
Update Logging for Persistent Programming Languages:
A Comparative Performance Evaluation*

Antony L. Hosking Eric W. Brown J. Eliot B. Moss

Object Systems kboratory
Department of Computer Science

University of Massachusetts
Amherst, MA 01003

USA

Abstract
If persistent programming languages am IO bc accepted they must
provide many of the standard fentures of traditional database sys-
tems. including resilience in the face of system failures in which
the volatile database(in-memory database buffers) is lost. Ensuring
the consistency of the database requires the generation of recovery
infotmation sufficient to reston the database to a consistent state
itftcr a crash. This paper examines a range of schemes for the
efficient generation of recovery information in persistent program-
ming languages, and evaluates their dative pctfommnce within an
implementation of Persistent SmaUtalk.

1 Introduction
Persistent programming languages combine the features of
database systems and programming languages to allow the
seamless manipulation of data, without regard for its poten-
tial lifetime, be it transient orpersistent [l]. Useful persistent
programming languages must support resilience in the face
of system failures, an important feature of any database sys-
tem. A crash results in the loss of the volatile part of the
database, including all updates to persistent data that have
not yet been propagated to the stable database. Recover-
ing from such a failure involves restoring the database to
some consistent state from which processing can resume.
This paper considers a number of schemes for cbeckpoint-

--This work is nupportcd by National Science Foundation Grants CCR-
A658074 and CCR-92 I 1272. Digital Equipment Corporation’s Western Re-
search Laboratory and Syntoms Research Center, and Sun Microsystcma.
Eric Brown is funded by the NSF Center for Intclligenr Information Rc-
trievnl at the University of Maaaaohuaam. The authors can be reached via
lnternar email addnaaca {hoakin~,brown,mors}@ca.umaas.edu.
Permission to copy withoutfee allorpartof thismaterial isgrantedptovided
that the copies are not made ordistributedfordirect commc&aladvantage.
the VWB copyright notice and the title of the publication and its dote
appear. ond notice is given that copying is b.v petmission of the Ver?, Large
Data Base Endowment. To copy othetwisc. nr to republish, requires a fee
andlor sprt-iol penission firn the Endowment.

Proccedhngl of the 19th VLDB Conference
Dublin, Ireland, 1993

based generation of recovery information within a persistent
programming language. A checkpoint specifies a consis-
tent state of the database; after a crash the restored database
state will be that defined by the most recent checkpoint in-
vocation. Resilience requires the implementation of several
mechanisms: detection of updates, logging of updates to
stable storage (i.e., disk), and merging of the log with the
stable database upon recovery. We focus on the first two
mechanisms here, and their realisation within a persistent
programming language.

Traditional database systems generate detailed update in-
formation for each operation that mod&s the database. A
log record may be written immediately to disk, or left for
asynchronous output at some point later in the execution.
Generating detailed update information for each mutation
of the database is acceptable when the update consists of
a high-overhead database operation, invoked through a call
to the database subsystem. However, programs written in a
persistent programming language perform frequent updates
directly in memory, and often to the same locations. Thus,
it seems preferable to hold off the generation of detailed
update information until a checkpoint (or transaction com-
mit), at which time log records can be generated and written
as a batch. At one extreme the system might assume that
all memory-resident data is subject to m&cation, requiring
that the entire volatile database be written at checkpoint time.
Given an application that mod&s only a small fraction of
the database this scheme will be hopelessly inefficient. A
better option is to have the language’s run-time system keep
track of updates as they occur, so that only the modified part
of the volatile database needs to be logged upon checkpoint.
This minimises the volume of the log, and allows repeated
updates to the same location to be subsumed, thus minimis-
ing checkpoint latency. Nevertheless, questions remain as
to the mechanism by which updates are tracked, and the
granularity of the recorded updates.

Two basic alternatives present themselves: updates can
be recorded on the basis of either logical’ units (objects in

‘We mean logical with rcspc~t to the logical granules of data in the

429

h-memay Mneme Appllcatlon
Chnl Buffer Pool SF*

SWIZZIO

*_.-.-- -----...**
. .

Local CNek

-*......__.._.-- .- ln$tls

Log
lJnswlzzl0

8

R
bJ

G -6
--.._...-- .-

UllSWiZZh

Figure 1: System architecture

this case since we consider an object-oriented paradigm) or
physical units (such as virtual memory pages or some other
unit of the virtual memory space). Naturally, the choice of
implementation will influence both the CPU time consumed
by a persistent program in the recording of updates, and the
checkpoint latency in generating and writing log records.

In this paper we compare various schemes for efficiently
generating recovery information in persistent programming
languages. The next section describes our architecture and
its rationale. We then discuss related work, drawing together
influences from the fields of database systems and persistent
programming languages. Succeeding sections present the
competing implementations, the benchmarks used for their
comparison, the experimental setup and methodology, re-
sults, and conclusions.

The paper’s principal contributions include the explo-
ration of several alternative mechanisms for the detection
and logging of updates in persistent programming languages
and a comprehensive comparison of their performance, in ad-
dition to performance results concerning a prototype persis-
tent programming language, using established benchmarks
recognised by the database community.

2 System architecture and rationale
Our architecture (see Figure 1) is designed to allow the lan-
guage implementation maximum control over all objects be-
ing manipulated by a program, without having to go through
a restrictive interface to the underlying storage manager. We
use the Mneme persistent object store [12] to manage the
storage and retrieval of objects from disk Mneme groups
persistent objects into segments for transfer to and from sec-
ondary storage, buffering the segments in main memory on
the client machine as necessary. Objects are copied from the
client buffer pool into the virtual memory address space of
the program. This copying includes any translation needed
to convert the objects into a form accqtable to the program.

database. not logical in the sense of operation logging.

In particular, since Mneme uses object identifirs to refer IO
objects while the program uses virtual memory pointers, ob-
ject references are converted to direct memory pointers for
manipulation by the program. ‘Ihis conversion of identifiers
to pointers is known as swizling [131. For the purposes of
this study objects are copied one at a time from the buHer
pool, as opposed to all the objects of a segment being copied
at once. Regardless of the comparative desirability of these
alternatives, our goal was to keep this aspect of the imple-
mentation fixed, while varying the mechanisms for detecting
and logging updates.

Similarly, we chose to tix on just one implementation of
the objectfaulting mechanism used by the language imple-
mentation to detect references to objects not resident in the
program’s address space. The particular mechanism used
here is not relevant to this study, since it is kept constant,
while the recovery support schemes are varied. A compar-
ison of alternative schemes for object faulting within this
basic architecture appears elsewhere [9].

2.1 Persistent Smalltalk
Our implementation of Smalltalk is based on the definition
of Goldberg and Robson [5]. The implementation consists of
two components: the virtual machine d the virtual image.
The virtual machine implements a bytecode instruction set
to which Smalltalk source code is compiled, as well as other
primitive functionality, While we have retained the standard
bytecode instruction set, our implementation of the vinual
machine differs somewhat from that described in IS]. lhe
virtual image is derived from an early commercial version
of Smalltalk with minor modifications. It implements (in
Smalltalk) all the functionality of a Smalltalk development
environment, including editors, browsers, the bytecode com-
piler, class libraries, etc., all of which are first-class objects
in the 5 alltalk sense. Booting a Smalltalk environment in-
volves loading the virtual image into memory for execution
by the virtual machine.

In a persistent implementation of Smalltalk the virtual

430

imap resides in the database, and the Smalltalk environment
is booted by loading a subset of the objects in lhe image
sulhcient to resume execution by the virtual machine. The
virtual machine is carefully augmented for persistence to
make persistent objects resident as they am needed by the
executing image.

2.2 Checkpoints
Our notion of recovery is dictated by certain assumptions
about the behaviour of persistent programs. We assume
that a program will invoke a checkpoint operation at cer-
tain points throughout its execution to make permanent all
modifications it has made to persistent objects. In the event
of a system crash the database recovery mechanism must
restore the state of the database to that of the most recent
checkpoint. Moreover, we assume that checkpoint latencies
should be minimised so as to have the smallest possible im-
pact on the running time of the program. This last point
is important in interactive environments where checkpoints
may noticeably delay response times.

A checkpoint operation consists of copying and unswiz-
zling modified and newly-created objects (or mod&d sub-
ranges of objects) back to the client bufferpool, and generat-
ing log mcords describing the range and values of the mod-
ified regions of the object. Log records are generated only
if there ate differences between the object and its original
in the client buffer pool. Persistence in our system is based
on reuchabilig, so the unswizxling operation may encounter
pointers to objects newly created since the last &e&point.
These objects are assigned a persistent identifier and unswiz-
zled in turn, perhaps dragging further newly-created objects
into the database, and a log record describing the new object
is generated.

The precise format of the log records is not relevant to this
study, since we are interested only in the mechanisms used
to detect and log updates. However, we note that each log
record is tagged by the persistent identifier of the modified
object and encodes a range of modified bytes. Recovery
involves applying the log records to the objects to which they
pertain, in the order in which they occur in the log. Although
alternative log-record formats might yield a slightly more
compact log, or allow more efficient recovery, our log is
minimal in the sense that it tecords just enough information
to reconstruct each modified object,

To integrate buffer management with the recovery model,
we guarantee that a modified segment is flushed to the
database only after the log records associated with those
modifications have been written. Outside of that constraint,
the buffer manager is free to use any appropriate buffer re-
placement policy. Management of swizzled objects in the
virtual memory address space of the program is described
in [I)]. ‘Ibat scheme is compatible with the recovery model,

since modified objects that have been selected for rcplace-
ment will be unswizxled and logged in a checkpoint fashion.

The recovery model is indifferent to concurrency, which
can be introduced to the architecture in two ways. First,
separate applications can share the same database, arbitrated
by a server. Locking is managed by the server and the
application’s view of recovery is unchanged, modulo some
additional information required in a log entry to identify its
owner. Second, a single application may be multi-threaded.
Additional locks must be managed within the application if
data is shared among threads. Again, the recovery model
remains essentially unchanged, modulo some additional log
entry information to identify the owner of the entry.

The recovery model and support for concurrency provide
the foundation for any transaction model. The incorporation
of transaction models in persistent programming languages
remains an open topic of research. We are not directly con-
cerned with that issue here, and merely remark that our re-
covery model could easily be integrated into any transaction
model based on the database cache [4].

3 Related work

This work is loosely related to the performance study by
White and DeWitt [22] which compares the overall per-
formance of various object faulting and pointer swizzling
schemes for persistent programming languages. The sys-
tems considered in that study include version 1.2 of Ob-
jectstore [11,151, a commercially available object-oriented
DBMS, and a number of software architectures based on the
EXODUS Storage Manager (RSM) [2, 161.

Several of the architectures based on ESM require object
updates to be carried out via a call interface, which modifies
the object in the client buffer pool and generates a log record
based on the changes. To avoid this call overhead White
and DeWitt introduced a new architecture which they call
object caching, and which bears a close resemblance to our
own architecture. Objects are retrieved into the client buffer
pool using the RSM interface, and then copied into the vir-
tual memory of the application The original in the buffer
pool is unpinned, and a descriptor for the copied object is
entered into a hash table based on the object’s identifer. This
descriptor contains a pointer to the object in memory along
with a pair of values indicating the range of modified bytes in
the object. Updates are applied directly to the object copies
in virtual memory and noted by adjusting the byte range.
At transaction commit, the hash table of cached objects is
tamed. For each modified object, ESM is called to pin and
update the object in the buffer pool and a log record is gener-
ated based on the range of mod&d bytes. Two versions of
this caching scheme were explored. ‘Ihe first copies objects
one at a time from the buffer pool into virtual memory as

431

they ate accessed by the application. The second copies all
of the objects on a given page of the buffer pool when the
first object on the page is accessed.

White and DeWitt’s object caching scheme performs some
pointer swizzling, with references to objects that are resident
in the cache being converted to direct memory pointers.
Whenever a location containing an unswizzled reference to a
persistent object is discovered, usually as a result of loading
the reference to perform some operation on it, the object
cache hash table is examined to see if it contains a pointer
for the target object, in which case the location is updated
with the pointer.

ObjectStore takes a dramatically different approach from
the previously described architectures. Objects are faulted
and pointers are swizzled using a page mapping scheme sim-
ilar to virtual memory. Recovery information is generated
by logging entire dirty pages. We do not have exact details
of the proprietary mechanisms for object faulting and swiz-
zling, but the approach is similar to that used in the Texas
system, described in more detail below.

Our architecture is similar to the object caching scheme of
White and Dewitt, but the thrust of our study is significantly
different. While their results do suggest that the method
used to generate recovery information can have a significant
impact on the performance of the system, their focus is on
the overall performance of different architectures for fault-
ing and swizzling. In contrast, we have chosen to keep the
architecture constant, while varying the mechanisms used to
generate log information. This allows us to study the effects
of alternative log-generation schemes in isolation, without
concern for the effects of other variations in the architecture.
Nevertheless, White and DeWrtt’s results do indicate that
maintaining finer-grained update information is most bene-
ficial when transactions are short and there is poor update
locality. We explore this issue directly here, addressing the
specific question of which method of generating recovery
information is best, and what factors determine a method’s
effectiveness, all in the context of persistent programming
languages.

The Texas system [18,231 uses a page mapping scheme
similar to ObjectStore to fault objects and swizzle pointers.
When a persistent object is to be assigned a virtual address,
a page of virtual memory is reserved (and access protected)
for the page in the persistent store that contains the object.
The offset of the object in the persistent page is known, al-
lowing the virtual address of the object in the resewed virtual
memory page to be calculated. When the page is actually
referenced a virtual memory page trap occurs, and is handled
by Texas, which reads in the persistent page from the store
and maps it into the reserved virtual page. All pointers in that
page am then swizzled by reserving virtual memory pages
for the objects to which they refer (assuming the referenced
pages are not already mapped into virtual memory). The per-

sistent references can then be replaced with virtual memory
addresses, the page just faulted is unprotected, and execu-
tion resumes. As execution proceeds, pages are reserved in
a “wave-front” just ahead of the most recently faulted and
swizzled pages, guaranteeing that the application will only
ever see virtual memory addresses.

Texas tracks updates to persistent objects by write protcct-
ing virtual memory pages that may be updated. On the first
write to a protected page an access violation occurs, which
is handled by unprotecting the page and making a copy of it
in a clean version bt&er. At transaction commit, a modi tied
page will have a clean copy in the clean version buffer, which
is compared with the modified page to generate a log entry.

The general approach to logging and recovery used by all
these systems was originally devised by Elhardt and Bayer
for lhe database cache (41. The database cache was dc-
signed for fast transaction commit and rapid recovery after a
crash. Modifications am always applied to copies of origiual
database pages in main memory (the cut%c) so that trans-
action abort merely requires deletion of the copies. Trans-
actions commit by flushing dirty copies to the safe: a log
of updated pages on stable storage. Once a dirty copy has
been flushed to the safe, it becomes a changed original. Dirty
copies are never flushed to the permanent database. Thus the
permanent database contains only the effects of committed
transactions. Similarly, the buffer manager may only select
unpinned originals for replacement in the cache, flushing any
changed originals to the database as necessary. Recovery in-
volves reconstructing the cache from the safe. To keep the
safe to a manageable sira, it is periodically cleaned by re-
moving log entries that are no longer necessary for recovery.

Blhardt and Bayer require locking and logging at the gran-
ularity of a page. Moss et al. [141 extend the database cache
algorithms to allow locking and logging at a finer granular-
ity. The goal of their extension is to increase concurrency
and, ultimately, performance. For future work, they pro-
pose an investigation of the effects of different lock and log
granulatities on system performance, which we partially ad-
dress here. Our system is not an exact implementation of
the database cache, but we use a similar buffer management
protocol and our checkpoints have semantics similar to the
database cache transaction commit. Here WC go beyond :I
comparison of logging granularities and investigate different
methods for noting modilications.

The database cache, and in fact all of the logging schemes
described here, are versions of the u*rire uhead 108 from
traditional database systems [6, 21, 71. However, they are
distinguished by the fact that they are intended for non-
traditional database applications, in which the characteristics
of data access and manipulation are quite different from
traditional (e.g., relational) database systems, requiring new
mechanisms and semantics for transactions, logging, and
ltWWely.

432

Motivating this study is a concern that the aforemen-
tioned schemes for detection of updates and generation of log
records will prove to be overly expensive, unduly affecting
the performan@ of persistent programming languages that
use them. We are interested in quantifjring the overheads of
more lightweight mechanisms, inspired by our experience as
programming language implementors in facing similarprob-
lems of update detection in other domains such as garbage
collection [1 O].

4 Noting updates

The lightweight mechanisms used for detecting updates in
this study are drawn from solutions to the wrife burrierprob-
lern in garbage collection: the act of storing a pointer in an
object is noted in order to minim& the number of pointer
locations that must be examined during any given garbage
collection [101. Similarly, efficient checkpointing requires
keeping track of all updates to objects, to minimise the num-
ber of locations that must be unswizzled and logged. Recall
that a log record is generated only if there are differences
between the new version of an object and the original in the
client buffer pool. We have implemented several versions
of the three most common write barrier approaches. Note
that since the log consists of difference information obtained
by comparing old and new versions of objects, all schemes
end up generating exactly the same log information. The
schemes vary mostly in the granularity of the update infor-
mation they record, and hence in the amount of unswizzling
and comparison required to generate the log.

4.1 Object-based schemes

The first two schemes each record updates at the logical
level of objects. One approach is to mark updated objects by
setting a bit in the header of the object when it is modified.
Upon checkpoint all cached objects must be scanned to 6nd
objects that are marked as updated. A marked object must
be unswizzled and compared to its original in the buffer
pool to determine any differences that must be logged. The
drawback of this approach is additional checkpoint overhead
required to scan the cached objects to find those that have
been marked.

To avoid scanning, the second scheme uses a remembered
SEI [20] to record persistent objects that have been modified.
A checkpoint need only process the entries in the remem-
bered set to locate the objects that must be unswizzled and
possibly logged. The remembered set is implemented as a
dynamic hash table.

In order that the remembered set does not become too large
we record only updates to persistent objects, as opposed to
newly-created transient objects-Smal1tal.k is a prodigious
allocator, so the vast majority of updates are to transient

objects. This requires a check to see that the updated object
is located in the separately managed persistent &a of the
volatile heap, determined by taking the high bits of an address
and indexing a table containing such information. If the
updated object is persistent then a subroutine is invoked to
hash the object’s pointer into the remembered set. On the
MIPS R2000 this involves twelve inline instructions at every
update.

Remembered sets have the advantage of conciseness and
accuracy, achieved at the cost of filtering and hashing to keep
the sets small-repeated updates to the same object result in
just one entry in the remembered set.

4.2 Card-based schemes
For small objects the object-based schemes are ideal. How-
ever, updates to large objects may suffer from poor local-
ity with respect to the object size, resulting in unnecessary
unswizzling and comparison upon checkpoint. These check-
point overheads are bounded solely by the size of the object.
For this reason, we also consider schemes that record updates
based on fixed-size units of the virtual memory space. They
divide the memory into aligned logical regions of size 2k
bytes-the address of the lirst byte in the region will have k
low bits zero. These regions are called cards, after [19,241.
Each card has a corresponding entry in a card table indicat-
ing whether the card contains updated locations. Mapping
an address to an entry in this table is simple: one shifts the
address right by k and uses the result as an index into the
table. Whenever an object is modified, the corresponding
card is dirtied.

A variant of this scheme uses the page protection mech-
anism of the operating system to detect stores into clean
cards. A card in this scheme corresponds to a page of virtual
memory. All clean pages are protected from writes. When
a write occurs to a protected page, the trap handler dirties
the corresponding entry in the card table and unprotects the
page. Subsequent writes to the now dirty page incur no extra
overhead.2

One of the most attractive features of card marking is
the simplicity of the write barrier. For this feason we have
chosen to implement the card table as a byte array rather than
a bit map.3 By interpreting zero bytes as dirty entries and
non-zero bytes as clean, a store can be recorded using just
a shift, index, and byte store of zero. On the MIPS R2OOO
this comes to just four instructions: a load to get the base
of the card table, a shift to determine the index, an add to
determine the byte entry’s address, and a byte store of zem4

zAn operating system could more efficiently supply the information
needed in the page protection scheme if it offered appropriate calls to obtain
the page dirty bits maintained by most memory managementhardware [17J.

J We lirst heard of this idea from Paul Wilson.
‘Note that on the MIPS Ruxx) a byte store is impkmcnted in hardware

as a read-modify-write instruction, possibly requiring more than one cycle

433

At checkpoint time the dirty cards containing persistent
objects are scanned, to perform unswizzling and determine
any differences that must be logged. Unswizding requires
locating all pointers within the card. Moreover, the log
records must be generated with respect to the modified ob-
jects in the card, recording the object identifier and contigu-
ous ranges of modified bytes. For these reasons we must
be able to locate the object headers within a card. These
encode the formats of the objects and contain their persistent
identifiers. To support object header location, we maintain a
table of card offsets parallel to the dirty card table, indicating
the location of the lust (highest address) object header within
each card.

Dirty cards are marked clean after they have been scanned.
We reduce overheads by scanning all contiguous dirty cards
as a batch, running from the first to the last. The size of the
cards is an important factor inlluencing checkpoint costs.
since large cards mean fewer cards and smaller tables. How-
ever, larger cards imply unnecessary checkpoint overhead
to perform unswizzling and comparison of objects that are
unmodified but just happen to lie in a dirty card.

5 Experiments
We draw on the benchmarks used by White and DeWitt
[22] for comparison of the update schemes, who in turn
based their benchmarks on those of the object operations
benchmark, 001 [3].

5.1 The benchmark database
We use the 001 benchmark database, consisting of a col-
lection of 20,O part objects, indexed by part numbers in
the range 1 through 20,000 with exactly three connections
from each part to other parts. The connections are randomly
selected to produce some locality of reference: 90% of the
connections are to the “closest” 1% of parts, with the remain-
der being made, to any randomly selected part. Closeness is
defined as parts with the numerically closest part numbers.
The part database and the benchmarks are implemented en-
tirely in Smalltalk, including the B-tree used to index the
parts.

The Mneme database, including the Smalltalk image as
well as the parts data, consumes 362 physical segments, for
a total size of 7.6M bytes. Each segment is at least 16K bytes
in size, although some may be larger since Smalltalk objects
larger than 16K bytes are allocated in their own private seg-
ment. Newly created objects are clustered into segments
only as they are encountered when unswizzling, using an
essentially breadth-tit traversal similar to that of copying
-
for execution. It may be preferabk to code the read-modify-write byte store
operation explicitly, especially on more recent machines.

garbage collectors. The part objects are 68 bytes in size
(including the object header). The three outgoing connec-
tions are stored directly in the part objects. The string fields
associated with each part and connection are represented by
references to separate Smalltalk objects of 24 bytes each.
Similarly, a part’s incoming connections are represented as a
separate object containing the parts that .are the source of the
connections. The B-tree index for the 20.0(K) parts consumes
a total of 168,832 bytes.

5.2 Benchmarks
We performed both the lookup and traversal Portions of lhc
001 benchmark, as well as adopting the update variatl of
the traversal measure used by White and DcWttt:

Lookup fetches 1 .OOo randomly chosen parts from the
database. A null procedure is invoked for each part.
taking a% its arguments the X, .v, and r!pe fields of the
part. This benchmark is read-only with no checkpoints.

Traversal finds all parts connected to a randomly cho-
sen part, or to a part connected to it, and so on, up to
seven hops (for a total of 3,280 parts. with possible du-
plicates). Similarly to the lookup, a null procedure is
invoked for each part, taking as its arguments the X. ,v,
and type fields of the part. This benchmark is read-only
with no checkpoints.

Update operates in the same way as the trut~crscrl mca-
sure, but in addition to the null procedure call it per-
forms a simple update to each part object encountered.
with some fixed probability. The update consists of in-
crementing the x and y 4-byte integer fields of the part.
A checkpoint operation is performed at the end of the
traversal IO complete the transaction and commit lhc
changes to disk.

001 calls for each measure to be run ten times. the first
when the system is cold, with none of the database cached
(apart from any schema or system information necessary to
initialise the system). Each successive iteration fetches a
different set of random parts. Before the first run of each
series of benchmark iterations a “chill” program is executed
on the client to sequentially read a 32M byte file from the
server. This ensures that the operating system file buffers
of both client and server have been flushed of all database
segments, so that the first iteration is truly cold. In addition
to the ten cold-warm iterations, we measured the time to run
ten hot iterations of the traversal and update benchmarks, by
beginning each hot iteration at the same initial part used in
the last of the warm iterations. These hot runs are guaran-
teed to traverse only resident objects, and so will be free of
auy overheads due to swizzling and retrieval of non-resident
objects. To gel a sense of the CPU overheads for noting
updates in long-running transactions we also measured the

434

time to run repeated hot iterations as a single transaction,
varying the number of iterations per checkpoint.

5.3 Experimental setup

The client machine on which the benchmarks were run
was a DECStation 3 100 (MIPS R2OOOA CPU” clocked at
I6.67MHz) running ULTRIXG 4.1.7 The system has 24M
bytes of main memory, 10% of which is used for operat-
ing system disk buffers. The log file is written locally to
a relatively empty RZS6 drive (66SM bytes SCSI, 24.3ms
average access time, 16ms average seek time, 64K-byte data
buffer), using ordinary buffered file l/O (as opposed to the
raw disk device). The Smalltalk interpreter is coded in C
and compiled with the GNU C compiler (gee) version 2.3.3
81 optimisation level 2. The benchmarks were run with the
system in single user mode and the process’s address space
was locked in main memory to prevent paging. All check-
points included a call IO f sync to force the log data to the
local disk before completing.

The database is accessed remotely via NFS. The server is
a SPARCstatiot# 2 running SunOS” 4.1.2, with 32M bytes
of main memory, and the database resides on a 1.3G byte
external SCSI disk. The client and server were connected
via a private ethernet.

We measured elapsed time on the client machine using
a custom timer boardr” having a resolution of 10 11s. The
fine-grained accuracy of this timer allowed us to measure the
elapsed time of each phase of execution separately: running
time, unswizzhng of modified persistent objects, allocation
and unswizzhng of newly created persistent objects, writing
the log records to disk (including the fsync), and other
checkpoint overheads.

Our experiments included runs for the object marking, re-
membered set, page protection (the page size is 4096 bytes)
and card schemes, with card sizes of 16,64,256,1024 and
4096 bytes. For the update benchmarks we ran the exper-
iments with update probabilities of 0.00, 0.05, 0.10, 0.15,
0.20. 0.50, and 1.00. The experiments were repeated sev-
eral times for each configuration, and the results averaged
(variance of the individualresults from the mean was not sig-
nificant). Each run is presented with the exact same database
(no updates are ever propagated to the permanent database).
Note also that the nth iteration within any given benchmark

b MIPS and RXMl are tademorkr of MIPS Computer Systems.
‘DECstation and UIXRIX are. registered trademarks of Digital Equip-

mcnl Corporation.
‘The operating system had some official patches ins~~~lled that hx bugs

in the mprotoct ayskm cd.
‘SPARCstation is a trademark of SPARC International, liccwd exclu-

bively to Sun Micronystcma.
“SunOS ir a trademark of Sun Microsystems.

*“We thank Digital Equipment Corporation’s Western Research Labora-
r~ry, and Jeff Mogul in particular, for giving III the high resolution timing
board and the rofhvare necessary (0 support it

16

16

14

---\ -6 - _. .-- _ ~--_ -- _
1 2 3 4 5 6 7 8 9 10

itention (ookl-warm)

Figure 2: lookup: 10 iterations (1 cold, 9 warm)

run will always access the same parts as the nth iteration
within any other benchmark run, since the script that controls
the benchmark runs presents the same sequence of random
part identifiers to each run.

6 Results

We now report the results for each of the benchmarks. All
times are reported in seconds, and exclude all initialisation
time (i.e., all Smalltalk initiahsation prior to beginning the
benchmark). In each figure, the card schemes are identified
with the card size in bytes, the page protection scheme is
referred to as pages, the object marking scheme as objects,
and the remembered set scheme as remsets.

6.1 Lookup

The behaviour of the lookup benchmark for the ten iterations
(cold through watm) is illustrated in Figure 2, which gives
the elapsed time for each iteration of the benchmark. We see
the warming effect of the cache as the iterations proceed. As
expected from a benchmark that performs no update there is
little to distinguish the software update detection schemes.
However, the page protection scheme incurs substantial ex-
tra overhead, caused by the need to protect and unprotect
the pages in which newly faulted objects are cached. Recall
that clean pages are write protect& Before a newly faulted
object can be copied and swizzled into a clean page, the
page must be unprotected. After swizzling has occurred, the
page must be reprotected. We expect that schemes that per-
form page-at-a-time caching will lessen, but not eliminate,
the impact of this page protection management overhead
by performing more copying and swizzling work per object
fault.

435

.
w@-

il mnlsets

. caKb-0018

0 ca-

. cardr-0258

a- cards-1024

- . cards-4098

” P%w

1 2 3 4 5 8 7 0 910

iteration (cold-warm)

Figure 3: Traversal: 10 iterations (1 cold, 9 warm) Figure 5: Warm update (tenth iteration)

2 7

__---.-

E 8

‘I-’

_- --.-

~-___. ._.---

5

3

2

i

--- .-- -- --- -- --- - -- --.-

1

0 ----

0 0.2 0.4 0.8 0.8 1

update probability

- .I.-- nmsets

-- -.--- ca-,6

- a-~ -&-00&j

-.- *-- tzmds-0258

-tB u&+1024

l cardr-4098

-*----- Pw-

____~.--

Figure 4: Cold update (first iteration) Figure 6: Hot update

6.2 llaversal

The results for the ten cold through warm iterations of the
traversal benchmark are illustrated in Figure 3. The read-
only traversal behaves similarly to the lookup, with the
warming of the cache evident as the iterations proceed Once
again, the overheads for management of page protections are
apparent.

the true differences among the schemes, becoming mom pro-
nounced as the update probability increases. Object marking
and remembered sets are best overall, with remembered sets
slightly better than object marking at the lower update prob-
abilities. At the higher update probabilities object marking
and remembered sets exhibit similar performance. The card
schemes come close to the object-based schemes only at
low update probabilities. The page protection approach is
markedly worse than all other schemes across the whole
range of update probabilities. 6.3 Update

The update benchmark includes a checkpoint operation, so
the results are naturally more interesting. Figure 4 presents
the elapsed time for the first (cold) iteration at each of the up-
date probabilities. There is little relative variation amongst
the schemes since the cold times are dominated by I/O and
swizzling costs. Nevertheless, the page protection approach
is somewhat more expensive due to the overheads of page
protection management.

Elapsed times for the tenth (warmest) iteration at each up-
date probability are given in Figure 5. Here we begin to see

0.7

0.8
2

1 nnlselr

. cards-001 8

0 u&-o064

. ctmh-0258

D cards-1024

. cards4098

Pw-

. objects

r fernsets

. csKl3-0018

0 urdr-0084

. cards.O258

D cards-1024

. oar&-4098

(I PQ-

6.4 Hot update
The ten hot transactions traverse exactly the same parts as the
last of the ten cold-warm iterations, by beginning each hot
iteration at the same part. Thus, the hot iterations include no
object faults or swizzling. Figure 6 summarises the average
elapsed time for the ten hot iterations at each of the update
probabilities. The results are similar to those for the warm
transaction, except that with all objects needed by the traver-
sal having already been cached, no fetching and swizzling

436

.
n Running I I okf n N@&- R Wrlto B Other

P--m.-

._I
n Runnlng old n New n ~db p Other . .

/

cardr-4096 - -1

cll&-1024~~~j

cwd-0256 _- 0
cards-0064

ufd~-OOl6-~~, -

romwts 7-m 1

&J-i- v

0 0.05 0.1 0.15 0.2

averego elapsed time (I))

Figure 7: Hot update: p = 0.0

average elapsed time (6)

Figure 9: Hot update: p = 0.2

_ __ -.
n Running old 8 New I Write - !% Other

pPOer - _. _. ‘!

awda-4OD6i~~ : 1‘ m

~~6-1024j-~ m

cards-0256 -- - m

cards-0064 -- I -1

cards-0016 -- :‘; -.. m

remwta i- -1)

04-J iw .--rim. _-_ __

0 0.05 0.1 0.15 0.2 0.25

average hpwd time (6)

cards-0064 I-- --
cads-0016 - -m

0 0.1 0.2 0.3 0.4 0.5

average elapsed time (6)

0.6 0.7

Figure 8: Hot update: p = 0.05 Figure 10: Hot update: p = 1.0

of objects occurs. Thus, the page protection scheme is no The results show that the major differences among the
longer penalised for having to manipulate page protections schemes occur in the running and old components. Vari-
during swizzling, and therefore achieves performance closer ation among the schemes in the ncnning component is not
fo that of the page-sized card scheme. The remaining differ- all that great, with the differences being due not only to the
ence between these two schemes is explained by the need to intrinsic run-time overheads of the schemes associated with
manipulate the protection of dirty pages at checkpoint time. noting updates, but also to subtle underlying effects such

For a better understanding of the behaviour of the hot NIU as variations in hardware cache behaviour. This is the only
Figures 7-10 show the breakdown of the average elapsed possible explanation for variation among the card schemes,
times at several update probabilities (P) for each phase of since the code for all the card schemes is exactly the same,
execution: barring the shift values.

0 running: time spent in the interpreter executing the
program, as opposed to unswizzling old and new objects
to generate differences and writing those differences to
the log (note that running includes the cost of noting
modifications as they occur);

l old: time 10 unswizzle old modilied objects and gener-
ate log entries for them;

l MW: time to unswizzle new objects and generate log
entries for them;

l HT&T: time to flush the log entries to disk; and

l orher: time for any remaining bookkeeping activities,
such as modifying page protections.

The old component reflects the amount of scanning re-
quired to determine the differences between a cached object
and its original in the client buffer pool, and has the most
influence on total elapsed time, particularly at larger update
probabilities. For the card-based schemes there is an evident
tradeoff between the size of the card table and the card size.
At the smaller update probabilities the cost of scanning the
card table has more influence; schemes with small cards but
a larger card table fare worse than larger cards. At higher
update probabilities there are more dirty cards to process,
so unswizzling ovehads dominate those of scanning the
card table, with larger cards requiring more unswizzling to
generate differences than smaller cards. The tradeoff is most
pronounced for the 16-byte cards, which are substantially

437

j -- *- a&-1024 1

Figure 11: Hot update (50 iterations per chedcpoint)

12 t
0 0.2 0.4 0.6 0.8 1

updab PrHty

,
I ----*-- -s :
L -_-_. .-I

Figure 12: Hot update (200 iterations per checkpoint)

smaller than the average object size, so that unswixzling
costs outweigh card table scanning costs only at the higher
update probabilities. overall, remembed sets offer the
most concise record of updates, allowing modified objects
to be unswizzled without scanning. The scanning overhead
is evident for the object marking scheme, especially at low
update probabilities.

6.5 Long-running transactions

The final set of results concerns the experiments in which
multiple hot update traversals are performed as a single trans-
action. We measured the total elapsed time for 50,100,150,
200,400,600,800 and 1000 iterations per &e&point, at
update probabilities 0.00, 0.05, 0.20, 0.50, and 1.00. The
point of this was to try to obtain some edmate of the rela-
tive overheads inured by each scheme in noting updates in
long-running transactions.

Figure 11 plots the elapsed time for a tmnsaaion consist-
ing of 50 iterations as update probability is varied. Similarly,
Figure 12 shows the results for 200 iterations per check-

. u~h-0016,

0 ufds-0064

, l urds-0256

0 cards-1024

. urds-4096

w9*=

Figutc 13: Long-running update: slope b

.-. _ csrdr-0016

I O C8ldO-0064

_ . oatdr-0256

.P-- cards-1024

. CWdS-4096

,
P9”

Figure 14: Long-running update: intercept a

point. ‘l&se results illustrate how the relative importance
of the per-traversal costs and per-checkpoint costs of each
scheme varies with the length of the transaction. The longer
the transaction the more important the cost of detecting and
noting updates (cf. Figure 6). Most dramatically, the page
protection scheme becomes more attractive as the length
of the transaction increases. At 200 update traversals per
tmnsauion the page protection scheme is best at all update
probabilities.

We have generalised these results by obtaining linear IV-
gression fits for each scheme, for the model y = a + b-x.
where y is the total elapsed time, and z the number of update
traversals per transaction, As expected, since a hot traver-
sal will have constant cost no matter how many times it is
performed, the fits are excellent. The slope b is a measure
of the per-traversal costs of each scheme, while the y-axis
intercept a approximates the checkpoint overhead per trans-
action. These measures are plotted in Figures 13 and 14.

The page protection scheme offers the least overhead per
traversal of all the schemes (Figure 13), since each transac-
tion entails many repeated updates to the same locations, so

438

that only the first update lo a location causes a page trap. Re-
mirinitrg updates proceed with no additional overhead. Nev-
cnheless. the software-mediated update detection schemes
show only marginally worse per-traversal overheads, within
IS% of the performance of the page protection approach.
For larger card sizes the difference is even smaller, with
per-traversal overheads comparable to the page protection
scheme at low update probabilities. Curiously, at low up-
date probabilities the larger card (smaller card table) schemes
show improved pexfomiance with incresing update proba-
bility, even though higher update probabilities imply more
updates, and hence more work. We are unable to provide an
explanation for this within the current experimental setup,
but can only point to underlying hardware cache effects or
an artefact of the Smalltalk interpreter as potential causes.
Further study, involving cache profiling and instrumenta-
tion of the interpreter may yield a definitive explanation.
Meanwhile, the similarity of Figures 6 and 14 illustrates the
dominance of per-checkpoint costs for short transactions.

6.6 The effect of compilation

Although these results are for an interpreted implementation
of Smalltalk, we see no reason why they will not carry over
to a compiled setting. Since compilation can only speed the
running-time component of execution, checkpoint overheads
will become relatively more important. Moreover, compiler
optimisations may merge or eliminate the noting of updates
at certain *store sites. For example, control-flow information
may reveal that multiple updates to the same location at sev-
eral points along a given execution path can be noted just
once, rather th,an at every update. Such optimisations will
have the effect of reducing the per-update overheads of the
software-based schemes, so that checkpoint overheads be-
come the dominant factor influencing the choice of scheme.

7 Conclusions
We have described several schemes for the efficient gen-
eration of recovery information in persistent programming
languages, and performed a comprehensive performance
evaluation of the alternatives, using recognised benchmarks.
There are several conclusions we draw from the benchmark
results. First, the ranking of the schemes is quite evident,
with approaches that record updates at smaller granulari-
tics having a significant advantage when the transactions ate
short and the update locality poor, since they greatly reduce
the overheads of unswizzling and generation of differences
for the log, Best overall is the remembered set scheme, since
it provides a very concise summary of just those objects that
have been modified.

For longer intervals between checkpoints, the run-time
costs of update detection come into play, with the page pro-

tection scheme having the advantage that detection overhead
is paid for up front in the page protection violation trap on the
first write to a clean page, and subsequent updates proceed
without cost. At high update probabilities, the remembered
set scheme loses its appeal due to the relatively expensive
overhead to manage the remembered set. The overheads of
the card and object marking schemes change very little as
update probability varies, with any difference being due to
hardware cache effects. Even so, the differences in run-time
overheads of the schemes are slight when compared to those
of checkpointing.

The length of the interval between checkpoints is an im-
portant factor because of this tension between the run-time
and checkpointing overheads of the various schemes. Long
intervals between checkpoints am likely to result in corre-
spondingly more updates, increasing the checkpoint latency.
Only when the volume of modified data is small with respect
to the length of time between checkpoints should the run-
time costs of the schemes be permitted to guide the choice of
update detection mechanism. The overwhelming influence
of unswizzling and generation of log records indicates that
the general bias should be towards the more accurate smaller
granularities than to schemes with low run-time overheads.

With respect to the hardware approach embodied in the
page protection scheme we have seen that it can involve
substantial extra overhead for “typical” operations as rep-
resented by the benchmarks. In the abstract, the hardware
approach is an attractive one. However, current realisa-
tions which must use expensive calls to the operating system
seem to be limited in their effectiveness. Moreover, the large
granularity of page size remains the most serious deficiency
of this scheme, even if improved operating system support
can succeed in lowering the costs of managing the update
information through access to page dirty bits.

In conclusion, we offer three guidelines for the genera-
tion of recovery information in persistent programming lan-
guages:

l

0

.

8

Avoid large granules of update detection, to minim&e
checkpoint overheads.

Choose a checkpoint frequency corresponding to the
rate of generation of new update information, so that
checkpoint delays are tolerable. Long-running transac-
tions that perform few updates need infrequent check-
points.

Make use of page protection mechanisms only where
update locality is good and checkpoints are infrequent.

Acknowledgements
We gratefully acknowledge Carla BrodIey and Nick Haines
for their feedback on drafts of this paper. We also thank the
anonymous referees for their useful and detailed comments.

439

111

121

[31

[41

PI

[61

171

PI

PI

[lOI

WI

WI

M. P. Atkinson, P. J. Bailey, K. J. Chisholm, P. W.
Co&shot& and R. Morrison. An approach to
persistent programming. The Computer Journal,
26(4):36&365, Nov. 1983.

M. J. Carey, D. J. DeWitt, J. E. Richardson, and E. J.
Shekita. Storage management for objects in
EXODUS. In W. Kim and F. H. Lochovsky, editors,
Object-Oriented Concepts, Databases, and
Applications,

0
ter

Press/Addison-
14, pages 341-369. ACM

esley, New York, New York, 1989.

R. G. G. Cattell and J. Skeen. Object operations
benchmark. ACM Trans. Database Syst., 17(1): l-3 1,
Mar. 1992.

K. Elhardt and R. Bayer. A database cache for high
performance and fast restart in database systems.
ACM Trans. Database Syst., 9(4):503-525, Dec. 1984.

A. Goldberg and D. Robson. Smalltalk-80: The
Language and its Implementation. Addison-Wesley,
1983.

J. N. Gray. Notes on database operating systems. In
R. Bayer et al., editors, Operating Systems: An
Advanced Course, Leaure Notes in Computer
Science. Springer-Verlag, 1978.

T. Haerder and A. Reuter. Principles of
transaction-oriented database recovery. ACM Comput.
SW-V., 15:287-318, Dec. 1983.

A. L. Hosking. Main memory management for
persistence, Oct. 199 1. Position paper presented at the
OOPSLA ‘91 Workshop on Garbage Collection.

A. L. Hosking and J. E. B. Moss. Object fault
handling for persistent programming languages: A
performance evaluation. In Proceedings of the
Conference on Object-Oriented Programming
Systems, Languages, andApplications, Washington,
DC, Sept. 1993. To appear.

A. L. Hosking, J. E. B. Moss, and D. StefanoviC. A
comparative performance evaluation of write barrier
implementations. In Proceedings ofthe Conference on
Object-Oriented Programming Systems, Languages,
and Applications, pages 92-109, Vancouver, Canada,
Oct. 1992. ACM SIGPLAN Not. 27.10 (Oct. 1992).

C. Lamb. G. Landis, J. Orenstein. and D. Weinreb.
The Obj&tStore database system: Commun. ACM,
34(10):5(M3, Oct. 1991.

J. E. B. Moss. Design of the Mneme persistent object
stow. ACM Trans. Znf Syst., 8(2):103-139, Apr. 1990.

[131 J. E. B. Moss. Working with persistent objects: To
swizzle or not to swizzle. IEEE Trans. Softw. Eng.,
18(8):657673,Aug. 1992.

[141

[I51

[I61

[I71

1181

1191

[W

WI

WI

~31

WI

J. E. B. Moss, B. Lebau, and P. K. Chrys,anthis. Finer
grained concurrency control for the database cache. la
Ptvceedinas of the Third International Conference on
Data Engi‘;leeiing, pages 96-103, Los Angiles. CA,
Feb. 1987. IEEE.

Ob’ect Design, Inc. ObjectSton User Guide, Oct.
9?!0 1 . Release 1.0.

D. Schuh, M. Carey, and D. DeWitt. Persistence in E
revisited-implementation experiences. In A. Dearle.
G. M. Shaw, and S. B. Zdonik, editors, Ptweedings of
the Fourth International Workshop on Persistent
Object Systems, pages 345-359, Martha’s Vineyard,
Massachusetts, Sept. 1990. Published as
Implementing Persistent Object Bases: Principles and
Practice, Morgan Kaufmann, 1990.

R. A. Shaw. Improving garbage collector perfomlance
in virtual memory. Technical Report CSL-TR-87-323.
Stanford University, Mar. 1987.

V. Singhal, S. V. Kakkad, and P. R. Wilson. Texas, an
efficient,

p”
rtable persistent store. In Proceedings of

the Fifrll nternational Workshop on Persistent Objwt
Systems, pages 1 l-33, San Miniato, ltaly, Sept. 1992.

P. G. Sobalvarro. A lifetime-based garbage collector
for LISP systems on general- urpose computers,
1988. B.S. Thesis, Dept. of I& CS, Massachusetu
Institute of Technology, Cambridge.

D. Ungar. Generation scavenging: A non-disruptive
high performance storage reclamation algorithm. In
Proceedings of the ACM SIGSOHXIGPLAN
Software Engineering Symposium 011 Practical
Software Development Environments, pages 157-167,
Pittsburgh, Pennsylvania, Apr. 1984. ACM SIGPLAN
Not. 19,5 (May 1984).

J. S. M. Verhofstad. Recovery techniques for database
systems. ACM Comput. Surv., 10(2): 167-195, June
1978.

S. J. White and D. J. Dew&. A performance study 01
alternative object faulting and
strategies. In ihc&?dingS P

ointer swizzling
oft ie Eighteenth

International Conference on Very Large Data Buses,
Vancouver, Canada, Aug. 1992.

P. R. Wilson and S. V. Kakkad. Pointer swizzling at
page fault time: Efficiently and compatibly supporting
huge addn?ss
Proceedings o 7

aces on standard hardware. In
the 1992 International Workshop on

Object Orientation in Operating Systems, ages
364-377, Paris, France, Sept. 1992. IEEE L-e ss. .

P. R. Wdson and T. G. Moher. Design of the
Opportunistic Garbage Collector. In Proceedings of
the Conference on Object-Oriented Programming
Systems, Languages, and Applications, pages 23-35,
New Orleans, Louisiana, Oct. 1989. ACM SIGPLAN
Not. 24.10 (Oct. 1989).

440

