
Exploiting A History Database for Backup 

David Lomet 
DEC Cambridge Research Lab 
One Kendall Square, Bldg 700 

Cambridge, MA 02139 

Abstract 

Database systems provide media recovery by talc- 
ing periodic backups and applying a recovery log to a 
backup to r’estore the failed media. A transaction-time 
database is one that retains multiple versions of data, 
recording with each version the time of the transac- 
tion that created it. Such a database provides access 
to historical versions based on transaction time, and 
permits reconstruction of timeslices representing the 
data that were valid at past times. This paper shows 
how a TSB-tree supported transaction-time database 
can also provide the backup function of media recov- 
ery. Thus, the same versions used for database his- 
tory are used for database backup. The coat of taking 
a T.&%-tree backup is comparable to that of a conven- 
tional diflerential backup. The media recovery cost, 
especially when the media failure is partial, e.g. a 
single disk page, will usually be lower. 

1 Introduction 

1.1 Background 

There is increasing interest in providing “data min- 
ing* capabilities, where one may wish to discover 
patterns over time, or to explore the database state 
at some time in the past. To support such tem- 
poral queries, transaction-time databases [ 151 store 
not only the current database but the history of the 
--- 
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database as well. It is natural to ask whether this 
history data can also be used to provide backup for 
the current database in case of a media failure. 

Traditionally, database systems take periodic back- 
ups to permit recovery from media (disk) failures. 
The backup reflects the state of the data at a previous 
time. If media failure occurs, the backup and the re- 
covery log are used to restore the database. The pre- 
ferred backup method takes a “fuzzy dump”. Hack- 
ups are “fuzzy” when normal transaction activity is 
concurrent with the backup and the copied data does 
not represent a transaction consistent picture of the 
database. 

For a full backup, the entire database is copied in 
a background process. When the database is large 
(multiple gigabytes), a complete fuzzy dump becomes 
very expensive. Then differential backups, also fuzzy, 
which only copy pages changed since the last backup 
become very desirable. 

In this paper, we show how to use a temporal index- 
ing method, the time-split B-tree or TSB-tree [G, 71, 
for differential backup of the database. The TSR- 
tree is particularly suited to the task of supporting a 
transaction-time database. It is a multiattribute ac- 
cess method that accesses data by key and by transac- 
tion time. It partitions the transaction-time database 
into two components, a history database (archive) 
and a current database, while providing a single uni- 
fied index to all versions of data.’ The two compo- 
nents may be kept on separate random access media. 
The history database can be on WORM media (write- 
once, read-many) as history data in a transaction- 
time database is never updated. 

The TSB-tree incrementally migrates history 
records and copies of long-lived current records to the 
history database. We modify TSB-tree maintenance 
so that we can guarantee that every node containing 
a change made since the last backup is copied to the 
archive during the backup process. Normal database 
activity is concurrent with the backup process. The 
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history database can then be used as a backup. We 
know of no other proposals along these lines. It pro- 
vides an added role for the history records, hence in- 
creasing the value of retaining them, and reducing 
the incremental cost of supporting a transaction-time 
database. 

It is important to emphasize the unique suitabil- 
ity of the TSB-tree for our purpose. It is the only 
temporal access method that simultaneously provides 
a O(Iog(n)) search and insertion cost, an O(n) size, 
excellent clustering of time-slices in its nodes, and 
an integrated index for both current and history 
databases. Because data can move incrementally 
from current to history database, and because clip- 
ping introduces redundancy that is useful in backup, 
the TSB-tree is readily adapted to provide the backup 
functionality. 

1.2 Optimizing Backup and Recovery 

We have made a considerable and detailed effort to 
make backup and recovery efficient. Below, we de- 
scribe the optimizations that we exploit. 

1.2.1 Backup for Data Nodes 

Records are clustered by time and by key in the 
leaf nodes (data nodes) of the TSB-tree. All nodes 
(whether data nodes or index nodes) of the TSB-tree 
are disk pages (contiguous areas of a disk). TSB-tree 
nodes are split either by transaction time or by key, as 
in the B+-tree. Originally, nodes were split only when 
full. When using a TSB-tree for backup, (potentially 
non-full) nodes may also be time-split to ensure that 
the required versions of data are in history nodes of 
the tree. 

During backup, we sweep through the current 
database and time-split only nodes updated since the 
last backup. The history database is written sequen- 
tially, with backed up nodes being written in large 
groups. These large sequential writes are very im- 
portant for both the execution path length and the 
elapsed time of the backup. It is possible for the 
sweep to be done in parallel, with the writing of the 
new history nodes also done in parallel, as with con- 
ventional backups. 

Normally, when a node is time-split, versions of 
data are removed from the current node. Indeed, the 
“normal” reason for doing a node split is to make 
space available in a node. Because we wish to make 
our backup process as efficient as possible, we do not 
remove data from the current data nodes. Current 
data nodes are not updated by the backup process. 

1.2.2 Index Maintenance 

In the current database, only index nodes are changed 
by the backup process. This is required to make the 
backup usable as a history database. The index also 
makes recovery from partial media failures fast by 
providing fast access to the specific backup node(s) 
required. 

Our backup sweep of the current database is in tree 
traversal order. Then, all index terms for one index 
node are posted before proceeding to the next index 
node. This clustering of index updates reduces the 
I/O cost of performing them. The only log records 
produced by backup describe the updating of the in- 
dex. This is necessary to permit us to guarantee the 
recovery of the index. We do not log changes to the 
history database made by the backup. 

Every backup is incorporated into the history 
database and must be indexed. This contributes to 
a potentially large expansion in the size of the in- 
dex. Reducing index growth is important to reduce 
the access path to data. TSB-tree index growth is re- 
stricted by exploiting the redundancy inherent in the 
backup process to purge unneeded index terms from 
the index nodes. 

1.2.3 Media Recovery 

We take advantage of proximity of the most recently 
backed up nodes on the history medium to use se- 
quential access during media recovery. We can use 
write optimization via relocation to permit sequen- 
tial writing of the restored nodes. 

1.3 Organization of Paper 

In section 2, the TSB-tree is reviewed. Section 3 
shows how to modify TSB-tree node splitting so that 
backup cost is minimized. In section 4, how to han- 
dle the index during backup is described. Section 5 
describes the overall backup process, and how it is 
possible to optimize the node splitting costs because 
backup is a “batch” operation. Section 6 outlines me- 
dia recovery, how one can find the backup copies of 
nodes and how the log is applied. We end with a brief 
discussion. 

2 The TSB-tree 

2.1 Overview 

The TSB-tree search algorithm and its split algo- 
rithms for index and data nodes, as originally de- 
scribed in [6], are recapped below. Using the TSB- 
tree for backup requires a specific (and different) 
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time-splitting strategy. Backup-induced splitting is 
described in subsequent sections. 

Data records in a transaction-time database cor- 
respond to a line segment (one key value) in the 
time-key space. The line segment in the temporal 
dimension represents the lifespan [15] of the version 
of the data record, the start point being the transac- 
tion time at which it was entered, and the end point 
being the transaction time at which its successor ver- 
sion was entered, where its successor can be a “delete 
stub” indicating that the record has been deleted, not 
updated. In the TSB-tree, a version of a record con- 
sists of a pair, a timestamp denoting the transaction 
time of entry, and the data, including the key, asso- 
ciated with the version. The end time of a version is 
given by the start time of its successor version with 
the same key value. 

The TSB-tree index entries are triples consisting of 
time, key, and pointer to lower-level tree node. Time 
and key respectively indicate the low time value and 
the low key value for the rectangular region of time- 
key space covered by the associated lower-level node. 
Upper bounds on these indexed rectangular regions 
are given by the lower bounds of other entries (with 
the same key but a later time, or with the same time 
but a higher key) or by the boundaries of the parent 
index node. 

2.2 TSB-tree Searching 

A search in a temporal index for a version with a given 
key, and valid at a given time, starts at the root and 
involves following index terms whose space contains 
the <key,time> point requested until the leaf of the 
index tree is reached. Then the versions of records 
in that leaf are searched for a record with the given 
key whose ‘lifespan includes the time requested in the 
search. 

In a TSB-tree, the search within an index node 
proceeds as follows. All index entries with times later 
than the search time are ignored. Within a node, look 
for the largest key smaller than or equal to the search 
key. Find the most recent entry with that key (among 
the non-ignored entries with time not later than the 
search time). Follow the associated address pointer. 
This is repeated until a leaf is reached. At the leaf, 
look for a version of data with an exact match on 
key and with the largest transaction timestamp less 
than or equal to the requested time. Searching is 
illustrated in Figure 1. 

Figure 1: An index entry is the low key and time 
for the child’s time-space rectangle. To find a record 
with key 66, valid at time 7, find the index entry with 
largest key <_ 60 among the entries with time leq 7, 
i.e. (59 T=l). The record (60 Joe T 11) satisfies the 
search. (90 Pete T=5) is in two data pages because 
it is valid across the split time (T=8). 

2.3 TSB-tree Node Splitting 

A node of the TSB-tree can be split by time or by key. 
Deciding whether to split by time, or by key, or by 
both time and key, impacts the characteristics of the 
resulting TSB-tree. The implications of splitting pol- 
icy are explored in depth in [7]. Here we describe only 
the mechanics of the splitting process. A sequence of 
splits is illustrated in Figure 2. 

The TSB-tree exploits clipping [3] to cope with its 
entries that have extents. For versions of records, the 
extent only exists in the temporal dimension, while 
index terms are key-time rectangles, and hence have 
extent in both attributes. The regions indexed in a 
TSB-tree are maintained as rectangles only because 
entries are copied (i.e. clipped) and appear in both 
resultant nodes, when their extent crosses the node 
split boundary (line). 

Clipping in TSB-trees introduces no redundancy 
for the current data of the current database or the 
index entries for the nodes of the current database. 
Since only the current database is subject to update, 
no update complications of the sort present with the 
R+tree are introduced by TSB-tree clipping. 
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Figure 2: Illustrated is a sequence of splits ending in 
a key split for an index node. 

2.3.1 Time Splits 

It is time splitting that posts nodes (and hence mi- 
grates data) to the history database. To time split a 
TSB-tree node at T, all entries with time less than T 
go in the history node. All entries with time greater 
than or equal to T go in the current node. For each 
key-identified entry, the version with the largest time 
smaller than or equal to T must be in the current 
node. Thus records with lifespans that cross T are 
clipped and have copies in both nodes. 

Any time after the begin time for a data node can 
be used to split a data node. For an index node, the 
split time cannot be later than the begin time for any 
index term referencing a current node to insure that 
history index nodes do not reference current nodes. 
This prevents us from having to deal with history 
node updates when a current node splits. Hence, 
index entries are posted to only one node. History 
nodes, which do not split, may have several parents. 
Current nodes have only one parent. 

2.3.2 Key Splits 

A TSB-tree data node is split by key exactly like a 
Bt-tree. All the records with key greater than or 
equal to the split value go in the new node and the 
records with key value less than the split value remain 
in the old node. 

Key splitting for index nodes is like time splitting 
in that index entries have extents in the key space 
dimension. A key K of an index term is chosen as 
the split key value. All entries with keys less than K 
are placed in the ,old (low keys) node. Entries with 
keys greater than or equal to K go in the new (high 
keys) node. Each entry with the largest key, K1, less 
than or equal to K as of any time included in the node 
must be in the new (high keys) node as the extent of 
such an entry includes K. If K1 is less than (not equal 
to) K, this entry is thus in both nodes (see Figure 2). 
Note that because the key space is refined over time, 
any such clipped index entry will reference a history 
node. 

2.3.3 Concurrent Node Splitting 

Essentially any concurrency algorithm used for Bt- 
trees, such as those listed in [13], could be used to 
provide concurrent updating and node splitting for 
TSB-trees. The current nodes of the TSB-tree are 
the only ones that are updated. The current partition 
of the TSB-tree looks like a B+-tree when it comes 
to node splits, except that the new history nodes are 
placed in the history database. However, concurrency 
is particularly high when using a method based on the 
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B-link tree [4]. Such a method which also provides for 
recovery as well, is described in [8]. Changes made 
on the leaf level are in separate atomic actions from 
those made above the leaf level.. Details of the use 
of the concurrency method of [8] in TSB-trees can be 
found in [9]. 

2.4 Timestamping 

The time chosen as the transaction time for times- 
tamping record versions in the TSB-tree is the com- 
mit time of the the transaction which created that 
version. Choosing transaction time at transaction 
start has the advantage that it is available at the 
time that updates to the database are being made. 
However, this excessively constrains serialization or- 
der, leading to more transaction aborts than is desir- 
able. However, choosing transaction time at commit 
implies that changed data must be visited twice. The 
first visit adds the new version and stamps it with the 
transaction’s identifier (TID). The second visit, after 
commit, replaces the TID with the transaction time 
chosen. 

Since timestamping goes on after a transaction has 
committed, the association between a transaction and 
its time must be stably stored. Storing the transac- 
tion time in the commit record on the recovery log 
accomplishes this. For efficiently finding a transac- 
tion’s time, a TID-TIME table is kept in addition in 
volatile memory. The TID-TIME table can be pe- 
riodically written to disk to speed its recovery after 
a crash. It is brought up-to-date using the logged 
commit records. 

To be able to garbage collect the TID-TIME table, 
we suggest that it also contain a list of pages whose 
records require timestamping. We expect most of 
the pages to be timestamped will be in the database 
cache right after the transaction commits. Times- 
tamping them will be part of the disk write, which will 
be logged. As suggested in [14], timestamping can 
be piggy-backed on subsequent updates to the same 
page. Any timestamping that’remains can be done 
by a background process, and must also be logged. 
Garbage-collecting the TID-TIME table is outlined 
in [lo]. 

2.5 Distributed Transactions 

Agreeing on and distributing transaction time to the 
cohorts of a distributed transaction can be handled 
by augmenting the two-phase commit protocol mes- 
sages. Cohorts vote not only on whether to commit 
a transaction, but also on transaction time [5]. The 
time chosen by the coordinator is not earlier than the 

times voted by cohorts. Hence, while a transaction 
is PREPARED, a lower bound for its commit time 
is known, i.e. the time voted by the cohort. This 
lower bound on commit time is of use when dealing 
with backup induced time-splits for nodes containing 
data from prepared transactions. Thus, we also in- 
clude prepared transactions and the time voted by 
the cohort in the TID-TIME table. Thus, this ta- 
ble contains the attributes (i) TID, (ii) TIME: either 
transaction time or time voted during prepare, (iii) 
STATUS: either committed or prepared and (iv) a 
list of pages in need of timestamping by this ttansac- 
tion. 

3 Node Backup 

3.1 Data Nodes 

New considerations govern the details of data node 
time-splitting for backup. In particular, all changes 
since the last backup are placed in the history 
database, and the current database is not written. 

3.1.1 Identifying Nodes for Backup 

Data nodes updated since the last backup are indi- 
cated by a Node Change Vector or NCV, a bit 
vector with one bit for each data node in the TSB- 
tree. Similar bookkeeping will be necessary for any 
method of differential backup that does not read the 
entire database. The NCV is ordered by physical po- 
sition of the nodes on the disk. 

When a data node is changed, its need for backup 
is indicated by setting its NCV bit. This bit is 
cleared after a node is split for backup, if there are no 
records in the node from uncommitted (prepared or 
active) transactions. Nodes with records of uncom- 
mitted transactions, that may commit before the next 
backup time, must be copied in the next backup even 
if there is no subsequent change. The next backup 
pass will write the timestamped data in the correct 
time interval in the backup. Hence the NCV bit for 
these nodes is not cleared. 

The NCV is treated like a database system table 
with respect to system crash recovery. That is, its 
changes are logged (via log records indicating updates 
to TSB-tree nodes) and it is written to disk like other 
system tables as required by the recovery checkpoint- 
ing process. 

3.1.2 Current Node as History Node 

When using the TSB-tree for media recovery, all time- 
splits copy the entire current node to the history 
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database. This ensures that all updates prior to the 
backup will he present in the history nodes. This may 
require writing uncommitted data to history nodes, 
where the uncommitted transaction may be given a 
transaction time later than the backup. This data is 
marked as uncommitted in the history node. TSB- 
tree index terms will direct us to the current data 
node when this data is desired. Hence, this data 
in history nodes is harmless with respect to searches 
and is necessary with respect to recovery. We call 
such data which is not within the time-space region 
described by the index term referring to it Search 
Invisible or SI. 

If there are records of committed transactions in 
the current node which are not timestamped, we re- 
place their TIDs with the transaction times in the 
backup history node. The copy of the record in the 
current database still needs to be stamped as the cur- 
rent database is not written during the backup pro- 
cess. 

3.1.3 No Change to the Current Node 

Backup makes no changes to data nodes in the cur- 
rent database. However, a new index term describing 
the backup time-split is posted. Hence like a history 
node, a current node can contain SI versions of data. 
The SI versions in the current node are versions which 
are no longer valid at the new start time for the cur- 
rent node indicated in the index. These SI versions 
have been superceded by more recent versions at (or 
before) the start time in the index term. 

To make detection of SI versions easy, a START 
time is kept in each current node. START is the ear- 
liest time covered by data in the node. When START 
is earlier than the time in the index term for the node, 
Sl versions may be present. 

3.1.4 Data Node Split Times 

If a data node contains no updates from prepared 
transactions, then current time can serve as the split 
time for data nodes. When there is a record in the 
node from a prepared transaction, we do not know 
whether its transaction time is before or after the cur- 
rent time. WC do know what the local cohort voted as 
transaction time. We choose as split time the earliest 
such voted time of any such record. 

3.2 Index Nodes 

3.2.1 Unique Properties of the Index 

Index nodes are treated differently from data nodes 
because 
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Figure 3: The current child node Q has not been 
changed since the last backup. All Q’s records have 
timestamps < the start time in its index entry. The 
records in A, valid the last time the node was backed 
up, (previous start time for Q), are still valid. Thus 
the start time in Q’s index entry (which is the end 
time for A) can be moved forward to the current time. 

1. Index terms for the backup-induced new his- 
tory nodes must be posted. Thus, the index is 
changed by the backup process. 

2. The split time for index nodes is never later than 
the start time of the oldest current index entry to 
ensure that history index nodes do not reference 
current nodes. 

3.2.2 Split Time for Index Nodes 

Unchanged data nodes are not read during backup. 
However, the start times in the index terms for these 
nodes are set to the current time. This indicates that 
the la& historical nodes for these current data nodes 
include all changes up to the current time. This is 
illustrated in Figure 3. 

Updated data nodes are read and split by the 
backup process, including the writing of a new his- 
torical node for them. The split time associated with 
the new index term for a current node is the oldest 
voted transaction time of any prepared transactions 
with updates in the node, or the current time if there 
are no prepared transactions. 

Recall that an index node can be time-split using 
the time of its oldest current child. Hence, an index 
node which is the root of a subtree with updates of 
prepared transactions can be time-split, generating 
a new backup history index node, using the oldest 
transaction time voted by any prepared transaction. 
If the subtree has no updates from prepared transac- 
tions, the current time becomes the split time. The 
split time becomes the start time in the index term 
for this current index node. 
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Figure 4: Index terms may refer to a proper subset 
of child space. 

3.2.3 Index Term Covering 

If all the new index terms generated during backup 
are posted to TSB-tree index nodes, they will cause 
the index to grow larger than would be the case if 
backup were not being done. Fortunately, many of 
the backup induced index terms are, or can be made, 
redundant. 

In a TSB-tree, nodes denote rectangles in time-key 
space. An index term in an index node refers to that 
portion of the child’s rectangle which intersects its 
parent’s rectangle. Usually this is the whole child 
space. Sometimes, as we see in Figure 4, part of the 
child’s space lies outside the boundaries of the parent. 
We say that an index term Tl covers another index 
term T1 if the space (a subset of the index node space) 
to which Tl refers includes the space referred to by 
T2. 

We systematically eliminate covered index terms 
from index nodes. The node whose reference is erased 
in this index node may become inaccessible via a 
TSB-tree search, but all search relevant informa- 
tion remains accessible. Details of calculating child 
boundaries for index covering is in [9]. When using 
a WORM device for history nodes, space cannot be 
re-used. No attempt need then be made to recover 

space in the historical database used by inaccessible 
nodes. 

4 The Backup Process 

We wish to make the backup process comparable in 
cost to a conventional differential backup. Thus, we 
take pains to minimize the number of nodes read and 
written, and also perform batch writes of the infor- 
mation that backup needs to store stably. (Although 
we do not discuss parallelism per de, the TSB-tree can 
be partitioned by key range and theee algorithms can 
be applied to each partition in parallel.) 

4.1 Backup Splitting Steps 

We require that a backup-induced time-split be done 
in three steps in the order given below. 

Writing the History Node: The current node is 
copied to form the history node, which is writ- 
ten to the stable history database before the next 
step is executed. 

Logging the Split: A single log record for the 
backup-induced split is written. This log record 
describes the posting of new index terms that 
update the parent index node. 

Writing of the Index Node: The index terms de- 
scribing the split are posted to the parent index 
node, making the new history node accessible. 
The updated index node is not made durable un- 
til the log record is durable, following the usual 
write-ahead-log rule. 

4.2 Writing History Nodes 

4.2.1 Non-root Nodes 

A current node which is to be backed up is share- 
latched to assure read consistency while it is copied 
to the history database buffer to become the history 
node. This latch can be dropped as soon as the copy 
is complete. The necessary timestamping for a his- 
tory data node can be done after the copy. Once the 
history node is stably written, the parent index node 
is updated and this update is logged. This usually 
requires only a short-term exclusive latch on the par- 
ent index node. If the parent splits, latches on higher 
level nodes will also be needed [S]. 



4.2.2 The Root 

Hacking up the root is handled somewhat differently. 
There is no index node above the root into which to 
store the index terms describing the backup-induced 
time-split of the root. Normal B-tree splits of a root 
cause the creation of a new root, but this new root, of 
necessity, is in the current database, hence requiring 
backup itself. We must break this recursion. When 
the backup copy of the root is made, we place a ref- 
erence to it and to the split time into stable storage 
as part of our backup status information. 

4.3 The Backup Sweep 

The backup is done in key order, nodes with lower 
keys being backed up before nodes with higher keys 
(or consistently the reverse). Thia has two desirable 
results. 

1. An index node is backed up immediately after its 
descendenta. This assures that the backup ver- 
sion of the index node references the new backup 
versions of all descendent nodes. 

2. An index node will most likely remain in cache 
and available while its descendents are being 
split. Hence, the effect is to batch the updates 
to the index node. 

We write the backup history nodes as part of large 
sequential writes. During backup, as soon as a node is 
split, we place its history node in the output history 
buffer, which serves as an output queue. A history 
node must be written prior to the log record that 
describes the split. We write several history nodes 
prior to posting of their index terms. The index node 
is then updated with a group of backup-induced index 
terms, producing log records for these updates in a 
batch as well. 

4.4 The Sweep Cursor 

The Sweep Cursor permits the ordering require- 
ments of backup to be enforced. Its restoration after 
a system crash permits an interrupted backup to be 
resumed. The Sweep Cursor contains the following 
information. 

Log Key: the key for the last node whose backup 
is recorded stably in the log. 

History Key: the key for the last node whose his- 
tory node has been written stably to the history 
database. 

Sbble Hklq Ddabuc Sbbklq 

31 
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Figure 5: The Sweep Cursor: The unposted term 100 
can be entered into the log buffer and posted to the 
index node in volatile memory. Once the log buffer is 
flushed to the stable log, the index page can be copied 
to the stable current database. 

Last Key: the key for the last node whose backup 
has been completed. This includes the posting 
of the index entry in volatile memory. 

Unposted Terms: the set of index terms as yet 
unposted for history nodes that have been writ- 
ten. 

To enforce the writing of the history node prior to 
the logging of the split, we require History Key 2 
Log Key. Since parent index nodes are not updated 
until history nodes are stable, Last Key < History 
Key. The write-ahead log rule implies Log Key 5 
Last Key. The Sweep Cursor is illustrated in Figure 
5. 

4.5 The Backup Status Block 

The Backup Status Block (BSB) provides a 
durable repository in a known location for infor- 
mation related to backup. This information is of 
two types: (i) information needed to quickly initi- 
ate recovery from media failures; and (ii) information 
that assists in making the resumption of backup fast 
should the system crash during backup. The BSB 
relates a backup with the log information needed to 

387 



roll forward from the backup to regenerate the cur- 
rent database. This information includes log sequence 
numbers (LSNe), essentially addresses within the log, 
that indicate the beginning of media recovery related 
information on the log. The BSB contains the follow- 
ing: 

BACKUP ROOT: the location of the history root 
of the last complete backup. This determines 
where media recovery finds the backup that 
should be restored. 

SAFE POINT LSN: the redo safe point LSN as- 
sociated with the last complete backup. This 
determines where media recovery should start its 
redo scan of the log. 

NEW SAFE LSN: the redo safe point LSN associ- 
ated with the in-progress backup. This will be- 
come the SAFE POINT LSN when the current 
backup is complete. It is NIL when backup is 
not in progress. 

NCV: the location of the most recent stable copy of 
the NCV. 

4.6 Backup Across System Crashes 

It is unacceptable to undo backup to its start follow- 
ing a crash. Rather, if a backup is in progress when 
the system crashes, we want to resume backup from 
the point that was reached thus far. How we accom- 
plish this is described here. 

First, normal database recovery is performed, 
bringing all nodes up to the state as of the time of 
failure. Normal database activity can resume at this 
point. The BSB and the NCV are restored as a result 
of database recovery. 

What remains is to restore the Sweep Cursor. The 
recovery log is searched back from its end. The first 
backup log record encountered indicates the last com- 
pleted node backup and its HIGHKEY provides the 
values for Log Key and for Last Key. This same log 
record provides the history node where a search in the 
history database starts to find the value for History 
Key. The search continues until the end of the his- 
tory database, the high key of the last backup node 
becoming the History Key of the Sweep Cursor. The 
Unposted Terms are m-created during this scan by 
examining the key and time attributes of the history 
nodes encountered. Once the Sweep Cursor is re- 
generated, normal backup resumes. 

5 Media Recovery Process 

5.1 Fundamentals 

When there is a media failure in the current database, 
the first step is to restore all damaged nodes that 
have backups from the most recent accessible his- 
tory nodes. Each of the restored nodes can be rolled 
forward from this restored states by applying their 
log records. Nodes without backups in the history 
database can be restored solely from their log records. 
(These are nodes created by key splits.) 

What we consider next is how the history database 
is accessed to deal with different types of failures. We 
want to minimize (i) the read accesses to the history 
database; (ii) the write accesses needed to restore the 
backups to the current database; and (iii) the read 
accesses to the media log when rolling the restored 
database forward. 

5.2 F’ull Database Media Recovery 

5.2.1 Minimizing Backup Accesses 

For a full restoration, traversing the history tree, 
starting at the history root has the advantage of 
encountering substantial clustering of history nodes 
needed for database restoration on the backup 
medium. Relevant history nodes from the most re- 
cent backup will exist at very high density in a small 
region corresponding to the backup time. As the re- 
gions associated with increasingly older backups are 
accessed, the density of occurrence of still relevant 
history nodes declines. This is illustrated in Figure 
6. 

We can identify regions of the backup medium 
where the density of nodes needed for a restore ex- 
ceeds some threshold, e.g. 50 %. We can read these 
regions in large sequential reads, spending some data 
transfer time in order to save access times. 

5.2.2 Sequential Writes to Restore Data 

Full database media recovery may require that the 
restored data be relocated to new stable (disk) stor- 
age. When the recovery log is applied, we translate 
the old locations of current nodes, as recorded in the 
log, to the relocated locations of the restored backup 
versions, and apply the log records to the relocated 
nodes. 

One could do the above translation by organiz- 
ing the restored database EO that “relative addresses” 
within restored data are preserved. This makes the 
size of the translation information very small. Mow- 
ever, access arm movement when restoring the data 
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Figure 6: Many of the nodes needed for media re- 
covery are clustered together in the area of the most 
recent backup. This includes the entire backup index 
and those data nodes that were in the last backup. 

can be minimized by building a RELOCATION TA- 
BLE. As the backup tree is read, subtrees of the cur- 
rent database are reconstructed in memory and writ- 
ten to the disk in the same order as the backup, i.e. 
the children of an index node are written prior to 
the index node itself. The writing of the restored 
database can then require a very small number of 
large sequential writes. This exploits relocation to 
optimize writing in the same way as is done with log- 
structured files [12]. 

5.2.3 Applying the Log 

The RELOCATION TABLE is also needed to per- 
mit the log to be successfully applied to the restored 
database. Log records refer to the pre-failure loca- 
tions of the data, and need to be translated so as to 
correctly update the restored nodes. Further, node 
addresses for the pre-failure nodes that appear in in- 
dex term log records need to be translated so that 
these addresses refer to the restored nodes. 

As with conventional media recovery, the log can 
be processed so as to optimize the roll forward of the 
database. This involves what is called “change accu- 
mulation” [2]. The log is sorted by node and within 
node by time. The result is that the part of the log 
relevant to the rolling forward of a node is stored con- 
tiguously. If the RELOCATION TABLE approach is 
taken, it is useful to sort the log by the relocated ad- 
dresses of the restored database, This permits a sin- 
gle sequential scan of the restored database for roll 

5.2.4 Summary 

The bottom line is that there need be only a modest 
number of access arm movements to read the backup 
nodes from the history database. Writing the backup 
nodes to a restored current database can be done 
nearly sequentially. Hence, restoration after media 
failure can be done with high performance as well. 

5.3 Single Node Restoration 

Media failure may involve only a single node. For 
these localized media failures, using the TSB-tree’s 
history nodes as the source of the backup is a sub- 
stantial advantage. The TSB-tree’s index, which is 
available in the current database, can be used to lo- 
cate the backup node. 

If we know the key range of data in the corrupted 
node, we can readily find a backup version in the 
history database. We use the key range information 
to search the TSB-tree for the most recent history 
node with that range. We use this history node to 
restore the corrupted current node. This node is then 
rolled forward by applying the recovery log. If the 
corrupted current node does not have a history node, 
then it was produced as a result of a key split. Such 
a node can be restored solely from the recovery log. 

If a corrupted node is encountered in such a way 
that its key range is not known, then more extensive 
searching is required. The locations of current nodes 
that have backups are all in history indez nodes of 
the TSB-tree. With an index node fan-out of around 
200, the TSB-tree index represents about 0.5% (.005) 
of the database.. Even scanning all the current entries 
in the most recent history index for the failed node 
requires only a small fraction of the I/OS needed were 
we to search the entire backup database. 

6 Discussion 

6.1 Impact on TSB-tree Attributes 

Our backup process has been designed to have per- 
formance competitive with conventional differential 
database backup while permitting the backup to also 
be used as a history database. We want to emphasize 
here that doing this has not compromised the perfor- 
mance of the TSB-tree in its support of a transaction- 
time database. 

1. Single version current utilization (the proportion 
of the current database space occupied by cur- 
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rent versions of data) is little changed since cur- 
rent nodes are not updated during backup. 

2. The height of the TSB-tree index is only mod- 
estly affected because history node index terms 
are eliminated whenever they are covered by 
other index terms. Index-term covering should 
occur with high frequency. 

3. Index node time-splitting is enhanced. Backup 
permits the time chosen for the splitting of an 
index node to advance, which permits history 
index terms to be removed from current index 
nodes. This works to keep the height of the TSB- 
tree small. 

6.2 Differential Backup Comparison 

A conventional differential backup algorithm must 
also keep track of which pages were changed since 
the last backup. It would also have to take mea- 
sures to protect against redoing the entire backup if 
the system failed while backup was in progress. It 
would also be necessary to located the most recent 
backed-up versions of each page to begin media re- 
covery. This would lead one to believe that TSB-tree 
backup is comparable in cost to that of conventional 
differential backup. The advantage of the TSB-tree is 
that it can also be used to support a transaction-time 
database. 
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