre- 
spondingly more updates, increasing the checkpoint latency. 
Only when the volume of modified data is small with respect 
to the length of time between checkpoints should the run- 
time costs of the schemes be permitted to guide the choice of 
update detection mechanism. The overwhelming influence 
of unswizzling and generation of log records indicates that 
the general bias should be towards the more accurate smaller 
granularities than to schemes with low run-time overheads. 

With respect to the hardware approach embodied in the 
page protection scheme we have seen that it can involve 
substantial extra overhead for “typical” operations as rep- 
resented by the benchmarks. In the abstract, the hardware 
approach is an attractive one. However, current realisa- 
tions which must use expensive calls to the operating system 
seem to be limited in their effectiveness. Moreover, the large 
granularity of page size remains the most serious deficiency 
of this scheme, even if improved operating system support 
can succeed in lowering the costs of managing the update 
information through access to page dirty bits. 

In conclusion, we offer three guidelines for the genera- 
tion of recovery information in persistent programming lan- 
guages: 

l 

0 

. 

8 

Avoid large granules of update detection, to minim&e 
checkpoint overheads. 

Choose a checkpoint frequency corresponding to the 
rate of generation of new update information, so that 
checkpoint delays are tolerable. Long-running transac- 
tions that perform few updates need infrequent check- 
points. 

Make use of page protection mechanisms only where 
update locality is good and checkpoints are infrequent. 
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