
Exploiting A History Database for Backup

David Lomet
DEC Cambridge Research Lab
One Kendall Square, Bldg 700

Cambridge, MA 02139

Abstract

Database systems provide media recovery by talc-
ing periodic backups and applying a recovery log to a
backup to r’estore the failed media. A transaction-time
database is one that retains multiple versions of data,
recording with each version the time of the transac-
tion that created it. Such a database provides access
to historical versions based on transaction time, and
permits reconstruction of timeslices representing the
data that were valid at past times. This paper shows
how a TSB-tree supported transaction-time database
can also provide the backup function of media recov-
ery. Thus, the same versions used for database his-
tory are used for database backup. The coat of taking
a T.&%-tree backup is comparable to that of a conven-
tional diflerential backup. The media recovery cost,
especially when the media failure is partial, e.g. a
single disk page, will usually be lower.

1 Introduction

1.1 Background

There is increasing interest in providing “data min-
ing* capabilities, where one may wish to discover
patterns over time, or to explore the database state
at some time in the past. To support such tem-
poral queries, transaction-time databases [151 store
not only the current database but the history of the

*This work was partially supported by NSF grant IRI-88-
15707 and IRI-91-02821.

Pennisrion to copy without fee all or part of thia material ia
granted provided that the copies am not made or dirtributed
for direct commercial advantage, the VLDB copyright notice
and the title of the publication and itr dote oppsor, and notice
is given that copying ir by permirrion of the Very L4rge Data
B44e Endowment. To copy otherwire, or to republish, nquins
a fee 4nd/or special pwmisrion from the Endowment.

Proceedings of the 19th VLDB Conference,
Dublin, Ireland, LlNlS

Betty Salzberg
College of Computer Science

Northeastern University
Boston MA 02115 l

database as well. It is natural to ask whether this
history data can also be used to provide backup for
the current database in case of a media failure.

Traditionally, database systems take periodic back-
ups to permit recovery from media (disk) failures.
The backup reflects the state of the data at a previous
time. If media failure occurs, the backup and the re-
covery log are used to restore the database. The pre-
ferred backup method takes a “fuzzy dump”. Hack-
ups are “fuzzy” when normal transaction activity is
concurrent with the backup and the copied data does
not represent a transaction consistent picture of the
database.

For a full backup, the entire database is copied in
a background process. When the database is large
(multiple gigabytes), a complete fuzzy dump becomes
very expensive. Then differential backups, also fuzzy,
which only copy pages changed since the last backup
become very desirable.

In this paper, we show how to use a temporal index-
ing method, the time-split B-tree or TSB-tree [G, 71,
for differential backup of the database. The TSR-
tree is particularly suited to the task of supporting a
transaction-time database. It is a multiattribute ac-
cess method that accesses data by key and by transac-
tion time. It partitions the transaction-time database
into two components, a history database (archive)
and a current database, while providing a single uni-
fied index to all versions of data.’ The two compo-
nents may be kept on separate random access media.
The history database can be on WORM media (write-
once, read-many) as history data in a transaction-
time database is never updated.

The TSB-tree incrementally migrates history
records and copies of long-lived current records to the
history database. We modify TSB-tree maintenance
so that we can guarantee that every node containing
a change made since the last backup is copied to the
archive during the backup process. Normal database
activity is concurrent with the backup process. The

380

history database can then be used as a backup. We
know of no other proposals along these lines. It pro-
vides an added role for the history records, hence in-
creasing the value of retaining them, and reducing
the incremental cost of supporting a transaction-time
database.

It is important to emphasize the unique suitabil-
ity of the TSB-tree for our purpose. It is the only
temporal access method that simultaneously provides
a O(Iog(n)) search and insertion cost, an O(n) size,
excellent clustering of time-slices in its nodes, and
an integrated index for both current and history
databases. Because data can move incrementally
from current to history database, and because clip-
ping introduces redundancy that is useful in backup,
the TSB-tree is readily adapted to provide the backup
functionality.

1.2 Optimizing Backup and Recovery

We have made a considerable and detailed effort to
make backup and recovery efficient. Below, we de-
scribe the optimizations that we exploit.

1.2.1 Backup for Data Nodes

Records are clustered by time and by key in the
leaf nodes (data nodes) of the TSB-tree. All nodes
(whether data nodes or index nodes) of the TSB-tree
are disk pages (contiguous areas of a disk). TSB-tree
nodes are split either by transaction time or by key, as
in the B+-tree. Originally, nodes were split only when
full. When using a TSB-tree for backup, (potentially
non-full) nodes may also be time-split to ensure that
the required versions of data are in history nodes of
the tree.

During backup, we sweep through the current
database and time-split only nodes updated since the
last backup. The history database is written sequen-
tially, with backed up nodes being written in large
groups. These large sequential writes are very im-
portant for both the execution path length and the
elapsed time of the backup. It is possible for the
sweep to be done in parallel, with the writing of the
new history nodes also done in parallel, as with con-
ventional backups.

Normally, when a node is time-split, versions of
data are removed from the current node. Indeed, the
“normal” reason for doing a node split is to make
space available in a node. Because we wish to make
our backup process as efficient as possible, we do not
remove data from the current data nodes. Current
data nodes are not updated by the backup process.

1.2.2 Index Maintenance

In the current database, only index nodes are changed
by the backup process. This is required to make the
backup usable as a history database. The index also
makes recovery from partial media failures fast by
providing fast access to the specific backup node(s)
required.

Our backup sweep of the current database is in tree
traversal order. Then, all index terms for one index
node are posted before proceeding to the next index
node. This clustering of index updates reduces the
I/O cost of performing them. The only log records
produced by backup describe the updating of the in-
dex. This is necessary to permit us to guarantee the
recovery of the index. We do not log changes to the
history database made by the backup.

Every backup is incorporated into the history
database and must be indexed. This contributes to
a potentially large expansion in the size of the in-
dex. Reducing index growth is important to reduce
the access path to data. TSB-tree index growth is re-
stricted by exploiting the redundancy inherent in the
backup process to purge unneeded index terms from
the index nodes.

1.2.3 Media Recovery

We take advantage of proximity of the most recently
backed up nodes on the history medium to use se-
quential access during media recovery. We can use
write optimization via relocation to permit sequen-
tial writing of the restored nodes.

1.3 Organization of Paper

In section 2, the TSB-tree is reviewed. Section 3
shows how to modify TSB-tree node splitting so that
backup cost is minimized. In section 4, how to han-
dle the index during backup is described. Section 5
describes the overall backup process, and how it is
possible to optimize the node splitting costs because
backup is a “batch” operation. Section 6 outlines me-
dia recovery, how one can find the backup copies of
nodes and how the log is applied. We end with a brief
discussion.

2 The TSB-tree

2.1 Overview

The TSB-tree search algorithm and its split algo-
rithms for index and data nodes, as originally de-
scribed in [6], are recapped below. Using the TSB-
tree for backup requires a specific (and different)

381

time-splitting strategy. Backup-induced splitting is
described in subsequent sections.

Data records in a transaction-time database cor-
respond to a line segment (one key value) in the
time-key space. The line segment in the temporal
dimension represents the lifespan [15] of the version
of the data record, the start point being the transac-
tion time at which it was entered, and the end point
being the transaction time at which its successor ver-
sion was entered, where its successor can be a “delete
stub” indicating that the record has been deleted, not
updated. In the TSB-tree, a version of a record con-
sists of a pair, a timestamp denoting the transaction
time of entry, and the data, including the key, asso-
ciated with the version. The end time of a version is
given by the start time of its successor version with
the same key value.

The TSB-tree index entries are triples consisting of
time, key, and pointer to lower-level tree node. Time
and key respectively indicate the low time value and
the low key value for the rectangular region of time-
key space covered by the associated lower-level node.
Upper bounds on these indexed rectangular regions
are given by the lower bounds of other entries (with
the same key but a later time, or with the same time
but a higher key) or by the boundaries of the parent
index node.

2.2 TSB-tree Searching

A search in a temporal index for a version with a given
key, and valid at a given time, starts at the root and
involves following index terms whose space contains
the <key,time> point requested until the leaf of the
index tree is reached. Then the versions of records
in that leaf are searched for a record with the given
key whose ‘lifespan includes the time requested in the
search.

In a TSB-tree, the search within an index node
proceeds as follows. All index entries with times later
than the search time are ignored. Within a node, look
for the largest key smaller than or equal to the search
key. Find the most recent entry with that key (among
the non-ignored entries with time not later than the
search time). Follow the associated address pointer.
This is repeated until a leaf is reached. At the leaf,
look for a version of data with an exact match on
key and with the largest transaction timestamp less
than or equal to the requested time. Searching is
illustrated in Figure 1.

Figure 1: An index entry is the low key and time
for the child’s time-space rectangle. To find a record
with key 66, valid at time 7, find the index entry with
largest key <_ 60 among the entries with time leq 7,
i.e. (59 T=l). The record (60 Joe T 11) satisfies the
search. (90 Pete T=5) is in two data pages because
it is valid across the split time (T=8).

2.3 TSB-tree Node Splitting

A node of the TSB-tree can be split by time or by key.
Deciding whether to split by time, or by key, or by
both time and key, impacts the characteristics of the
resulting TSB-tree. The implications of splitting pol-
icy are explored in depth in [7]. Here we describe only
the mechanics of the splitting process. A sequence of
splits is illustrated in Figure 2.

The TSB-tree exploits clipping [3] to cope with its
entries that have extents. For versions of records, the
extent only exists in the temporal dimension, while
index terms are key-time rectangles, and hence have
extent in both attributes. The regions indexed in a
TSB-tree are maintained as rectangles only because
entries are copied (i.e. clipped) and appear in both
resultant nodes, when their extent crosses the node
split boundary (line).

Clipping in TSB-trees introduces no redundancy
for the current data of the current database or the
index entries for the nodes of the current database.
Since only the current database is subject to update,
no update complications of the sort present with the
R+tree are introduced by TSB-tree clipping.

382

B 18 im

b A 50
lime

c: iOJu T.1 MP& T4

B: DIAlaT: llObrT:l

Figure 2: Illustrated is a sequence of splits ending in
a key split for an index node.

2.3.1 Time Splits

It is time splitting that posts nodes (and hence mi-
grates data) to the history database. To time split a
TSB-tree node at T, all entries with time less than T
go in the history node. All entries with time greater
than or equal to T go in the current node. For each
key-identified entry, the version with the largest time
smaller than or equal to T must be in the current
node. Thus records with lifespans that cross T are
clipped and have copies in both nodes.

Any time after the begin time for a data node can
be used to split a data node. For an index node, the
split time cannot be later than the begin time for any
index term referencing a current node to insure that
history index nodes do not reference current nodes.
This prevents us from having to deal with history
node updates when a current node splits. Hence,
index entries are posted to only one node. History
nodes, which do not split, may have several parents.
Current nodes have only one parent.

2.3.2 Key Splits

A TSB-tree data node is split by key exactly like a
Bt-tree. All the records with key greater than or
equal to the split value go in the new node and the
records with key value less than the split value remain
in the old node.

Key splitting for index nodes is like time splitting
in that index entries have extents in the key space
dimension. A key K of an index term is chosen as
the split key value. All entries with keys less than K
are placed in the ,old (low keys) node. Entries with
keys greater than or equal to K go in the new (high
keys) node. Each entry with the largest key, K1, less
than or equal to K as of any time included in the node
must be in the new (high keys) node as the extent of
such an entry includes K. If K1 is less than (not equal
to) K, this entry is thus in both nodes (see Figure 2).
Note that because the key space is refined over time,
any such clipped index entry will reference a history
node.

2.3.3 Concurrent Node Splitting

Essentially any concurrency algorithm used for Bt-
trees, such as those listed in [13], could be used to
provide concurrent updating and node splitting for
TSB-trees. The current nodes of the TSB-tree are
the only ones that are updated. The current partition
of the TSB-tree looks like a B+-tree when it comes
to node splits, except that the new history nodes are
placed in the history database. However, concurrency
is particularly high when using a method based on the

383

B-link tree [4]. Such a method which also provides for
recovery as well, is described in [8]. Changes made
on the leaf level are in separate atomic actions from
those made above the leaf level.. Details of the use
of the concurrency method of [8] in TSB-trees can be
found in [9].

2.4 Timestamping

The time chosen as the transaction time for times-
tamping record versions in the TSB-tree is the com-
mit time of the the transaction which created that
version. Choosing transaction time at transaction
start has the advantage that it is available at the
time that updates to the database are being made.
However, this excessively constrains serialization or-
der, leading to more transaction aborts than is desir-
able. However, choosing transaction time at commit
implies that changed data must be visited twice. The
first visit adds the new version and stamps it with the
transaction’s identifier (TID). The second visit, after
commit, replaces the TID with the transaction time
chosen.

Since timestamping goes on after a transaction has
committed, the association between a transaction and
its time must be stably stored. Storing the transac-
tion time in the commit record on the recovery log
accomplishes this. For efficiently finding a transac-
tion’s time, a TID-TIME table is kept in addition in
volatile memory. The TID-TIME table can be pe-
riodically written to disk to speed its recovery after
a crash. It is brought up-to-date using the logged
commit records.

To be able to garbage collect the TID-TIME table,
we suggest that it also contain a list of pages whose
records require timestamping. We expect most of
the pages to be timestamped will be in the database
cache right after the transaction commits. Times-
tamping them will be part of the disk write, which will
be logged. As suggested in [14], timestamping can
be piggy-backed on subsequent updates to the same
page. Any timestamping that’remains can be done
by a background process, and must also be logged.
Garbage-collecting the TID-TIME table is outlined
in [lo].

2.5 Distributed Transactions

Agreeing on and distributing transaction time to the
cohorts of a distributed transaction can be handled
by augmenting the two-phase commit protocol mes-
sages. Cohorts vote not only on whether to commit
a transaction, but also on transaction time [5]. The
time chosen by the coordinator is not earlier than the

times voted by cohorts. Hence, while a transaction
is PREPARED, a lower bound for its commit time
is known, i.e. the time voted by the cohort. This
lower bound on commit time is of use when dealing
with backup induced time-splits for nodes containing
data from prepared transactions. Thus, we also in-
clude prepared transactions and the time voted by
the cohort in the TID-TIME table. Thus, this ta-
ble contains the attributes (i) TID, (ii) TIME: either
transaction time or time voted during prepare, (iii)
STATUS: either committed or prepared and (iv) a
list of pages in need of timestamping by this ttansac-
tion.

3 Node Backup

3.1 Data Nodes

New considerations govern the details of data node
time-splitting for backup. In particular, all changes
since the last backup are placed in the history
database, and the current database is not written.

3.1.1 Identifying Nodes for Backup

Data nodes updated since the last backup are indi-
cated by a Node Change Vector or NCV, a bit
vector with one bit for each data node in the TSB-
tree. Similar bookkeeping will be necessary for any
method of differential backup that does not read the
entire database. The NCV is ordered by physical po-
sition of the nodes on the disk.

When a data node is changed, its need for backup
is indicated by setting its NCV bit. This bit is
cleared after a node is split for backup, if there are no
records in the node from uncommitted (prepared or
active) transactions. Nodes with records of uncom-
mitted transactions, that may commit before the next
backup time, must be copied in the next backup even
if there is no subsequent change. The next backup
pass will write the timestamped data in the correct
time interval in the backup. Hence the NCV bit for
these nodes is not cleared.

The NCV is treated like a database system table
with respect to system crash recovery. That is, its
changes are logged (via log records indicating updates
to TSB-tree nodes) and it is written to disk like other
system tables as required by the recovery checkpoint-
ing process.

3.1.2 Current Node as History Node

When using the TSB-tree for media recovery, all time-
splits copy the entire current node to the history

384

database. This ensures that all updates prior to the
backup will he present in the history nodes. This may
require writing uncommitted data to history nodes,
where the uncommitted transaction may be given a
transaction time later than the backup. This data is
marked as uncommitted in the history node. TSB-
tree index terms will direct us to the current data
node when this data is desired. Hence, this data
in history nodes is harmless with respect to searches
and is necessary with respect to recovery. We call
such data which is not within the time-space region
described by the index term referring to it Search
Invisible or SI.

If there are records of committed transactions in
the current node which are not timestamped, we re-
place their TIDs with the transaction times in the
backup history node. The copy of the record in the
current database still needs to be stamped as the cur-
rent database is not written during the backup pro-
cess.

3.1.3 No Change to the Current Node

Backup makes no changes to data nodes in the cur-
rent database. However, a new index term describing
the backup time-split is posted. Hence like a history
node, a current node can contain SI versions of data.
The SI versions in the current node are versions which
are no longer valid at the new start time for the cur-
rent node indicated in the index. These SI versions
have been superceded by more recent versions at (or
before) the start time in the index term.

To make detection of SI versions easy, a START
time is kept in each current node. START is the ear-
liest time covered by data in the node. When START
is earlier than the time in the index term for the node,
Sl versions may be present.

3.1.4 Data Node Split Times

If a data node contains no updates from prepared
transactions, then current time can serve as the split
time for data nodes. When there is a record in the
node from a prepared transaction, we do not know
whether its transaction time is before or after the cur-
rent time. WC do know what the local cohort voted as
transaction time. We choose as split time the earliest
such voted time of any such record.

3.2 Index Nodes

3.2.1 Unique Properties of the Index

Index nodes are treated differently from data nodes
because

A -;Q-e -

D E

F G
A

Figure 3: The current child node Q has not been
changed since the last backup. All Q’s records have
timestamps < the start time in its index entry. The
records in A, valid the last time the node was backed
up, (previous start time for Q), are still valid. Thus
the start time in Q’s index entry (which is the end
time for A) can be moved forward to the current time.

1. Index terms for the backup-induced new his-
tory nodes must be posted. Thus, the index is
changed by the backup process.

2. The split time for index nodes is never later than
the start time of the oldest current index entry to
ensure that history index nodes do not reference
current nodes.

3.2.2 Split Time for Index Nodes

Unchanged data nodes are not read during backup.
However, the start times in the index terms for these
nodes are set to the current time. This indicates that
the la& historical nodes for these current data nodes
include all changes up to the current time. This is
illustrated in Figure 3.

Updated data nodes are read and split by the
backup process, including the writing of a new his-
torical node for them. The split time associated with
the new index term for a current node is the oldest
voted transaction time of any prepared transactions
with updates in the node, or the current time if there
are no prepared transactions.

Recall that an index node can be time-split using
the time of its oldest current child. Hence, an index
node which is the root of a subtree with updates of
prepared transactions can be time-split, generating
a new backup history index node, using the oldest
transaction time voted by any prepared transaction.
If the subtree has no updates from prepared transac-
tions, the current time becomes the split time. The
split time becomes the start time in the index term
for this current index node.

385

,
I A : I

B i

c ! I
D : I _

Figure 4: Index terms may refer to a proper subset
of child space.

3.2.3 Index Term Covering

If all the new index terms generated during backup
are posted to TSB-tree index nodes, they will cause
the index to grow larger than would be the case if
backup were not being done. Fortunately, many of
the backup induced index terms are, or can be made,
redundant.

In a TSB-tree, nodes denote rectangles in time-key
space. An index term in an index node refers to that
portion of the child’s rectangle which intersects its
parent’s rectangle. Usually this is the whole child
space. Sometimes, as we see in Figure 4, part of the
child’s space lies outside the boundaries of the parent.
We say that an index term Tl covers another index
term T1 if the space (a subset of the index node space)
to which Tl refers includes the space referred to by
T2.

We systematically eliminate covered index terms
from index nodes. The node whose reference is erased
in this index node may become inaccessible via a
TSB-tree search, but all search relevant informa-
tion remains accessible. Details of calculating child
boundaries for index covering is in [9]. When using
a WORM device for history nodes, space cannot be
re-used. No attempt need then be made to recover

space in the historical database used by inaccessible
nodes.

4 The Backup Process

We wish to make the backup process comparable in
cost to a conventional differential backup. Thus, we
take pains to minimize the number of nodes read and
written, and also perform batch writes of the infor-
mation that backup needs to store stably. (Although
we do not discuss parallelism per de, the TSB-tree can
be partitioned by key range and theee algorithms can
be applied to each partition in parallel.)

4.1 Backup Splitting Steps

We require that a backup-induced time-split be done
in three steps in the order given below.

Writing the History Node: The current node is
copied to form the history node, which is writ-
ten to the stable history database before the next
step is executed.

Logging the Split: A single log record for the
backup-induced split is written. This log record
describes the posting of new index terms that
update the parent index node.

Writing of the Index Node: The index terms de-
scribing the split are posted to the parent index
node, making the new history node accessible.
The updated index node is not made durable un-
til the log record is durable, following the usual
write-ahead-log rule.

4.2 Writing History Nodes

4.2.1 Non-root Nodes

A current node which is to be backed up is share-
latched to assure read consistency while it is copied
to the history database buffer to become the history
node. This latch can be dropped as soon as the copy
is complete. The necessary timestamping for a his-
tory data node can be done after the copy. Once the
history node is stably written, the parent index node
is updated and this update is logged. This usually
requires only a short-term exclusive latch on the par-
ent index node. If the parent splits, latches on higher
level nodes will also be needed [S].

4.2.2 The Root

Hacking up the root is handled somewhat differently.
There is no index node above the root into which to
store the index terms describing the backup-induced
time-split of the root. Normal B-tree splits of a root
cause the creation of a new root, but this new root, of
necessity, is in the current database, hence requiring
backup itself. We must break this recursion. When
the backup copy of the root is made, we place a ref-
erence to it and to the split time into stable storage
as part of our backup status information.

4.3 The Backup Sweep

The backup is done in key order, nodes with lower
keys being backed up before nodes with higher keys
(or consistently the reverse). Thia has two desirable
results.

1. An index node is backed up immediately after its
descendenta. This assures that the backup ver-
sion of the index node references the new backup
versions of all descendent nodes.

2. An index node will most likely remain in cache
and available while its descendents are being
split. Hence, the effect is to batch the updates
to the index node.

We write the backup history nodes as part of large
sequential writes. During backup, as soon as a node is
split, we place its history node in the output history
buffer, which serves as an output queue. A history
node must be written prior to the log record that
describes the split. We write several history nodes
prior to posting of their index terms. The index node
is then updated with a group of backup-induced index
terms, producing log records for these updates in a
batch as well.

4.4 The Sweep Cursor

The Sweep Cursor permits the ordering require-
ments of backup to be enforced. Its restoration after
a system crash permits an interrupted backup to be
resumed. The Sweep Cursor contains the following
information.

Log Key: the key for the last node whose backup
is recorded stably in the log.

History Key: the key for the last node whose his-
tory node has been written stably to the history
database.

Sbble Hklq Ddabuc Sbbklq

31
Lad Kq: 90 (bst wluc posbd ia bder pge in vddik memory)

Figure 5: The Sweep Cursor: The unposted term 100
can be entered into the log buffer and posted to the
index node in volatile memory. Once the log buffer is
flushed to the stable log, the index page can be copied
to the stable current database.

Last Key: the key for the last node whose backup
has been completed. This includes the posting
of the index entry in volatile memory.

Unposted Terms: the set of index terms as yet
unposted for history nodes that have been writ-
ten.

To enforce the writing of the history node prior to
the logging of the split, we require History Key 2
Log Key. Since parent index nodes are not updated
until history nodes are stable, Last Key < History
Key. The write-ahead log rule implies Log Key 5
Last Key. The Sweep Cursor is illustrated in Figure
5.

4.5 The Backup Status Block

The Backup Status Block (BSB) provides a
durable repository in a known location for infor-
mation related to backup. This information is of
two types: (i) information needed to quickly initi-
ate recovery from media failures; and (ii) information
that assists in making the resumption of backup fast
should the system crash during backup. The BSB
relates a backup with the log information needed to

387

roll forward from the backup to regenerate the cur-
rent database. This information includes log sequence
numbers (LSNe), essentially addresses within the log,
that indicate the beginning of media recovery related
information on the log. The BSB contains the follow-
ing:

BACKUP ROOT: the location of the history root
of the last complete backup. This determines
where media recovery finds the backup that
should be restored.

SAFE POINT LSN: the redo safe point LSN as-
sociated with the last complete backup. This
determines where media recovery should start its
redo scan of the log.

NEW SAFE LSN: the redo safe point LSN associ-
ated with the in-progress backup. This will be-
come the SAFE POINT LSN when the current
backup is complete. It is NIL when backup is
not in progress.

NCV: the location of the most recent stable copy of
the NCV.

4.6 Backup Across System Crashes

It is unacceptable to undo backup to its start follow-
ing a crash. Rather, if a backup is in progress when
the system crashes, we want to resume backup from
the point that was reached thus far. How we accom-
plish this is described here.

First, normal database recovery is performed,
bringing all nodes up to the state as of the time of
failure. Normal database activity can resume at this
point. The BSB and the NCV are restored as a result
of database recovery.

What remains is to restore the Sweep Cursor. The
recovery log is searched back from its end. The first
backup log record encountered indicates the last com-
pleted node backup and its HIGHKEY provides the
values for Log Key and for Last Key. This same log
record provides the history node where a search in the
history database starts to find the value for History
Key. The search continues until the end of the his-
tory database, the high key of the last backup node
becoming the History Key of the Sweep Cursor. The
Unposted Terms are m-created during this scan by
examining the key and time attributes of the history
nodes encountered. Once the Sweep Cursor is re-
generated, normal backup resumes.

5 Media Recovery Process

5.1 Fundamentals

When there is a media failure in the current database,
the first step is to restore all damaged nodes that
have backups from the most recent accessible his-
tory nodes. Each of the restored nodes can be rolled
forward from this restored states by applying their
log records. Nodes without backups in the history
database can be restored solely from their log records.
(These are nodes created by key splits.)

What we consider next is how the history database
is accessed to deal with different types of failures. We
want to minimize (i) the read accesses to the history
database; (ii) the write accesses needed to restore the
backups to the current database; and (iii) the read
accesses to the media log when rolling the restored
database forward.

5.2 F’ull Database Media Recovery

5.2.1 Minimizing Backup Accesses

For a full restoration, traversing the history tree,
starting at the history root has the advantage of
encountering substantial clustering of history nodes
needed for database restoration on the backup
medium. Relevant history nodes from the most re-
cent backup will exist at very high density in a small
region corresponding to the backup time. As the re-
gions associated with increasingly older backups are
accessed, the density of occurrence of still relevant
history nodes declines. This is illustrated in Figure
6.

We can identify regions of the backup medium
where the density of nodes needed for a restore ex-
ceeds some threshold, e.g. 50 %. We can read these
regions in large sequential reads, spending some data
transfer time in order to save access times.

5.2.2 Sequential Writes to Restore Data

Full database media recovery may require that the
restored data be relocated to new stable (disk) stor-
age. When the recovery log is applied, we translate
the old locations of current nodes, as recorded in the
log, to the relocated locations of the restored backup
versions, and apply the log records to the relocated
nodes.

One could do the above translation by organiz-
ing the restored database EO that “relative addresses”
within restored data are preserved. This makes the
size of the translation information very small. Mow-
ever, access arm movement when restoring the data

forward.

lllsloq dsla base

a0 Rackupraol I Ma1 man1 backup dab noda

m Backup index nada m Olkadal8nala

Figure 6: Many of the nodes needed for media re-
covery are clustered together in the area of the most
recent backup. This includes the entire backup index
and those data nodes that were in the last backup.

can be minimized by building a RELOCATION TA-
BLE. As the backup tree is read, subtrees of the cur-
rent database are reconstructed in memory and writ-
ten to the disk in the same order as the backup, i.e.
the children of an index node are written prior to
the index node itself. The writing of the restored
database can then require a very small number of
large sequential writes. This exploits relocation to
optimize writing in the same way as is done with log-
structured files [12].

5.2.3 Applying the Log

The RELOCATION TABLE is also needed to per-
mit the log to be successfully applied to the restored
database. Log records refer to the pre-failure loca-
tions of the data, and need to be translated so as to
correctly update the restored nodes. Further, node
addresses for the pre-failure nodes that appear in in-
dex term log records need to be translated so that
these addresses refer to the restored nodes.

As with conventional media recovery, the log can
be processed so as to optimize the roll forward of the
database. This involves what is called “change accu-
mulation” [2]. The log is sorted by node and within
node by time. The result is that the part of the log
relevant to the rolling forward of a node is stored con-
tiguously. If the RELOCATION TABLE approach is
taken, it is useful to sort the log by the relocated ad-
dresses of the restored database, This permits a sin-
gle sequential scan of the restored database for roll

5.2.4 Summary

The bottom line is that there need be only a modest
number of access arm movements to read the backup
nodes from the history database. Writing the backup
nodes to a restored current database can be done
nearly sequentially. Hence, restoration after media
failure can be done with high performance as well.

5.3 Single Node Restoration

Media failure may involve only a single node. For
these localized media failures, using the TSB-tree’s
history nodes as the source of the backup is a sub-
stantial advantage. The TSB-tree’s index, which is
available in the current database, can be used to lo-
cate the backup node.

If we know the key range of data in the corrupted
node, we can readily find a backup version in the
history database. We use the key range information
to search the TSB-tree for the most recent history
node with that range. We use this history node to
restore the corrupted current node. This node is then
rolled forward by applying the recovery log. If the
corrupted current node does not have a history node,
then it was produced as a result of a key split. Such
a node can be restored solely from the recovery log.

If a corrupted node is encountered in such a way
that its key range is not known, then more extensive
searching is required. The locations of current nodes
that have backups are all in history indez nodes of
the TSB-tree. With an index node fan-out of around
200, the TSB-tree index represents about 0.5% (.005)
of the database.. Even scanning all the current entries
in the most recent history index for the failed node
requires only a small fraction of the I/OS needed were
we to search the entire backup database.

6 Discussion

6.1 Impact on TSB-tree Attributes

Our backup process has been designed to have per-
formance competitive with conventional differential
database backup while permitting the backup to also
be used as a history database. We want to emphasize
here that doing this has not compromised the perfor-
mance of the TSB-tree in its support of a transaction-
time database.

1. Single version current utilization (the proportion
of the current database space occupied by cur-

389

rent versions of data) is little changed since cur-
rent nodes are not updated during backup.

2. The height of the TSB-tree index is only mod-
estly affected because history node index terms
are eliminated whenever they are covered by
other index terms. Index-term covering should
occur with high frequency.

3. Index node time-splitting is enhanced. Backup
permits the time chosen for the splitting of an
index node to advance, which permits history
index terms to be removed from current index
nodes. This works to keep the height of the TSB-
tree small.

6.2 Differential Backup Comparison

A conventional differential backup algorithm must
also keep track of which pages were changed since
the last backup. It would also have to take mea-
sures to protect against redoing the entire backup if
the system failed while backup was in progress. It
would also be necessary to located the most recent
backed-up versions of each page to begin media re-
covery. This would lead one to believe that TSB-tree
backup is comparable in cost to that of conventional
differential backup. The advantage of the TSB-tree is
that it can also be used to support a transaction-time
database.

References

PI

PI

PI

Bayer, R. and Schkolnick, M. Concurrency of op-
erations on B-trees. Acta Informatico 9 (1977) l-
21.

Gray, J. Notes on database operating systems.
IBM Research Report RJ2188 (Feb. 1978), IBM
Research Division, San Jose, CA.

Guenther, 0. and Buchmann, A. Research issues
in spatial databases. SIGMOD Record 19,4 (Dec.
1990) 61-68.

[4] Lehman, P. and Yao, B. Efficient locking for
concurrent operations on B-trees. ACM Bww.
Database Systems 6,4 (Dec. 1981) 650-670.

[5] Lomet, D. Consistent timestamping for trane-
actions in distributed systems. Proc. of Conf.
on Parallel and Distributed Information Systems,
San Diego, CA (Jan. 1993) 48-55.

[6] Lomet, D. and Salsberg, B. Access methods for
multiversion data. Proc. ACM SIGMOD Conf.,
Portland, OR (June 1989) 315-324.

171

PI

PI

Lomet, D. and Salzberg, B. The performance of
a multiversion access method. Proc. ACM SIG-
MOD Conf., Atlantic City, NJ (June 1990) 354-
363.

Lomet, D. Salzberg, B. Access method concur-
rency with recovery. Proc. ACM SIGMOD Conf.,
San Diego, (June 1992) 351-360.

Lomet D. and Salzberg, B. Media recovery with
time-split B-trees. Digital Equipment Corp. Tech
Report CRL 91/9 (September 1991), Cambridge
Research Lab, Cambridge, MA

[lo] Lomet, D. and Salzberg, B. Transaction-time
databases. in Temporal Databccses: Theory, De-
sign and Implementation, A. Benjamin Cum-
mings, Redwood City, January 1993.

[ll] Reed, D. Implementing atomic actions on decen-
tralized data. ACM !hna. Computing Systems
(Feb. 1983) 3-23.

[12] Rosenblum, M. and Ousterhout, J. The design
and implementation of a log-structured file sys-
tem. 13th ACM Symposium on Operating Sys-
tems Principles (1991)

[13] Shazha, D. and Goodman, N. Concurrent search
structure algorithms. ACM !l+ans. Database Sys-
tems 13,l (March 1988) 53-90.

[14] Stonebraker, M. The design of the Postgres stor-
age system. Proc. Very Large Databaaes Conf.,
Brighton, UK (Sept. 1987) 289-300.

[15] A. Tansel, J. Clifford, S. Jajodia, A. Segev and
R. Snodgrass, editors, Temporal Databases: The-
ory, Design and Implementation, A. Benjamin
Cummings, Redwood City, January 1993.

390

